/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include "Matrix.h" namespace android { namespace uirenderer { /////////////////////////////////////////////////////////////////////////////// // Defines /////////////////////////////////////////////////////////////////////////////// static const float EPSILON = 0.0000001f; /////////////////////////////////////////////////////////////////////////////// // Matrix /////////////////////////////////////////////////////////////////////////////// const Matrix4& Matrix4::identity() { static Matrix4 sIdentity; return sIdentity; } void Matrix4::loadIdentity() { data[kScaleX] = 1.0f; data[kSkewY] = 0.0f; data[2] = 0.0f; data[kPerspective0] = 0.0f; data[kSkewX] = 0.0f; data[kScaleY] = 1.0f; data[6] = 0.0f; data[kPerspective1] = 0.0f; data[8] = 0.0f; data[9] = 0.0f; data[kScaleZ] = 1.0f; data[11] = 0.0f; data[kTranslateX] = 0.0f; data[kTranslateY] = 0.0f; data[kTranslateZ] = 0.0f; data[kPerspective2] = 1.0f; mType = kTypeIdentity | kTypeRectToRect; } static bool isZero(float f) { return fabs(f) <= EPSILON; } uint8_t Matrix4::getType() const { if (mType & kTypeUnknown) { mType = kTypeIdentity; if (data[kPerspective0] != 0.0f || data[kPerspective1] != 0.0f || data[kPerspective2] != 1.0f) { mType |= kTypePerspective; } if (data[kTranslateX] != 0.0f || data[kTranslateY] != 0.0f) { mType |= kTypeTranslate; } float m00 = data[kScaleX]; float m01 = data[kSkewX]; float m10 = data[kSkewY]; float m11 = data[kScaleY]; float m32 = data[kTranslateZ]; if (m01 != 0.0f || m10 != 0.0f || m32 != 0.0f) { mType |= kTypeAffine; } if (m00 != 1.0f || m11 != 1.0f) { mType |= kTypeScale; } // The following section determines whether the matrix will preserve // rectangles. For instance, a rectangle transformed by a pure // translation matrix will result in a rectangle. A rectangle // transformed by a 45 degrees rotation matrix is not a rectangle. // If the matrix has a perspective component then we already know // it doesn't preserve rectangles. if (!(mType & kTypePerspective)) { if ((isZero(m00) && isZero(m11) && !isZero(m01) && !isZero(m10)) || (isZero(m01) && isZero(m10) && !isZero(m00) && !isZero(m11))) { mType |= kTypeRectToRect; } } } return mType; } uint8_t Matrix4::getGeometryType() const { return getType() & sGeometryMask; } bool Matrix4::rectToRect() const { return getType() & kTypeRectToRect; } bool Matrix4::positiveScale() const { return (data[kScaleX] > 0.0f && data[kScaleY] > 0.0f); } bool Matrix4::changesBounds() const { return getType() & (kTypeScale | kTypeAffine | kTypePerspective); } bool Matrix4::isPureTranslate() const { // NOTE: temporary hack to workaround ignoreTransform behavior with Z values // TODO: separate this into isPure2dTranslate vs isPure3dTranslate return getGeometryType() <= kTypeTranslate && (data[kTranslateZ] == 0.0f); } bool Matrix4::isSimple() const { return getGeometryType() <= (kTypeScale | kTypeTranslate) && (data[kTranslateZ] == 0.0f); } bool Matrix4::isIdentity() const { return getGeometryType() == kTypeIdentity; } bool Matrix4::isPerspective() const { return getType() & kTypePerspective; } void Matrix4::load(const float* v) { memcpy(data, v, sizeof(data)); mType = kTypeUnknown; } void Matrix4::load(const SkMatrix& v) { memset(data, 0, sizeof(data)); data[kScaleX] = v[SkMatrix::kMScaleX]; data[kSkewX] = v[SkMatrix::kMSkewX]; data[kTranslateX] = v[SkMatrix::kMTransX]; data[kSkewY] = v[SkMatrix::kMSkewY]; data[kScaleY] = v[SkMatrix::kMScaleY]; data[kTranslateY] = v[SkMatrix::kMTransY]; data[kPerspective0] = v[SkMatrix::kMPersp0]; data[kPerspective1] = v[SkMatrix::kMPersp1]; data[kPerspective2] = v[SkMatrix::kMPersp2]; data[kScaleZ] = 1.0f; // NOTE: The flags are compatible between SkMatrix and this class. // However, SkMatrix::getType() does not return the flag // kRectStaysRect. The return value is masked with 0xF // so we need the extra rectStaysRect() check mType = v.getType(); if (v.rectStaysRect()) { mType |= kTypeRectToRect; } } void Matrix4::copyTo(SkMatrix& v) const { v.reset(); v.set(SkMatrix::kMScaleX, data[kScaleX]); v.set(SkMatrix::kMSkewX, data[kSkewX]); v.set(SkMatrix::kMTransX, data[kTranslateX]); v.set(SkMatrix::kMSkewY, data[kSkewY]); v.set(SkMatrix::kMScaleY, data[kScaleY]); v.set(SkMatrix::kMTransY, data[kTranslateY]); v.set(SkMatrix::kMPersp0, data[kPerspective0]); v.set(SkMatrix::kMPersp1, data[kPerspective1]); v.set(SkMatrix::kMPersp2, data[kPerspective2]); } void Matrix4::loadInverse(const Matrix4& v) { // Fast case for common translation matrices if (v.isPureTranslate()) { // Reset the matrix // Unnamed fields are never written to except by // loadIdentity(), they don't need to be reset data[kScaleX] = 1.0f; data[kSkewX] = 0.0f; data[kScaleY] = 1.0f; data[kSkewY] = 0.0f; data[kScaleZ] = 1.0f; data[kPerspective0] = 0.0f; data[kPerspective1] = 0.0f; data[kPerspective2] = 1.0f; // No need to deal with kTranslateZ because isPureTranslate() // only returns true when the kTranslateZ component is 0 data[kTranslateX] = -v.data[kTranslateX]; data[kTranslateY] = -v.data[kTranslateY]; data[kTranslateZ] = 0.0f; // A "pure translate" matrix can be identity or translation mType = v.getType(); return; } double scale = 1.0 / (v.data[kScaleX] * ((double)v.data[kScaleY] * v.data[kPerspective2] - (double)v.data[kTranslateY] * v.data[kPerspective1]) + v.data[kSkewX] * ((double)v.data[kTranslateY] * v.data[kPerspective0] - (double)v.data[kSkewY] * v.data[kPerspective2]) + v.data[kTranslateX] * ((double)v.data[kSkewY] * v.data[kPerspective1] - (double)v.data[kScaleY] * v.data[kPerspective0])); data[kScaleX] = (v.data[kScaleY] * v.data[kPerspective2] - v.data[kTranslateY] * v.data[kPerspective1]) * scale; data[kSkewX] = (v.data[kTranslateX] * v.data[kPerspective1] - v.data[kSkewX] * v.data[kPerspective2]) * scale; data[kTranslateX] = (v.data[kSkewX] * v.data[kTranslateY] - v.data[kTranslateX] * v.data[kScaleY]) * scale; data[kSkewY] = (v.data[kTranslateY] * v.data[kPerspective0] - v.data[kSkewY] * v.data[kPerspective2]) * scale; data[kScaleY] = (v.data[kScaleX] * v.data[kPerspective2] - v.data[kTranslateX] * v.data[kPerspective0]) * scale; data[kTranslateY] = (v.data[kTranslateX] * v.data[kSkewY] - v.data[kScaleX] * v.data[kTranslateY]) * scale; data[kPerspective0] = (v.data[kSkewY] * v.data[kPerspective1] - v.data[kScaleY] * v.data[kPerspective0]) * scale; data[kPerspective1] = (v.data[kSkewX] * v.data[kPerspective0] - v.data[kScaleX] * v.data[kPerspective1]) * scale; data[kPerspective2] = (v.data[kScaleX] * v.data[kScaleY] - v.data[kSkewX] * v.data[kSkewY]) * scale; mType = kTypeUnknown; } void Matrix4::copyTo(float* v) const { memcpy(v, data, sizeof(data)); } float Matrix4::getTranslateX() const { return data[kTranslateX]; } float Matrix4::getTranslateY() const { return data[kTranslateY]; } void Matrix4::multiply(float v) { for (int i = 0; i < 16; i++) { data[i] *= v; } mType = kTypeUnknown; } void Matrix4::loadTranslate(float x, float y, float z) { loadIdentity(); data[kTranslateX] = x; data[kTranslateY] = y; data[kTranslateZ] = z; mType = kTypeTranslate | kTypeRectToRect; } void Matrix4::loadScale(float sx, float sy, float sz) { loadIdentity(); data[kScaleX] = sx; data[kScaleY] = sy; data[kScaleZ] = sz; mType = kTypeScale | kTypeRectToRect; } void Matrix4::loadSkew(float sx, float sy) { loadIdentity(); data[kScaleX] = 1.0f; data[kSkewX] = sx; data[kTranslateX] = 0.0f; data[kSkewY] = sy; data[kScaleY] = 1.0f; data[kTranslateY] = 0.0f; data[kPerspective0] = 0.0f; data[kPerspective1] = 0.0f; data[kPerspective2] = 1.0f; mType = kTypeUnknown; } void Matrix4::loadRotate(float angle) { angle *= float(M_PI / 180.0f); float c = cosf(angle); float s = sinf(angle); loadIdentity(); data[kScaleX] = c; data[kSkewX] = -s; data[kSkewY] = s; data[kScaleY] = c; mType = kTypeUnknown; } void Matrix4::loadRotate(float angle, float x, float y, float z) { data[kPerspective0] = 0.0f; data[kPerspective1] = 0.0f; data[11] = 0.0f; data[kTranslateX] = 0.0f; data[kTranslateY] = 0.0f; data[kTranslateZ] = 0.0f; data[kPerspective2] = 1.0f; angle *= float(M_PI / 180.0f); float c = cosf(angle); float s = sinf(angle); const float length = sqrtf(x * x + y * y + z * z); float recipLen = 1.0f / length; x *= recipLen; y *= recipLen; z *= recipLen; const float nc = 1.0f - c; const float xy = x * y; const float yz = y * z; const float zx = z * x; const float xs = x * s; const float ys = y * s; const float zs = z * s; data[kScaleX] = x * x * nc + c; data[kSkewX] = xy * nc - zs; data[8] = zx * nc + ys; data[kSkewY] = xy * nc + zs; data[kScaleY] = y * y * nc + c; data[9] = yz * nc - xs; data[2] = zx * nc - ys; data[6] = yz * nc + xs; data[kScaleZ] = z * z * nc + c; mType = kTypeUnknown; } void Matrix4::loadMultiply(const Matrix4& u, const Matrix4& v) { for (int i = 0; i < 4; i++) { float x = 0; float y = 0; float z = 0; float w = 0; for (int j = 0; j < 4; j++) { const float e = v.get(i, j); x += u.get(j, 0) * e; y += u.get(j, 1) * e; z += u.get(j, 2) * e; w += u.get(j, 3) * e; } set(i, 0, x); set(i, 1, y); set(i, 2, z); set(i, 3, w); } mType = kTypeUnknown; } void Matrix4::loadOrtho(float left, float right, float bottom, float top, float near, float far) { loadIdentity(); data[kScaleX] = 2.0f / (right - left); data[kScaleY] = 2.0f / (top - bottom); data[kScaleZ] = -2.0f / (far - near); data[kTranslateX] = -(right + left) / (right - left); data[kTranslateY] = -(top + bottom) / (top - bottom); data[kTranslateZ] = -(far + near) / (far - near); mType = kTypeTranslate | kTypeScale | kTypeRectToRect; } float Matrix4::mapZ(const Vector3& orig) const { // duplicates logic for mapPoint3d's z coordinate return orig.x * data[2] + orig.y * data[6] + orig.z * data[kScaleZ] + data[kTranslateZ]; } void Matrix4::mapPoint3d(Vector3& vec) const { // TODO: optimize simple case const Vector3 orig(vec); vec.x = orig.x * data[kScaleX] + orig.y * data[kSkewX] + orig.z * data[8] + data[kTranslateX]; vec.y = orig.x * data[kSkewY] + orig.y * data[kScaleY] + orig.z * data[9] + data[kTranslateY]; vec.z = orig.x * data[2] + orig.y * data[6] + orig.z * data[kScaleZ] + data[kTranslateZ]; } #define MUL_ADD_STORE(a, b, c) ((a) = (a) * (b) + (c)) void Matrix4::mapPoint(float& x, float& y) const { if (isSimple()) { MUL_ADD_STORE(x, data[kScaleX], data[kTranslateX]); MUL_ADD_STORE(y, data[kScaleY], data[kTranslateY]); return; } float dx = x * data[kScaleX] + y * data[kSkewX] + data[kTranslateX]; float dy = x * data[kSkewY] + y * data[kScaleY] + data[kTranslateY]; float dz = x * data[kPerspective0] + y * data[kPerspective1] + data[kPerspective2]; if (dz) dz = 1.0f / dz; x = dx * dz; y = dy * dz; } /** * Set the contents of the rect to be the bounding rect around each of the corners, mapped by the * matrix. * * NOTE: an empty rect to an arbitrary matrix isn't guaranteed to have an empty output, since that's * important for conservative bounds estimation (e.g. rotate45Matrix.mapRect of Rect(0, 10) should * result in non-empty. */ void Matrix4::mapRect(Rect& r) const { if (isIdentity()) return; if (isSimple()) { MUL_ADD_STORE(r.left, data[kScaleX], data[kTranslateX]); MUL_ADD_STORE(r.right, data[kScaleX], data[kTranslateX]); MUL_ADD_STORE(r.top, data[kScaleY], data[kTranslateY]); MUL_ADD_STORE(r.bottom, data[kScaleY], data[kTranslateY]); if (r.left > r.right) { float x = r.left; r.left = r.right; r.right = x; } if (r.top > r.bottom) { float y = r.top; r.top = r.bottom; r.bottom = y; } return; } float vertices[] = {r.left, r.top, r.right, r.top, r.right, r.bottom, r.left, r.bottom}; float x, y, z; for (int i = 0; i < 8; i += 2) { float px = vertices[i]; float py = vertices[i + 1]; x = px * data[kScaleX] + py * data[kSkewX] + data[kTranslateX]; y = px * data[kSkewY] + py * data[kScaleY] + data[kTranslateY]; z = px * data[kPerspective0] + py * data[kPerspective1] + data[kPerspective2]; if (z) z = 1.0f / z; vertices[i] = x * z; vertices[i + 1] = y * z; } r.left = r.right = vertices[0]; r.top = r.bottom = vertices[1]; for (int i = 2; i < 8; i += 2) { x = vertices[i]; y = vertices[i + 1]; if (x < r.left) r.left = x; else if (x > r.right) r.right = x; if (y < r.top) r.top = y; else if (y > r.bottom) r.bottom = y; } } void Matrix4::decomposeScale(float& sx, float& sy) const { float len; len = data[mat4::kScaleX] * data[mat4::kScaleX] + data[mat4::kSkewX] * data[mat4::kSkewX]; sx = copysignf(sqrtf(len), data[mat4::kScaleX]); len = data[mat4::kScaleY] * data[mat4::kScaleY] + data[mat4::kSkewY] * data[mat4::kSkewY]; sy = copysignf(sqrtf(len), data[mat4::kScaleY]); } void Matrix4::dump(const char* label) const { ALOGD("%s[simple=%d, type=0x%x", label ? label : "Matrix4", isSimple(), getType()); ALOGD(" %f %f %f %f", data[kScaleX], data[kSkewX], data[8], data[kTranslateX]); ALOGD(" %f %f %f %f", data[kSkewY], data[kScaleY], data[9], data[kTranslateY]); ALOGD(" %f %f %f %f", data[2], data[6], data[kScaleZ], data[kTranslateZ]); ALOGD(" %f %f %f %f", data[kPerspective0], data[kPerspective1], data[11], data[kPerspective2]); ALOGD("]"); } }; // namespace uirenderer }; // namespace android