/* ** Copyright 2016, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dexopt.h" #include "file_parsing.h" #include "globals.h" #include "installd_constants.h" #include "installd_deps.h" // Need to fill in requirements of commands. #include "otapreopt_parameters.h" #include "otapreopt_utils.h" #include "system_properties.h" #include "utils.h" #ifndef LOG_TAG #define LOG_TAG "otapreopt" #endif #define BUFFER_MAX 1024 /* input buffer for commands */ #define TOKEN_MAX 16 /* max number of arguments in buffer */ #define REPLY_MAX 256 /* largest reply allowed */ using android::base::EndsWith; using android::base::Join; using android::base::Split; using android::base::StartsWith; using android::base::StringPrintf; namespace android { namespace installd { // Check expected values for dexopt flags. If you need to change this: // // RUN AN A/B OTA TO MAKE SURE THINGS STILL WORK! // // You most likely need to increase the protocol version and all that entails! static_assert(DEXOPT_PUBLIC == 1 << 1, "DEXOPT_PUBLIC unexpected."); static_assert(DEXOPT_DEBUGGABLE == 1 << 2, "DEXOPT_DEBUGGABLE unexpected."); static_assert(DEXOPT_BOOTCOMPLETE == 1 << 3, "DEXOPT_BOOTCOMPLETE unexpected."); static_assert(DEXOPT_PROFILE_GUIDED == 1 << 4, "DEXOPT_PROFILE_GUIDED unexpected."); static_assert(DEXOPT_SECONDARY_DEX == 1 << 5, "DEXOPT_SECONDARY_DEX unexpected."); static_assert(DEXOPT_FORCE == 1 << 6, "DEXOPT_FORCE unexpected."); static_assert(DEXOPT_STORAGE_CE == 1 << 7, "DEXOPT_STORAGE_CE unexpected."); static_assert(DEXOPT_STORAGE_DE == 1 << 8, "DEXOPT_STORAGE_DE unexpected."); static_assert(DEXOPT_ENABLE_HIDDEN_API_CHECKS == 1 << 10, "DEXOPT_ENABLE_HIDDEN_API_CHECKS unexpected"); static_assert(DEXOPT_GENERATE_COMPACT_DEX == 1 << 11, "DEXOPT_GENERATE_COMPACT_DEX unexpected"); static_assert(DEXOPT_GENERATE_APP_IMAGE == 1 << 12, "DEXOPT_GENERATE_APP_IMAGE unexpected"); static_assert(DEXOPT_MASK == (0x1dfe | DEXOPT_IDLE_BACKGROUND_JOB), "DEXOPT_MASK unexpected."); template static constexpr T RoundDown(T x, typename std::decay::type n) { return DCHECK_CONSTEXPR(IsPowerOfTwo(n), , T(0))(x & -n); } template static constexpr T RoundUp(T x, typename std::remove_reference::type n) { return RoundDown(x + n - 1, n); } class OTAPreoptService { public: // Main driver. Performs the following steps. // // 1) Parse options (read system properties etc from B partition). // // 2) Read in package data. // // 3) Prepare environment variables. // // 4) Prepare(compile) boot image, if necessary. // // 5) Run update. int Main(int argc, char** argv) { if (!ReadArguments(argc, argv)) { LOG(ERROR) << "Failed reading command line."; return 1; } if (!ReadSystemProperties()) { LOG(ERROR)<< "Failed reading system properties."; return 2; } if (!ReadEnvironment()) { LOG(ERROR) << "Failed reading environment properties."; return 3; } if (!CheckAndInitializeInstalldGlobals()) { LOG(ERROR) << "Failed initializing globals."; return 4; } PrepareEnvironment(); if (!PrepareBootImage(/* force */ false)) { LOG(ERROR) << "Failed preparing boot image."; return 5; } int dexopt_retcode = RunPreopt(); return dexopt_retcode; } int GetProperty(const char* key, char* value, const char* default_value) const { const std::string* prop_value = system_properties_.GetProperty(key); if (prop_value == nullptr) { if (default_value == nullptr) { return 0; } // Copy in the default value. strlcpy(value, default_value, kPropertyValueMax - 1); value[kPropertyValueMax - 1] = 0; return strlen(default_value);// TODO: Need to truncate? } size_t size = std::min(kPropertyValueMax - 1, prop_value->length()) + 1; strlcpy(value, prop_value->data(), size); return static_cast(size - 1); } std::string GetOTADataDirectory() const { return StringPrintf("%s/%s", GetOtaDirectoryPrefix().c_str(), GetTargetSlot().c_str()); } const std::string& GetTargetSlot() const { return parameters_.target_slot; } private: bool ReadSystemProperties() { static constexpr const char* kPropertyFiles[] = { "/default.prop", "/system/build.prop" }; for (size_t i = 0; i < arraysize(kPropertyFiles); ++i) { if (!system_properties_.Load(kPropertyFiles[i])) { return false; } } return true; } bool ReadEnvironment() { // Parse the environment variables from init.environ.rc, which have the form // export NAME VALUE // For simplicity, don't respect string quotation. The values we are interested in can be // encoded without them. std::regex export_regex("\\s*export\\s+(\\S+)\\s+(\\S+)"); bool parse_result = ParseFile("/init.environ.rc", [&](const std::string& line) { std::smatch export_match; if (!std::regex_match(line, export_match, export_regex)) { return true; } if (export_match.size() != 3) { return true; } std::string name = export_match[1].str(); std::string value = export_match[2].str(); system_properties_.SetProperty(name, value); return true; }); if (!parse_result) { return false; } if (system_properties_.GetProperty(kAndroidDataPathPropertyName) == nullptr) { return false; } android_data_ = *system_properties_.GetProperty(kAndroidDataPathPropertyName); if (system_properties_.GetProperty(kAndroidRootPathPropertyName) == nullptr) { return false; } android_root_ = *system_properties_.GetProperty(kAndroidRootPathPropertyName); if (system_properties_.GetProperty(kBootClassPathPropertyName) == nullptr) { return false; } boot_classpath_ = *system_properties_.GetProperty(kBootClassPathPropertyName); if (system_properties_.GetProperty(ASEC_MOUNTPOINT_ENV_NAME) == nullptr) { return false; } asec_mountpoint_ = *system_properties_.GetProperty(ASEC_MOUNTPOINT_ENV_NAME); return true; } const std::string& GetAndroidData() const { return android_data_; } const std::string& GetAndroidRoot() const { return android_root_; } const std::string GetOtaDirectoryPrefix() const { return GetAndroidData() + "/ota"; } bool CheckAndInitializeInstalldGlobals() { // init_globals_from_data_and_root requires "ASEC_MOUNTPOINT" in the environment. We // do not use any datapath that includes this, but we'll still have to set it. CHECK(system_properties_.GetProperty(ASEC_MOUNTPOINT_ENV_NAME) != nullptr); int result = setenv(ASEC_MOUNTPOINT_ENV_NAME, asec_mountpoint_.c_str(), 0); if (result != 0) { LOG(ERROR) << "Could not set ASEC_MOUNTPOINT environment variable"; return false; } if (!init_globals_from_data_and_root(GetAndroidData().c_str(), GetAndroidRoot().c_str())) { LOG(ERROR) << "Could not initialize globals; exiting."; return false; } // This is different from the normal installd. We only do the base // directory, the rest will be created on demand when each app is compiled. if (access(GetOtaDirectoryPrefix().c_str(), R_OK) < 0) { LOG(ERROR) << "Could not access " << GetOtaDirectoryPrefix(); return false; } return true; } bool ParseBool(const char* in) { if (strcmp(in, "true") == 0) { return true; } return false; } bool ParseUInt(const char* in, uint32_t* out) { char* end; long long int result = strtoll(in, &end, 0); if (in == end || *end != '\0') { return false; } if (result < std::numeric_limits::min() || std::numeric_limits::max() < result) { return false; } *out = static_cast(result); return true; } bool ReadArguments(int argc, char** argv) { return parameters_.ReadArguments(argc, const_cast(argv)); } void PrepareEnvironment() { environ_.push_back(StringPrintf("BOOTCLASSPATH=%s", boot_classpath_.c_str())); environ_.push_back(StringPrintf("ANDROID_DATA=%s", GetOTADataDirectory().c_str())); environ_.push_back(StringPrintf("ANDROID_ROOT=%s", android_root_.c_str())); for (const std::string& e : environ_) { putenv(const_cast(e.c_str())); } } // Ensure that we have the right boot image. The first time any app is // compiled, we'll try to generate it. bool PrepareBootImage(bool force) const { if (parameters_.instruction_set == nullptr) { LOG(ERROR) << "Instruction set missing."; return false; } const char* isa = parameters_.instruction_set; // Check whether the file exists where expected. std::string dalvik_cache = GetOTADataDirectory() + "/" + DALVIK_CACHE; std::string isa_path = dalvik_cache + "/" + isa; std::string art_path = isa_path + "/system@framework@boot.art"; std::string oat_path = isa_path + "/system@framework@boot.oat"; bool cleared = false; if (access(art_path.c_str(), F_OK) == 0 && access(oat_path.c_str(), F_OK) == 0) { // Files exist, assume everything is alright if not forced. Otherwise clean up. if (!force) { return true; } ClearDirectory(isa_path); cleared = true; } // Reset umask in otapreopt, so that we control the the access for the files we create. umask(0); // Create the directories, if necessary. if (access(dalvik_cache.c_str(), F_OK) != 0) { if (!CreatePath(dalvik_cache)) { PLOG(ERROR) << "Could not create dalvik-cache dir " << dalvik_cache; return false; } } if (access(isa_path.c_str(), F_OK) != 0) { if (!CreatePath(isa_path)) { PLOG(ERROR) << "Could not create dalvik-cache isa dir"; return false; } } // Prepare to create. if (!cleared) { ClearDirectory(isa_path); } std::string preopted_boot_art_path = StringPrintf("/system/framework/%s/boot.art", isa); if (access(preopted_boot_art_path.c_str(), F_OK) == 0) { return PatchoatBootImage(isa_path, isa); } else { // No preopted boot image. Try to compile. return Dex2oatBootImage(boot_classpath_, art_path, oat_path, isa); } } static bool CreatePath(const std::string& path) { // Create the given path. Use string processing instead of dirname, as dirname's need for // a writable char buffer is painful. // First, try to use the full path. if (mkdir(path.c_str(), 0711) == 0) { return true; } if (errno != ENOENT) { PLOG(ERROR) << "Could not create path " << path; return false; } // Now find the parent and try that first. size_t last_slash = path.find_last_of('/'); if (last_slash == std::string::npos || last_slash == 0) { PLOG(ERROR) << "Could not create " << path; return false; } if (!CreatePath(path.substr(0, last_slash))) { return false; } if (mkdir(path.c_str(), 0711) == 0) { return true; } PLOG(ERROR) << "Could not create " << path; return false; } static void ClearDirectory(const std::string& dir) { DIR* c_dir = opendir(dir.c_str()); if (c_dir == nullptr) { PLOG(WARNING) << "Unable to open " << dir << " to delete it's contents"; return; } for (struct dirent* de = readdir(c_dir); de != nullptr; de = readdir(c_dir)) { const char* name = de->d_name; if (strcmp(name, ".") == 0 || strcmp(name, "..") == 0) { continue; } // We only want to delete regular files and symbolic links. std::string file = StringPrintf("%s/%s", dir.c_str(), name); if (de->d_type != DT_REG && de->d_type != DT_LNK) { LOG(WARNING) << "Unexpected file " << file << " of type " << std::hex << de->d_type << " encountered."; } else { // Try to unlink the file. if (unlink(file.c_str()) != 0) { PLOG(ERROR) << "Unable to unlink " << file; } } } CHECK_EQ(0, closedir(c_dir)) << "Unable to close directory."; } bool PatchoatBootImage(const std::string& output_dir, const char* isa) const { // This needs to be kept in sync with ART, see art/runtime/gc/space/image_space.cc. std::vector cmd; cmd.push_back("/system/bin/patchoat"); cmd.push_back("--input-image-location=/system/framework/boot.art"); cmd.push_back(StringPrintf("--output-image-directory=%s", output_dir.c_str())); cmd.push_back(StringPrintf("--instruction-set=%s", isa)); int32_t base_offset = ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA); cmd.push_back(StringPrintf("--base-offset-delta=%d", base_offset)); std::string error_msg; bool result = Exec(cmd, &error_msg); if (!result) { LOG(ERROR) << "Could not generate boot image: " << error_msg; } return result; } bool Dex2oatBootImage(const std::string& boot_cp, const std::string& art_path, const std::string& oat_path, const char* isa) const { // This needs to be kept in sync with ART, see art/runtime/gc/space/image_space.cc. std::vector cmd; cmd.push_back("/system/bin/dex2oat"); cmd.push_back(StringPrintf("--image=%s", art_path.c_str())); for (const std::string& boot_part : Split(boot_cp, ":")) { cmd.push_back(StringPrintf("--dex-file=%s", boot_part.c_str())); } cmd.push_back(StringPrintf("--oat-file=%s", oat_path.c_str())); int32_t base_offset = ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA); cmd.push_back(StringPrintf("--base=0x%x", ART_BASE_ADDRESS + base_offset)); cmd.push_back(StringPrintf("--instruction-set=%s", isa)); // These things are pushed by AndroidRuntime, see frameworks/base/core/jni/AndroidRuntime.cpp. AddCompilerOptionFromSystemProperty("dalvik.vm.image-dex2oat-Xms", "-Xms", true, cmd); AddCompilerOptionFromSystemProperty("dalvik.vm.image-dex2oat-Xmx", "-Xmx", true, cmd); AddCompilerOptionFromSystemProperty("dalvik.vm.image-dex2oat-filter", "--compiler-filter=", false, cmd); cmd.push_back("--image-classes=/system/etc/preloaded-classes"); // TODO: Compiled-classes. const std::string* extra_opts = system_properties_.GetProperty("dalvik.vm.image-dex2oat-flags"); if (extra_opts != nullptr) { std::vector extra_vals = Split(*extra_opts, " "); cmd.insert(cmd.end(), extra_vals.begin(), extra_vals.end()); } // TODO: Should we lower this? It's usually set close to max, because // normally there's not much else going on at boot. AddCompilerOptionFromSystemProperty("dalvik.vm.image-dex2oat-threads", "-j", false, cmd); AddCompilerOptionFromSystemProperty( StringPrintf("dalvik.vm.isa.%s.variant", isa).c_str(), "--instruction-set-variant=", false, cmd); AddCompilerOptionFromSystemProperty( StringPrintf("dalvik.vm.isa.%s.features", isa).c_str(), "--instruction-set-features=", false, cmd); std::string error_msg; bool result = Exec(cmd, &error_msg); if (!result) { LOG(ERROR) << "Could not generate boot image: " << error_msg; } return result; } static const char* ParseNull(const char* arg) { return (strcmp(arg, "!") == 0) ? nullptr : arg; } bool ShouldSkipPreopt() const { // There's one thing we have to be careful about: we may/will be asked to compile an app // living in the system image. This may be a valid request - if the app wasn't compiled, // e.g., if the system image wasn't large enough to include preopted files. However, the // data we have is from the old system, so the driver (the OTA service) can't actually // know. Thus, we will get requests for apps that have preopted components. To avoid // duplication (we'd generate files that are not used and are *not* cleaned up), do two // simple checks: // // 1) Does the apk_path start with the value of ANDROID_ROOT? (~in the system image) // (For simplicity, assume the value of ANDROID_ROOT does not contain a symlink.) // // 2) If you replace the name in the apk_path with "oat," does the path exist? // (=have a subdirectory for preopted files) // // If the answer to both is yes, skip the dexopt. // // Note: while one may think it's OK to call dexopt and it will fail (because APKs should // be stripped), that's not true for APKs signed outside the build system (so the // jar content must be exactly the same). // (This is ugly as it's the only thing where we need to understand the contents // of parameters_, but it beats postponing the decision or using the call- // backs to do weird things.) const char* apk_path = parameters_.apk_path; CHECK(apk_path != nullptr); if (StartsWith(apk_path, android_root_)) { const char* last_slash = strrchr(apk_path, '/'); if (last_slash != nullptr) { std::string path(apk_path, last_slash - apk_path + 1); CHECK(EndsWith(path, "/")); path = path + "oat"; if (access(path.c_str(), F_OK) == 0) { LOG(INFO) << "Skipping A/B OTA preopt of already preopted package " << apk_path; return true; } } } // Another issue is unavailability of files in the new system. If the partition // layout changes, otapreopt_chroot may not know about this. Then files from that // partition will not be available and fail to build. This is problematic, as // this tool will wipe the OTA artifact cache and try again (for robustness after // a failed OTA with remaining cache artifacts). if (access(apk_path, F_OK) != 0) { LOG(WARNING) << "Skipping A/B OTA preopt of non-existing package " << apk_path; return true; } return false; } // Run dexopt with the parameters of parameters_. // TODO(calin): embed the profile name in the parameters. int Dexopt() { std::string dummy; return dexopt(parameters_.apk_path, parameters_.uid, parameters_.pkgName, parameters_.instruction_set, parameters_.dexopt_needed, parameters_.oat_dir, parameters_.dexopt_flags, parameters_.compiler_filter, parameters_.volume_uuid, parameters_.shared_libraries, parameters_.se_info, parameters_.downgrade, parameters_.target_sdk_version, parameters_.profile_name, parameters_.dex_metadata_path, parameters_.compilation_reason, &dummy); } int RunPreopt() { if (ShouldSkipPreopt()) { return 0; } int dexopt_result = Dexopt(); if (dexopt_result == 0) { return 0; } // If the dexopt failed, we may have a stale boot image from a previous OTA run. // Then regenerate and retry. if (WEXITSTATUS(dexopt_result) == static_cast(art::dex2oat::ReturnCode::kCreateRuntime)) { if (!PrepareBootImage(/* force */ true)) { LOG(ERROR) << "Forced boot image creating failed. Original error return was " << dexopt_result; return dexopt_result; } int dexopt_result_boot_image_retry = Dexopt(); if (dexopt_result_boot_image_retry == 0) { return 0; } } // If this was a profile-guided run, we may have profile version issues. Try to downgrade, // if possible. if ((parameters_.dexopt_flags & DEXOPT_PROFILE_GUIDED) == 0) { return dexopt_result; } LOG(WARNING) << "Downgrading compiler filter in an attempt to progress compilation"; parameters_.dexopt_flags &= ~DEXOPT_PROFILE_GUIDED; return Dexopt(); } //////////////////////////////////// // Helpers, mostly taken from ART // //////////////////////////////////// // Wrapper on fork/execv to run a command in a subprocess. static bool Exec(const std::vector& arg_vector, std::string* error_msg) { const std::string command_line = Join(arg_vector, ' '); CHECK_GE(arg_vector.size(), 1U) << command_line; // Convert the args to char pointers. const char* program = arg_vector[0].c_str(); std::vector args; for (size_t i = 0; i < arg_vector.size(); ++i) { const std::string& arg = arg_vector[i]; char* arg_str = const_cast(arg.c_str()); CHECK(arg_str != nullptr) << i; args.push_back(arg_str); } args.push_back(nullptr); // Fork and exec. pid_t pid = fork(); if (pid == 0) { // No allocation allowed between fork and exec. // Change process groups, so we don't get reaped by ProcessManager. setpgid(0, 0); execv(program, &args[0]); PLOG(ERROR) << "Failed to execv(" << command_line << ")"; // _exit to avoid atexit handlers in child. _exit(1); } else { if (pid == -1) { *error_msg = StringPrintf("Failed to execv(%s) because fork failed: %s", command_line.c_str(), strerror(errno)); return false; } // wait for subprocess to finish int status; pid_t got_pid = TEMP_FAILURE_RETRY(waitpid(pid, &status, 0)); if (got_pid != pid) { *error_msg = StringPrintf("Failed after fork for execv(%s) because waitpid failed: " "wanted %d, got %d: %s", command_line.c_str(), pid, got_pid, strerror(errno)); return false; } if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) { *error_msg = StringPrintf("Failed execv(%s) because non-0 exit status", command_line.c_str()); return false; } } return true; } // Choose a random relocation offset. Taken from art/runtime/gc/image_space.cc. static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) { constexpr size_t kPageSize = PAGE_SIZE; CHECK_EQ(min_delta % kPageSize, 0u); CHECK_EQ(max_delta % kPageSize, 0u); CHECK_LT(min_delta, max_delta); std::default_random_engine generator; generator.seed(GetSeed()); std::uniform_int_distribution distribution(min_delta, max_delta); int32_t r = distribution(generator); if (r % 2 == 0) { r = RoundUp(r, kPageSize); } else { r = RoundDown(r, kPageSize); } CHECK_LE(min_delta, r); CHECK_GE(max_delta, r); CHECK_EQ(r % kPageSize, 0u); return r; } static uint64_t GetSeed() { #ifdef __BIONIC__ // Bionic exposes arc4random, use it. uint64_t random_data; arc4random_buf(&random_data, sizeof(random_data)); return random_data; #else #error "This is only supposed to run with bionic. Otherwise, implement..." #endif } void AddCompilerOptionFromSystemProperty(const char* system_property, const char* prefix, bool runtime, std::vector& out) const { const std::string* value = system_properties_.GetProperty(system_property); if (value != nullptr) { if (runtime) { out.push_back("--runtime-arg"); } if (prefix != nullptr) { out.push_back(StringPrintf("%s%s", prefix, value->c_str())); } else { out.push_back(*value); } } } static constexpr const char* kBootClassPathPropertyName = "BOOTCLASSPATH"; static constexpr const char* kAndroidRootPathPropertyName = "ANDROID_ROOT"; static constexpr const char* kAndroidDataPathPropertyName = "ANDROID_DATA"; // The index of the instruction-set string inside the package parameters. Needed for // some special-casing that requires knowledge of the instruction-set. static constexpr size_t kISAIndex = 3; // Stores the system properties read out of the B partition. We need to use these properties // to compile, instead of the A properties we could get from init/get_property. SystemProperties system_properties_; // Some select properties that are always needed. std::string android_root_; std::string android_data_; std::string boot_classpath_; std::string asec_mountpoint_; OTAPreoptParameters parameters_; // Store environment values we need to set. std::vector environ_; }; OTAPreoptService gOps; //////////////////////// // Plug-in functions. // //////////////////////// int get_property(const char *key, char *value, const char *default_value) { return gOps.GetProperty(key, value, default_value); } // Compute the output path of bool calculate_oat_file_path(char path[PKG_PATH_MAX], const char *oat_dir, const char *apk_path, const char *instruction_set) { const char *file_name_start; const char *file_name_end; file_name_start = strrchr(apk_path, '/'); if (file_name_start == nullptr) { ALOGE("apk_path '%s' has no '/'s in it\n", apk_path); return false; } file_name_end = strrchr(file_name_start, '.'); if (file_name_end == nullptr) { ALOGE("apk_path '%s' has no extension\n", apk_path); return false; } // Calculate file_name file_name_start++; // Move past '/', is valid as file_name_end is valid. size_t file_name_len = file_name_end - file_name_start; std::string file_name(file_name_start, file_name_len); // /oat//.odex.b snprintf(path, PKG_PATH_MAX, "%s/%s/%s.odex.%s", oat_dir, instruction_set, file_name.c_str(), gOps.GetTargetSlot().c_str()); return true; } /* * Computes the odex file for the given apk_path and instruction_set. * /system/framework/whatever.jar -> /system/framework/oat//whatever.odex * * Returns false if it failed to determine the odex file path. */ bool calculate_odex_file_path(char path[PKG_PATH_MAX], const char *apk_path, const char *instruction_set) { const char *path_end = strrchr(apk_path, '/'); if (path_end == nullptr) { ALOGE("apk_path '%s' has no '/'s in it?!\n", apk_path); return false; } std::string path_component(apk_path, path_end - apk_path); const char *name_begin = path_end + 1; const char *extension_start = strrchr(name_begin, '.'); if (extension_start == nullptr) { ALOGE("apk_path '%s' has no extension.\n", apk_path); return false; } std::string name_component(name_begin, extension_start - name_begin); std::string new_path = StringPrintf("%s/oat/%s/%s.odex.%s", path_component.c_str(), instruction_set, name_component.c_str(), gOps.GetTargetSlot().c_str()); if (new_path.length() >= PKG_PATH_MAX) { LOG(ERROR) << "apk_path of " << apk_path << " is too long: " << new_path; return false; } strcpy(path, new_path.c_str()); return true; } bool create_cache_path(char path[PKG_PATH_MAX], const char *src, const char *instruction_set) { size_t srclen = strlen(src); /* demand that we are an absolute path */ if ((src == 0) || (src[0] != '/') || strstr(src,"..")) { return false; } if (srclen > PKG_PATH_MAX) { // XXX: PKG_NAME_MAX? return false; } std::string from_src = std::string(src + 1); std::replace(from_src.begin(), from_src.end(), '/', '@'); std::string assembled_path = StringPrintf("%s/%s/%s/%s%s", gOps.GetOTADataDirectory().c_str(), DALVIK_CACHE, instruction_set, from_src.c_str(), DALVIK_CACHE_POSTFIX); if (assembled_path.length() + 1 > PKG_PATH_MAX) { return false; } strcpy(path, assembled_path.c_str()); return true; } static int log_callback(int type, const char *fmt, ...) { va_list ap; int priority; switch (type) { case SELINUX_WARNING: priority = ANDROID_LOG_WARN; break; case SELINUX_INFO: priority = ANDROID_LOG_INFO; break; default: priority = ANDROID_LOG_ERROR; break; } va_start(ap, fmt); LOG_PRI_VA(priority, "SELinux", fmt, ap); va_end(ap); return 0; } static int otapreopt_main(const int argc, char *argv[]) { int selinux_enabled = (is_selinux_enabled() > 0); setenv("ANDROID_LOG_TAGS", "*:v", 1); android::base::InitLogging(argv); if (argc < 2) { ALOGE("Expecting parameters"); exit(1); } union selinux_callback cb; cb.func_log = log_callback; selinux_set_callback(SELINUX_CB_LOG, cb); if (selinux_enabled && selinux_status_open(true) < 0) { ALOGE("Could not open selinux status; exiting.\n"); exit(1); } int ret = android::installd::gOps.Main(argc, argv); return ret; } } // namespace installd } // namespace android int main(const int argc, char *argv[]) { return android::installd::otapreopt_main(argc, argv); }