/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "ExecutionPlan" #include "ExecutionPlan.h" #include "Callbacks.h" #include "CompilationBuilder.h" #include "ExecutionBuilder.h" #include "Manager.h" #include "ModelBuilder.h" #include "Utils.h" #include #include #include #include #include #include using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback; using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback; namespace android { namespace nn { static int compile(std::shared_ptr device, const ModelBuilder* model, int32_t executionPreference, sp* preparedModel) { nnAssert(device != nullptr); // nullptr indicates CPU // Compilation logic copied from ExecutionBuilder::startComputeOnDevice(). Model hidlModel; model->setHidlModel(&hidlModel); sp preparedModelCallback = new PreparedModelCallback(); Return prepareLaunchStatus = device->getInterface()->prepareModel( hidlModel, static_cast(executionPreference), preparedModelCallback); if (!prepareLaunchStatus.isOk()) { LOG(ERROR) << "ExecutionStep::finishSubModel compilation failed due to transport error: " << prepareLaunchStatus.description(); return ANEURALNETWORKS_OP_FAILED; } if (prepareLaunchStatus != ErrorStatus::NONE) { LOG(ERROR) << "ExecutionStep::finishSubModel compilation failed with error: " << toString(static_cast(prepareLaunchStatus)); return ANEURALNETWORKS_OP_FAILED; } preparedModelCallback->wait(); ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus(); *preparedModel = preparedModelCallback->getPreparedModel(); if (prepareReturnStatus != ErrorStatus::NONE || *preparedModel == nullptr) { LOG(ERROR) << "ExecutionPlan compilation on " << device->getName() << " failed:" << " prepareReturnStatus=" << toString(prepareReturnStatus) << ", preparedModel=" << preparedModel->get(); return ANEURALNETWORKS_OP_FAILED; } return ANEURALNETWORKS_NO_ERROR; } typedef std::function OperationReadyCallback; // This class tracks whether we know the value of an operand as operations // are processed. class OperandTracker { public: // Creates the tracker for this model. Figure out which operations can be // executed right away and cb for each one of them. OperandTracker(const ModelBuilder* model, OperationReadyCallback cb); // Mark the specified operation as having been processed. The output // of the operation now being known, this may make new operations to be // able to run. Call cb for each one of them. void markProcessed(uint32_t operationIndex, OperationReadyCallback cb); private: const ModelBuilder* mModel; std::multimap mOperandToOperations; std::vector mUnknownInputCount; // For each operation }; OperandTracker::OperandTracker(const ModelBuilder* model, OperationReadyCallback cb) : mModel(model) { const auto& operations = mModel->getOperations(); mUnknownInputCount.resize(operations.size()); for (uint32_t operationIndex = 0; operationIndex < operations.size(); operationIndex++) { const Operation& operation = operations[operationIndex]; uint32_t count = 0; for (uint32_t operandIndex : operation.inputs) { auto lifetime = mModel->getOperand(operandIndex).lifetime; if (lifetime == OperandLifeTime::TEMPORARY_VARIABLE || lifetime == OperandLifeTime::MODEL_OUTPUT) { count++; mOperandToOperations.insert( std::pair(operandIndex, operationIndex)); } } if (count == 0) { cb(operationIndex); } mUnknownInputCount[operationIndex] = count; } } void OperandTracker::markProcessed(uint32_t operationIndex, OperationReadyCallback cb) { // Mark all its outputs as known. const Operation& operation = mModel->getOperations()[operationIndex]; for (uint32_t operandIndex : operation.outputs) { auto range = mOperandToOperations.equal_range(operandIndex); for (auto i = range.first; i != range.second; i++) { uint32_t& count = mUnknownInputCount[i->second]; if (--count == 0) { cb(i->second); } } } } ExecutionStep::ExecutionStep(ExecutionPlan* plan, uint32_t stepIndex, std::shared_ptr device) : mPlan(plan), mIndex(stepIndex), mSubModel(), mDevice(device) {} // Adds an operand if it has not been added already. // Sets the index in the submodel for the corresponding operand. int ExecutionStep::addOperand(uint32_t fromOperandIndex, uint32_t* toOperandIndex, const ModelBuilder& fromModel, OperandKind kind) { // Have we added this operand already? auto i = mOperandMap.find(fromOperandIndex); if (i != mOperandMap.end()) { nnAssert(kind == INPUT); *toOperandIndex = i->second; return ANEURALNETWORKS_NO_ERROR; } // First time we add this operand. *toOperandIndex = mSubModel.operandCount(); mOperandMap.insert(std::pair(fromOperandIndex, *toOperandIndex)); // Add the operand to the submodel. const Operand& operand = fromModel.getOperand(fromOperandIndex); ANeuralNetworksOperandType type = { .type = static_cast(operand.type), .dimensionCount = static_cast(operand.dimensions.size()), .dimensions = operand.dimensions.size() > 0 ? operand.dimensions.data() : nullptr, .scale = operand.scale, .zeroPoint = operand.zeroPoint }; int n = mSubModel.addOperand(type); if (n != ANEURALNETWORKS_NO_ERROR) { LOG(ERROR) << "Previous error occurred when partitioning the graph"; return n; } // Sets its value. switch (operand.lifetime) { case OperandLifeTime::CONSTANT_COPY: { const uint8_t* data = fromModel.getPointerToOperandValue(operand.location.offset); n = mSubModel.setOperandValue(*toOperandIndex, data, operand.location.length); if (n != ANEURALNETWORKS_NO_ERROR) { LOG(ERROR) << "Previous error occurred when partitioning the graph"; return n; } } break; case OperandLifeTime::CONSTANT_REFERENCE: { const Memory* memory = fromModel.getMemories()[operand.location.poolIndex]; n = mSubModel.setOperandValueFromMemory(*toOperandIndex, memory, operand.location.offset, operand.location.length); if (n != ANEURALNETWORKS_NO_ERROR) { LOG(ERROR) << "Previous error occurred when partitioning the graph"; return n; } } break; case OperandLifeTime::NO_VALUE: { n = mSubModel.setOperandValue(*toOperandIndex, nullptr, 0); if (n != ANEURALNETWORKS_NO_ERROR) { LOG(ERROR) << "Previous error occurred when partitioning the graph"; return n; } } break; case OperandLifeTime::TEMPORARY_VARIABLE: // handled similarly to MODEL_OUTPUT if (kind == INPUT) { // The first time we've seen this operand is as an // input. That means it must be defined by a // different partition, and is an input to this one. mTempsAsSubModelInputs.push_back(std::make_pair(fromOperandIndex, *toOperandIndex)); } else { // The first time we've seen this operand is as an // output. It may be an input to a different // partition, so keep track of it. mPlan->recordTemporaryDef(fromOperandIndex, mIndex); } break; case OperandLifeTime::MODEL_INPUT: mModelInputs.push_back(std::make_pair(fromOperandIndex, *toOperandIndex)); break; case OperandLifeTime::MODEL_OUTPUT: // handled similarly to TEMPORARY_VARIABLE if (kind == INPUT) { // The first time we've seen this operand is as an // input. That means it must be defined by a // different partition, and is an input to this one. mOutputsAsSubModelInputs.push_back(std::make_pair(fromOperandIndex, *toOperandIndex)); } else { // The first time we've seen this operand is as an // output. mModelOutputs.push_back(std::make_pair(fromOperandIndex, *toOperandIndex)); } break; default: nnAssert(false); break; } return ANEURALNETWORKS_NO_ERROR; } int ExecutionStep::addOperation(int operationIndex, const ModelBuilder& fromModel) { const Operation& operation = fromModel.getOperation(operationIndex); // Convert the input and output operand indexes. // // We expect operations to be added in topological order. Therefore: // // - We may not have seen an input if it is a model input, a // constant, or an operand written by a different partition. // // - We should not have seen any outputs. const uint32_t inputCount = static_cast(operation.inputs.size()); const uint32_t outputCount = static_cast(operation.outputs.size()); std::vector inputs(inputCount); std::vector outputs(outputCount); auto addOperands = [this, &fromModel](const hidl_vec& globalOperands, std::vector& localOperands, OperandKind kind) -> int { const uint32_t operandCount = static_cast(globalOperands.size()); for (uint32_t i = 0; i < operandCount; i++) { uint32_t localOperand = ~0U; int n = addOperand(globalOperands[i], &localOperand, fromModel, kind); if (n != ANEURALNETWORKS_NO_ERROR) return n; localOperands[i] = localOperand; } return ANEURALNETWORKS_NO_ERROR; }; int n; if ((n = addOperands(operation.inputs, inputs, INPUT)) != ANEURALNETWORKS_NO_ERROR || (n = addOperands(operation.outputs, outputs, OUTPUT)) != ANEURALNETWORKS_NO_ERROR) { return n; } return mSubModel.addOperation(static_cast(operation.type), inputCount, inputs.data(), outputCount, outputs.data()); } void ExecutionStep::mapInputsAndOutputs(std::shared_ptr stepExecutor) const { for (uint32_t i = 0, e = mInputIndexSubModelToFromModel.size(); i < e; i++) { stepExecutor->mapInput(mInputIndexSubModelToFromModel[i], i); } for (uint32_t i = 0, e = mOutputIndexSubModelToFromModel.size(); i < e; i++) { stepExecutor->mapOutput(mOutputIndexSubModelToFromModel[i], i); } } void ExecutionPlan::CompoundBody::findTempsAsSubModelOutputs() { for (const auto& step : mSteps) { for (const auto& input : step->getTempsAsSubModelInputs()) { const uint32_t fromModelIndex = input.first; const auto it = mTemporaryToDefiningStep.find(fromModelIndex); nnAssert(it != mTemporaryToDefiningStep.end()); const uint32_t stepIndex = it->second; nnAssert(stepIndex < mSteps.size()); mSteps[stepIndex]->recordTempAsSubModelOutput(fromModelIndex); } } } void ExecutionStep::logSubModel() const { VLOG(COMPILATION) << "ExecutionStep::finishSubModel, step " << mIndex; auto logRemapEntry = [](std::string &toLog, const std::pair& e) { if (!toLog.empty()) { toLog += ", "; } toLog += "("; toLog += std::to_string(e.first); toLog += "->"; toLog += std::to_string(e.second); toLog += ")"; }; auto logRemapVector = [&logRemapEntry](const char* name, const RemapVectorType& map) { std::string toLog; for (const auto& e : map) { logRemapEntry(toLog, e); } VLOG(COMPILATION) << name << ": " << toLog; }; auto logRemapSet = [&logRemapEntry](const char* name, const SubModelOutputSetType& set) { std::string toLog; for (const auto& e : set) { logRemapEntry(toLog, e); } VLOG(COMPILATION) << name << ": " << toLog; }; logRemapVector("model inputs", mModelInputs); logRemapVector("model outputs", mModelOutputs); logRemapVector("temps as submodel inputs", mTempsAsSubModelInputs); logRemapSet("temps as submodel outputs", mTempsAsSubModelOutputs); logRemapVector("outputs as submodel inputs", mOutputsAsSubModelInputs); } static void convertModelInputsOrOutputs( // IN: mModel{Inputs|Outputs} const ExecutionStep::RemapVectorType& myModelInputsOrOutputs, // IN: fromModel->{input|output}Count() uint32_t fromModelInputOrOutputCount, // IN: fromModel->get{Input|Output}OperandIndex std::function fromModelGetInputOrOutputOperandIndex, // OUT: for v : mModel{Inputs|Outputs} : v.second std::vector* inputsOrOutputs, // OUT: submodel input-or-output index to original model input-or-output index std::vector* inputOrOutputIndexSubModelToFromModel) { std::map fromModelIndexMap; // operand index to input-or-output index for (uint32_t i = 0; i < fromModelInputOrOutputCount; i++) { fromModelIndexMap[fromModelGetInputOrOutputOperandIndex(i)] = i; } for (const auto& myInputOrOutput : myModelInputsOrOutputs) { inputsOrOutputs->push_back(myInputOrOutput.second); const uint32_t fromModelInputOrOutputIndex = fromModelIndexMap[myInputOrOutput.first]; inputOrOutputIndexSubModelToFromModel->push_back(fromModelInputOrOutputIndex); } } int ExecutionStep::finishSubModel(const ModelBuilder* fromModel, bool* hasOutputOfUnknownSize, int32_t executionPreference) { if (VLOG_IS_ON(COMPILATION)) { logSubModel(); } mSubModel.relaxComputationFloat32toFloat16(fromModel->isComputationFloat32RelaxedToFloat16()); // Input order: mModelInputs, mTempsAsSubModelInputs, mOutputsAsSubModelInputs // Output order: mModelOutputs, mTempsAsSubModelOutputs // // ExecutionPlan::next() depends on these orderings. std::vector inputs; convertModelInputsOrOutputs(mModelInputs, fromModel->inputCount(), [=](uint32_t i) { return fromModel->getInputOperandIndex(i); }, &inputs, &mInputIndexSubModelToFromModel); for (const auto& subModelInput : mTempsAsSubModelInputs) { inputs.push_back(subModelInput.second); } for (const auto& subModelInput : mOutputsAsSubModelInputs) { inputs.push_back(subModelInput.second); } std::vector outputs; convertModelInputsOrOutputs(mModelOutputs, fromModel->outputCount(), [=](uint32_t i) { return fromModel->getOutputOperandIndex(i); }, &outputs, &mOutputIndexSubModelToFromModel); for (const auto& subModelOutput : mTempsAsSubModelOutputs) { outputs.push_back(subModelOutput.second); const Operand& operand = mSubModel.getOperand(subModelOutput.second); for (uint32_t dimension : operand.dimensions) { if (dimension == 0) { *hasOutputOfUnknownSize = true; VLOG(COMPILATION) << "SubModelOutput (operand#" << subModelOutput.first << " of original graph) has unknown size: " << toString(operand); break; } } } { int n = mSubModel.identifyInputsAndOutputs(inputs.size(), &inputs[0], outputs.size(), &outputs[0]); if (n != ANEURALNETWORKS_NO_ERROR) { return n; } n = mSubModel.finish(); if (n != ANEURALNETWORKS_NO_ERROR) { return n; } } { // Compute mOutputsAsSubModelInputsIndexToFromModel. std::map fromModelOperandIndexToOutputIndex; for (unsigned i = 0, e = fromModel->outputCount(); i < e; ++i) { fromModelOperandIndexToOutputIndex[fromModel->getOutputOperandIndex(i)] = i; } for (unsigned i = 0, e = mOutputsAsSubModelInputs.size(); i < e; i++) { const uint32_t fromModelOperandIndex = mOutputsAsSubModelInputs[i].first; const auto it = fromModelOperandIndexToOutputIndex.find(fromModelOperandIndex); if (it == fromModelOperandIndexToOutputIndex.end()) { LOG(ERROR) << "Could not find main model output operand " << fromModelOperandIndex << " in main model output operand list"; return ANEURALNETWORKS_BAD_STATE; } mOutputsAsSubModelInputsIndexToFromModel.push_back(it->second); } } // TODO: Move compilation elsewhere? if (mDevice == nullptr) { return ANEURALNETWORKS_NO_ERROR; } VLOG(COMPILATION) << "ExecutionStep::finishSubModel, compilation"; return compile(mDevice, &mSubModel, executionPreference, &mPreparedSubModel); } void ExecutionStep::dump() const { Model model; mSubModel.setHidlModel(&model); if (VLOG_IS_ON(COMPILATION)) { VLOG(COMPILATION) << "ExecutionStep#" << mIndex << " for " << (mDevice == nullptr ? "CPU" : mDevice->getName()); logModelToInfo(model); } } int ExecutionPlan::CompoundBody::finish(const ModelBuilder* fromModel, int32_t executionPreference) { findTempsAsSubModelOutputs(); for (const auto& step : mSteps) { int n = step->finishSubModel(fromModel, &mHasSubModelOutputOfUnknownSize, executionPreference); if (n != ANEURALNETWORKS_NO_ERROR) { VLOG(COMPILATION) << "ExecutionPlan::CompoundBody::finish -- finishSubModel failed"; return n; } } if (mHasSubModelOutputOfUnknownSize) { VLOG(COMPILATION) << "ExecutionPlan::CompoundBody::finish -- mHasSubModelOutputOfUnknownSize"; return ANEURALNETWORKS_OP_FAILED; } mSuccessfulFinish = true; return ANEURALNETWORKS_NO_ERROR; } int ExecutionPlan::SimpleBody::finish([[maybe_unused]] const ModelBuilder* fromModel, int32_t executionPreference) { if (mDevice == nullptr) { mSuccessfulFinish = true; return ANEURALNETWORKS_NO_ERROR; } VLOG(COMPILATION) << "ExecutionPlan::SimpleBody::finish, compilation"; const int n = compile(mDevice, mModel, executionPreference, &mPreparedModel); mSuccessfulFinish = (n == ANEURALNETWORKS_NO_ERROR); return n; } int ExecutionPlan::finish(const ModelBuilder* fromModel, int32_t executionPreference) { nnAssert(mBody != nullptr); return mBody->finish(fromModel, executionPreference); } ExecutionPlan::Controller::Controller( const ExecutionPlan* plan, const ExecutionBuilder* executionBuilder, std::shared_ptr subModelInputsAndOutputs, uint32_t totalSizeOfTemporaries) : mPlan(plan), mExecutionBuilder(executionBuilder), mSubModelInputsAndOutputs(subModelInputsAndOutputs), mNextStepIndex(0) { if (totalSizeOfTemporaries) { if (mTemporaries.create(totalSizeOfTemporaries) != ANEURALNETWORKS_NO_ERROR) { LOG(ERROR) << "ExecutionPlan::Controller failed to allocate temporaries"; mNextStepIndex = kBadStepIndex; } } } std::shared_ptr ExecutionPlan::makeController( const ExecutionBuilder* executionBuilder) const { nnAssert((mState == EMPTY) == (mBody == nullptr)); if (mBody && !mBody->mSuccessfulFinish) { VLOG(EXECUTION) << "ExecutionPlan::makeController -- unsuccessful finish"; return std::shared_ptr(nullptr); } // Create the layout for a Memory object big enough for to hold // every TEMPORARY in the original model that is live across // partition boundaries. // // TODO: Rethink this approach for managing temporaries. Some // alternatives: // // 1) Adopt a memory layout scheme analogous to stack allocation, // where objects of non-overlapping lifetime can occupy the same // storage. We would still have a single Memory object in this // case. // // 2) Do something like what CpuExecutor does, and do allocations // and deallocations on the fly (during execution) before first // reference and after last reference, respectively. This would // mean having one Memory object per TEMPORARY; or, in a more // complicated implementation, one Memory object per set of // temporaries that have the same lifetime. Note that the Android // system limits the number of shared memory objects, which are // what our Memory objects represent. // uint32_t totalSizeOfTemporaries = 0; std::shared_ptr subModelInputsAndOutputs; if (mState == COMPOUND) { const ModelBuilder* fromModel = executionBuilder->getModel(); for (const auto& step : compound()->mSteps) { for (const auto& output: step->getTempsAsSubModelOutputs()) { const uint32_t fromModelOperandIndex = output.first; const Operand& fromModelOperand = fromModel->getOperand(fromModelOperandIndex); if (subModelInputsAndOutputs == nullptr) { subModelInputsAndOutputs = std::make_shared(); } const uint32_t size = sizeOfData(fromModelOperand); totalSizeOfTemporaries += alignBytesNeeded(totalSizeOfTemporaries, size); subModelInputsAndOutputs->insert(std::make_pair(fromModelOperandIndex, totalSizeOfTemporaries)); totalSizeOfTemporaries += size; } } if (VLOG_IS_ON(EXECUTION) && (subModelInputsAndOutputs != nullptr)) { for (const auto& io : *subModelInputsAndOutputs) { VLOG(EXECUTION) << "temp: origOpndIdx = " << io.first << ", offset = " << io.second; } } } return std::shared_ptr(new Controller(this, executionBuilder, subModelInputsAndOutputs, totalSizeOfTemporaries)); } // TODO: Find a better way to provide this functionality. int ExecutionPlan::fallback(std::shared_ptr controller, std::shared_ptr* executor) const { *executor = nullptr; VLOG(EXECUTION) << "ExecutionPlan::fallback(" << controller << ", " << executor << "): mNextStepIndex = " << controller->mNextStepIndex; if (controller->mNextStepIndex == 0) { // We haven't called next(). return ANEURALNETWORKS_OP_FAILED; } if (controller->mNextStepIndex == Controller::kBadStepIndex) { // The last call to next() did not produce an executor. return ANEURALNETWORKS_OP_FAILED; } --controller->mNextStepIndex; return next(controller, executor); } int ExecutionPlan::next(std::shared_ptr controller, std::shared_ptr* executor) const { *executor = nullptr; VLOG(EXECUTION) << "ExecutionPlan::next(" << SHOW_IF_DEBUG(controller << ", " << executor) << "): mNextStepIndex = " << controller->mNextStepIndex; if (controller->mNextStepIndex == Controller::kBadStepIndex) { return ANEURALNETWORKS_OP_FAILED; } if (mState == EMPTY) { nnAssert(controller->mNextStepIndex == 0); // end controller->mNextStepIndex = Controller::kBadStepIndex; return ANEURALNETWORKS_NO_ERROR; } if (mState == SIMPLE) { if (controller->mNextStepIndex == 0) { // First (and only) step. auto simpleBody = static_cast(mBody); *executor = std::make_shared( controller->mExecutionBuilder, simpleBody->mModel, (simpleBody->mDevice == nullptr ? nullptr : simpleBody->mDevice->getInterface()), simpleBody->mPreparedModel); (*executor)->mapInputsAndOutputsTrivially(); controller->mNextStepIndex = 1; return ANEURALNETWORKS_NO_ERROR; } nnAssert(controller->mNextStepIndex == 1); // end controller->mNextStepIndex = Controller::kBadStepIndex; return ANEURALNETWORKS_NO_ERROR; } auto compoundBody = compound(); if (controller->mNextStepIndex == compoundBody->mSteps.size()) { // end controller->mNextStepIndex = Controller::kBadStepIndex; return ANEURALNETWORKS_NO_ERROR; } // Input order: model inputs, temps as submodel inputs, outputs as submodel inputs // Output order: model outputs, temps as submodel outputs // // ExecutionStep::finishSubModel() establishes these orderings. const auto step = compoundBody->mSteps[controller->mNextStepIndex]; *executor = std::make_shared( controller->mExecutionBuilder, step->getSubModel(), (step->getDevice() == nullptr ? nullptr : step->getDevice()->getInterface()), step->getPreparedSubModel()); step->mapInputsAndOutputs(*executor); if (controller->mSubModelInputsAndOutputs != nullptr) { { // Tell executor about temps as submodel outputs. const size_t firstSubModelOutputIndex = step->getModelOutputs().size(); const auto& subModelOutputs = step->getTempsAsSubModelOutputs(); uint32_t idx = 0; for (auto I = subModelOutputs.begin(), E = subModelOutputs.end(); I != E; I++, idx++) { const uint32_t fromModelOperandIndex = I->first; const uint32_t offsetOfTemporary = controller->mSubModelInputsAndOutputs->at(fromModelOperandIndex); int n = (*executor)->setOutputFromTemporaryMemory( firstSubModelOutputIndex + idx, &controller->mTemporaries, offsetOfTemporary); if (n != ANEURALNETWORKS_NO_ERROR) { controller->mNextStepIndex = Controller::kBadStepIndex; return n; } } } { // Tell executor about temps as submodel inputs. const size_t firstSubModelInputIndex = step->getModelInputs().size(); const auto& subModelInputs = step->getTempsAsSubModelInputs(); uint32_t idx = 0; for (auto I = subModelInputs.begin(), E = subModelInputs.end(); I != E; I++, idx++) { const uint32_t fromModelOperandIndex = I->first; const uint32_t offsetOfTemporary = controller->mSubModelInputsAndOutputs->at(fromModelOperandIndex); int n = (*executor)->setInputFromTemporaryMemory( firstSubModelInputIndex + idx, &controller->mTemporaries, offsetOfTemporary); if (n != ANEURALNETWORKS_NO_ERROR) { controller->mNextStepIndex = Controller::kBadStepIndex; return n; } } } } { // Tell executor about outputs as submodel inputs. const size_t firstOutputsAsSubModelInputIndex = step->getModelInputs().size() + step->getTempsAsSubModelInputs().size(); const auto& outputsAsSubModelInputsIndexToFromModel = step->getOutputsAsSubModelInputsIndexToFromModel(); for (uint32_t i = 0, e = outputsAsSubModelInputsIndexToFromModel.size(); i < e; i++) { uint32_t o = outputsAsSubModelInputsIndexToFromModel[i]; (*executor)->mapOutputToInput(o, firstOutputsAsSubModelInputIndex + i); } } controller->mNextStepIndex++; return ANEURALNETWORKS_NO_ERROR; } std::shared_ptr ExecutionPlan::createNewStep(const std::shared_ptr device) { nnAssert(mState != SIMPLE); if (mState == EMPTY) { mBody = new CompoundBody(); mState = COMPOUND; } auto& steps = compound()->mSteps; auto step = std::make_shared(this, steps.size(), device); steps.push_back(step); return step; } void ExecutionPlan::becomeSingleStep(const std::shared_ptr device, const ModelBuilder* model) { nnAssert(mState == EMPTY); mBody = new SimpleBody(device, model); mState = SIMPLE; } void ExecutionPlan::dump() const { if (mBody) { mBody->dump(); } else { VLOG(COMPILATION) << "EMPTY"; } } ExecutionPlan::Kind ExecutionPlan::forTest_getKind() const { switch (mState) { case EMPTY: return Kind::EMPTY; case SIMPLE: nnAssert(mBody); return mBody->mSuccessfulFinish ? Kind::SIMPLE : Kind::ERROR; case COMPOUND: nnAssert(mBody); return mBody->mSuccessfulFinish ? Kind::COMPOUND : Kind::ERROR; default: nnAssert(!"unexpected state"); return Kind::ERROR; } } std::shared_ptr ExecutionPlan::forTest_simpleGetDevice() const { nnAssert(mState == SIMPLE); return static_cast(mBody)->mDevice; } const std::vector>& ExecutionPlan::forTest_compoundGetSteps() const { return compound()->mSteps; } bool ExecutionPlan::forTest_hasSubModelOutputsOfUnknownSize() const { return mBody->hasSubModelOutputsOfUnknownSize(); } void ExecutionPlan::SimpleBody::dump() const { VLOG(COMPILATION) << "SIMPLE for " << (mDevice == nullptr ? "CPU" : mDevice->getName()); } void ExecutionPlan::CompoundBody::dump() const { for (const auto& step : mSteps) { step->dump(); } } int ModelBuilder::partitionTheWork(const std::vector>& devices, uint32_t preference, ExecutionPlan* plan) const { // This function uses a heuristic approach to partitioning the graph. // It should be good enough for the first release. const size_t nonCpuDeviceCount = devices.size(); // The device count is the number of HAL devices + 1. The +1 is for the CPU. // Note that deviceCount includes CPU, which has no entry in devices[]. const size_t deviceCount = nonCpuDeviceCount + 1; const size_t operationCount = mOperations.size(); VLOG(COMPILATION) << "ModelBuilder::partitionTheWork: deviceCount = " << deviceCount << ", operationCount = " << operationCount; // If we only have the CPU, or if the graph has no operations, no need to try to partition. if (nonCpuDeviceCount == 0 || operationCount == 0) { // Make sure no op is an OEM operation. for (auto& op: mOperations) { if (op.type == OperationType::OEM_OPERATION) { LOG(ERROR) << "No driver can do the OEM op"; return ANEURALNETWORKS_BAD_DATA; } } plan->becomeSingleStep(nullptr /* CPU */, this); return plan->finish(this, preference); } // Figure out where each operation will best execute. // The value of the vector is the index in the devices vector, with devices.size() // representing the CPU. std::vector bestDeviceForOperation(operationCount); int status = findBestDeviceForEachOperation(preference, devices, deviceCount, &bestDeviceForOperation); if (status != ANEURALNETWORKS_NO_ERROR) { return status; } // If one device will run all the operations, we don't need to split the work. if (std::adjacent_find(bestDeviceForOperation.begin(), bestDeviceForOperation.end(), std::not_equal_to()) == bestDeviceForOperation.end()) { const int bestDeviceIndex = bestDeviceForOperation[0]; const bool cpu = (size_t(bestDeviceIndex) == deviceCount - 1); VLOG(COMPILATION) << "ModelBuilder::partitionTheWork: only one best device: " << bestDeviceIndex << " = " << (cpu ? "CPU" : devices[bestDeviceIndex]->getName()); plan->becomeSingleStep(cpu ? nullptr : devices[bestDeviceIndex], this); return plan->finish(this, preference); } // No easy solution, we need to split the work. // We keep track of the operations that are ready to run for each device. std::vector> perDeviceQueue(deviceCount); // This helper function enqueues the operation on the appropriate queue. auto enqueueOnAppropriateDevice = [&](uint32_t operationIndex) { int deviceIndex = bestDeviceForOperation[operationIndex]; perDeviceQueue[deviceIndex].push(operationIndex); VLOG(COMPILATION) << "enqueueOnAppropriateDevice " << operationIndex << " onto " << deviceIndex; }; // This helper function finds a device that has operations ready to process. // We start by looking at the CPU. We do this to try to maximize the // size of the graph we'll send to non-CPU devices. If the CPU runs first, // it will have the chance to prepare more of the inputs required by the // other devices. This function returns -1 if all queues are empty. auto findNextDeviceToProcess = [&]() -> int { for (int i = deviceCount - 1; i >= 0; i--) { if (!perDeviceQueue[i].empty()) { return i; } } return -1; }; OperandTracker tracker(this, enqueueOnAppropriateDevice); // For each iteration of this loop, we'll create an execution step. while (true) { // Find the device we'll do this step for. int deviceIndex = findNextDeviceToProcess(); VLOG(COMPILATION) << "findNextDeviceToProcess: " << deviceIndex; if (deviceIndex < 0) { break; } // nullptr represents the CPU. std::shared_ptr device = static_cast(deviceIndex) < nonCpuDeviceCount ? devices[deviceIndex] : nullptr; // Assign as much as possible to this device. std::shared_ptr step = plan->createNewStep(device); auto& queue = perDeviceQueue[deviceIndex]; while (!queue.empty()) { uint32_t operationIndex = queue.front(); queue.pop(); int n = step->addOperation(operationIndex, *this); if (n != ANEURALNETWORKS_NO_ERROR) { LOG(ERROR) << "failed to add operation " << operationIndex << " to step"; return n; } tracker.markProcessed(operationIndex, enqueueOnAppropriateDevice); } } int n = plan->finish(this, preference); if (VLOG_IS_ON(COMPILATION)) { Model model; setHidlModel(&model); VLOG(COMPILATION) << "ModelBuilder::partitionTheWork: original model: "; logModelToInfo(model); plan->dump(); } return n; } PerformanceInfo ModelBuilder::getPerformanceInfo(const std::shared_ptr device, uint32_t operationIndex) const { const Operation& operation = getOperation(operationIndex); // TODO This assumes that the type is dictated by the first operand. This is // currently the case but is not a safe assumption to make in the long term. const uint32_t operandIndex = operation.inputs[0]; const OperandType operandType = mOperands[operandIndex].type; switch(operandType) { case OperandType::FLOAT32: case OperandType::TENSOR_FLOAT32: if (mRelaxComputationFloat32toFloat16) { return device->getRelaxedFloat32toFloat16Performance(); } else { return device->getFloat32Performance(); } case OperandType::INT32: case OperandType::UINT32: case OperandType::TENSOR_INT32: case OperandType::TENSOR_QUANT8_ASYMM: // For OEM, the real selection will be made from who can run the operand. case OperandType::OEM: case OperandType::TENSOR_OEM_BYTE: return device->getQuantized8Performance(); default: nnAssert(false); return device->getQuantized8Performance(); } } namespace { // This class determines whether a given device can execute a given operation class CanDo { public: CanDo() {} void initialize(const ModelBuilder* model, std::shared_ptr device) { Model hidlModel; model->setHidlModel(&hidlModel); device->getSupportedOperations(hidlModel, &mSupportsOperationByIndex); } bool check(size_t operationIndex) const { return mSupportsOperationByIndex[operationIndex]; } private: hidl_vec mSupportsOperationByIndex; }; }; // anonymous namespace int ModelBuilder::findBestDeviceForEachOperation( uint32_t preference, const std::vector>& devices, const size_t deviceCount, std::vector* bestDeviceForOperation) const { // Note that deviceCount includes CPU, which has no entry in devices[] const size_t nonCpuDeviceCount = deviceCount - 1; std::vector canDo(nonCpuDeviceCount); for (size_t deviceIndex = 0; deviceIndex < nonCpuDeviceCount; deviceIndex++) { canDo[deviceIndex].initialize(this, devices[deviceIndex]); } // Figure out the best driver for each operation. const size_t operationCount = mOperations.size(); for (size_t operationIndex = 0; operationIndex < operationCount; operationIndex++) { // Find which non-CPU device gives the best performance for this operation. int bestChoice = -1; float bestPerfVal = 0.0; // Do not check bestPerfVal if bestChoice < 0. for (size_t deviceIndex = 0; deviceIndex < nonCpuDeviceCount; deviceIndex++) { const auto& device = devices[deviceIndex]; if (canDo[deviceIndex].check(operationIndex)) { const PerformanceInfo perf = getPerformanceInfo(device, operationIndex); const float perfVal = (preference == ANEURALNETWORKS_PREFER_LOW_POWER ? perf.powerUsage : perf.execTime); if (bestChoice < 0 || perfVal < bestPerfVal) { bestChoice = deviceIndex; bestPerfVal = perfVal; } } else { // Somewhat noisy logging, but only place where the user of // NNAPI can get feedback on why an operation was not run on a // specific device. // Logs O(operationCount * nonCpuDeviceCount) times, but // typically nonCpuDeviceCount is very small. VLOG(COMPILATION) << "Device " << device->getName() << " can't do operation " << toString(getOperation(operationIndex).type); } } // If it's the OEM op, we'd better have a device able to do it. if (mOperations[operationIndex].type == OperationType::OEM_OPERATION) { if (bestChoice < 0) { LOG(ERROR) << "No driver can do the OEM op"; return ANEURALNETWORKS_BAD_DATA; } } else { // If no driver has been found, or if the best driver is not better than the CPU, // prefer the CPU. Since the performance is a ratio compared to the CPU performance, // by definition the performance of the CPU is 1.0. if (bestChoice < 0 || bestPerfVal >= 1.0) { bestChoice = nonCpuDeviceCount; // The ID of the CPU. } } (*bestDeviceForOperation)[operationIndex] = bestChoice; VLOG(COMPILATION) << "ModelBuilder::findBestDeviceForEachOperation(" << toString(getOperation(operationIndex).type) << ") = " << (*bestDeviceForOperation)[operationIndex]; } return ANEURALNETWORKS_NO_ERROR; } } // namespace nn } // namespace android