/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "libprotoutil" #include #include #include #include namespace android { namespace util { ProtoOutputStream::ProtoOutputStream() :mBuffer(), mCopyBegin(0), mCompact(false), mDepth(0), mObjectId(0), mExpectedObjectToken(UINT64_C(-1)) { } ProtoOutputStream::~ProtoOutputStream() { } void ProtoOutputStream::clear() { mBuffer.clear(); mCopyBegin = 0; mCompact = false; mDepth = 0; mObjectId = 0; mExpectedObjectToken = UINT64_C(-1); } bool ProtoOutputStream::write(uint64_t fieldId, double val) { if (mCompact) return false; const uint32_t id = (uint32_t)fieldId; switch (fieldId & FIELD_TYPE_MASK) { case FIELD_TYPE_DOUBLE: writeDoubleImpl(id, (double)val); break; case FIELD_TYPE_FLOAT: writeFloatImpl(id, (float)val); break; case FIELD_TYPE_INT64: writeInt64Impl(id, (long long)val); break; case FIELD_TYPE_UINT64: writeUint64Impl(id, (uint64_t)val); break; case FIELD_TYPE_INT32: writeInt32Impl(id, (int)val); break; case FIELD_TYPE_FIXED64: writeFixed64Impl(id, (uint64_t)val); break; case FIELD_TYPE_FIXED32: writeFixed32Impl(id, (uint32_t)val); break; case FIELD_TYPE_UINT32: writeUint32Impl(id, (uint32_t)val); break; case FIELD_TYPE_SFIXED32: writeSFixed32Impl(id, (int)val); break; case FIELD_TYPE_SFIXED64: writeSFixed64Impl(id, (long long)val); break; case FIELD_TYPE_SINT32: writeZigzagInt32Impl(id, (int)val); break; case FIELD_TYPE_SINT64: writeZigzagInt64Impl(id, (long long)val); break; default: ALOGW("Field type %d is not supported when writing double val.", (int)((fieldId & FIELD_TYPE_MASK) >> FIELD_TYPE_SHIFT)); return false; } return true; } bool ProtoOutputStream::write(uint64_t fieldId, float val) { if (mCompact) return false; const uint32_t id = (uint32_t)fieldId; switch (fieldId & FIELD_TYPE_MASK) { case FIELD_TYPE_DOUBLE: writeDoubleImpl(id, (double)val); break; case FIELD_TYPE_FLOAT: writeFloatImpl(id, (float)val); break; case FIELD_TYPE_INT64: writeInt64Impl(id, (long long)val); break; case FIELD_TYPE_UINT64: writeUint64Impl(id, (uint64_t)val); break; case FIELD_TYPE_INT32: writeInt32Impl(id, (int)val); break; case FIELD_TYPE_FIXED64: writeFixed64Impl(id, (uint64_t)val); break; case FIELD_TYPE_FIXED32: writeFixed32Impl(id, (uint32_t)val); break; case FIELD_TYPE_UINT32: writeUint32Impl(id, (uint32_t)val); break; case FIELD_TYPE_SFIXED32: writeSFixed32Impl(id, (int)val); break; case FIELD_TYPE_SFIXED64: writeSFixed64Impl(id, (long long)val); break; case FIELD_TYPE_SINT32: writeZigzagInt32Impl(id, (int)val); break; case FIELD_TYPE_SINT64: writeZigzagInt64Impl(id, (long long)val); break; default: ALOGW("Field type %d is not supported when writing float val.", (int)((fieldId & FIELD_TYPE_MASK) >> FIELD_TYPE_SHIFT)); return false; } return true; } bool ProtoOutputStream::write(uint64_t fieldId, int val) { if (mCompact) return false; const uint32_t id = (uint32_t)fieldId; switch (fieldId & FIELD_TYPE_MASK) { case FIELD_TYPE_DOUBLE: writeDoubleImpl(id, (double)val); break; case FIELD_TYPE_FLOAT: writeFloatImpl(id, (float)val); break; case FIELD_TYPE_INT64: writeInt64Impl(id, (long long)val); break; case FIELD_TYPE_UINT64: writeUint64Impl(id, (uint64_t)val); break; case FIELD_TYPE_INT32: writeInt32Impl(id, (int)val); break; case FIELD_TYPE_FIXED64: writeFixed64Impl(id, (uint64_t)val); break; case FIELD_TYPE_FIXED32: writeFixed32Impl(id, (uint32_t)val); break; case FIELD_TYPE_UINT32: writeUint32Impl(id, (uint32_t)val); break; case FIELD_TYPE_SFIXED32: writeSFixed32Impl(id, (int)val); break; case FIELD_TYPE_SFIXED64: writeSFixed64Impl(id, (long long)val); break; case FIELD_TYPE_SINT32: writeZigzagInt32Impl(id, (int)val); break; case FIELD_TYPE_SINT64: writeZigzagInt64Impl(id, (long long)val); break; case FIELD_TYPE_ENUM: writeEnumImpl(id, (int)val); break; case FIELD_TYPE_BOOL: writeBoolImpl(id, val != 0); break; default: ALOGW("Field type %d is not supported when writing int val.", (int)((fieldId & FIELD_TYPE_MASK) >> FIELD_TYPE_SHIFT)); return false; } return true; } bool ProtoOutputStream::write(uint64_t fieldId, long long val) { if (mCompact) return false; const uint32_t id = (uint32_t)fieldId; switch (fieldId & FIELD_TYPE_MASK) { case FIELD_TYPE_DOUBLE: writeDoubleImpl(id, (double)val); break; case FIELD_TYPE_FLOAT: writeFloatImpl(id, (float)val); break; case FIELD_TYPE_INT64: writeInt64Impl(id, (long long)val); break; case FIELD_TYPE_UINT64: writeUint64Impl(id, (uint64_t)val); break; case FIELD_TYPE_INT32: writeInt32Impl(id, (int)val); break; case FIELD_TYPE_FIXED64: writeFixed64Impl(id, (uint64_t)val); break; case FIELD_TYPE_FIXED32: writeFixed32Impl(id, (uint32_t)val); break; case FIELD_TYPE_UINT32: writeUint32Impl(id, (uint32_t)val); break; case FIELD_TYPE_SFIXED32: writeSFixed32Impl(id, (int)val); break; case FIELD_TYPE_SFIXED64: writeSFixed64Impl(id, (long long)val); break; case FIELD_TYPE_SINT32: writeZigzagInt32Impl(id, (int)val); break; case FIELD_TYPE_SINT64: writeZigzagInt64Impl(id, (long long)val); break; case FIELD_TYPE_ENUM: writeEnumImpl(id, (int)val); break; case FIELD_TYPE_BOOL: writeBoolImpl(id, val != 0); break; default: ALOGW("Field type %d is not supported when writing long long val.", (int)((fieldId & FIELD_TYPE_MASK) >> FIELD_TYPE_SHIFT)); return false; } return true; } bool ProtoOutputStream::write(uint64_t fieldId, bool val) { if (mCompact) return false; const uint32_t id = (uint32_t)fieldId; switch (fieldId & FIELD_TYPE_MASK) { case FIELD_TYPE_BOOL: writeBoolImpl(id, val); return true; default: ALOGW("Field type %d is not supported when writing bool val.", (int)((fieldId & FIELD_TYPE_MASK) >> FIELD_TYPE_SHIFT)); return false; } } bool ProtoOutputStream::write(uint64_t fieldId, std::string val) { if (mCompact) return false; const uint32_t id = (uint32_t)fieldId; switch (fieldId & FIELD_TYPE_MASK) { case FIELD_TYPE_STRING: writeUtf8StringImpl(id, val.c_str(), val.size()); return true; default: ALOGW("Field type %d is not supported when writing string val.", (int)((fieldId & FIELD_TYPE_MASK) >> FIELD_TYPE_SHIFT)); return false; } } bool ProtoOutputStream::write(uint64_t fieldId, const char* val, size_t size) { if (mCompact) return false; const uint32_t id = (uint32_t)fieldId; switch (fieldId & FIELD_TYPE_MASK) { case FIELD_TYPE_STRING: case FIELD_TYPE_BYTES: writeUtf8StringImpl(id, val, size); return true; case FIELD_TYPE_MESSAGE: // can directly write valid format of message bytes into ProtoOutputStream without calling start/end writeMessageBytesImpl(id, val, size); return true; default: ALOGW("Field type %d is not supported when writing char[] val.", (int)((fieldId & FIELD_TYPE_MASK) >> FIELD_TYPE_SHIFT)); return false; } } /** * Make a token. * Bits 61-63 - tag size (So we can go backwards later if the object had not data) * - 3 bits, max value 7, max value needed 5 * Bit 60 - true if the object is repeated * Bits 59-51 - depth (For error checking) * - 9 bits, max value 511, when checking, value is masked (if we really * are more than 511 levels deep) * Bits 32-50 - objectId (For error checking) * - 19 bits, max value 524,287. that's a lot of objects. IDs will wrap * because of the overflow, and only the tokens are compared. * Bits 0-31 - offset of the first size field in the buffer. */ static uint64_t makeToken(uint32_t tagSize, bool repeated, uint32_t depth, uint32_t objectId, size_t sizePos) { return ((UINT64_C(0x07) & (uint64_t)tagSize) << 61) | (repeated ? (UINT64_C(1) << 60) : 0) | (UINT64_C(0x01ff) & (uint64_t)depth) << 51 | (UINT64_C(0x07ffff) & (uint64_t)objectId) << 32 | (UINT64_C(0x0ffffffff) & (uint64_t)sizePos); } /** * Get the encoded tag size from the token. */ static uint32_t getTagSizeFromToken(uint64_t token) { return 0x7 & (token >> 61); } /** * Get the nesting depth of startObject calls from the token. */ static uint32_t getDepthFromToken(uint64_t token) { return 0x01ff & (token >> 51); } /** * Get the location of the childRawSize (the first 32 bit size field) in this object. */ static uint32_t getSizePosFromToken(uint64_t token) { return (uint32_t)token; } uint64_t ProtoOutputStream::start(uint64_t fieldId) { if ((fieldId & FIELD_TYPE_MASK) != FIELD_TYPE_MESSAGE) { ALOGE("Can't call start for non-message type field: 0x%" PRIx64, fieldId); return 0; } uint32_t id = (uint32_t)fieldId; size_t prevPos = mBuffer.wp()->pos(); mBuffer.writeHeader(id, WIRE_TYPE_LENGTH_DELIMITED); size_t sizePos = mBuffer.wp()->pos(); mDepth++; mObjectId++; mBuffer.writeRawFixed64(mExpectedObjectToken); // push previous token into stack. mExpectedObjectToken = makeToken(sizePos - prevPos, (bool)(fieldId & FIELD_COUNT_REPEATED), mDepth, mObjectId, sizePos); return mExpectedObjectToken; } void ProtoOutputStream::end(uint64_t token) { if (token != mExpectedObjectToken) { ALOGE("Unexpected token: 0x%" PRIx64 ", should be 0x%" PRIx64, token, mExpectedObjectToken); return; } uint32_t depth = getDepthFromToken(token); if (depth != (mDepth & 0x01ff)) { ALOGE("Unexpected depth: %" PRIu32 ", should be %" PRIu32, depth, mDepth); return; } mDepth--; uint32_t sizePos = getSizePosFromToken(token); // number of bytes written in this start-end session. int childRawSize = mBuffer.wp()->pos() - sizePos - 8; // retrieve the old token from stack. mBuffer.ep()->rewind()->move(sizePos); mExpectedObjectToken = mBuffer.readRawFixed64(); // If raw size is larger than 0, write the negative value here to indicate a compact is needed. if (childRawSize > 0) { mBuffer.editRawFixed32(sizePos, -childRawSize); mBuffer.editRawFixed32(sizePos+4, -1); } else { // reset wp which erase the header tag of the message when its size is 0. mBuffer.wp()->rewind()->move(sizePos - getTagSizeFromToken(token)); } } size_t ProtoOutputStream::bytesWritten() { return mBuffer.size(); } bool ProtoOutputStream::compact() { if (mCompact) return true; if (mDepth != 0) { ALOGE("Can't compact when depth(%" PRIu32 ") is not zero. Missing calls to end.", mDepth); return false; } // record the size of the original buffer. size_t rawBufferSize = mBuffer.size(); if (rawBufferSize == 0) return true; // nothing to do if the buffer is empty; // reset edit pointer and recursively compute encoded size of messages. mBuffer.ep()->rewind(); if (editEncodedSize(rawBufferSize) == 0) { ALOGE("Failed to editEncodedSize."); return false; } // reset both edit pointer and write pointer, and compact recursively. mBuffer.ep()->rewind(); mBuffer.wp()->rewind(); if (!compactSize(rawBufferSize)) { ALOGE("Failed to compactSize."); return false; } // copy the reset to the buffer. if (mCopyBegin < rawBufferSize) { mBuffer.copy(mCopyBegin, rawBufferSize - mCopyBegin); } // mark true means it is not legal to write to this ProtoOutputStream anymore mCompact = true; return true; } /** * First compaction pass. Iterate through the data, and fill in the * nested object sizes so the next pass can compact them. */ size_t ProtoOutputStream::editEncodedSize(size_t rawSize) { size_t objectStart = mBuffer.ep()->pos(); size_t objectEnd = objectStart + rawSize; size_t encodedSize = 0; int childRawSize, childEncodedSize; size_t childEncodedSizePos; while (mBuffer.ep()->pos() < objectEnd) { uint32_t tag = (uint32_t)mBuffer.readRawVarint(); encodedSize += get_varint_size(tag); switch (read_wire_type(tag)) { case WIRE_TYPE_VARINT: do { encodedSize++; } while ((mBuffer.readRawByte() & 0x80) != 0); break; case WIRE_TYPE_FIXED64: encodedSize += 8; mBuffer.ep()->move(8); break; case WIRE_TYPE_LENGTH_DELIMITED: childRawSize = (int)mBuffer.readRawFixed32(); childEncodedSizePos = mBuffer.ep()->pos(); childEncodedSize = (int)mBuffer.readRawFixed32(); if (childRawSize >= 0 && childRawSize == childEncodedSize) { mBuffer.ep()->move(childRawSize); } else if (childRawSize < 0 && childEncodedSize == -1){ childEncodedSize = editEncodedSize(-childRawSize); mBuffer.editRawFixed32(childEncodedSizePos, childEncodedSize); } else { ALOGE("Bad raw or encoded values: raw=%d, encoded=%d at %zu", childRawSize, childEncodedSize, childEncodedSizePos); return 0; } encodedSize += get_varint_size(childEncodedSize) + childEncodedSize; break; case WIRE_TYPE_FIXED32: encodedSize += 4; mBuffer.ep()->move(4); break; default: ALOGE("Unexpected wire type %d in editEncodedSize at [%zu, %zu]", read_wire_type(tag), objectStart, objectEnd); return 0; } } return encodedSize; } /** * Second compaction pass. Iterate through the data, and copy the data * forward in the buffer, converting the pairs of uint32s into a single * unsigned varint of the size. */ bool ProtoOutputStream::compactSize(size_t rawSize) { size_t objectStart = mBuffer.ep()->pos(); size_t objectEnd = objectStart + rawSize; int childRawSize, childEncodedSize; while (mBuffer.ep()->pos() < objectEnd) { uint32_t tag = (uint32_t)mBuffer.readRawVarint(); switch (read_wire_type(tag)) { case WIRE_TYPE_VARINT: while ((mBuffer.readRawByte() & 0x80) != 0) {} break; case WIRE_TYPE_FIXED64: mBuffer.ep()->move(8); break; case WIRE_TYPE_LENGTH_DELIMITED: mBuffer.copy(mCopyBegin, mBuffer.ep()->pos() - mCopyBegin); childRawSize = (int)mBuffer.readRawFixed32(); childEncodedSize = (int)mBuffer.readRawFixed32(); mCopyBegin = mBuffer.ep()->pos(); // write encoded size to buffer. mBuffer.writeRawVarint32(childEncodedSize); if (childRawSize >= 0 && childRawSize == childEncodedSize) { mBuffer.ep()->move(childEncodedSize); } else if (childRawSize < 0){ if (!compactSize(-childRawSize)) return false; } else { ALOGE("Bad raw or encoded values: raw=%d, encoded=%d", childRawSize, childEncodedSize); return false; } break; case WIRE_TYPE_FIXED32: mBuffer.ep()->move(4); break; default: ALOGE("Unexpected wire type %d in compactSize at [%zu, %zu]", read_wire_type(tag), objectStart, objectEnd); return false; } } return true; } size_t ProtoOutputStream::size() { if (!compact()) { ALOGE("compact failed, the ProtoOutputStream data is corrupted!"); // TODO: handle this error } return mBuffer.size(); } static bool write_all(int fd, uint8_t const* buf, size_t size) { while (size > 0) { ssize_t amt = ::write(fd, buf, size); if (amt < 0) { return false; } size -= amt; buf += amt; } return true; } bool ProtoOutputStream::flush(int fd) { if (fd < 0) return false; if (!compact()) return false; EncodedBuffer::iterator it = mBuffer.begin(); while (it.readBuffer() != NULL) { if (!write_all(fd, it.readBuffer(), it.currentToRead())) return false; it.rp()->move(it.currentToRead()); } return true; } EncodedBuffer::iterator ProtoOutputStream::data() { if (!compact()) { ALOGE("compact failed, the ProtoOutputStream data is corrupted!"); // TODO: handle this error } return mBuffer.begin(); } void ProtoOutputStream::writeRawVarint(uint64_t varint) { mBuffer.writeRawVarint64(varint); } void ProtoOutputStream::writeLengthDelimitedHeader(uint32_t id, size_t size) { mBuffer.writeHeader(id, WIRE_TYPE_LENGTH_DELIMITED); // reserves 64 bits for length delimited fields, if first field is negative, compact it. mBuffer.writeRawFixed32(size); mBuffer.writeRawFixed32(size); } void ProtoOutputStream::writeRawByte(uint8_t byte) { mBuffer.writeRawByte(byte); } // ========================================================================= // Private functions /** * bit_cast */ template inline To bit_cast(From const &from) { To to; memcpy(&to, &from, sizeof(to)); return to; } inline void ProtoOutputStream::writeDoubleImpl(uint32_t id, double val) { mBuffer.writeHeader(id, WIRE_TYPE_FIXED64); mBuffer.writeRawFixed64(bit_cast(val)); } inline void ProtoOutputStream::writeFloatImpl(uint32_t id, float val) { mBuffer.writeHeader(id, WIRE_TYPE_FIXED32); mBuffer.writeRawFixed32(bit_cast(val)); } inline void ProtoOutputStream::writeInt64Impl(uint32_t id, long long val) { mBuffer.writeHeader(id, WIRE_TYPE_VARINT); mBuffer.writeRawVarint64((uint64_t)val); } inline void ProtoOutputStream::writeInt32Impl(uint32_t id, int val) { mBuffer.writeHeader(id, WIRE_TYPE_VARINT); mBuffer.writeRawVarint32((uint32_t)val); } inline void ProtoOutputStream::writeUint64Impl(uint32_t id, uint64_t val) { mBuffer.writeHeader(id, WIRE_TYPE_VARINT); mBuffer.writeRawVarint64(val); } inline void ProtoOutputStream::writeUint32Impl(uint32_t id, uint32_t val) { mBuffer.writeHeader(id, WIRE_TYPE_VARINT); mBuffer.writeRawVarint32(val); } inline void ProtoOutputStream::writeFixed64Impl(uint32_t id, uint64_t val) { mBuffer.writeHeader(id, WIRE_TYPE_FIXED64); mBuffer.writeRawFixed64(val); } inline void ProtoOutputStream::writeFixed32Impl(uint32_t id, uint32_t val) { mBuffer.writeHeader(id, WIRE_TYPE_FIXED32); mBuffer.writeRawFixed32(val); } inline void ProtoOutputStream::writeSFixed64Impl(uint32_t id, long long val) { mBuffer.writeHeader(id, WIRE_TYPE_FIXED64); mBuffer.writeRawFixed64((uint64_t)val); } inline void ProtoOutputStream::writeSFixed32Impl(uint32_t id, int val) { mBuffer.writeHeader(id, WIRE_TYPE_FIXED32); mBuffer.writeRawFixed32((uint32_t)val); } inline void ProtoOutputStream::writeZigzagInt64Impl(uint32_t id, long long val) { mBuffer.writeHeader(id, WIRE_TYPE_VARINT); mBuffer.writeRawVarint64((val << 1) ^ (val >> 63)); } inline void ProtoOutputStream::writeZigzagInt32Impl(uint32_t id, int val) { mBuffer.writeHeader(id, WIRE_TYPE_VARINT); mBuffer.writeRawVarint32((val << 1) ^ (val >> 31)); } inline void ProtoOutputStream::writeEnumImpl(uint32_t id, int val) { mBuffer.writeHeader(id, WIRE_TYPE_VARINT); mBuffer.writeRawVarint32((uint32_t) val); } inline void ProtoOutputStream::writeBoolImpl(uint32_t id, bool val) { mBuffer.writeHeader(id, WIRE_TYPE_VARINT); mBuffer.writeRawVarint32(val ? 1 : 0); } inline void ProtoOutputStream::writeUtf8StringImpl(uint32_t id, const char* val, size_t size) { if (val == NULL) return; writeLengthDelimitedHeader(id, size); for (size_t i=0; i