/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "VelocityTracker" //#define LOG_NDEBUG 0 // Log debug messages about velocity tracking. #define DEBUG_VELOCITY 0 // Log debug messages about the progress of the algorithm itself. #define DEBUG_STRATEGY 0 #include #include #include #include #include #include #include #include namespace android { // Nanoseconds per milliseconds. static const nsecs_t NANOS_PER_MS = 1000000; // Threshold for determining that a pointer has stopped moving. // Some input devices do not send ACTION_MOVE events in the case where a pointer has // stopped. We need to detect this case so that we can accurately predict the // velocity after the pointer starts moving again. static const nsecs_t ASSUME_POINTER_STOPPED_TIME = 40 * NANOS_PER_MS; static float vectorDot(const float* a, const float* b, uint32_t m) { float r = 0; for (size_t i = 0; i < m; i++) { r += *(a++) * *(b++); } return r; } static float vectorNorm(const float* a, uint32_t m) { float r = 0; for (size_t i = 0; i < m; i++) { float t = *(a++); r += t * t; } return sqrtf(r); } #if DEBUG_STRATEGY || DEBUG_VELOCITY static std::string vectorToString(const float* a, uint32_t m) { std::string str; str += "["; for (size_t i = 0; i < m; i++) { if (i) { str += ","; } str += android::base::StringPrintf(" %f", *(a++)); } str += " ]"; return str; } #endif #if DEBUG_STRATEGY static std::string matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) { std::string str; str = "["; for (size_t i = 0; i < m; i++) { if (i) { str += ","; } str += " ["; for (size_t j = 0; j < n; j++) { if (j) { str += ","; } str += android::base::StringPrintf(" %f", a[rowMajor ? i * n + j : j * m + i]); } str += " ]"; } str += " ]"; return str; } #endif // --- VelocityTracker --- // The default velocity tracker strategy. // Although other strategies are available for testing and comparison purposes, // this is the strategy that applications will actually use. Be very careful // when adjusting the default strategy because it can dramatically affect // (often in a bad way) the user experience. const char* VelocityTracker::DEFAULT_STRATEGY = "lsq2"; VelocityTracker::VelocityTracker(const char* strategy) : mLastEventTime(0), mCurrentPointerIdBits(0), mActivePointerId(-1) { char value[PROPERTY_VALUE_MAX]; // Allow the default strategy to be overridden using a system property for debugging. if (!strategy) { int length = property_get("debug.velocitytracker.strategy", value, NULL); if (length > 0) { strategy = value; } else { strategy = DEFAULT_STRATEGY; } } // Configure the strategy. if (!configureStrategy(strategy)) { ALOGD("Unrecognized velocity tracker strategy name '%s'.", strategy); if (!configureStrategy(DEFAULT_STRATEGY)) { LOG_ALWAYS_FATAL("Could not create the default velocity tracker strategy '%s'!", strategy); } } } VelocityTracker::~VelocityTracker() { delete mStrategy; } bool VelocityTracker::configureStrategy(const char* strategy) { mStrategy = createStrategy(strategy); return mStrategy != NULL; } VelocityTrackerStrategy* VelocityTracker::createStrategy(const char* strategy) { if (!strcmp("impulse", strategy)) { // Physical model of pushing an object. Quality: VERY GOOD. // Works with duplicate coordinates, unclean finger liftoff. return new ImpulseVelocityTrackerStrategy(); } if (!strcmp("lsq1", strategy)) { // 1st order least squares. Quality: POOR. // Frequently underfits the touch data especially when the finger accelerates // or changes direction. Often underestimates velocity. The direction // is overly influenced by historical touch points. return new LeastSquaresVelocityTrackerStrategy(1); } if (!strcmp("lsq2", strategy)) { // 2nd order least squares. Quality: VERY GOOD. // Pretty much ideal, but can be confused by certain kinds of touch data, // particularly if the panel has a tendency to generate delayed, // duplicate or jittery touch coordinates when the finger is released. return new LeastSquaresVelocityTrackerStrategy(2); } if (!strcmp("lsq3", strategy)) { // 3rd order least squares. Quality: UNUSABLE. // Frequently overfits the touch data yielding wildly divergent estimates // of the velocity when the finger is released. return new LeastSquaresVelocityTrackerStrategy(3); } if (!strcmp("wlsq2-delta", strategy)) { // 2nd order weighted least squares, delta weighting. Quality: EXPERIMENTAL return new LeastSquaresVelocityTrackerStrategy(2, LeastSquaresVelocityTrackerStrategy::WEIGHTING_DELTA); } if (!strcmp("wlsq2-central", strategy)) { // 2nd order weighted least squares, central weighting. Quality: EXPERIMENTAL return new LeastSquaresVelocityTrackerStrategy(2, LeastSquaresVelocityTrackerStrategy::WEIGHTING_CENTRAL); } if (!strcmp("wlsq2-recent", strategy)) { // 2nd order weighted least squares, recent weighting. Quality: EXPERIMENTAL return new LeastSquaresVelocityTrackerStrategy(2, LeastSquaresVelocityTrackerStrategy::WEIGHTING_RECENT); } if (!strcmp("int1", strategy)) { // 1st order integrating filter. Quality: GOOD. // Not as good as 'lsq2' because it cannot estimate acceleration but it is // more tolerant of errors. Like 'lsq1', this strategy tends to underestimate // the velocity of a fling but this strategy tends to respond to changes in // direction more quickly and accurately. return new IntegratingVelocityTrackerStrategy(1); } if (!strcmp("int2", strategy)) { // 2nd order integrating filter. Quality: EXPERIMENTAL. // For comparison purposes only. Unlike 'int1' this strategy can compensate // for acceleration but it typically overestimates the effect. return new IntegratingVelocityTrackerStrategy(2); } if (!strcmp("legacy", strategy)) { // Legacy velocity tracker algorithm. Quality: POOR. // For comparison purposes only. This algorithm is strongly influenced by // old data points, consistently underestimates velocity and takes a very long // time to adjust to changes in direction. return new LegacyVelocityTrackerStrategy(); } return NULL; } void VelocityTracker::clear() { mCurrentPointerIdBits.clear(); mActivePointerId = -1; mStrategy->clear(); } void VelocityTracker::clearPointers(BitSet32 idBits) { BitSet32 remainingIdBits(mCurrentPointerIdBits.value & ~idBits.value); mCurrentPointerIdBits = remainingIdBits; if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) { mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1; } mStrategy->clearPointers(idBits); } void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) { while (idBits.count() > MAX_POINTERS) { idBits.clearLastMarkedBit(); } if ((mCurrentPointerIdBits.value & idBits.value) && eventTime >= mLastEventTime + ASSUME_POINTER_STOPPED_TIME) { #if DEBUG_VELOCITY ALOGD("VelocityTracker: stopped for %0.3f ms, clearing state.", (eventTime - mLastEventTime) * 0.000001f); #endif // We have not received any movements for too long. Assume that all pointers // have stopped. mStrategy->clear(); } mLastEventTime = eventTime; mCurrentPointerIdBits = idBits; if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) { mActivePointerId = idBits.isEmpty() ? -1 : idBits.firstMarkedBit(); } mStrategy->addMovement(eventTime, idBits, positions); #if DEBUG_VELOCITY ALOGD("VelocityTracker: addMovement eventTime=%" PRId64 ", idBits=0x%08x, activePointerId=%d", eventTime, idBits.value, mActivePointerId); for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) { uint32_t id = iterBits.firstMarkedBit(); uint32_t index = idBits.getIndexOfBit(id); iterBits.clearBit(id); Estimator estimator; getEstimator(id, &estimator); ALOGD(" %d: position (%0.3f, %0.3f), " "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)", id, positions[index].x, positions[index].y, int(estimator.degree), vectorToString(estimator.xCoeff, estimator.degree + 1).c_str(), vectorToString(estimator.yCoeff, estimator.degree + 1).c_str(), estimator.confidence); } #endif } void VelocityTracker::addMovement(const MotionEvent* event) { int32_t actionMasked = event->getActionMasked(); switch (actionMasked) { case AMOTION_EVENT_ACTION_DOWN: case AMOTION_EVENT_ACTION_HOVER_ENTER: // Clear all pointers on down before adding the new movement. clear(); break; case AMOTION_EVENT_ACTION_POINTER_DOWN: { // Start a new movement trace for a pointer that just went down. // We do this on down instead of on up because the client may want to query the // final velocity for a pointer that just went up. BitSet32 downIdBits; downIdBits.markBit(event->getPointerId(event->getActionIndex())); clearPointers(downIdBits); break; } case AMOTION_EVENT_ACTION_MOVE: case AMOTION_EVENT_ACTION_HOVER_MOVE: break; default: // Ignore all other actions because they do not convey any new information about // pointer movement. We also want to preserve the last known velocity of the pointers. // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position // of the pointers that went up. ACTION_POINTER_UP does include the new position of // pointers that remained down but we will also receive an ACTION_MOVE with this // information if any of them actually moved. Since we don't know how many pointers // will be going up at once it makes sense to just wait for the following ACTION_MOVE // before adding the movement. return; } size_t pointerCount = event->getPointerCount(); if (pointerCount > MAX_POINTERS) { pointerCount = MAX_POINTERS; } BitSet32 idBits; for (size_t i = 0; i < pointerCount; i++) { idBits.markBit(event->getPointerId(i)); } uint32_t pointerIndex[MAX_POINTERS]; for (size_t i = 0; i < pointerCount; i++) { pointerIndex[i] = idBits.getIndexOfBit(event->getPointerId(i)); } nsecs_t eventTime; Position positions[pointerCount]; size_t historySize = event->getHistorySize(); for (size_t h = 0; h < historySize; h++) { eventTime = event->getHistoricalEventTime(h); for (size_t i = 0; i < pointerCount; i++) { uint32_t index = pointerIndex[i]; positions[index].x = event->getHistoricalRawX(i, h); positions[index].y = event->getHistoricalRawY(i, h); } addMovement(eventTime, idBits, positions); } eventTime = event->getEventTime(); for (size_t i = 0; i < pointerCount; i++) { uint32_t index = pointerIndex[i]; positions[index].x = event->getRawX(i); positions[index].y = event->getRawY(i); } addMovement(eventTime, idBits, positions); } bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const { Estimator estimator; if (getEstimator(id, &estimator) && estimator.degree >= 1) { *outVx = estimator.xCoeff[1]; *outVy = estimator.yCoeff[1]; return true; } *outVx = 0; *outVy = 0; return false; } bool VelocityTracker::getEstimator(uint32_t id, Estimator* outEstimator) const { return mStrategy->getEstimator(id, outEstimator); } // --- LeastSquaresVelocityTrackerStrategy --- LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy( uint32_t degree, Weighting weighting) : mDegree(degree), mWeighting(weighting) { clear(); } LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() { } void LeastSquaresVelocityTrackerStrategy::clear() { mIndex = 0; mMovements[0].idBits.clear(); } void LeastSquaresVelocityTrackerStrategy::clearPointers(BitSet32 idBits) { BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value); mMovements[mIndex].idBits = remainingIdBits; } void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits, const VelocityTracker::Position* positions) { if (++mIndex == HISTORY_SIZE) { mIndex = 0; } Movement& movement = mMovements[mIndex]; movement.eventTime = eventTime; movement.idBits = idBits; uint32_t count = idBits.count(); for (uint32_t i = 0; i < count; i++) { movement.positions[i] = positions[i]; } } /** * Solves a linear least squares problem to obtain a N degree polynomial that fits * the specified input data as nearly as possible. * * Returns true if a solution is found, false otherwise. * * The input consists of two vectors of data points X and Y with indices 0..m-1 * along with a weight vector W of the same size. * * The output is a vector B with indices 0..n that describes a polynomial * that fits the data, such the sum of W[i] * W[i] * abs(Y[i] - (B[0] + B[1] X[i] * + B[2] X[i]^2 ... B[n] X[i]^n)) for all i between 0 and m-1 is minimized. * * Accordingly, the weight vector W should be initialized by the caller with the * reciprocal square root of the variance of the error in each input data point. * In other words, an ideal choice for W would be W[i] = 1 / var(Y[i]) = 1 / stddev(Y[i]). * The weights express the relative importance of each data point. If the weights are * all 1, then the data points are considered to be of equal importance when fitting * the polynomial. It is a good idea to choose weights that diminish the importance * of data points that may have higher than usual error margins. * * Errors among data points are assumed to be independent. W is represented here * as a vector although in the literature it is typically taken to be a diagonal matrix. * * That is to say, the function that generated the input data can be approximated * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n. * * The coefficient of determination (R^2) is also returned to describe the goodness * of fit of the model for the given data. It is a value between 0 and 1, where 1 * indicates perfect correspondence. * * This function first expands the X vector to a m by n matrix A such that * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n, then * multiplies it by w[i]./ * * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q * and an m by n upper triangular matrix R. Because R is upper triangular (lower * part is all zeroes), we can simplify the decomposition into an m by n matrix * Q1 and a n by n matrix R1 such that A = Q1 R1. * * Finally we solve the system of linear equations given by R1 B = (Qtranspose W Y) * to find B. * * For efficiency, we lay out A and Q column-wise in memory because we frequently * operate on the column vectors. Conversely, we lay out R row-wise. * * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares * http://en.wikipedia.org/wiki/Gram-Schmidt */ static bool solveLeastSquares(const float* x, const float* y, const float* w, uint32_t m, uint32_t n, float* outB, float* outDet) { #if DEBUG_STRATEGY ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s, w=%s", int(m), int(n), vectorToString(x, m).c_str(), vectorToString(y, m).c_str(), vectorToString(w, m).c_str()); #endif // Expand the X vector to a matrix A, pre-multiplied by the weights. float a[n][m]; // column-major order for (uint32_t h = 0; h < m; h++) { a[0][h] = w[h]; for (uint32_t i = 1; i < n; i++) { a[i][h] = a[i - 1][h] * x[h]; } } #if DEBUG_STRATEGY ALOGD(" - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).c_str()); #endif // Apply the Gram-Schmidt process to A to obtain its QR decomposition. float q[n][m]; // orthonormal basis, column-major order float r[n][n]; // upper triangular matrix, row-major order for (uint32_t j = 0; j < n; j++) { for (uint32_t h = 0; h < m; h++) { q[j][h] = a[j][h]; } for (uint32_t i = 0; i < j; i++) { float dot = vectorDot(&q[j][0], &q[i][0], m); for (uint32_t h = 0; h < m; h++) { q[j][h] -= dot * q[i][h]; } } float norm = vectorNorm(&q[j][0], m); if (norm < 0.000001f) { // vectors are linearly dependent or zero so no solution #if DEBUG_STRATEGY ALOGD(" - no solution, norm=%f", norm); #endif return false; } float invNorm = 1.0f / norm; for (uint32_t h = 0; h < m; h++) { q[j][h] *= invNorm; } for (uint32_t i = 0; i < n; i++) { r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m); } } #if DEBUG_STRATEGY ALOGD(" - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).c_str()); ALOGD(" - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).c_str()); // calculate QR, if we factored A correctly then QR should equal A float qr[n][m]; for (uint32_t h = 0; h < m; h++) { for (uint32_t i = 0; i < n; i++) { qr[i][h] = 0; for (uint32_t j = 0; j < n; j++) { qr[i][h] += q[j][h] * r[j][i]; } } } ALOGD(" - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).c_str()); #endif // Solve R B = Qt W Y to find B. This is easy because R is upper triangular. // We just work from bottom-right to top-left calculating B's coefficients. float wy[m]; for (uint32_t h = 0; h < m; h++) { wy[h] = y[h] * w[h]; } for (uint32_t i = n; i != 0; ) { i--; outB[i] = vectorDot(&q[i][0], wy, m); for (uint32_t j = n - 1; j > i; j--) { outB[i] -= r[i][j] * outB[j]; } outB[i] /= r[i][i]; } #if DEBUG_STRATEGY ALOGD(" - b=%s", vectorToString(outB, n).c_str()); #endif // Calculate the coefficient of determination as 1 - (SSerr / SStot) where // SSerr is the residual sum of squares (variance of the error), // and SStot is the total sum of squares (variance of the data) where each // has been weighted. float ymean = 0; for (uint32_t h = 0; h < m; h++) { ymean += y[h]; } ymean /= m; float sserr = 0; float sstot = 0; for (uint32_t h = 0; h < m; h++) { float err = y[h] - outB[0]; float term = 1; for (uint32_t i = 1; i < n; i++) { term *= x[h]; err -= term * outB[i]; } sserr += w[h] * w[h] * err * err; float var = y[h] - ymean; sstot += w[h] * w[h] * var * var; } *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1; #if DEBUG_STRATEGY ALOGD(" - sserr=%f", sserr); ALOGD(" - sstot=%f", sstot); ALOGD(" - det=%f", *outDet); #endif return true; } /* * Optimized unweighted second-order least squares fit. About 2x speed improvement compared to * the default implementation */ static float solveUnweightedLeastSquaresDeg2(const float* x, const float* y, size_t count) { float sxi = 0, sxiyi = 0, syi = 0, sxi2 = 0, sxi3 = 0, sxi2yi = 0, sxi4 = 0; for (size_t i = 0; i < count; i++) { float xi = x[i]; float yi = y[i]; float xi2 = xi*xi; float xi3 = xi2*xi; float xi4 = xi3*xi; float xi2yi = xi2*yi; float xiyi = xi*yi; sxi += xi; sxi2 += xi2; sxiyi += xiyi; sxi2yi += xi2yi; syi += yi; sxi3 += xi3; sxi4 += xi4; } float Sxx = sxi2 - sxi*sxi / count; float Sxy = sxiyi - sxi*syi / count; float Sxx2 = sxi3 - sxi*sxi2 / count; float Sx2y = sxi2yi - sxi2*syi / count; float Sx2x2 = sxi4 - sxi2*sxi2 / count; float numerator = Sxy*Sx2x2 - Sx2y*Sxx2; float denominator = Sxx*Sx2x2 - Sxx2*Sxx2; if (denominator == 0) { ALOGW("division by 0 when computing velocity, Sxx=%f, Sx2x2=%f, Sxx2=%f", Sxx, Sx2x2, Sxx2); return 0; } return numerator/denominator; } bool LeastSquaresVelocityTrackerStrategy::getEstimator(uint32_t id, VelocityTracker::Estimator* outEstimator) const { outEstimator->clear(); // Iterate over movement samples in reverse time order and collect samples. float x[HISTORY_SIZE]; float y[HISTORY_SIZE]; float w[HISTORY_SIZE]; float time[HISTORY_SIZE]; uint32_t m = 0; uint32_t index = mIndex; const Movement& newestMovement = mMovements[mIndex]; do { const Movement& movement = mMovements[index]; if (!movement.idBits.hasBit(id)) { break; } nsecs_t age = newestMovement.eventTime - movement.eventTime; if (age > HORIZON) { break; } const VelocityTracker::Position& position = movement.getPosition(id); x[m] = position.x; y[m] = position.y; w[m] = chooseWeight(index); time[m] = -age * 0.000000001f; index = (index == 0 ? HISTORY_SIZE : index) - 1; } while (++m < HISTORY_SIZE); if (m == 0) { return false; // no data } // Calculate a least squares polynomial fit. uint32_t degree = mDegree; if (degree > m - 1) { degree = m - 1; } if (degree >= 1) { if (degree == 2 && mWeighting == WEIGHTING_NONE) { // optimize unweighted, degree=2 fit outEstimator->time = newestMovement.eventTime; outEstimator->degree = 2; outEstimator->confidence = 1; outEstimator->xCoeff[0] = 0; // only slope is calculated, set rest of coefficients = 0 outEstimator->yCoeff[0] = 0; outEstimator->xCoeff[1] = solveUnweightedLeastSquaresDeg2(time, x, m); outEstimator->yCoeff[1] = solveUnweightedLeastSquaresDeg2(time, y, m); outEstimator->xCoeff[2] = 0; outEstimator->yCoeff[2] = 0; return true; } float xdet, ydet; uint32_t n = degree + 1; if (solveLeastSquares(time, x, w, m, n, outEstimator->xCoeff, &xdet) && solveLeastSquares(time, y, w, m, n, outEstimator->yCoeff, &ydet)) { outEstimator->time = newestMovement.eventTime; outEstimator->degree = degree; outEstimator->confidence = xdet * ydet; #if DEBUG_STRATEGY ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f", int(outEstimator->degree), vectorToString(outEstimator->xCoeff, n).c_str(), vectorToString(outEstimator->yCoeff, n).c_str(), outEstimator->confidence); #endif return true; } } // No velocity data available for this pointer, but we do have its current position. outEstimator->xCoeff[0] = x[0]; outEstimator->yCoeff[0] = y[0]; outEstimator->time = newestMovement.eventTime; outEstimator->degree = 0; outEstimator->confidence = 1; return true; } float LeastSquaresVelocityTrackerStrategy::chooseWeight(uint32_t index) const { switch (mWeighting) { case WEIGHTING_DELTA: { // Weight points based on how much time elapsed between them and the next // point so that points that "cover" a shorter time span are weighed less. // delta 0ms: 0.5 // delta 10ms: 1.0 if (index == mIndex) { return 1.0f; } uint32_t nextIndex = (index + 1) % HISTORY_SIZE; float deltaMillis = (mMovements[nextIndex].eventTime- mMovements[index].eventTime) * 0.000001f; if (deltaMillis < 0) { return 0.5f; } if (deltaMillis < 10) { return 0.5f + deltaMillis * 0.05; } return 1.0f; } case WEIGHTING_CENTRAL: { // Weight points based on their age, weighing very recent and very old points less. // age 0ms: 0.5 // age 10ms: 1.0 // age 50ms: 1.0 // age 60ms: 0.5 float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime) * 0.000001f; if (ageMillis < 0) { return 0.5f; } if (ageMillis < 10) { return 0.5f + ageMillis * 0.05; } if (ageMillis < 50) { return 1.0f; } if (ageMillis < 60) { return 0.5f + (60 - ageMillis) * 0.05; } return 0.5f; } case WEIGHTING_RECENT: { // Weight points based on their age, weighing older points less. // age 0ms: 1.0 // age 50ms: 1.0 // age 100ms: 0.5 float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime) * 0.000001f; if (ageMillis < 50) { return 1.0f; } if (ageMillis < 100) { return 0.5f + (100 - ageMillis) * 0.01f; } return 0.5f; } case WEIGHTING_NONE: default: return 1.0f; } } // --- IntegratingVelocityTrackerStrategy --- IntegratingVelocityTrackerStrategy::IntegratingVelocityTrackerStrategy(uint32_t degree) : mDegree(degree) { } IntegratingVelocityTrackerStrategy::~IntegratingVelocityTrackerStrategy() { } void IntegratingVelocityTrackerStrategy::clear() { mPointerIdBits.clear(); } void IntegratingVelocityTrackerStrategy::clearPointers(BitSet32 idBits) { mPointerIdBits.value &= ~idBits.value; } void IntegratingVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits, const VelocityTracker::Position* positions) { uint32_t index = 0; for (BitSet32 iterIdBits(idBits); !iterIdBits.isEmpty();) { uint32_t id = iterIdBits.clearFirstMarkedBit(); State& state = mPointerState[id]; const VelocityTracker::Position& position = positions[index++]; if (mPointerIdBits.hasBit(id)) { updateState(state, eventTime, position.x, position.y); } else { initState(state, eventTime, position.x, position.y); } } mPointerIdBits = idBits; } bool IntegratingVelocityTrackerStrategy::getEstimator(uint32_t id, VelocityTracker::Estimator* outEstimator) const { outEstimator->clear(); if (mPointerIdBits.hasBit(id)) { const State& state = mPointerState[id]; populateEstimator(state, outEstimator); return true; } return false; } void IntegratingVelocityTrackerStrategy::initState(State& state, nsecs_t eventTime, float xpos, float ypos) const { state.updateTime = eventTime; state.degree = 0; state.xpos = xpos; state.xvel = 0; state.xaccel = 0; state.ypos = ypos; state.yvel = 0; state.yaccel = 0; } void IntegratingVelocityTrackerStrategy::updateState(State& state, nsecs_t eventTime, float xpos, float ypos) const { const nsecs_t MIN_TIME_DELTA = 2 * NANOS_PER_MS; const float FILTER_TIME_CONSTANT = 0.010f; // 10 milliseconds if (eventTime <= state.updateTime + MIN_TIME_DELTA) { return; } float dt = (eventTime - state.updateTime) * 0.000000001f; state.updateTime = eventTime; float xvel = (xpos - state.xpos) / dt; float yvel = (ypos - state.ypos) / dt; if (state.degree == 0) { state.xvel = xvel; state.yvel = yvel; state.degree = 1; } else { float alpha = dt / (FILTER_TIME_CONSTANT + dt); if (mDegree == 1) { state.xvel += (xvel - state.xvel) * alpha; state.yvel += (yvel - state.yvel) * alpha; } else { float xaccel = (xvel - state.xvel) / dt; float yaccel = (yvel - state.yvel) / dt; if (state.degree == 1) { state.xaccel = xaccel; state.yaccel = yaccel; state.degree = 2; } else { state.xaccel += (xaccel - state.xaccel) * alpha; state.yaccel += (yaccel - state.yaccel) * alpha; } state.xvel += (state.xaccel * dt) * alpha; state.yvel += (state.yaccel * dt) * alpha; } } state.xpos = xpos; state.ypos = ypos; } void IntegratingVelocityTrackerStrategy::populateEstimator(const State& state, VelocityTracker::Estimator* outEstimator) const { outEstimator->time = state.updateTime; outEstimator->confidence = 1.0f; outEstimator->degree = state.degree; outEstimator->xCoeff[0] = state.xpos; outEstimator->xCoeff[1] = state.xvel; outEstimator->xCoeff[2] = state.xaccel / 2; outEstimator->yCoeff[0] = state.ypos; outEstimator->yCoeff[1] = state.yvel; outEstimator->yCoeff[2] = state.yaccel / 2; } // --- LegacyVelocityTrackerStrategy --- LegacyVelocityTrackerStrategy::LegacyVelocityTrackerStrategy() { clear(); } LegacyVelocityTrackerStrategy::~LegacyVelocityTrackerStrategy() { } void LegacyVelocityTrackerStrategy::clear() { mIndex = 0; mMovements[0].idBits.clear(); } void LegacyVelocityTrackerStrategy::clearPointers(BitSet32 idBits) { BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value); mMovements[mIndex].idBits = remainingIdBits; } void LegacyVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits, const VelocityTracker::Position* positions) { if (++mIndex == HISTORY_SIZE) { mIndex = 0; } Movement& movement = mMovements[mIndex]; movement.eventTime = eventTime; movement.idBits = idBits; uint32_t count = idBits.count(); for (uint32_t i = 0; i < count; i++) { movement.positions[i] = positions[i]; } } bool LegacyVelocityTrackerStrategy::getEstimator(uint32_t id, VelocityTracker::Estimator* outEstimator) const { outEstimator->clear(); const Movement& newestMovement = mMovements[mIndex]; if (!newestMovement.idBits.hasBit(id)) { return false; // no data } // Find the oldest sample that contains the pointer and that is not older than HORIZON. nsecs_t minTime = newestMovement.eventTime - HORIZON; uint32_t oldestIndex = mIndex; uint32_t numTouches = 1; do { uint32_t nextOldestIndex = (oldestIndex == 0 ? HISTORY_SIZE : oldestIndex) - 1; const Movement& nextOldestMovement = mMovements[nextOldestIndex]; if (!nextOldestMovement.idBits.hasBit(id) || nextOldestMovement.eventTime < minTime) { break; } oldestIndex = nextOldestIndex; } while (++numTouches < HISTORY_SIZE); // Calculate an exponentially weighted moving average of the velocity estimate // at different points in time measured relative to the oldest sample. // This is essentially an IIR filter. Newer samples are weighted more heavily // than older samples. Samples at equal time points are weighted more or less // equally. // // One tricky problem is that the sample data may be poorly conditioned. // Sometimes samples arrive very close together in time which can cause us to // overestimate the velocity at that time point. Most samples might be measured // 16ms apart but some consecutive samples could be only 0.5sm apart because // the hardware or driver reports them irregularly or in bursts. float accumVx = 0; float accumVy = 0; uint32_t index = oldestIndex; uint32_t samplesUsed = 0; const Movement& oldestMovement = mMovements[oldestIndex]; const VelocityTracker::Position& oldestPosition = oldestMovement.getPosition(id); nsecs_t lastDuration = 0; while (numTouches-- > 1) { if (++index == HISTORY_SIZE) { index = 0; } const Movement& movement = mMovements[index]; nsecs_t duration = movement.eventTime - oldestMovement.eventTime; // If the duration between samples is small, we may significantly overestimate // the velocity. Consequently, we impose a minimum duration constraint on the // samples that we include in the calculation. if (duration >= MIN_DURATION) { const VelocityTracker::Position& position = movement.getPosition(id); float scale = 1000000000.0f / duration; // one over time delta in seconds float vx = (position.x - oldestPosition.x) * scale; float vy = (position.y - oldestPosition.y) * scale; accumVx = (accumVx * lastDuration + vx * duration) / (duration + lastDuration); accumVy = (accumVy * lastDuration + vy * duration) / (duration + lastDuration); lastDuration = duration; samplesUsed += 1; } } // Report velocity. const VelocityTracker::Position& newestPosition = newestMovement.getPosition(id); outEstimator->time = newestMovement.eventTime; outEstimator->confidence = 1; outEstimator->xCoeff[0] = newestPosition.x; outEstimator->yCoeff[0] = newestPosition.y; if (samplesUsed) { outEstimator->xCoeff[1] = accumVx; outEstimator->yCoeff[1] = accumVy; outEstimator->degree = 1; } else { outEstimator->degree = 0; } return true; } // --- ImpulseVelocityTrackerStrategy --- ImpulseVelocityTrackerStrategy::ImpulseVelocityTrackerStrategy() { clear(); } ImpulseVelocityTrackerStrategy::~ImpulseVelocityTrackerStrategy() { } void ImpulseVelocityTrackerStrategy::clear() { mIndex = 0; mMovements[0].idBits.clear(); } void ImpulseVelocityTrackerStrategy::clearPointers(BitSet32 idBits) { BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value); mMovements[mIndex].idBits = remainingIdBits; } void ImpulseVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits, const VelocityTracker::Position* positions) { if (++mIndex == HISTORY_SIZE) { mIndex = 0; } Movement& movement = mMovements[mIndex]; movement.eventTime = eventTime; movement.idBits = idBits; uint32_t count = idBits.count(); for (uint32_t i = 0; i < count; i++) { movement.positions[i] = positions[i]; } } /** * Calculate the total impulse provided to the screen and the resulting velocity. * * The touchscreen is modeled as a physical object. * Initial condition is discussed below, but for now suppose that v(t=0) = 0 * * The kinetic energy of the object at the release is E=0.5*m*v^2 * Then vfinal = sqrt(2E/m). The goal is to calculate E. * * The kinetic energy at the release is equal to the total work done on the object by the finger. * The total work W is the sum of all dW along the path. * * dW = F*dx, where dx is the piece of path traveled. * Force is change of momentum over time, F = dp/dt = m dv/dt. * Then substituting: * dW = m (dv/dt) * dx = m * v * dv * * Summing along the path, we get: * W = sum(dW) = sum(m * v * dv) = m * sum(v * dv) * Since the mass stays constant, the equation for final velocity is: * vfinal = sqrt(2*sum(v * dv)) * * Here, * dv : change of velocity = (v[i+1]-v[i]) * dx : change of distance = (x[i+1]-x[i]) * dt : change of time = (t[i+1]-t[i]) * v : instantaneous velocity = dx/dt * * The final formula is: * vfinal = sqrt(2) * sqrt(sum((v[i]-v[i-1])*|v[i]|)) for all i * The absolute value is needed to properly account for the sign. If the velocity over a * particular segment descreases, then this indicates braking, which means that negative * work was done. So for two positive, but decreasing, velocities, this contribution would be * negative and will cause a smaller final velocity. * * Initial condition * There are two ways to deal with initial condition: * 1) Assume that v(0) = 0, which would mean that the screen is initially at rest. * This is not entirely accurate. We are only taking the past X ms of touch data, where X is * currently equal to 100. However, a touch event that created a fling probably lasted for longer * than that, which would mean that the user has already been interacting with the touchscreen * and it has probably already been moving. * 2) Assume that the touchscreen has already been moving at a certain velocity, calculate this * initial velocity and the equivalent energy, and start with this initial energy. * Consider an example where we have the following data, consisting of 3 points: * time: t0, t1, t2 * x : x0, x1, x2 * v : 0 , v1, v2 * Here is what will happen in each of these scenarios: * 1) By directly applying the formula above with the v(0) = 0 boundary condition, we will get * vfinal = sqrt(2*(|v1|*(v1-v0) + |v2|*(v2-v1))). This can be simplified since v0=0 * vfinal = sqrt(2*(|v1|*v1 + |v2|*(v2-v1))) = sqrt(2*(v1^2 + |v2|*(v2 - v1))) * since velocity is a real number * 2) If we treat the screen as already moving, then it must already have an energy (per mass) * equal to 1/2*v1^2. Then the initial energy should be 1/2*v1*2, and only the second segment * will contribute to the total kinetic energy (since we can effectively consider that v0=v1). * This will give the following expression for the final velocity: * vfinal = sqrt(2*(1/2*v1^2 + |v2|*(v2-v1))) * This analysis can be generalized to an arbitrary number of samples. * * * Comparing the two equations above, we see that the only mathematical difference * is the factor of 1/2 in front of the first velocity term. * This boundary condition would allow for the "proper" calculation of the case when all of the * samples are equally spaced in time and distance, which should suggest a constant velocity. * * Note that approach 2) is sensitive to the proper ordering of the data in time, since * the boundary condition must be applied to the oldest sample to be accurate. */ static float kineticEnergyToVelocity(float work) { static constexpr float sqrt2 = 1.41421356237; return (work < 0 ? -1.0 : 1.0) * sqrtf(fabsf(work)) * sqrt2; } static float calculateImpulseVelocity(const nsecs_t* t, const float* x, size_t count) { // The input should be in reversed time order (most recent sample at index i=0) // t[i] is in nanoseconds, but due to FP arithmetic, convert to seconds inside this function static constexpr float SECONDS_PER_NANO = 1E-9; if (count < 2) { return 0; // if 0 or 1 points, velocity is zero } if (t[1] > t[0]) { // Algorithm will still work, but not perfectly ALOGE("Samples provided to calculateImpulseVelocity in the wrong order"); } if (count == 2) { // if 2 points, basic linear calculation if (t[1] == t[0]) { ALOGE("Events have identical time stamps t=%" PRId64 ", setting velocity = 0", t[0]); return 0; } return (x[1] - x[0]) / (SECONDS_PER_NANO * (t[1] - t[0])); } // Guaranteed to have at least 3 points here float work = 0; for (size_t i = count - 1; i > 0 ; i--) { // start with the oldest sample and go forward in time if (t[i] == t[i-1]) { ALOGE("Events have identical time stamps t=%" PRId64 ", skipping sample", t[i]); continue; } float vprev = kineticEnergyToVelocity(work); // v[i-1] float vcurr = (x[i] - x[i-1]) / (SECONDS_PER_NANO * (t[i] - t[i-1])); // v[i] work += (vcurr - vprev) * fabsf(vcurr); if (i == count - 1) { work *= 0.5; // initial condition, case 2) above } } return kineticEnergyToVelocity(work); } bool ImpulseVelocityTrackerStrategy::getEstimator(uint32_t id, VelocityTracker::Estimator* outEstimator) const { outEstimator->clear(); // Iterate over movement samples in reverse time order and collect samples. float x[HISTORY_SIZE]; float y[HISTORY_SIZE]; nsecs_t time[HISTORY_SIZE]; size_t m = 0; // number of points that will be used for fitting size_t index = mIndex; const Movement& newestMovement = mMovements[mIndex]; do { const Movement& movement = mMovements[index]; if (!movement.idBits.hasBit(id)) { break; } nsecs_t age = newestMovement.eventTime - movement.eventTime; if (age > HORIZON) { break; } const VelocityTracker::Position& position = movement.getPosition(id); x[m] = position.x; y[m] = position.y; time[m] = movement.eventTime; index = (index == 0 ? HISTORY_SIZE : index) - 1; } while (++m < HISTORY_SIZE); if (m == 0) { return false; // no data } outEstimator->xCoeff[0] = 0; outEstimator->yCoeff[0] = 0; outEstimator->xCoeff[1] = calculateImpulseVelocity(time, x, m); outEstimator->yCoeff[1] = calculateImpulseVelocity(time, y, m); outEstimator->xCoeff[2] = 0; outEstimator->yCoeff[2] = 0; outEstimator->time = newestMovement.eventTime; outEstimator->degree = 2; // similar results to 2nd degree fit outEstimator->confidence = 1; #if DEBUG_STRATEGY ALOGD("velocity: (%f, %f)", outEstimator->xCoeff[1], outEstimator->yCoeff[1]); #endif return true; } } // namespace android