/* ----------------------------------------------------------------------- * * * Copyright 2007-2008 H. Peter Anvin - All Rights Reserved * Copyright 2009-2010 Intel Corporation; author: H. Peter Anvin * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall * be included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * ----------------------------------------------------------------------- */ /* * map.c * * Functions that deal with the memory map of various objects */ #include "mboot.h" static struct syslinux_movelist *ml = NULL; static struct syslinux_memmap *mmap = NULL, *amap = NULL; static addr_t mboot_high_water_mark = 0x100000; /* * Note: although there is no such thing in the spec, at least Xen makes * assumptions as to where in the memory space Grub would have loaded * certain things. To support that, if "high" is set, then allocate this * at an address strictly above any previous allocations. * * As a precaution, this also pads the data with zero up to the next * alignment datum. */ addr_t map_data(const void *data, size_t len, size_t align, int flags) { addr_t start = (flags & MAP_HIGH) ? mboot_high_water_mark : 0x2000; addr_t pad = (flags & MAP_NOPAD) ? 0 : -len & (align - 1); addr_t xlen = len + pad; if (syslinux_memmap_find_type(amap, SMT_FREE, &start, &xlen, align) || syslinux_add_memmap(&amap, start, len + pad, SMT_ALLOC) || syslinux_add_movelist(&ml, start, (addr_t) data, len) || (pad && syslinux_add_memmap(&mmap, start + len, pad, SMT_ZERO))) { printf("Cannot map %zu bytes\n", len + pad); return 0; } dprintf("Mapping 0x%08x bytes (%#x pad) at 0x%08x\n", len, pad, start); if (start + len + pad > mboot_high_water_mark) mboot_high_water_mark = start + len + pad; return start; } addr_t map_string(const char *string) { if (!string) return 0; else return map_data(string, strlen(string) + 1, 1, 0); } int init_map(void) { /* * Note: mmap is the memory map (containing free and zeroed regions) * needed by syslinux_shuffle_boot_pm(); amap is a map where we keep * track ourselves which target memory ranges have already been * allocated. */ mmap = syslinux_memory_map(); amap = syslinux_dup_memmap(mmap); if (!mmap || !amap) { error("Failed to allocate initial memory map!\n"); return -1; } dprintf("Initial memory map:\n"); syslinux_dump_memmap(mmap); return 0; } struct multiboot_header *map_image(void *ptr, size_t len) { struct multiboot_header *mbh; int mbh_len; char *cptr = ptr; Elf32_Ehdr *eh = ptr; Elf32_Phdr *ph; Elf32_Shdr *sh; unsigned int i, mbh_offset; uint32_t bad_flags; /* * Search for the multiboot header... */ mbh_len = 0; for (mbh_offset = 0; mbh_offset < MULTIBOOT_SEARCH; mbh_offset += 4) { mbh = (struct multiboot_header *)((char *)ptr + mbh_offset); if (mbh->magic != MULTIBOOT_MAGIC) continue; if (mbh->magic + mbh->flags + mbh->checksum) continue; if (mbh->flags & MULTIBOOT_VIDEO_MODE) mbh_len = 48; else if (mbh->flags & MULTIBOOT_AOUT_KLUDGE) mbh_len = 32; else mbh_len = 12; if (mbh_offset + mbh_len > len) mbh_len = 0; /* Invalid... */ else break; /* Found something... */ } if (mbh_len) { bad_flags = mbh->flags & MULTIBOOT_UNSUPPORTED; if (bad_flags) { printf("Unsupported Multiboot flags set: %#x\n", bad_flags); return NULL; } } if (len < sizeof(Elf32_Ehdr) || memcmp(eh->e_ident, "\x7f" "ELF\1\1\1", 6) || (eh->e_machine != EM_386 && eh->e_machine != EM_486 && eh->e_machine != EM_X86_64) || eh->e_version != EV_CURRENT || eh->e_ehsize < sizeof(Elf32_Ehdr) || eh->e_ehsize >= len || eh->e_phentsize < sizeof(Elf32_Phdr) || !eh->e_phnum || eh->e_phoff + eh->e_phentsize * eh->e_phnum > len) eh = NULL; /* No valid ELF header found */ /* Is this a Solaris kernel? */ if (!set.solaris && eh && kernel_is_solaris(eh)) opt.solaris = true; /* * Note: the Multiboot Specification implies that AOUT_KLUDGE should * have precedence over the ELF header. However, Grub disagrees, and * Grub is "the reference bootloader" for the Multiboot Specification. * This is insane, since it makes the AOUT_KLUDGE bit functionally * useless, but at least Solaris apparently depends on this behavior. */ if (eh && !(opt.aout && mbh_len && (mbh->flags & MULTIBOOT_AOUT_KLUDGE))) { regs.eip = eh->e_entry; /* Can be overridden further down... */ ph = (Elf32_Phdr *) (cptr + eh->e_phoff); for (i = 0; i < eh->e_phnum; i++) { if (ph->p_type == PT_LOAD || ph->p_type == PT_PHDR) { /* * This loads at p_paddr, which matches Grub. However, if * e_entry falls within the p_vaddr range of this PHDR, then * adjust it to match the p_paddr range... this is how Grub * behaves, so it's by definition correct (it doesn't have to * make sense...) */ addr_t addr = ph->p_paddr; addr_t msize = ph->p_memsz; addr_t dsize = min(msize, ph->p_filesz); if (eh->e_entry >= ph->p_vaddr && eh->e_entry < ph->p_vaddr + msize) regs.eip = eh->e_entry + (ph->p_paddr - ph->p_vaddr); dprintf("Segment at 0x%08x data 0x%08x len 0x%08x\n", addr, dsize, msize); if (syslinux_memmap_type(amap, addr, msize) != SMT_FREE) { printf ("Memory segment at 0x%08x (len 0x%08x) is unavailable\n", addr, msize); return NULL; /* Memory region unavailable */ } /* Mark this region as allocated in the available map */ if (syslinux_add_memmap(&amap, addr, msize, SMT_ALLOC)) { error("Overlapping segments found in ELF header\n"); return NULL; } if (ph->p_filesz) { /* Data present region. Create a move entry for it. */ if (syslinux_add_movelist (&ml, addr, (addr_t) cptr + ph->p_offset, dsize)) { error("Failed to map PHDR data\n"); return NULL; } } if (msize > dsize) { /* Zero-filled region. Mark as a zero region in the memory map. */ if (syslinux_add_memmap (&mmap, addr + dsize, msize - dsize, SMT_ZERO)) { error("Failed to map PHDR zero region\n"); return NULL; } } if (addr + msize > mboot_high_water_mark) mboot_high_water_mark = addr + msize; } else { /* Ignore this program header */ } ph = (Elf32_Phdr *) ((char *)ph + eh->e_phentsize); } /* Load the ELF symbol table */ if (eh->e_shoff) { addr_t addr, len; sh = (Elf32_Shdr *) ((char *)eh + eh->e_shoff); len = eh->e_shentsize * eh->e_shnum; /* * Align this, but don't pad -- in general this means a bunch of * smaller sections gets packed into a single page. */ addr = map_data(sh, len, 4096, MAP_HIGH | MAP_NOPAD); if (!addr) { error("Failed to map symbol table\n"); return NULL; } mbinfo.flags |= MB_INFO_ELF_SHDR; mbinfo.syms.e.addr = addr; mbinfo.syms.e.num = eh->e_shnum; mbinfo.syms.e.size = eh->e_shentsize; mbinfo.syms.e.shndx = eh->e_shstrndx; for (i = 0; i < eh->e_shnum; i++) { addr_t align; if (!sh[i].sh_size) continue; /* Empty section */ if (sh[i].sh_flags & SHF_ALLOC) continue; /* SHF_ALLOC sections should have PHDRs */ align = sh[i].sh_addralign ? sh[i].sh_addralign : 0; addr = map_data((char *)ptr + sh[i].sh_offset, sh[i].sh_size, align, MAP_HIGH); if (!addr) { error("Failed to map symbol section\n"); return NULL; } sh[i].sh_addr = addr; } } } else if (mbh_len && (mbh->flags & MULTIBOOT_AOUT_KLUDGE)) { /* * a.out kludge thing... */ char *data_ptr; addr_t data_len, bss_len; addr_t bss_addr; regs.eip = mbh->entry_addr; data_ptr = (char *)mbh - (mbh->header_addr - mbh->load_addr); if (mbh->load_end_addr) data_len = mbh->load_end_addr - mbh->load_addr; else data_len = len - mbh_offset + (mbh->header_addr - mbh->load_addr); bss_addr = mbh->load_addr + data_len; if (mbh->bss_end_addr) bss_len = mbh->bss_end_addr - mbh->load_end_addr; else bss_len = 0; if (syslinux_memmap_type(amap, mbh->load_addr, data_len + bss_len) != SMT_FREE) { printf("Memory segment at 0x%08x (len 0x%08x) is unavailable\n", mbh->load_addr, data_len + bss_len); return NULL; /* Memory region unavailable */ } if (syslinux_add_memmap(&amap, mbh->load_addr, data_len + bss_len, SMT_ALLOC)) { error("Failed to claim a.out address space!\n"); return NULL; } if (data_len) if (syslinux_add_movelist(&ml, mbh->load_addr, (addr_t) data_ptr, data_len)) { error("Failed to map a.out data\n"); return NULL; } if (bss_len) if (syslinux_add_memmap (&mmap, bss_addr, bss_len, SMT_ZERO)) { error("Failed to map a.out bss\n"); return NULL; } if (bss_addr + bss_len > mboot_high_water_mark) mboot_high_water_mark = bss_addr + bss_len; } else { error ("Invalid Multiboot image: neither ELF header nor a.out kludge found\n"); return NULL; } return mbh; } /* * Set up a stack. This isn't actually required by the spec, but it seems * like a prudent thing to do. Also, put enough zeros at the top of the * stack that something that looks for an ELF invocation record will know * there isn't one. */ static void mboot_map_stack(void) { addr_t start, len; if (syslinux_memmap_largest(amap, SMT_FREE, &start, &len) || len < 64) return; /* Not much we can do, here... */ regs.esp = (start + len - 32) & ~15; dprintf("Mapping stack at 0x%08x\n", regs.esp); syslinux_add_memmap(&mmap, regs.esp, 32, SMT_ZERO); } void mboot_run(int bootflags) { mboot_map_stack(); dprintf("Running, eip = 0x%08x, ebx = 0x%08x\n", regs.eip, regs.ebx); regs.eax = MULTIBOOT_VALID; syslinux_shuffle_boot_pm(ml, mmap, bootflags, ®s); }