/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "NeuralNetworks.h" #include "NeuralNetworksOEM.h" #include #include #include #include // This file tests all the validations done by the Neural Networks API. namespace { class ValidationTest : public ::testing::Test { protected: virtual void SetUp() {} }; class ValidationTestModel : public ValidationTest { protected: virtual void SetUp() { ValidationTest::SetUp(); ASSERT_EQ(ANeuralNetworksModel_create(&mModel), ANEURALNETWORKS_NO_ERROR); } virtual void TearDown() { ANeuralNetworksModel_free(mModel); ValidationTest::TearDown(); } ANeuralNetworksModel* mModel = nullptr; }; class ValidationTestIdentify : public ValidationTestModel { virtual void SetUp() { ValidationTestModel::SetUp(); uint32_t dimensions[]{1}; ANeuralNetworksOperandType tensorType{.type = ANEURALNETWORKS_TENSOR_FLOAT32, .dimensionCount = 1, .dimensions = dimensions}; ANeuralNetworksOperandType scalarType{.type = ANEURALNETWORKS_INT32, .dimensionCount = 0, .dimensions = nullptr}; ASSERT_EQ(ANeuralNetworksModel_addOperand(mModel, &tensorType), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksModel_addOperand(mModel, &tensorType), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksModel_addOperand(mModel, &scalarType), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksModel_addOperand(mModel, &tensorType), ANEURALNETWORKS_NO_ERROR); uint32_t inList[3]{0, 1, 2}; uint32_t outList[1]{3}; ASSERT_EQ(ANeuralNetworksModel_addOperation(mModel, ANEURALNETWORKS_ADD, 3, inList, 1, outList), ANEURALNETWORKS_NO_ERROR); } virtual void TearDown() { ValidationTestModel::TearDown(); } }; class ValidationTestCompilation : public ValidationTestModel { protected: virtual void SetUp() { ValidationTestModel::SetUp(); uint32_t dimensions[]{1}; ANeuralNetworksOperandType tensorType{.type = ANEURALNETWORKS_TENSOR_FLOAT32, .dimensionCount = 1, .dimensions = dimensions}; ANeuralNetworksOperandType scalarType{.type = ANEURALNETWORKS_INT32, .dimensionCount = 0, .dimensions = nullptr}; ASSERT_EQ(ANeuralNetworksModel_addOperand(mModel, &tensorType), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksModel_addOperand(mModel, &tensorType), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksModel_addOperand(mModel, &scalarType), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksModel_addOperand(mModel, &tensorType), ANEURALNETWORKS_NO_ERROR); uint32_t inList[3]{0, 1, 2}; uint32_t outList[1]{3}; ASSERT_EQ(ANeuralNetworksModel_addOperation(mModel, ANEURALNETWORKS_ADD, 3, inList, 1, outList), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksModel_identifyInputsAndOutputs(mModel, 3, inList, 1, outList), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksModel_finish(mModel), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksCompilation_create(mModel, &mCompilation), ANEURALNETWORKS_NO_ERROR); } virtual void TearDown() { ANeuralNetworksCompilation_free(mCompilation); ValidationTestModel::TearDown(); } ANeuralNetworksCompilation* mCompilation = nullptr; }; class ValidationTestExecution : public ValidationTestCompilation { protected: virtual void SetUp() { ValidationTestCompilation::SetUp(); ASSERT_EQ(ANeuralNetworksCompilation_finish(mCompilation), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksExecution_create(mCompilation, &mExecution), ANEURALNETWORKS_NO_ERROR); } virtual void TearDown() { ANeuralNetworksExecution_free(mExecution); ValidationTestCompilation::TearDown(); } ANeuralNetworksExecution* mExecution = nullptr; }; TEST_F(ValidationTest, CreateModel) { EXPECT_EQ(ANeuralNetworksModel_create(nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); } TEST_F(ValidationTestModel, AddOperand) { ANeuralNetworksOperandType floatType{ .type = ANEURALNETWORKS_FLOAT32, .dimensionCount = 0, .dimensions = nullptr}; EXPECT_EQ(ANeuralNetworksModel_addOperand(nullptr, &floatType), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); ANeuralNetworksOperandType quant8TypeInvalidScale{ .type = ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, .dimensionCount = 0, .dimensions = nullptr, // Scale has to be non-negative .scale = -1.0f, .zeroPoint = 0, }; EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &quant8TypeInvalidScale), ANEURALNETWORKS_BAD_DATA); ANeuralNetworksOperandType quant8TypeInvalidZeroPoint{ .type = ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, .dimensionCount = 0, .dimensions = nullptr, .scale = 1.0f, // zeroPoint has to be in [0, 255] .zeroPoint = -1, }; EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &quant8TypeInvalidZeroPoint), ANEURALNETWORKS_BAD_DATA); uint32_t dim = 2; ANeuralNetworksOperandType invalidScalarType{ .type = ANEURALNETWORKS_INT32, // scalar types can only 0 dimensions. .dimensionCount = 1, .dimensions = &dim, }; EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &invalidScalarType), ANEURALNETWORKS_BAD_DATA); ANeuralNetworksModel_finish(mModel); // This should fail, as the model is already finished. EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &floatType), ANEURALNETWORKS_BAD_STATE); } TEST_F(ValidationTestModel, SetOptionalOperand) { ANeuralNetworksOperandType floatType{ .type = ANEURALNETWORKS_FLOAT32, .dimensionCount = 0, .dimensions = nullptr}; EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &floatType), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksModel_setOperandValue(mModel, 0, nullptr, 0), ANEURALNETWORKS_NO_ERROR); } TEST_F(ValidationTestModel, SetOperandValue) { ANeuralNetworksOperandType floatType{ .type = ANEURALNETWORKS_FLOAT32, .dimensionCount = 0, .dimensions = nullptr}; EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &floatType), ANEURALNETWORKS_NO_ERROR); char buffer[20]; EXPECT_EQ(ANeuralNetworksModel_setOperandValue(nullptr, 0, buffer, sizeof(buffer)), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksModel_setOperandValue(mModel, 0, nullptr, sizeof(buffer)), ANEURALNETWORKS_UNEXPECTED_NULL); // This should fail, since buffer is not the size of a float32. EXPECT_EQ(ANeuralNetworksModel_setOperandValue(mModel, 0, buffer, sizeof(buffer)), ANEURALNETWORKS_BAD_DATA); // This should succeed. EXPECT_EQ(ANeuralNetworksModel_setOperandValue(mModel, 0, buffer, sizeof(float)), ANEURALNETWORKS_NO_ERROR); // This should fail, as this operand does not exist. EXPECT_EQ(ANeuralNetworksModel_setOperandValue(mModel, 1, buffer, sizeof(float)), ANEURALNETWORKS_BAD_DATA); ANeuralNetworksModel_finish(mModel); // This should fail, as the model is already finished. EXPECT_EQ(ANeuralNetworksModel_setOperandValue(mModel, 0, buffer, sizeof(float)), ANEURALNETWORKS_BAD_STATE); } TEST_F(ValidationTestModel, SetOperandValueFromMemory) { uint32_t dimensions[]{1}; ANeuralNetworksOperandType floatType{ .type = ANEURALNETWORKS_TENSOR_FLOAT32, .dimensionCount = 1, .dimensions = dimensions}; EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &floatType), ANEURALNETWORKS_NO_ERROR); const size_t memorySize = 20; int memoryFd = ASharedMemory_create("nnMemory", memorySize); ASSERT_GT(memoryFd, 0); ANeuralNetworksMemory* memory; EXPECT_EQ(ANeuralNetworksMemory_createFromFd(memorySize, PROT_READ | PROT_WRITE, memoryFd, 0, &memory), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksModel_setOperandValueFromMemory(nullptr, 0, memory, 0, sizeof(float)), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksModel_setOperandValueFromMemory(mModel, 0, nullptr, 0, sizeof(float)), ANEURALNETWORKS_UNEXPECTED_NULL); // This should fail, since the operand does not exist. EXPECT_EQ(ANeuralNetworksModel_setOperandValueFromMemory(mModel, -1, memory, 0, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // This should fail, since memory is not the size of a float32. EXPECT_EQ(ANeuralNetworksModel_setOperandValueFromMemory(mModel, 0, memory, 0, memorySize), ANEURALNETWORKS_BAD_DATA); // This should fail, as this operand does not exist. EXPECT_EQ(ANeuralNetworksModel_setOperandValueFromMemory(mModel, 1, memory, 0, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // This should fail, since offset is larger than memorySize. EXPECT_EQ(ANeuralNetworksModel_setOperandValueFromMemory(mModel, 0, memory, memorySize + 1, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // This should fail, since requested size is larger than the memory. EXPECT_EQ(ANeuralNetworksModel_setOperandValueFromMemory(mModel, 0, memory, memorySize - 3, sizeof(float)), ANEURALNETWORKS_BAD_DATA); ANeuralNetworksModel_finish(mModel); // This should fail, as the model is already finished. EXPECT_EQ(ANeuralNetworksModel_setOperandValueFromMemory(mModel, 0, memory, 0, sizeof(float)), ANEURALNETWORKS_BAD_STATE); } TEST_F(ValidationTestModel, AddOEMOperand) { ANeuralNetworksOperandType OEMScalarType{ .type = ANEURALNETWORKS_OEM_SCALAR, .dimensionCount = 0, .dimensions = nullptr}; EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &OEMScalarType), ANEURALNETWORKS_NO_ERROR); char buffer[20]; EXPECT_EQ(ANeuralNetworksModel_setOperandValue(mModel, 0, buffer, sizeof(buffer)), ANEURALNETWORKS_NO_ERROR); const size_t kByteSizeOfOEMTensor = 4; uint32_t dimensions[]{kByteSizeOfOEMTensor}; ANeuralNetworksOperandType OEMTensorType{ .type = ANEURALNETWORKS_TENSOR_OEM_BYTE, .dimensionCount = 1, .dimensions = dimensions}; EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &OEMTensorType), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksModel_setOperandValue(mModel, 1, buffer, kByteSizeOfOEMTensor), ANEURALNETWORKS_NO_ERROR); ANeuralNetworksModel_finish(mModel); // This should fail, as the model is already finished. EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &OEMTensorType), ANEURALNETWORKS_BAD_STATE); } TEST_F(ValidationTestModel, AddOperation) { uint32_t input = 0; uint32_t output = 0; EXPECT_EQ(ANeuralNetworksModel_addOperation(nullptr, ANEURALNETWORKS_AVERAGE_POOL_2D, 1, &input, 1, &output), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksModel_addOperation(mModel, ANEURALNETWORKS_AVERAGE_POOL_2D, 0, nullptr, 1, &output), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksModel_addOperation(mModel, ANEURALNETWORKS_AVERAGE_POOL_2D, 1, &input, 0, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); ANeuralNetworksOperationType invalidOp = -1; EXPECT_EQ(ANeuralNetworksModel_addOperation(mModel, invalidOp, 1, &input, 1, &output), ANEURALNETWORKS_BAD_DATA); ANeuralNetworksModel_finish(mModel); // This should fail, as the model is already finished. EXPECT_EQ(ANeuralNetworksModel_addOperation(mModel, ANEURALNETWORKS_AVERAGE_POOL_2D, 1, &input, 1, &output), ANEURALNETWORKS_BAD_STATE); } TEST_F(ValidationTestModel, IdentifyInputsAndOutputs) { uint32_t input = 0; uint32_t output = 0; EXPECT_EQ(ANeuralNetworksModel_identifyInputsAndOutputs(nullptr, 1, &input, 1, &output), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksModel_identifyInputsAndOutputs(mModel, 0, nullptr, 1, &output), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksModel_identifyInputsAndOutputs(mModel, 1, &input, 0, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); ANeuralNetworksModel_finish(mModel); // This should fail, as the model is already finished. EXPECT_EQ(ANeuralNetworksModel_identifyInputsAndOutputs(mModel, 1, &input, 1, &output), ANEURALNETWORKS_BAD_STATE); } TEST_F(ValidationTestModel, RelaxComputationFloat32toFloat16) { EXPECT_EQ(ANeuralNetworksModel_relaxComputationFloat32toFloat16(nullptr, true), ANEURALNETWORKS_UNEXPECTED_NULL); ANeuralNetworksModel_finish(mModel); // This should fail, as the model is already finished. EXPECT_EQ(ANeuralNetworksModel_relaxComputationFloat32toFloat16(mModel, true), ANEURALNETWORKS_BAD_STATE); EXPECT_EQ(ANeuralNetworksModel_relaxComputationFloat32toFloat16(mModel, false), ANEURALNETWORKS_BAD_STATE); } TEST_F(ValidationTestModel, Finish) { EXPECT_EQ(ANeuralNetworksModel_finish(nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksModel_finish(mModel), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksModel_finish(mModel), ANEURALNETWORKS_BAD_STATE); } TEST_F(ValidationTestModel, CreateCompilation) { ANeuralNetworksCompilation* compilation = nullptr; EXPECT_EQ(ANeuralNetworksCompilation_create(nullptr, &compilation), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksCompilation_create(mModel, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksCompilation_create(mModel, &compilation), ANEURALNETWORKS_BAD_STATE); } TEST_F(ValidationTestIdentify, Ok) { uint32_t inList[3]{0, 1, 2}; uint32_t outList[1]{3}; ASSERT_EQ(ANeuralNetworksModel_identifyInputsAndOutputs(mModel, 3, inList, 1, outList), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksModel_finish(mModel), ANEURALNETWORKS_NO_ERROR); } TEST_F(ValidationTestIdentify, InputIsOutput) { uint32_t inList[3]{0, 1, 2}; uint32_t outList[2]{3, 0}; ASSERT_EQ(ANeuralNetworksModel_identifyInputsAndOutputs(mModel, 3, inList, 2, outList), ANEURALNETWORKS_BAD_DATA); } TEST_F(ValidationTestIdentify, OutputIsInput) { uint32_t inList[4]{0, 1, 2, 3}; uint32_t outList[1]{3}; ASSERT_EQ(ANeuralNetworksModel_identifyInputsAndOutputs(mModel, 4, inList, 1, outList), ANEURALNETWORKS_BAD_DATA); } TEST_F(ValidationTestIdentify, DuplicateInputs) { uint32_t inList[4]{0, 1, 2, 0}; uint32_t outList[1]{3}; ASSERT_EQ(ANeuralNetworksModel_identifyInputsAndOutputs(mModel, 4, inList, 1, outList), ANEURALNETWORKS_BAD_DATA); } TEST_F(ValidationTestIdentify, DuplicateOutputs) { uint32_t inList[3]{0, 1, 2}; uint32_t outList[2]{3, 3}; ASSERT_EQ(ANeuralNetworksModel_identifyInputsAndOutputs(mModel, 3, inList, 2, outList), ANEURALNETWORKS_BAD_DATA); } TEST_F(ValidationTestCompilation, SetPreference) { EXPECT_EQ(ANeuralNetworksCompilation_setPreference(nullptr, ANEURALNETWORKS_PREFER_LOW_POWER), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksCompilation_setPreference(mCompilation, 40), ANEURALNETWORKS_BAD_DATA); } TEST_F(ValidationTestCompilation, CreateExecution) { ANeuralNetworksExecution* execution = nullptr; EXPECT_EQ(ANeuralNetworksExecution_create(nullptr, &execution), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksExecution_create(mCompilation, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksExecution_create(mCompilation, &execution), ANEURALNETWORKS_BAD_STATE); } TEST_F(ValidationTestCompilation, Finish) { EXPECT_EQ(ANeuralNetworksCompilation_finish(nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksCompilation_finish(mCompilation), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksCompilation_setPreference(mCompilation, ANEURALNETWORKS_PREFER_FAST_SINGLE_ANSWER), ANEURALNETWORKS_BAD_STATE); EXPECT_EQ(ANeuralNetworksCompilation_finish(mCompilation), ANEURALNETWORKS_BAD_STATE); } TEST_F(ValidationTestExecution, SetInput) { ANeuralNetworksExecution* execution; EXPECT_EQ(ANeuralNetworksExecution_create(mCompilation, &execution), ANEURALNETWORKS_NO_ERROR); char buffer[20]; EXPECT_EQ(ANeuralNetworksExecution_setInput(nullptr, 0, nullptr, buffer, sizeof(float)), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksExecution_setInput(execution, 0, nullptr, nullptr, sizeof(float)), ANEURALNETWORKS_UNEXPECTED_NULL); // This should fail, since memory is not the size of a float32. EXPECT_EQ(ANeuralNetworksExecution_setInput(execution, 0, nullptr, buffer, 20), ANEURALNETWORKS_BAD_DATA); // This should fail, as this operand does not exist. EXPECT_EQ(ANeuralNetworksExecution_setInput(execution, 999, nullptr, buffer, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // This should fail, as this operand does not exist. EXPECT_EQ(ANeuralNetworksExecution_setInput(execution, -1, nullptr, buffer, sizeof(float)), ANEURALNETWORKS_BAD_DATA); } TEST_F(ValidationTestExecution, SetOutput) { ANeuralNetworksExecution* execution; EXPECT_EQ(ANeuralNetworksExecution_create(mCompilation, &execution), ANEURALNETWORKS_NO_ERROR); char buffer[20]; EXPECT_EQ(ANeuralNetworksExecution_setOutput(nullptr, 0, nullptr, buffer, sizeof(float)), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksExecution_setOutput(execution, 0, nullptr, nullptr, sizeof(float)), ANEURALNETWORKS_UNEXPECTED_NULL); // This should fail, since memory is not the size of a float32. EXPECT_EQ(ANeuralNetworksExecution_setOutput(execution, 0, nullptr, buffer, 20), ANEURALNETWORKS_BAD_DATA); // This should fail, as this operand does not exist. EXPECT_EQ(ANeuralNetworksExecution_setOutput(execution, 999, nullptr, buffer, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // This should fail, as this operand does not exist. EXPECT_EQ(ANeuralNetworksExecution_setOutput(execution, -1, nullptr, buffer, sizeof(float)), ANEURALNETWORKS_BAD_DATA); } TEST_F(ValidationTestExecution, SetInputFromMemory) { ANeuralNetworksExecution* execution; EXPECT_EQ(ANeuralNetworksExecution_create(mCompilation, &execution), ANEURALNETWORKS_NO_ERROR); const size_t memorySize = 20; int memoryFd = ASharedMemory_create("nnMemory", memorySize); ASSERT_GT(memoryFd, 0); ANeuralNetworksMemory* memory; EXPECT_EQ(ANeuralNetworksMemory_createFromFd(memorySize, PROT_READ | PROT_WRITE, memoryFd, 0, &memory), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setInputFromMemory(nullptr, 0, nullptr, memory, 0, sizeof(float)), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksExecution_setInputFromMemory(execution, 0, nullptr, nullptr, 0, sizeof(float)), ANEURALNETWORKS_UNEXPECTED_NULL); // This should fail, since the operand does not exist. EXPECT_EQ(ANeuralNetworksExecution_setInputFromMemory(execution, 999, nullptr, memory, 0, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // This should fail, since the operand does not exist. EXPECT_EQ(ANeuralNetworksExecution_setInputFromMemory(execution, -1, nullptr, memory, 0, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // This should fail, since memory is not the size of a float32. EXPECT_EQ(ANeuralNetworksExecution_setInputFromMemory(execution, 0, nullptr, memory, 0, memorySize), ANEURALNETWORKS_BAD_DATA); // This should fail, since offset is larger than memorySize. EXPECT_EQ(ANeuralNetworksExecution_setInputFromMemory(execution, 0, nullptr, memory, memorySize + 1, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // This should fail, since requested size is larger than the memory. EXPECT_EQ(ANeuralNetworksExecution_setInputFromMemory(execution, 0, nullptr, memory, memorySize - 3, sizeof(float)), ANEURALNETWORKS_BAD_DATA); } TEST_F(ValidationTestExecution, SetOutputFromMemory) { ANeuralNetworksExecution* execution; EXPECT_EQ(ANeuralNetworksExecution_create(mCompilation, &execution), ANEURALNETWORKS_NO_ERROR); const size_t memorySize = 20; int memoryFd = ASharedMemory_create("nnMemory", memorySize); ASSERT_GT(memoryFd, 0); ANeuralNetworksMemory* memory; EXPECT_EQ(ANeuralNetworksMemory_createFromFd(memorySize, PROT_READ | PROT_WRITE, memoryFd, 0, &memory), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setOutputFromMemory(nullptr, 0, nullptr, memory, 0, sizeof(float)), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksExecution_setOutputFromMemory(execution, 0, nullptr, nullptr, 0, sizeof(float)), ANEURALNETWORKS_UNEXPECTED_NULL); // This should fail, since the operand does not exist. EXPECT_EQ(ANeuralNetworksExecution_setOutputFromMemory(execution, 999, nullptr, memory, 0, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // This should fail, since the operand does not exist. EXPECT_EQ(ANeuralNetworksExecution_setOutputFromMemory(execution, -1, nullptr, memory, 0, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // This should fail, since memory is not the size of a float32. EXPECT_EQ(ANeuralNetworksExecution_setOutputFromMemory(execution, 0, nullptr, memory, 0, memorySize), ANEURALNETWORKS_BAD_DATA); // This should fail, since offset is larger than memorySize. EXPECT_EQ(ANeuralNetworksExecution_setOutputFromMemory(execution, 0, nullptr, memory, memorySize + 1, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // This should fail, since requested size is larger than the memory. EXPECT_EQ(ANeuralNetworksExecution_setOutputFromMemory(execution, 0, nullptr, memory, memorySize - 3, sizeof(float)), ANEURALNETWORKS_BAD_DATA); } TEST_F(ValidationTestExecution, StartCompute) { ANeuralNetworksExecution* execution; EXPECT_EQ(ANeuralNetworksExecution_create(mCompilation, &execution), ANEURALNETWORKS_NO_ERROR); ANeuralNetworksEvent* event; EXPECT_EQ(ANeuralNetworksExecution_startCompute(nullptr, &event), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksExecution_startCompute(execution, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); } TEST_F(ValidationTestExecution, EventWait) { EXPECT_EQ(ANeuralNetworksEvent_wait(nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); } } // namespace