/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define ATRACE_TAG ATRACE_TAG_GRAPHICS #include #include #include #include #include #include #include #include #include #include #include #include "EventThread.h" using namespace std::chrono_literals; // --------------------------------------------------------------------------- namespace android { // --------------------------------------------------------------------------- EventThread::~EventThread() = default; namespace impl { EventThread::EventThread(VSyncSource* src, ResyncWithRateLimitCallback resyncWithRateLimitCallback, InterceptVSyncsCallback interceptVSyncsCallback, const char* threadName) : mVSyncSource(src), mResyncWithRateLimitCallback(resyncWithRateLimitCallback), mInterceptVSyncsCallback(interceptVSyncsCallback) { for (auto& event : mVSyncEvent) { event.header.type = DisplayEventReceiver::DISPLAY_EVENT_VSYNC; event.header.id = 0; event.header.timestamp = 0; event.vsync.count = 0; } mThread = std::thread(&EventThread::threadMain, this); pthread_setname_np(mThread.native_handle(), threadName); pid_t tid = pthread_gettid_np(mThread.native_handle()); // Use SCHED_FIFO to minimize jitter constexpr int EVENT_THREAD_PRIORITY = 2; struct sched_param param = {0}; param.sched_priority = EVENT_THREAD_PRIORITY; if (pthread_setschedparam(mThread.native_handle(), SCHED_FIFO, ¶m) != 0) { ALOGE("Couldn't set SCHED_FIFO for EventThread"); } set_sched_policy(tid, SP_FOREGROUND); } EventThread::~EventThread() { { std::lock_guard lock(mMutex); mKeepRunning = false; mCondition.notify_all(); } mThread.join(); } void EventThread::setPhaseOffset(nsecs_t phaseOffset) { std::lock_guard lock(mMutex); mVSyncSource->setPhaseOffset(phaseOffset); } sp EventThread::createEventConnection() const { return new Connection(const_cast(this)); } status_t EventThread::registerDisplayEventConnection( const sp& connection) { std::lock_guard lock(mMutex); mDisplayEventConnections.add(connection); mCondition.notify_all(); return NO_ERROR; } void EventThread::removeDisplayEventConnectionLocked(const wp& connection) { mDisplayEventConnections.remove(connection); } void EventThread::setVsyncRate(uint32_t count, const sp& connection) { if (int32_t(count) >= 0) { // server must protect against bad params std::lock_guard lock(mMutex); const int32_t new_count = (count == 0) ? -1 : count; if (connection->count != new_count) { connection->count = new_count; mCondition.notify_all(); } } } void EventThread::requestNextVsync(const sp& connection) { std::lock_guard lock(mMutex); if (mResyncWithRateLimitCallback) { mResyncWithRateLimitCallback(); } if (connection->count < 0) { connection->count = 0; mCondition.notify_all(); } } void EventThread::onScreenReleased() { std::lock_guard lock(mMutex); if (!mUseSoftwareVSync) { // disable reliance on h/w vsync mUseSoftwareVSync = true; mCondition.notify_all(); } } void EventThread::onScreenAcquired() { std::lock_guard lock(mMutex); if (mUseSoftwareVSync) { // resume use of h/w vsync mUseSoftwareVSync = false; mCondition.notify_all(); } } void EventThread::onVSyncEvent(nsecs_t timestamp) { std::lock_guard lock(mMutex); mVSyncEvent[0].header.type = DisplayEventReceiver::DISPLAY_EVENT_VSYNC; mVSyncEvent[0].header.id = 0; mVSyncEvent[0].header.timestamp = timestamp; mVSyncEvent[0].vsync.count++; mCondition.notify_all(); } void EventThread::onHotplugReceived(int type, bool connected) { ALOGE_IF(type >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES, "received hotplug event for an invalid display (id=%d)", type); std::lock_guard lock(mMutex); if (type < DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) { DisplayEventReceiver::Event event; event.header.type = DisplayEventReceiver::DISPLAY_EVENT_HOTPLUG; event.header.id = type; event.header.timestamp = systemTime(); event.hotplug.connected = connected; mPendingEvents.add(event); mCondition.notify_all(); } } void EventThread::threadMain() NO_THREAD_SAFETY_ANALYSIS { std::unique_lock lock(mMutex); while (mKeepRunning) { DisplayEventReceiver::Event event; Vector > signalConnections; signalConnections = waitForEventLocked(&lock, &event); // dispatch events to listeners... const size_t count = signalConnections.size(); for (size_t i = 0; i < count; i++) { const sp& conn(signalConnections[i]); // now see if we still need to report this event status_t err = conn->postEvent(event); if (err == -EAGAIN || err == -EWOULDBLOCK) { // The destination doesn't accept events anymore, it's probably // full. For now, we just drop the events on the floor. // FIXME: Note that some events cannot be dropped and would have // to be re-sent later. // Right-now we don't have the ability to do this. ALOGW("EventThread: dropping event (%08x) for connection %p", event.header.type, conn.get()); } else if (err < 0) { // handle any other error on the pipe as fatal. the only // reasonable thing to do is to clean-up this connection. // The most common error we'll get here is -EPIPE. removeDisplayEventConnectionLocked(signalConnections[i]); } } } } // This will return when (1) a vsync event has been received, and (2) there was // at least one connection interested in receiving it when we started waiting. Vector > EventThread::waitForEventLocked( std::unique_lock* lock, DisplayEventReceiver::Event* event) { Vector > signalConnections; while (signalConnections.isEmpty() && mKeepRunning) { bool eventPending = false; bool waitForVSync = false; size_t vsyncCount = 0; nsecs_t timestamp = 0; for (int32_t i = 0; i < DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES; i++) { timestamp = mVSyncEvent[i].header.timestamp; if (timestamp) { // we have a vsync event to dispatch if (mInterceptVSyncsCallback) { mInterceptVSyncsCallback(timestamp); } *event = mVSyncEvent[i]; mVSyncEvent[i].header.timestamp = 0; vsyncCount = mVSyncEvent[i].vsync.count; break; } } if (!timestamp) { // no vsync event, see if there are some other event eventPending = !mPendingEvents.isEmpty(); if (eventPending) { // we have some other event to dispatch *event = mPendingEvents[0]; mPendingEvents.removeAt(0); } } // find out connections waiting for events size_t count = mDisplayEventConnections.size(); for (size_t i = 0; i < count;) { sp connection(mDisplayEventConnections[i].promote()); if (connection != nullptr) { bool added = false; if (connection->count >= 0) { // we need vsync events because at least // one connection is waiting for it waitForVSync = true; if (timestamp) { // we consume the event only if it's time // (ie: we received a vsync event) if (connection->count == 0) { // fired this time around connection->count = -1; signalConnections.add(connection); added = true; } else if (connection->count == 1 || (vsyncCount % connection->count) == 0) { // continuous event, and time to report it signalConnections.add(connection); added = true; } } } if (eventPending && !timestamp && !added) { // we don't have a vsync event to process // (timestamp==0), but we have some pending // messages. signalConnections.add(connection); } ++i; } else { // we couldn't promote this reference, the connection has // died, so clean-up! mDisplayEventConnections.removeAt(i); --count; } } // Here we figure out if we need to enable or disable vsyncs if (timestamp && !waitForVSync) { // we received a VSYNC but we have no clients // don't report it, and disable VSYNC events disableVSyncLocked(); } else if (!timestamp && waitForVSync) { // we have at least one client, so we want vsync enabled // (TODO: this function is called right after we finish // notifying clients of a vsync, so this call will be made // at the vsync rate, e.g. 60fps. If we can accurately // track the current state we could avoid making this call // so often.) enableVSyncLocked(); } // note: !timestamp implies signalConnections.isEmpty(), because we // don't populate signalConnections if there's no vsync pending if (!timestamp && !eventPending) { // wait for something to happen if (waitForVSync) { // This is where we spend most of our time, waiting // for vsync events and new client registrations. // // If the screen is off, we can't use h/w vsync, so we // use a 16ms timeout instead. It doesn't need to be // precise, we just need to keep feeding our clients. // // We don't want to stall if there's a driver bug, so we // use a (long) timeout when waiting for h/w vsync, and // generate fake events when necessary. bool softwareSync = mUseSoftwareVSync; auto timeout = softwareSync ? 16ms : 1000ms; if (mCondition.wait_for(*lock, timeout) == std::cv_status::timeout) { if (!softwareSync) { ALOGW("Timed out waiting for hw vsync; faking it"); } // FIXME: how do we decide which display id the fake // vsync came from ? mVSyncEvent[0].header.type = DisplayEventReceiver::DISPLAY_EVENT_VSYNC; mVSyncEvent[0].header.id = DisplayDevice::DISPLAY_PRIMARY; mVSyncEvent[0].header.timestamp = systemTime(SYSTEM_TIME_MONOTONIC); mVSyncEvent[0].vsync.count++; } } else { // Nobody is interested in vsync, so we just want to sleep. // h/w vsync should be disabled, so this will wait until we // get a new connection, or an existing connection becomes // interested in receiving vsync again. mCondition.wait(*lock); } } } // here we're guaranteed to have a timestamp and some connections to signal // (The connections might have dropped out of mDisplayEventConnections // while we were asleep, but we'll still have strong references to them.) return signalConnections; } void EventThread::enableVSyncLocked() { if (!mUseSoftwareVSync) { // never enable h/w VSYNC when screen is off if (!mVsyncEnabled) { mVsyncEnabled = true; mVSyncSource->setCallback(this); mVSyncSource->setVSyncEnabled(true); } } mDebugVsyncEnabled = true; } void EventThread::disableVSyncLocked() { if (mVsyncEnabled) { mVsyncEnabled = false; mVSyncSource->setVSyncEnabled(false); mDebugVsyncEnabled = false; } } void EventThread::dump(String8& result) const { std::lock_guard lock(mMutex); result.appendFormat("VSYNC state: %s\n", mDebugVsyncEnabled ? "enabled" : "disabled"); result.appendFormat(" soft-vsync: %s\n", mUseSoftwareVSync ? "enabled" : "disabled"); result.appendFormat(" numListeners=%zu,\n events-delivered: %u\n", mDisplayEventConnections.size(), mVSyncEvent[DisplayDevice::DISPLAY_PRIMARY].vsync.count); for (size_t i = 0; i < mDisplayEventConnections.size(); i++) { sp connection = mDisplayEventConnections.itemAt(i).promote(); result.appendFormat(" %p: count=%d\n", connection.get(), connection != nullptr ? connection->count : 0); } } // --------------------------------------------------------------------------- EventThread::Connection::Connection(EventThread* eventThread) : count(-1), mEventThread(eventThread), mChannel(gui::BitTube::DefaultSize) {} EventThread::Connection::~Connection() { // do nothing here -- clean-up will happen automatically // when the main thread wakes up } void EventThread::Connection::onFirstRef() { // NOTE: mEventThread doesn't hold a strong reference on us mEventThread->registerDisplayEventConnection(this); } status_t EventThread::Connection::stealReceiveChannel(gui::BitTube* outChannel) { outChannel->setReceiveFd(mChannel.moveReceiveFd()); return NO_ERROR; } status_t EventThread::Connection::setVsyncRate(uint32_t count) { mEventThread->setVsyncRate(count, this); return NO_ERROR; } void EventThread::Connection::requestNextVsync() { mEventThread->requestNextVsync(this); } status_t EventThread::Connection::postEvent(const DisplayEventReceiver::Event& event) { ssize_t size = DisplayEventReceiver::sendEvents(&mChannel, &event, 1); return size < 0 ? status_t(size) : status_t(NO_ERROR); } // --------------------------------------------------------------------------- } // namespace impl } // namespace android