/* ** ** Copyright 2018, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ //#define LOG_NDEBUG 0 #define LOG_TAG "MediaPlayer2AudioOutput" #include #include // for property_get #include #include #include #include namespace { const float kMaxRequiredSpeed = 8.0f; // for PCM tracks allow up to 8x speedup. } // anonymous namespace namespace android { // TODO: Find real cause of Audio/Video delay in PV framework and remove this workaround /* static */ int MediaPlayer2AudioOutput::mMinBufferCount = 4; /* static */ bool MediaPlayer2AudioOutput::mIsOnEmulator = false; status_t MediaPlayer2AudioOutput::dump(int fd, const Vector& args) const { const size_t SIZE = 256; char buffer[SIZE]; String8 result; result.append(" MediaPlayer2AudioOutput\n"); snprintf(buffer, 255, " stream type(%d), left - right volume(%f, %f)\n", mStreamType, mLeftVolume, mRightVolume); result.append(buffer); snprintf(buffer, 255, " msec per frame(%f), latency (%d)\n", mMsecsPerFrame, (mTrack != 0) ? mTrack->latency() : -1); result.append(buffer); snprintf(buffer, 255, " aux effect id(%d), send level (%f)\n", mAuxEffectId, mSendLevel); result.append(buffer); ::write(fd, result.string(), result.size()); if (mTrack != 0) { mTrack->dump(fd, args); } return NO_ERROR; } MediaPlayer2AudioOutput::MediaPlayer2AudioOutput(audio_session_t sessionId, uid_t uid, int pid, const audio_attributes_t* attr, const sp& deviceCallback) : mCallback(NULL), mCallbackCookie(NULL), mCallbackData(NULL), mStreamType(AUDIO_STREAM_MUSIC), mLeftVolume(1.0), mRightVolume(1.0), mPlaybackRate(AUDIO_PLAYBACK_RATE_DEFAULT), mSampleRateHz(0), mMsecsPerFrame(0), mFrameSize(0), mSessionId(sessionId), mUid(uid), mPid(pid), mSendLevel(0.0), mAuxEffectId(0), mFlags(AUDIO_OUTPUT_FLAG_NONE), mSelectedDeviceId(AUDIO_PORT_HANDLE_NONE), mRoutedDeviceId(AUDIO_PORT_HANDLE_NONE), mDeviceCallbackEnabled(false), mDeviceCallback(deviceCallback) { ALOGV("MediaPlayer2AudioOutput(%d)", sessionId); if (attr != NULL) { mAttributes = (audio_attributes_t *) calloc(1, sizeof(audio_attributes_t)); if (mAttributes != NULL) { memcpy(mAttributes, attr, sizeof(audio_attributes_t)); mStreamType = audio_attributes_to_stream_type(attr); } } else { mAttributes = NULL; } setMinBufferCount(); } MediaPlayer2AudioOutput::~MediaPlayer2AudioOutput() { close(); free(mAttributes); delete mCallbackData; } //static void MediaPlayer2AudioOutput::setMinBufferCount() { char value[PROPERTY_VALUE_MAX]; if (property_get("ro.kernel.qemu", value, 0)) { mIsOnEmulator = true; mMinBufferCount = 12; // to prevent systematic buffer underrun for emulator } } // static bool MediaPlayer2AudioOutput::isOnEmulator() { setMinBufferCount(); // benign race wrt other threads return mIsOnEmulator; } // static int MediaPlayer2AudioOutput::getMinBufferCount() { setMinBufferCount(); // benign race wrt other threads return mMinBufferCount; } ssize_t MediaPlayer2AudioOutput::bufferSize() const { Mutex::Autolock lock(mLock); if (mTrack == 0) { return NO_INIT; } return mTrack->frameCount() * mFrameSize; } ssize_t MediaPlayer2AudioOutput::frameCount() const { Mutex::Autolock lock(mLock); if (mTrack == 0) { return NO_INIT; } return mTrack->frameCount(); } ssize_t MediaPlayer2AudioOutput::channelCount() const { Mutex::Autolock lock(mLock); if (mTrack == 0) { return NO_INIT; } return mTrack->channelCount(); } ssize_t MediaPlayer2AudioOutput::frameSize() const { Mutex::Autolock lock(mLock); if (mTrack == 0) { return NO_INIT; } return mFrameSize; } uint32_t MediaPlayer2AudioOutput::latency () const { Mutex::Autolock lock(mLock); if (mTrack == 0) { return 0; } return mTrack->latency(); } float MediaPlayer2AudioOutput::msecsPerFrame() const { Mutex::Autolock lock(mLock); return mMsecsPerFrame; } status_t MediaPlayer2AudioOutput::getPosition(uint32_t *position) const { Mutex::Autolock lock(mLock); if (mTrack == 0) { return NO_INIT; } return mTrack->getPosition(position); } status_t MediaPlayer2AudioOutput::getTimestamp(AudioTimestamp &ts) const { Mutex::Autolock lock(mLock); if (mTrack == 0) { return NO_INIT; } return mTrack->getTimestamp(ts); } // TODO: Remove unnecessary calls to getPlayedOutDurationUs() // as it acquires locks and may query the audio driver. // // Some calls could conceivably retrieve extrapolated data instead of // accessing getTimestamp() or getPosition() every time a data buffer with // a media time is received. // // Calculate duration of played samples if played at normal rate (i.e., 1.0). int64_t MediaPlayer2AudioOutput::getPlayedOutDurationUs(int64_t nowUs) const { Mutex::Autolock lock(mLock); if (mTrack == 0 || mSampleRateHz == 0) { return 0; } uint32_t numFramesPlayed; int64_t numFramesPlayedAtUs; AudioTimestamp ts; status_t res = mTrack->getTimestamp(ts); if (res == OK) { // case 1: mixing audio tracks and offloaded tracks. numFramesPlayed = ts.mPosition; numFramesPlayedAtUs = ts.mTime.tv_sec * 1000000LL + ts.mTime.tv_nsec / 1000; //ALOGD("getTimestamp: OK %d %lld", numFramesPlayed, (long long)numFramesPlayedAtUs); } else if (res == WOULD_BLOCK) { // case 2: transitory state on start of a new track numFramesPlayed = 0; numFramesPlayedAtUs = nowUs; //ALOGD("getTimestamp: WOULD_BLOCK %d %lld", // numFramesPlayed, (long long)numFramesPlayedAtUs); } else { // case 3: transitory at new track or audio fast tracks. res = mTrack->getPosition(&numFramesPlayed); CHECK_EQ(res, (status_t)OK); numFramesPlayedAtUs = nowUs; numFramesPlayedAtUs += 1000LL * mTrack->latency() / 2; /* XXX */ //ALOGD("getPosition: %u %lld", numFramesPlayed, (long long)numFramesPlayedAtUs); } // CHECK_EQ(numFramesPlayed & (1 << 31), 0); // can't be negative until 12.4 hrs, test // TODO: remove the (int32_t) casting below as it may overflow at 12.4 hours. int64_t durationUs = (int64_t)((int32_t)numFramesPlayed * 1000000LL / mSampleRateHz) + nowUs - numFramesPlayedAtUs; if (durationUs < 0) { // Occurs when numFramesPlayed position is very small and the following: // (1) In case 1, the time nowUs is computed before getTimestamp() is called and // numFramesPlayedAtUs is greater than nowUs by time more than numFramesPlayed. // (2) In case 3, using getPosition and adding mAudioSink->latency() to // numFramesPlayedAtUs, by a time amount greater than numFramesPlayed. // // Both of these are transitory conditions. ALOGV("getPlayedOutDurationUs: negative duration %lld set to zero", (long long)durationUs); durationUs = 0; } ALOGV("getPlayedOutDurationUs(%lld) nowUs(%lld) frames(%u) framesAt(%lld)", (long long)durationUs, (long long)nowUs, numFramesPlayed, (long long)numFramesPlayedAtUs); return durationUs; } status_t MediaPlayer2AudioOutput::getFramesWritten(uint32_t *frameswritten) const { Mutex::Autolock lock(mLock); if (mTrack == 0) { return NO_INIT; } ExtendedTimestamp ets; status_t status = mTrack->getTimestamp(&ets); if (status == OK || status == WOULD_BLOCK) { *frameswritten = (uint32_t)ets.mPosition[ExtendedTimestamp::LOCATION_CLIENT]; } return status; } status_t MediaPlayer2AudioOutput::setParameters(const String8& keyValuePairs) { Mutex::Autolock lock(mLock); if (mTrack == 0) { return NO_INIT; } return mTrack->setParameters(keyValuePairs); } String8 MediaPlayer2AudioOutput::getParameters(const String8& keys) { Mutex::Autolock lock(mLock); if (mTrack == 0) { return String8::empty(); } return mTrack->getParameters(keys); } void MediaPlayer2AudioOutput::setAudioAttributes(const audio_attributes_t * attributes) { Mutex::Autolock lock(mLock); if (attributes == NULL) { free(mAttributes); mAttributes = NULL; } else { if (mAttributes == NULL) { mAttributes = (audio_attributes_t *) calloc(1, sizeof(audio_attributes_t)); } memcpy(mAttributes, attributes, sizeof(audio_attributes_t)); mStreamType = audio_attributes_to_stream_type(attributes); } } void MediaPlayer2AudioOutput::setAudioStreamType(audio_stream_type_t streamType) { Mutex::Autolock lock(mLock); // do not allow direct stream type modification if attributes have been set if (mAttributes == NULL) { mStreamType = streamType; } } void MediaPlayer2AudioOutput::close_l() { mTrack.clear(); } status_t MediaPlayer2AudioOutput::open( uint32_t sampleRate, int channelCount, audio_channel_mask_t channelMask, audio_format_t format, int bufferCount, AudioCallback cb, void *cookie, audio_output_flags_t flags, const audio_offload_info_t *offloadInfo, bool doNotReconnect, uint32_t suggestedFrameCount) { ALOGV("open(%u, %d, 0x%x, 0x%x, %d, %d 0x%x)", sampleRate, channelCount, channelMask, format, bufferCount, mSessionId, flags); // offloading is only supported in callback mode for now. // offloadInfo must be present if offload flag is set if (((flags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD) != 0) && ((cb == NULL) || (offloadInfo == NULL))) { return BAD_VALUE; } // compute frame count for the AudioTrack internal buffer size_t frameCount; if ((flags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD) != 0) { frameCount = 0; // AudioTrack will get frame count from AudioFlinger } else { // try to estimate the buffer processing fetch size from AudioFlinger. // framesPerBuffer is approximate and generally correct, except when it's not :-). uint32_t afSampleRate; size_t afFrameCount; if (AudioSystem::getOutputFrameCount(&afFrameCount, mStreamType) != NO_ERROR) { return NO_INIT; } if (AudioSystem::getOutputSamplingRate(&afSampleRate, mStreamType) != NO_ERROR) { return NO_INIT; } const size_t framesPerBuffer = (unsigned long long)sampleRate * afFrameCount / afSampleRate; if (bufferCount == 0) { // use suggestedFrameCount bufferCount = (suggestedFrameCount + framesPerBuffer - 1) / framesPerBuffer; } // Check argument bufferCount against the mininum buffer count if (bufferCount != 0 && bufferCount < mMinBufferCount) { ALOGV("bufferCount (%d) increased to %d", bufferCount, mMinBufferCount); bufferCount = mMinBufferCount; } // if frameCount is 0, then AudioTrack will get frame count from AudioFlinger // which will be the minimum size permitted. frameCount = bufferCount * framesPerBuffer; } if (channelMask == CHANNEL_MASK_USE_CHANNEL_ORDER) { channelMask = audio_channel_out_mask_from_count(channelCount); if (0 == channelMask) { ALOGE("open() error, can\'t derive mask for %d audio channels", channelCount); return NO_INIT; } } Mutex::Autolock lock(mLock); mCallback = cb; mCallbackCookie = cookie; sp t; CallbackData *newcbd = NULL; ALOGV("creating new AudioTrack"); if (mCallback != NULL) { newcbd = new CallbackData(this); t = new AudioTrack( mStreamType, sampleRate, format, channelMask, frameCount, flags, CallbackWrapper, newcbd, 0, // notification frames mSessionId, AudioTrack::TRANSFER_CALLBACK, offloadInfo, mUid, mPid, mAttributes, doNotReconnect, 1.0f, // default value for maxRequiredSpeed mSelectedDeviceId); } else { // TODO: Due to buffer memory concerns, we use a max target playback speed // based on mPlaybackRate at the time of open (instead of kMaxRequiredSpeed), // also clamping the target speed to 1.0 <= targetSpeed <= kMaxRequiredSpeed. const float targetSpeed = std::min(std::max(mPlaybackRate.mSpeed, 1.0f), kMaxRequiredSpeed); ALOGW_IF(targetSpeed != mPlaybackRate.mSpeed, "track target speed:%f clamped from playback speed:%f", targetSpeed, mPlaybackRate.mSpeed); t = new AudioTrack( mStreamType, sampleRate, format, channelMask, frameCount, flags, NULL, // callback NULL, // user data 0, // notification frames mSessionId, AudioTrack::TRANSFER_DEFAULT, NULL, // offload info mUid, mPid, mAttributes, doNotReconnect, targetSpeed, mSelectedDeviceId); } if ((t == 0) || (t->initCheck() != NO_ERROR)) { ALOGE("Unable to create audio track"); delete newcbd; // t goes out of scope, so reference count drops to zero return NO_INIT; } else { // successful AudioTrack initialization implies a legacy stream type was generated // from the audio attributes mStreamType = t->streamType(); } CHECK((t != NULL) && ((mCallback == NULL) || (newcbd != NULL))); mCallbackData = newcbd; ALOGV("setVolume"); t->setVolume(mLeftVolume, mRightVolume); mSampleRateHz = sampleRate; mFlags = flags; mMsecsPerFrame = 1E3f / (mPlaybackRate.mSpeed * sampleRate); mFrameSize = t->frameSize(); mTrack = t; return updateTrack_l(); } status_t MediaPlayer2AudioOutput::updateTrack_l() { if (mTrack == NULL) { return NO_ERROR; } status_t res = NO_ERROR; // Note some output devices may give us a direct track even though we don't specify it. // Example: Line application b/17459982. if ((mTrack->getFlags() & (AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD | AUDIO_OUTPUT_FLAG_DIRECT)) == 0) { res = mTrack->setPlaybackRate(mPlaybackRate); if (res == NO_ERROR) { mTrack->setAuxEffectSendLevel(mSendLevel); res = mTrack->attachAuxEffect(mAuxEffectId); } } mTrack->setOutputDevice(mSelectedDeviceId); if (mDeviceCallbackEnabled) { mTrack->addAudioDeviceCallback(mDeviceCallback.promote()); } ALOGV("updateTrack_l() DONE status %d", res); return res; } status_t MediaPlayer2AudioOutput::start() { ALOGV("start"); Mutex::Autolock lock(mLock); if (mCallbackData != NULL) { mCallbackData->endTrackSwitch(); } if (mTrack != 0) { mTrack->setVolume(mLeftVolume, mRightVolume); mTrack->setAuxEffectSendLevel(mSendLevel); status_t status = mTrack->start(); return status; } return NO_INIT; } ssize_t MediaPlayer2AudioOutput::write(const void* buffer, size_t size, bool blocking) { Mutex::Autolock lock(mLock); LOG_ALWAYS_FATAL_IF(mCallback != NULL, "Don't call write if supplying a callback."); //ALOGV("write(%p, %u)", buffer, size); if (mTrack != 0) { return mTrack->write(buffer, size, blocking); } return NO_INIT; } void MediaPlayer2AudioOutput::stop() { ALOGV("stop"); Mutex::Autolock lock(mLock); if (mTrack != 0) { mTrack->stop(); } } void MediaPlayer2AudioOutput::flush() { ALOGV("flush"); Mutex::Autolock lock(mLock); if (mTrack != 0) { mTrack->flush(); } } void MediaPlayer2AudioOutput::pause() { ALOGV("pause"); Mutex::Autolock lock(mLock); if (mTrack != 0) { mTrack->pause(); } } void MediaPlayer2AudioOutput::close() { ALOGV("close"); sp track; { Mutex::Autolock lock(mLock); track = mTrack; close_l(); // clears mTrack } // destruction of the track occurs outside of mutex. } void MediaPlayer2AudioOutput::setVolume(float left, float right) { ALOGV("setVolume(%f, %f)", left, right); Mutex::Autolock lock(mLock); mLeftVolume = left; mRightVolume = right; if (mTrack != 0) { mTrack->setVolume(left, right); } } status_t MediaPlayer2AudioOutput::setPlaybackRate(const AudioPlaybackRate &rate) { ALOGV("setPlaybackRate(%f %f %d %d)", rate.mSpeed, rate.mPitch, rate.mFallbackMode, rate.mStretchMode); Mutex::Autolock lock(mLock); if (mTrack == 0) { // remember rate so that we can set it when the track is opened mPlaybackRate = rate; return OK; } status_t res = mTrack->setPlaybackRate(rate); if (res != NO_ERROR) { return res; } // rate.mSpeed is always greater than 0 if setPlaybackRate succeeded CHECK_GT(rate.mSpeed, 0.f); mPlaybackRate = rate; if (mSampleRateHz != 0) { mMsecsPerFrame = 1E3f / (rate.mSpeed * mSampleRateHz); } return res; } status_t MediaPlayer2AudioOutput::getPlaybackRate(AudioPlaybackRate *rate) { ALOGV("setPlaybackRate"); Mutex::Autolock lock(mLock); if (mTrack == 0) { return NO_INIT; } *rate = mTrack->getPlaybackRate(); return NO_ERROR; } status_t MediaPlayer2AudioOutput::setAuxEffectSendLevel(float level) { ALOGV("setAuxEffectSendLevel(%f)", level); Mutex::Autolock lock(mLock); mSendLevel = level; if (mTrack != 0) { return mTrack->setAuxEffectSendLevel(level); } return NO_ERROR; } status_t MediaPlayer2AudioOutput::attachAuxEffect(int effectId) { ALOGV("attachAuxEffect(%d)", effectId); Mutex::Autolock lock(mLock); mAuxEffectId = effectId; if (mTrack != 0) { return mTrack->attachAuxEffect(effectId); } return NO_ERROR; } status_t MediaPlayer2AudioOutput::setOutputDevice(audio_port_handle_t deviceId) { ALOGV("setOutputDevice(%d)", deviceId); Mutex::Autolock lock(mLock); mSelectedDeviceId = deviceId; if (mTrack != 0) { return mTrack->setOutputDevice(deviceId); } return NO_ERROR; } status_t MediaPlayer2AudioOutput::getRoutedDeviceId(audio_port_handle_t* deviceId) { ALOGV("getRoutedDeviceId"); Mutex::Autolock lock(mLock); if (mTrack != 0) { mRoutedDeviceId = mTrack->getRoutedDeviceId(); } *deviceId = mRoutedDeviceId; return NO_ERROR; } status_t MediaPlayer2AudioOutput::enableAudioDeviceCallback(bool enabled) { ALOGV("enableAudioDeviceCallback, %d", enabled); Mutex::Autolock lock(mLock); mDeviceCallbackEnabled = enabled; if (mTrack != 0) { status_t status; if (enabled) { status = mTrack->addAudioDeviceCallback(mDeviceCallback.promote()); } else { status = mTrack->removeAudioDeviceCallback(mDeviceCallback.promote()); } return status; } return NO_ERROR; } // static void MediaPlayer2AudioOutput::CallbackWrapper( int event, void *cookie, void *info) { //ALOGV("callbackwrapper"); CallbackData *data = (CallbackData*)cookie; // lock to ensure we aren't caught in the middle of a track switch. data->lock(); MediaPlayer2AudioOutput *me = data->getOutput(); AudioTrack::Buffer *buffer = (AudioTrack::Buffer *)info; if (me == NULL) { // no output set, likely because the track was scheduled to be reused // by another player, but the format turned out to be incompatible. data->unlock(); if (buffer != NULL) { buffer->size = 0; } return; } switch(event) { case AudioTrack::EVENT_MORE_DATA: { size_t actualSize = (*me->mCallback)( me, buffer->raw, buffer->size, me->mCallbackCookie, CB_EVENT_FILL_BUFFER); // Log when no data is returned from the callback. // (1) We may have no data (especially with network streaming sources). // (2) We may have reached the EOS and the audio track is not stopped yet. // Note that AwesomePlayer/AudioPlayer will only return zero size when it reaches the EOS. // NuPlayer2Renderer will return zero when it doesn't have data (it doesn't block to fill). // // This is a benign busy-wait, with the next data request generated 10 ms or more later; // nevertheless for power reasons, we don't want to see too many of these. ALOGV_IF(actualSize == 0 && buffer->size > 0, "callbackwrapper: empty buffer returned"); buffer->size = actualSize; } break; case AudioTrack::EVENT_STREAM_END: // currently only occurs for offloaded callbacks ALOGV("callbackwrapper: deliver EVENT_STREAM_END"); (*me->mCallback)(me, NULL /* buffer */, 0 /* size */, me->mCallbackCookie, CB_EVENT_STREAM_END); break; case AudioTrack::EVENT_NEW_IAUDIOTRACK : ALOGV("callbackwrapper: deliver EVENT_TEAR_DOWN"); (*me->mCallback)(me, NULL /* buffer */, 0 /* size */, me->mCallbackCookie, CB_EVENT_TEAR_DOWN); break; case AudioTrack::EVENT_UNDERRUN: // This occurs when there is no data available, typically // when there is a failure to supply data to the AudioTrack. It can also // occur in non-offloaded mode when the audio device comes out of standby. // // If an AudioTrack underruns it outputs silence. Since this happens suddenly // it may sound like an audible pop or glitch. // // The underrun event is sent once per track underrun; the condition is reset // when more data is sent to the AudioTrack. ALOGD("callbackwrapper: EVENT_UNDERRUN (discarded)"); break; default: ALOGE("received unknown event type: %d inside CallbackWrapper !", event); } data->unlock(); } audio_session_t MediaPlayer2AudioOutput::getSessionId() const { Mutex::Autolock lock(mLock); return mSessionId; } uint32_t MediaPlayer2AudioOutput::getSampleRate() const { Mutex::Autolock lock(mLock); if (mTrack == 0) { return 0; } return mTrack->getSampleRate(); } int64_t MediaPlayer2AudioOutput::getBufferDurationInUs() const { Mutex::Autolock lock(mLock); if (mTrack == 0) { return 0; } int64_t duration; if (mTrack->getBufferDurationInUs(&duration) != OK) { return 0; } return duration; } } // namespace android