/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: Marek Olšák * */ /* The GPU load is measured as follows. * * There is a thread which samples the GRBM_STATUS register at a certain * frequency and the "busy" or "idle" counter is incremented based on * whether the GUI_ACTIVE bit is set or not. * * Then, the user can sample the counters twice and calculate the average * GPU load between the two samples. */ #include "r600_pipe_common.h" #include "os/os_time.h" /* For good accuracy at 1000 fps or lower. This will be inaccurate for higher * fps (there are too few samples per frame). */ #define SAMPLES_PER_SEC 10000 #define GRBM_STATUS 0x8010 #define SPI_BUSY(x) (((x) >> 22) & 0x1) #define GUI_ACTIVE(x) (((x) >> 31) & 0x1) static void r600_update_grbm_counters(struct r600_common_screen *rscreen, union r600_grbm_counters *counters) { uint32_t value = 0; rscreen->ws->read_registers(rscreen->ws, GRBM_STATUS, 1, &value); if (SPI_BUSY(value)) p_atomic_inc(&counters->named.spi_busy); else p_atomic_inc(&counters->named.spi_idle); if (GUI_ACTIVE(value)) p_atomic_inc(&counters->named.gui_busy); else p_atomic_inc(&counters->named.gui_idle); } static PIPE_THREAD_ROUTINE(r600_gpu_load_thread, param) { struct r600_common_screen *rscreen = (struct r600_common_screen*)param; const int period_us = 1000000 / SAMPLES_PER_SEC; int sleep_us = period_us; int64_t cur_time, last_time = os_time_get(); while (!p_atomic_read(&rscreen->gpu_load_stop_thread)) { if (sleep_us) os_time_sleep(sleep_us); /* Make sure we sleep the ideal amount of time to match * the expected frequency. */ cur_time = os_time_get(); if (os_time_timeout(last_time, last_time + period_us, cur_time)) sleep_us = MAX2(sleep_us - 1, 1); else sleep_us += 1; /*printf("Hz: %.1f\n", 1000000.0 / (cur_time - last_time));*/ last_time = cur_time; /* Update the counters. */ r600_update_grbm_counters(rscreen, &rscreen->grbm_counters); } p_atomic_dec(&rscreen->gpu_load_stop_thread); return 0; } void r600_gpu_load_kill_thread(struct r600_common_screen *rscreen) { if (!rscreen->gpu_load_thread) return; p_atomic_inc(&rscreen->gpu_load_stop_thread); pipe_thread_wait(rscreen->gpu_load_thread); rscreen->gpu_load_thread = 0; } static uint64_t r600_read_counter(struct r600_common_screen *rscreen, unsigned busy_index) { /* Start the thread if needed. */ if (!rscreen->gpu_load_thread) { pipe_mutex_lock(rscreen->gpu_load_mutex); /* Check again inside the mutex. */ if (!rscreen->gpu_load_thread) rscreen->gpu_load_thread = pipe_thread_create(r600_gpu_load_thread, rscreen); pipe_mutex_unlock(rscreen->gpu_load_mutex); } unsigned busy = p_atomic_read(&rscreen->grbm_counters.array[busy_index]); unsigned idle = p_atomic_read(&rscreen->grbm_counters.array[busy_index + 1]); return busy | ((uint64_t)idle << 32); } static unsigned r600_end_counter(struct r600_common_screen *rscreen, uint64_t begin, unsigned busy_index) { uint64_t end = r600_read_counter(rscreen, busy_index); unsigned busy = (end & 0xffffffff) - (begin & 0xffffffff); unsigned idle = (end >> 32) - (begin >> 32); /* Calculate the % of time the busy counter was being incremented. * * If no counters were incremented, return the current counter status. * It's for the case when the load is queried faster than * the counters are updated. */ if (idle || busy) { return busy*100 / (busy + idle); } else { union r600_grbm_counters counters; memset(&counters, 0, sizeof(counters)); r600_update_grbm_counters(rscreen, &counters); return counters.array[busy_index] ? 100 : 0; } } #define BUSY_INDEX(rscreen, field) (&rscreen->grbm_counters.named.field##_busy - \ rscreen->grbm_counters.array) uint64_t r600_begin_counter_spi(struct r600_common_screen *rscreen) { return r600_read_counter(rscreen, BUSY_INDEX(rscreen, spi)); } unsigned r600_end_counter_spi(struct r600_common_screen *rscreen, uint64_t begin) { return r600_end_counter(rscreen, begin, BUSY_INDEX(rscreen, spi)); } uint64_t r600_begin_counter_gui(struct r600_common_screen *rscreen) { return r600_read_counter(rscreen, BUSY_INDEX(rscreen, gui)); } unsigned r600_end_counter_gui(struct r600_common_screen *rscreen, uint64_t begin) { return r600_end_counter(rscreen, begin, BUSY_INDEX(rscreen, gui)); }