/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "SensorDevice.h" #include "SensorFusion.h" #include "SensorService.h" namespace android { // --------------------------------------------------------------------------- ANDROID_SINGLETON_STATIC_INSTANCE(SensorFusion) SensorFusion::SensorFusion() : mSensorDevice(SensorDevice::getInstance()), mAttitude(mAttitudes[FUSION_9AXIS]), mGyroTime(0), mAccTime(0) { sensor_t const* list; Sensor uncalibratedGyro; ssize_t count = mSensorDevice.getSensorList(&list); mEnabled[FUSION_9AXIS] = false; mEnabled[FUSION_NOMAG] = false; mEnabled[FUSION_NOGYRO] = false; if (count > 0) { for (size_t i=0 ; i 0 && event.timestamp - mGyroTime< (int64_t)(5e7) ) { //0.05sec dT = (event.timestamp - mGyroTime) / 1000000000.0f; // here we estimate the gyro rate (useful for debugging) const float freq = 1 / dT; if (freq >= 100 && freq<1000) { // filter values obviously wrong const float alpha = 1 / (1 + dT); // 1s time-constant mEstimatedGyroRate = freq + (mEstimatedGyroRate - freq)*alpha; } const vec3_t gyro(event.data); for (int i = 0; i 0 && event.timestamp - mAccTime< (int64_t)(1e8) ) { //0.1sec dT = (event.timestamp - mAccTime) / 1000000000.0f; const vec3_t acc(event.data); for (int i = 0; i inline T min(T a, T b) { return a inline T max(T a, T b) { return a>b ? a : b; } status_t SensorFusion::activate(int mode, void* ident, bool enabled) { ALOGD_IF(DEBUG_CONNECTIONS, "SensorFusion::activate(mode=%d, ident=%p, enabled=%d)", mode, ident, enabled); const ssize_t idx = mClients[mode].indexOf(ident); if (enabled) { if (idx < 0) { mClients[mode].add(ident); } } else { if (idx >= 0) { mClients[mode].removeItemsAt(idx); } } const bool newState = mClients[mode].size() != 0; if (newState != mEnabled[mode]) { mEnabled[mode] = newState; if (newState) { mFusions[mode].init(mode); } } mSensorDevice.activate(ident, mAcc.getHandle(), enabled); if (mode != FUSION_NOMAG) { mSensorDevice.activate(ident, mMag.getHandle(), enabled); } if (mode != FUSION_NOGYRO) { mSensorDevice.activate(ident, mGyro.getHandle(), enabled); } return NO_ERROR; } status_t SensorFusion::setDelay(int mode, void* ident, int64_t ns) { // Call batch with timeout zero instead of setDelay(). if (ns > (int64_t)5e7) { ns = (int64_t)(5e7); } mSensorDevice.batch(ident, mAcc.getHandle(), 0, ns, 0); if (mode != FUSION_NOMAG) { mSensorDevice.batch(ident, mMag.getHandle(), 0, ms2ns(10), 0); } if (mode != FUSION_NOGYRO) { mSensorDevice.batch(ident, mGyro.getHandle(), 0, mTargetDelayNs, 0); } return NO_ERROR; } float SensorFusion::getPowerUsage(int mode) const { float power = mAcc.getPowerUsage() + ((mode != FUSION_NOMAG) ? mMag.getPowerUsage() : 0) + ((mode != FUSION_NOGYRO) ? mGyro.getPowerUsage() : 0); return power; } int32_t SensorFusion::getMinDelay() const { return mAcc.getMinDelay(); } void SensorFusion::dump(String8& result) { const Fusion& fusion_9axis(mFusions[FUSION_9AXIS]); result.appendFormat("9-axis fusion %s (%zd clients), gyro-rate=%7.2fHz, " "q=< %g, %g, %g, %g > (%g), " "b=< %g, %g, %g >\n", mEnabled[FUSION_9AXIS] ? "enabled" : "disabled", mClients[FUSION_9AXIS].size(), mEstimatedGyroRate, fusion_9axis.getAttitude().x, fusion_9axis.getAttitude().y, fusion_9axis.getAttitude().z, fusion_9axis.getAttitude().w, length(fusion_9axis.getAttitude()), fusion_9axis.getBias().x, fusion_9axis.getBias().y, fusion_9axis.getBias().z); const Fusion& fusion_nomag(mFusions[FUSION_NOMAG]); result.appendFormat("game fusion(no mag) %s (%zd clients), " "gyro-rate=%7.2fHz, " "q=< %g, %g, %g, %g > (%g), " "b=< %g, %g, %g >\n", mEnabled[FUSION_NOMAG] ? "enabled" : "disabled", mClients[FUSION_NOMAG].size(), mEstimatedGyroRate, fusion_nomag.getAttitude().x, fusion_nomag.getAttitude().y, fusion_nomag.getAttitude().z, fusion_nomag.getAttitude().w, length(fusion_nomag.getAttitude()), fusion_nomag.getBias().x, fusion_nomag.getBias().y, fusion_nomag.getBias().z); const Fusion& fusion_nogyro(mFusions[FUSION_NOGYRO]); result.appendFormat("geomag fusion (no gyro) %s (%zd clients), " "gyro-rate=%7.2fHz, " "q=< %g, %g, %g, %g > (%g), " "b=< %g, %g, %g >\n", mEnabled[FUSION_NOGYRO] ? "enabled" : "disabled", mClients[FUSION_NOGYRO].size(), mEstimatedGyroRate, fusion_nogyro.getAttitude().x, fusion_nogyro.getAttitude().y, fusion_nogyro.getAttitude().z, fusion_nogyro.getAttitude().w, length(fusion_nogyro.getAttitude()), fusion_nogyro.getBias().x, fusion_nogyro.getBias().y, fusion_nogyro.getBias().z); } // --------------------------------------------------------------------------- }; // namespace android