/* * Copyright 2010-2012, The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "Assert.h" #include "Log.h" #include "RSTransforms.h" #include "RSUtils.h" #include "rsDefines.h" #include "bcc/Compiler.h" #include "bcc/CompilerConfig.h" #include "bcc/Config.h" #include "bcc/Script.h" #include "bcc/Source.h" #include "bcinfo/MetadataExtractor.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace { // Name of metadata node where list of exported types resides // (should be synced with slang_rs_metadata.h) static const llvm::StringRef ExportedTypeMetadataName = "#rs_export_type"; // Every exported struct type must have the same layout according to // the Module's DataLayout that it does according to the // TargetMachine's DataLayout -- that is, the front end (represented // by Module) and back end (represented by TargetMachine) must agree. bool validateLayoutOfExportedTypes(const llvm::Module &module, const llvm::DataLayout &moduleDataLayout, const llvm::DataLayout &targetDataLayout) { if (moduleDataLayout == targetDataLayout) return true; const llvm::NamedMDNode *const exportedTypesMD = module.getNamedMetadata(ExportedTypeMetadataName); if (!exportedTypesMD) return true; bool allOk = true; for (const llvm::MDNode *const exportedTypeMD : exportedTypesMD->operands()) { bccAssert(exportedTypeMD->getNumOperands() == 1); // The name of the type in LLVM is the name of the type in the // metadata with "struct." prepended. std::string exportedTypeName = "struct." + llvm::cast(exportedTypeMD->getOperand(0))->getString().str(); llvm::StructType *const exportedType = module.getTypeByName(exportedTypeName); if (!exportedType) { // presumably this means the type got optimized away continue; } const llvm::StructLayout *const moduleStructLayout = moduleDataLayout.getStructLayout(exportedType); const llvm::StructLayout *const targetStructLayout = targetDataLayout.getStructLayout(exportedType); if (moduleStructLayout->getSizeInBits() != targetStructLayout->getSizeInBits()) { ALOGE("%s: getSizeInBits() does not match (%u, %u)", exportedTypeName.c_str(), unsigned(moduleStructLayout->getSizeInBits()), unsigned(targetStructLayout->getSizeInBits())); allOk = false; } // We deliberately do not check alignment of the struct as a whole -- the explicit padding // from slang doesn't force the alignment. for (unsigned elementCount = exportedType->getNumElements(), elementIdx = 0; elementIdx < elementCount; ++elementIdx) { if (moduleStructLayout->getElementOffsetInBits(elementIdx) != targetStructLayout->getElementOffsetInBits(elementIdx)) { ALOGE("%s: getElementOffsetInBits(%u) does not match (%u, %u)", exportedTypeName.c_str(), elementIdx, unsigned(moduleStructLayout->getElementOffsetInBits(elementIdx)), unsigned(targetStructLayout->getElementOffsetInBits(elementIdx))); allOk = false; } } } return allOk; } } // end unnamed namespace using namespace bcc; const char *Compiler::GetErrorString(enum ErrorCode pErrCode) { switch (pErrCode) { case kSuccess: return "Successfully compiled."; case kInvalidConfigNoTarget: return "Invalid compiler config supplied (getTarget() returns nullptr.) " "(missing call to CompilerConfig::initialize()?)"; case kErrCreateTargetMachine: return "Failed to create llvm::TargetMachine."; case kErrSwitchTargetMachine: return "Failed to switch llvm::TargetMachine."; case kErrNoTargetMachine: return "Failed to compile the script since there's no available " "TargetMachine. (missing call to Compiler::config()?)"; case kErrMaterialization: return "Failed to materialize the module."; case kErrInvalidOutputFileState: return "Supplied output file was invalid (in the error state.)"; case kErrPrepareOutput: return "Failed to prepare file for output."; case kPrepareCodeGenPass: return "Failed to construct pass list for code-generation."; case kErrCustomPasses: return "Error occurred while adding custom passes."; case kErrInvalidSource: return "Error loading input bitcode"; case kIllegalGlobalFunction: return "Use of undefined external function"; case kErrInvalidTargetMachine: return "Invalid/unexpected llvm::TargetMachine."; case kErrInvalidLayout: return "Invalid layout (RenderScript ABI and native ABI are incompatible)"; } // This assert should never be reached as the compiler verifies that the // above switch coveres all enum values. bccAssert(false && "Unknown error code encountered"); return ""; } //===----------------------------------------------------------------------===// // Instance Methods //===----------------------------------------------------------------------===// Compiler::Compiler() : mTarget(nullptr), mEnableOpt(true) { return; } Compiler::Compiler(const CompilerConfig &pConfig) : mTarget(nullptr), mEnableOpt(true) { const std::string &triple = pConfig.getTriple(); enum ErrorCode err = config(pConfig); if (err != kSuccess) { ALOGE("%s (%s, features: %s)", GetErrorString(err), triple.c_str(), pConfig.getFeatureString().c_str()); return; } return; } enum Compiler::ErrorCode Compiler::config(const CompilerConfig &pConfig) { if (pConfig.getTarget() == nullptr) { return kInvalidConfigNoTarget; } llvm::TargetMachine *new_target = (pConfig.getTarget())->createTargetMachine(pConfig.getTriple(), pConfig.getCPU(), pConfig.getFeatureString(), pConfig.getTargetOptions(), pConfig.getRelocationModel(), pConfig.getCodeModel(), pConfig.getOptimizationLevel()); if (new_target == nullptr) { return ((mTarget != nullptr) ? kErrSwitchTargetMachine : kErrCreateTargetMachine); } // Replace the old TargetMachine. delete mTarget; mTarget = new_target; // Adjust register allocation policy according to the optimization level. // createFastRegisterAllocator: fast but bad quality // createLinearScanRegisterAllocator: not so fast but good quality if ((pConfig.getOptimizationLevel() == llvm::CodeGenOpt::None)) { llvm::RegisterRegAlloc::setDefault(llvm::createFastRegisterAllocator); } else { llvm::RegisterRegAlloc::setDefault(llvm::createGreedyRegisterAllocator); } return kSuccess; } Compiler::~Compiler() { delete mTarget; } // This function has complete responsibility for creating and executing the // exact list of compiler passes. enum Compiler::ErrorCode Compiler::runPasses(Script &script, llvm::raw_pwrite_stream &pResult) { // Pass manager for link-time optimization llvm::legacy::PassManager transformPasses; // Empty MCContext. llvm::MCContext *mc_context = nullptr; transformPasses.add( createTargetTransformInfoWrapperPass(mTarget->getTargetIRAnalysis())); // Add some initial custom passes. addInvokeHelperPass(transformPasses); addExpandKernelPass(transformPasses); addDebugInfoPass(script, transformPasses); addInvariantPass(transformPasses); if (mTarget->getOptLevel() != llvm::CodeGenOpt::None) { if (!addInternalizeSymbolsPass(script, transformPasses)) return kErrCustomPasses; } addGlobalInfoPass(script, transformPasses); if (mTarget->getOptLevel() == llvm::CodeGenOpt::None) { transformPasses.add(llvm::createGlobalOptimizerPass()); transformPasses.add(llvm::createConstantMergePass()); } else { // FIXME: Figure out which passes should be executed. llvm::PassManagerBuilder Builder; Builder.Inliner = llvm::createFunctionInliningPass(); Builder.populateLTOPassManager(transformPasses); /* FIXME: Reenable autovectorization after rebase. bug 19324423 // Add vectorization passes after LTO passes are in // additional flag: -unroll-runtime transformPasses.add(llvm::createLoopUnrollPass(-1, 16, 0, 1)); // Need to pass appropriate flags here: -scalarize-load-store transformPasses.add(llvm::createScalarizerPass()); transformPasses.add(llvm::createCFGSimplificationPass()); transformPasses.add(llvm::createScopedNoAliasAAPass()); transformPasses.add(llvm::createScalarEvolutionAliasAnalysisPass()); // additional flags: -slp-vectorize-hor -slp-vectorize-hor-store (unnecessary?) transformPasses.add(llvm::createSLPVectorizerPass()); transformPasses.add(llvm::createDeadCodeEliminationPass()); transformPasses.add(llvm::createInstructionCombiningPass()); */ } // These passes have to come after LTO, since we don't want to examine // functions that are never actually called. if (llvm::Triple(getTargetMachine().getTargetTriple()).getArch() == llvm::Triple::x86_64 || llvm::Triple(getTargetMachine().getTargetTriple()).getArch() == llvm::Triple::mips64el) transformPasses.add(createRSX86_64CallConvPass()); // Add pass to correct calling convention for X86-64 and mips64. transformPasses.add(createRSIsThreadablePass()); // Add pass to mark script as threadable. // RSEmbedInfoPass needs to come after we have scanned for non-threadable // functions. if (script.getEmbedInfo()) transformPasses.add(createRSEmbedInfoPass()); // Execute the passes. transformPasses.run(script.getSource().getModule()); // Run backend separately to avoid interference between debug metadata // generation and backend initialization. llvm::legacy::PassManager codeGenPasses; // Add passes to the pass manager to emit machine code through MC layer. if (mTarget->addPassesToEmitMC(codeGenPasses, mc_context, pResult, /* DisableVerify */false)) { return kPrepareCodeGenPass; } // Execute the passes. codeGenPasses.run(script.getSource().getModule()); return kSuccess; } enum Compiler::ErrorCode Compiler::compile(Script &script, llvm::raw_pwrite_stream &pResult, llvm::raw_ostream *IRStream) { llvm::Module &module = script.getSource().getModule(); enum ErrorCode err; if (mTarget == nullptr) { return kErrNoTargetMachine; } const std::string &triple = module.getTargetTriple(); const llvm::DataLayout dl = getTargetMachine().createDataLayout(); unsigned int pointerSize = dl.getPointerSizeInBits(); if (triple == "armv7-none-linux-gnueabi") { if (pointerSize != 32) { return kErrInvalidSource; } } else if (triple == "aarch64-none-linux-gnueabi") { if (pointerSize != 64) { return kErrInvalidSource; } } else { return kErrInvalidSource; } if (script.isStructExplicitlyPaddedBySlang()) { if (!validateLayoutOfExportedTypes(module, module.getDataLayout(), dl)) return kErrInvalidLayout; } else { if (getTargetMachine().getTargetTriple().getArch() == llvm::Triple::x86) { // Detect and fail if TargetMachine datalayout is different than what we // expect. This is to detect changes in default target layout for x86 and // update X86_CUSTOM_DL_STRING in include/bcc/Config/Config.h appropriately. if (dl.getStringRepresentation().compare(X86_DEFAULT_DL_STRING) != 0) { return kErrInvalidTargetMachine; } } } // Sanitize module's target information. module.setTargetTriple(getTargetMachine().getTargetTriple().str()); module.setDataLayout(getTargetMachine().createDataLayout()); // Materialize the bitcode module. if (module.getMaterializer() != nullptr) { // A module with non-null materializer means that it is a lazy-load module. // Materialize it now. This function returns false when the materialization // is successful. std::error_code ec = module.materializeAll(); if (ec) { ALOGE("Failed to materialize the module `%s'! (%s)", module.getModuleIdentifier().c_str(), ec.message().c_str()); return kErrMaterialization; } } if ((err = runPasses(script, pResult)) != kSuccess) { return err; } if (IRStream) { *IRStream << module; } return kSuccess; } bool Compiler::addInternalizeSymbolsPass(Script &script, llvm::legacy::PassManager &pPM) { // Add a pass to internalize the symbols that don't need to have global // visibility. llvm::Module &module = script.getSource().getModule(); bcinfo::MetadataExtractor me(&module); if (!me.extract()) { bccAssert(false && "Could not extract metadata for module!"); return false; } // Set of symbols that should not be internalized. std::set export_symbols; const char *sf[] = { kRoot, // Graphics drawing function or compute kernel. kInit, // Initialization routine called implicitly on startup. kRsDtor, // Static global destructor for a script instance. kRsInfo, // Variable containing string of RS metadata info. kRsGlobalEntries, // Optional number of global variables. kRsGlobalNames, // Optional global variable name info. kRsGlobalAddresses, // Optional global variable address info. kRsGlobalSizes, // Optional global variable size info. kRsGlobalProperties, // Optional global variable properties. nullptr // Must be nullptr-terminated. }; const char **special_functions = sf; // Special RS functions should always be global symbols. while (*special_functions != nullptr) { export_symbols.insert(*special_functions); special_functions++; } // Visibility of symbols appeared in rs_export_var and rs_export_func should // also be preserved. size_t exportVarCount = me.getExportVarCount(); size_t exportFuncCount = me.getExportFuncCount(); size_t exportForEachCount = me.getExportForEachSignatureCount(); size_t exportReduceCount = me.getExportReduceCount(); const char **exportVarNameList = me.getExportVarNameList(); const char **exportFuncNameList = me.getExportFuncNameList(); const char **exportForEachNameList = me.getExportForEachNameList(); const bcinfo::MetadataExtractor::Reduce *exportReduceList = me.getExportReduceList(); size_t i; for (i = 0; i < exportVarCount; ++i) { export_symbols.insert(exportVarNameList[i]); } for (i = 0; i < exportFuncCount; ++i) { export_symbols.insert(exportFuncNameList[i]); } // Expanded foreach functions should not be internalized; nor should // general reduction initializer, combiner, and outconverter // functions. keep_funcs keeps the names of these functions around // until createInternalizePass() is finished making its own copy of // the visible symbols. std::vector keep_funcs; keep_funcs.reserve(exportForEachCount + exportReduceCount*4); for (i = 0; i < exportForEachCount; ++i) { keep_funcs.push_back(std::string(exportForEachNameList[i]) + ".expand"); } auto keepFuncsPushBackIfPresent = [&keep_funcs](const char *Name) { if (Name) keep_funcs.push_back(Name); }; for (i = 0; i < exportReduceCount; ++i) { keep_funcs.push_back(std::string(exportReduceList[i].mAccumulatorName) + ".expand"); keepFuncsPushBackIfPresent(exportReduceList[i].mInitializerName); if (exportReduceList[i].mCombinerName != nullptr) { keep_funcs.push_back(exportReduceList[i].mCombinerName); } else { keep_funcs.push_back(nameReduceCombinerFromAccumulator(exportReduceList[i].mAccumulatorName)); } keepFuncsPushBackIfPresent(exportReduceList[i].mOutConverterName); } for (auto &symbol_name : keep_funcs) { export_symbols.insert(symbol_name); } auto IsExportedSymbol = [=](const llvm::GlobalValue &GV) { return export_symbols.count(GV.getName()) > 0; }; pPM.add(llvm::createInternalizePass(IsExportedSymbol)); return true; } void Compiler::addInvokeHelperPass(llvm::legacy::PassManager &pPM) { llvm::Triple arch(getTargetMachine().getTargetTriple()); if (arch.isArch64Bit()) { pPM.add(createRSInvokeHelperPass()); } } void Compiler::addDebugInfoPass(Script &script, llvm::legacy::PassManager &pPM) { if (script.getSource().getDebugInfoEnabled()) pPM.add(createRSAddDebugInfoPass()); } void Compiler::addExpandKernelPass(llvm::legacy::PassManager &pPM) { // Expand ForEach and reduce on CPU path to reduce launch overhead. bool pEnableStepOpt = true; pPM.add(createRSKernelExpandPass(pEnableStepOpt)); } void Compiler::addGlobalInfoPass(Script &script, llvm::legacy::PassManager &pPM) { // Add additional information about RS global variables inside the Module. if (script.getEmbedGlobalInfo()) { pPM.add(createRSGlobalInfoPass(script.getEmbedGlobalInfoSkipConstant())); } } void Compiler::addInvariantPass(llvm::legacy::PassManager &pPM) { // Mark Loads from RsExpandKernelDriverInfo as "load.invariant". // Should run after ExpandForEach and before inlining. pPM.add(createRSInvariantPass()); } enum Compiler::ErrorCode Compiler::screenGlobalFunctions(Script &script) { llvm::Module &module = script.getSource().getModule(); // Materialize the bitcode module in case this is a lazy-load module. Do not // clear the materializer by calling materializeAllPermanently since the // runtime library has not been merged into the module yet. if (module.getMaterializer() != nullptr) { std::error_code ec = module.materializeAll(); if (ec) { ALOGE("Failed to materialize module `%s' when screening globals! (%s)", module.getModuleIdentifier().c_str(), ec.message().c_str()); return kErrMaterialization; } } // Add pass to check for illegal function calls. llvm::legacy::PassManager pPM; pPM.add(createRSScreenFunctionsPass()); pPM.run(module); return kSuccess; } void Compiler::translateGEPs(Script &script) { llvm::legacy::PassManager pPM; pPM.add(createRSX86TranslateGEPPass()); // Materialization done in screenGlobalFunctions above. pPM.run(script.getSource().getModule()); }