/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ANDROID_LAYER_H #define ANDROID_LAYER_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Client.h" #include "FrameTracker.h" #include "LayerVector.h" #include "MonitoredProducer.h" #include "SurfaceFlinger.h" #include "TimeStats/TimeStats.h" #include "Transform.h" #include #include "DisplayHardware/HWComposer.h" #include "DisplayHardware/HWComposerBufferCache.h" #include "RenderArea.h" #include "RenderEngine/Mesh.h" #include "RenderEngine/Texture.h" #include #include using namespace android::surfaceflinger; namespace android { // --------------------------------------------------------------------------- class Client; class Colorizer; class DisplayDevice; class GraphicBuffer; class SurfaceFlinger; class LayerDebugInfo; class LayerBE; namespace impl { class SurfaceInterceptor; } // --------------------------------------------------------------------------- struct CompositionInfo { HWC2::Composition compositionType; sp mBuffer = nullptr; int mBufferSlot = BufferQueue::INVALID_BUFFER_SLOT; struct { HWComposer* hwc; sp fence; HWC2::BlendMode blendMode; Rect displayFrame; float alpha; FloatRect sourceCrop; HWC2::Transform transform; int z; int type; int appId; Region visibleRegion; Region surfaceDamage; sp sidebandStream; android_dataspace dataspace; hwc_color_t color; } hwc; struct { RE::RenderEngine* renderEngine; Mesh* mesh; } renderEngine; }; class LayerBE { public: LayerBE(); // The mesh used to draw the layer in GLES composition mode Mesh mMesh; // HWC items, accessed from the main thread struct HWCInfo { HWCInfo() : hwc(nullptr), layer(nullptr), forceClientComposition(false), compositionType(HWC2::Composition::Invalid), clearClientTarget(false), transform(HWC2::Transform::None) {} HWComposer* hwc; HWC2::Layer* layer; bool forceClientComposition; HWC2::Composition compositionType; bool clearClientTarget; Rect displayFrame; FloatRect sourceCrop; HWComposerBufferCache bufferCache; HWC2::Transform transform; }; // A layer can be attached to multiple displays when operating in mirror mode // (a.k.a: when several displays are attached with equal layerStack). In this // case we need to keep track. In non-mirror mode, a layer will have only one // HWCInfo. This map key is a display layerStack. std::unordered_map mHwcLayers; CompositionInfo compositionInfo; }; class Layer : public virtual RefBase { static int32_t sSequence; public: LayerBE& getBE() { return mBE; } LayerBE& getBE() const { return mBE; } mutable bool contentDirty; // regions below are in window-manager space Region visibleRegion; Region coveredRegion; Region visibleNonTransparentRegion; Region surfaceDamageRegion; // Layer serial number. This gives layers an explicit ordering, so we // have a stable sort order when their layer stack and Z-order are // the same. int32_t sequence; enum { // flags for doTransaction() eDontUpdateGeometryState = 0x00000001, eVisibleRegion = 0x00000002, }; struct Geometry { uint32_t w; uint32_t h; Transform transform; inline bool operator==(const Geometry& rhs) const { return (w == rhs.w && h == rhs.h) && (transform.tx() == rhs.transform.tx()) && (transform.ty() == rhs.transform.ty()); } inline bool operator!=(const Geometry& rhs) const { return !operator==(rhs); } }; struct State { Geometry active; Geometry requested; int32_t z; // The identifier of the layer stack this layer belongs to. A layer can // only be associated to a single layer stack. A layer stack is a // z-ordered group of layers which can be associated to one or more // displays. Using the same layer stack on different displays is a way // to achieve mirroring. uint32_t layerStack; uint8_t flags; uint8_t reserved[2]; int32_t sequence; // changes when visible regions can change bool modified; // Crop is expressed in layer space coordinate. Rect crop; Rect requestedCrop; // finalCrop is expressed in display space coordinate. Rect finalCrop; Rect requestedFinalCrop; // If set, defers this state update until the identified Layer // receives a frame with the given frameNumber wp barrierLayer; uint64_t frameNumber; // the transparentRegion hint is a bit special, it's latched only // when we receive a buffer -- this is because it's "content" // dependent. Region activeTransparentRegion; Region requestedTransparentRegion; int32_t appId; int32_t type; // If non-null, a Surface this Surface's Z-order is interpreted relative to. wp zOrderRelativeOf; // A list of surfaces whose Z-order is interpreted relative to ours. SortedVector> zOrderRelatives; half4 color; }; Layer(SurfaceFlinger* flinger, const sp& client, const String8& name, uint32_t w, uint32_t h, uint32_t flags); virtual ~Layer(); void setPrimaryDisplayOnly() { mPrimaryDisplayOnly = true; } // ------------------------------------------------------------------------ // Geometry setting functions. // // The following group of functions are used to specify the layers // bounds, and the mapping of the texture on to those bounds. According // to various settings changes to them may apply immediately, or be delayed until // a pending resize is completed by the producer submitting a buffer. For example // if we were to change the buffer size, and update the matrix ahead of the // new buffer arriving, then we would be stretching the buffer to a different // aspect before and after the buffer arriving, which probably isn't what we wanted. // // The first set of geometry functions are controlled by the scaling mode, described // in window.h. The scaling mode may be set by the client, as it submits buffers. // This value may be overriden through SurfaceControl, with setOverrideScalingMode. // // Put simply, if our scaling mode is SCALING_MODE_FREEZE, then // matrix updates will not be applied while a resize is pending // and the size and transform will remain in their previous state // until a new buffer is submitted. If the scaling mode is another value // then the old-buffer will immediately be scaled to the pending size // and the new matrix will be immediately applied following this scaling // transformation. // Set the default buffer size for the assosciated Producer, in pixels. This is // also the rendered size of the layer prior to any transformations. Parent // or local matrix transformations will not affect the size of the buffer, // but may affect it's on-screen size or clipping. bool setSize(uint32_t w, uint32_t h); // Set a 2x2 transformation matrix on the layer. This transform // will be applied after parent transforms, but before any final // producer specified transform. bool setMatrix(const layer_state_t::matrix22_t& matrix); // This second set of geometry attributes are controlled by // setGeometryAppliesWithResize, and their default mode is to be // immediate. If setGeometryAppliesWithResize is specified // while a resize is pending, then update of these attributes will // be delayed until the resize completes. // setPosition operates in parent buffer space (pre parent-transform) or display // space for top-level layers. bool setPosition(float x, float y, bool immediate); // Buffer space bool setCrop(const Rect& crop, bool immediate); // Parent buffer space/display space bool setFinalCrop(const Rect& crop, bool immediate); // TODO(b/38182121): Could we eliminate the various latching modes by // using the layer hierarchy? // ----------------------------------------------------------------------- bool setLayer(int32_t z); bool setRelativeLayer(const sp& relativeToHandle, int32_t relativeZ); bool setAlpha(float alpha); bool setColor(const half3& color); bool setTransparentRegionHint(const Region& transparent); bool setFlags(uint8_t flags, uint8_t mask); bool setLayerStack(uint32_t layerStack); uint32_t getLayerStack() const; void deferTransactionUntil(const sp& barrierHandle, uint64_t frameNumber); void deferTransactionUntil(const sp& barrierLayer, uint64_t frameNumber); bool setOverrideScalingMode(int32_t overrideScalingMode); void setInfo(int32_t type, int32_t appId); bool reparentChildren(const sp& layer); void setChildrenDrawingParent(const sp& layer); bool reparent(const sp& newParentHandle); bool detachChildren(); ui::Dataspace getDataSpace() const { return mCurrentDataSpace; } // Before color management is introduced, contents on Android have to be // desaturated in order to match what they appears like visually. // With color management, these contents will appear desaturated, thus // needed to be saturated so that they match what they are designed for // visually. bool isLegacyDataSpace() const; // If we have received a new buffer this frame, we will pass its surface // damage down to hardware composer. Otherwise, we must send a region with // one empty rect. virtual void useSurfaceDamage() {} virtual void useEmptyDamage() {} uint32_t getTransactionFlags(uint32_t flags); uint32_t setTransactionFlags(uint32_t flags); bool belongsToDisplay(uint32_t layerStack, bool isPrimaryDisplay) const { return getLayerStack() == layerStack && (!mPrimaryDisplayOnly || isPrimaryDisplay); } void computeGeometry(const RenderArea& renderArea, Mesh& mesh, bool useIdentityTransform) const; FloatRect computeBounds(const Region& activeTransparentRegion) const; FloatRect computeBounds() const; int32_t getSequence() const { return sequence; } // ----------------------------------------------------------------------- // Virtuals virtual const char* getTypeId() const = 0; /* * isOpaque - true if this surface is opaque * * This takes into account the buffer format (i.e. whether or not the * pixel format includes an alpha channel) and the "opaque" flag set * on the layer. It does not examine the current plane alpha value. */ virtual bool isOpaque(const Layer::State&) const { return false; } /* * isSecure - true if this surface is secure, that is if it prevents * screenshots or VNC servers. */ bool isSecure() const; /* * isVisible - true if this layer is visible, false otherwise */ virtual bool isVisible() const = 0; /* * isHiddenByPolicy - true if this layer has been forced invisible. * just because this is false, doesn't mean isVisible() is true. * For example if this layer has no active buffer, it may not be hidden by * policy, but it still can not be visible. */ bool isHiddenByPolicy() const; /* * isFixedSize - true if content has a fixed size */ virtual bool isFixedSize() const { return true; } bool isPendingRemoval() const { return mPendingRemoval; } void writeToProto(LayerProto* layerInfo, LayerVector::StateSet stateSet = LayerVector::StateSet::Drawing); void writeToProto(LayerProto* layerInfo, int32_t hwcId); protected: /* * onDraw - draws the surface. */ virtual void onDraw(const RenderArea& renderArea, const Region& clip, bool useIdentityTransform) const = 0; public: virtual void setDefaultBufferSize(uint32_t /*w*/, uint32_t /*h*/) {} virtual bool isHdrY410() const { return false; } void setGeometry(const sp& displayDevice, uint32_t z); void forceClientComposition(int32_t hwcId); bool getForceClientComposition(int32_t hwcId); virtual void setPerFrameData(const sp& displayDevice) = 0; // callIntoHwc exists so we can update our local state and call // acceptDisplayChanges without unnecessarily updating the device's state void setCompositionType(int32_t hwcId, HWC2::Composition type, bool callIntoHwc = true); HWC2::Composition getCompositionType(int32_t hwcId) const; void setClearClientTarget(int32_t hwcId, bool clear); bool getClearClientTarget(int32_t hwcId) const; void updateCursorPosition(const sp& hw); /* * called after page-flip */ virtual void onLayerDisplayed(const sp& releaseFence); virtual void abandon() {} virtual bool shouldPresentNow(const DispSync& /*dispSync*/) const { return false; } virtual void setTransformHint(uint32_t /*orientation*/) const { } /* * called before composition. * returns true if the layer has pending updates. */ virtual bool onPreComposition(nsecs_t /*refreshStartTime*/) { return true; } /* * called after composition. * returns true if the layer latched a new buffer this frame. */ virtual bool onPostComposition(const std::shared_ptr& /*glDoneFence*/, const std::shared_ptr& /*presentFence*/, const CompositorTiming& /*compositorTiming*/) { return false; } // If a buffer was replaced this frame, release the former buffer virtual void releasePendingBuffer(nsecs_t /*dequeueReadyTime*/) { } /* * draw - performs some global clipping optimizations * and calls onDraw(). */ void draw(const RenderArea& renderArea, const Region& clip) const; void draw(const RenderArea& renderArea, bool useIdentityTransform) const; void draw(const RenderArea& renderArea) const; /* * doTransaction - process the transaction. This is a good place to figure * out which attributes of the surface have changed. */ uint32_t doTransaction(uint32_t transactionFlags); /* * setVisibleRegion - called to set the new visible region. This gives * a chance to update the new visible region or record the fact it changed. */ void setVisibleRegion(const Region& visibleRegion); /* * setCoveredRegion - called when the covered region changes. The covered * region corresponds to any area of the surface that is covered * (transparently or not) by another surface. */ void setCoveredRegion(const Region& coveredRegion); /* * setVisibleNonTransparentRegion - called when the visible and * non-transparent region changes. */ void setVisibleNonTransparentRegion(const Region& visibleNonTransparentRegion); /* * Clear the visible, covered, and non-transparent regions. */ void clearVisibilityRegions(); /* * latchBuffer - called each time the screen is redrawn and returns whether * the visible regions need to be recomputed (this is a fairly heavy * operation, so this should be set only if needed). Typically this is used * to figure out if the content or size of a surface has changed. */ virtual Region latchBuffer(bool& /*recomputeVisibleRegions*/, nsecs_t /*latchTime*/) { return {}; } virtual bool isBufferLatched() const { return false; } bool isPotentialCursor() const { return mPotentialCursor; } /* * called with the state lock from a binder thread when the layer is * removed from the current list to the pending removal list */ void onRemovedFromCurrentState(); /* * called with the state lock from the main thread when the layer is * removed from the pending removal list */ void onRemoved(); // Updates the transform hint in our SurfaceFlingerConsumer to match // the current orientation of the display device. void updateTransformHint(const sp& hw) const; /* * returns the rectangle that crops the content of the layer and scales it * to the layer's size. */ Rect getContentCrop() const; /* * Returns if a frame is queued. */ bool hasQueuedFrame() const { return mQueuedFrames > 0 || mSidebandStreamChanged || mAutoRefresh; } int32_t getQueuedFrameCount() const { return mQueuedFrames; } // ----------------------------------------------------------------------- bool createHwcLayer(HWComposer* hwc, int32_t hwcId); bool destroyHwcLayer(int32_t hwcId); void destroyAllHwcLayers(); bool hasHwcLayer(int32_t hwcId) { return getBE().mHwcLayers.count(hwcId) > 0; } HWC2::Layer* getHwcLayer(int32_t hwcId) { if (getBE().mHwcLayers.count(hwcId) == 0) { return nullptr; } return getBE().mHwcLayers[hwcId].layer; } // ----------------------------------------------------------------------- void clearWithOpenGL(const RenderArea& renderArea) const; void setFiltering(bool filtering); bool getFiltering() const; inline const State& getDrawingState() const { return mDrawingState; } inline const State& getCurrentState() const { return mCurrentState; } inline State& getCurrentState() { return mCurrentState; } LayerDebugInfo getLayerDebugInfo() const; /* always call base class first */ static void miniDumpHeader(String8& result); void miniDump(String8& result, int32_t hwcId) const; void dumpFrameStats(String8& result) const; void dumpFrameEvents(String8& result); void clearFrameStats(); void logFrameStats(); void getFrameStats(FrameStats* outStats) const; virtual std::vector getOccupancyHistory(bool /*forceFlush*/) { return {}; } void onDisconnect(); void addAndGetFrameTimestamps(const NewFrameEventsEntry* newEntry, FrameEventHistoryDelta* outDelta); virtual bool getTransformToDisplayInverse() const { return false; } Transform getTransform() const; // Returns the Alpha of the Surface, accounting for the Alpha // of parent Surfaces in the hierarchy (alpha's will be multiplied // down the hierarchy). half getAlpha() const; half4 getColor() const; void traverseInReverseZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor); void traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor); /** * Traverse only children in z order, ignoring relative layers that are not children of the * parent. */ void traverseChildrenInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor); size_t getChildrenCount() const; void addChild(const sp& layer); // Returns index if removed, or negative value otherwise // for symmetry with Vector::remove ssize_t removeChild(const sp& layer); sp getParent() const { return mCurrentParent.promote(); } bool hasParent() const { return getParent() != nullptr; } Rect computeScreenBounds(bool reduceTransparentRegion = true) const; bool setChildLayer(const sp& childLayer, int32_t z); bool setChildRelativeLayer(const sp& childLayer, const sp& relativeToHandle, int32_t relativeZ); // Copy the current list of children to the drawing state. Called by // SurfaceFlinger to complete a transaction. void commitChildList(); int32_t getZ() const; void pushPendingState(); protected: // constant sp mFlinger; /* * Trivial class, used to ensure that mFlinger->onLayerDestroyed(mLayer) * is called. */ class LayerCleaner { sp mFlinger; wp mLayer; protected: ~LayerCleaner() { // destroy client resources mFlinger->onLayerDestroyed(mLayer); } public: LayerCleaner(const sp& flinger, const sp& layer) : mFlinger(flinger), mLayer(layer) {} }; virtual void onFirstRef(); friend class impl::SurfaceInterceptor; void commitTransaction(const State& stateToCommit); uint32_t getEffectiveUsage(uint32_t usage) const; FloatRect computeCrop(const sp& hw) const; // Compute the initial crop as specified by parent layers and the // SurfaceControl for this layer. Does not include buffer crop from the // IGraphicBufferProducer client, as that should not affect child clipping. // Returns in screen space. Rect computeInitialCrop(const sp& hw) const; // drawing void clearWithOpenGL(const RenderArea& renderArea, float r, float g, float b, float alpha) const; void setParent(const sp& layer); LayerVector makeTraversalList(LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers); void addZOrderRelative(const wp& relative); void removeZOrderRelative(const wp& relative); class SyncPoint { public: explicit SyncPoint(uint64_t frameNumber) : mFrameNumber(frameNumber), mFrameIsAvailable(false), mTransactionIsApplied(false) {} uint64_t getFrameNumber() const { return mFrameNumber; } bool frameIsAvailable() const { return mFrameIsAvailable; } void setFrameAvailable() { mFrameIsAvailable = true; } bool transactionIsApplied() const { return mTransactionIsApplied; } void setTransactionApplied() { mTransactionIsApplied = true; } private: const uint64_t mFrameNumber; std::atomic mFrameIsAvailable; std::atomic mTransactionIsApplied; }; // SyncPoints which will be signaled when the correct frame is at the head // of the queue and dropped after the frame has been latched. Protected by // mLocalSyncPointMutex. Mutex mLocalSyncPointMutex; std::list> mLocalSyncPoints; // SyncPoints which will be signaled and then dropped when the transaction // is applied std::list> mRemoteSyncPoints; // Returns false if the relevant frame has already been latched bool addSyncPoint(const std::shared_ptr& point); void popPendingState(State* stateToCommit); bool applyPendingStates(State* stateToCommit); void clearSyncPoints(); // Returns mCurrentScaling mode (originating from the // Client) or mOverrideScalingMode mode (originating from // the Surface Controller) if set. virtual uint32_t getEffectiveScalingMode() const { return 0; } public: /* * The layer handle is just a BBinder object passed to the client * (remote process) -- we don't keep any reference on our side such that * the dtor is called when the remote side let go of its reference. * * LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for * this layer when the handle is destroyed. */ class Handle : public BBinder, public LayerCleaner { public: Handle(const sp& flinger, const sp& layer) : LayerCleaner(flinger, layer), owner(layer) {} wp owner; }; sp getHandle(); const String8& getName() const; virtual void notifyAvailableFrames() {} virtual PixelFormat getPixelFormat() const { return PIXEL_FORMAT_NONE; } bool getPremultipledAlpha() const; protected: // ----------------------------------------------------------------------- bool usingRelativeZ(LayerVector::StateSet stateSet); bool mPremultipliedAlpha; String8 mName; String8 mTransactionName; // A cached version of "TX - " + mName for systraces bool mPrimaryDisplayOnly = false; // these are protected by an external lock State mCurrentState; State mDrawingState; volatile int32_t mTransactionFlags; // Accessed from main thread and binder threads Mutex mPendingStateMutex; Vector mPendingStates; // thread-safe volatile int32_t mQueuedFrames; volatile int32_t mSidebandStreamChanged; // used like an atomic boolean // Timestamp history for UIAutomation. Thread safe. FrameTracker mFrameTracker; // Timestamp history for the consumer to query. // Accessed by both consumer and producer on main and binder threads. Mutex mFrameEventHistoryMutex; ConsumerFrameEventHistory mFrameEventHistory; FenceTimeline mAcquireTimeline; FenceTimeline mReleaseTimeline; TimeStats& mTimeStats = TimeStats::getInstance(); // main thread int mActiveBufferSlot; sp mActiveBuffer; sp mSidebandStream; ui::Dataspace mCurrentDataSpace = ui::Dataspace::UNKNOWN; Rect mCurrentCrop; uint32_t mCurrentTransform; // We encode unset as -1. int32_t mOverrideScalingMode; bool mCurrentOpacity; std::atomic mCurrentFrameNumber; bool mFrameLatencyNeeded; // Whether filtering is forced on or not bool mFiltering; // Whether filtering is needed b/c of the drawingstate bool mNeedsFiltering; bool mPendingRemoval = false; // page-flip thread (currently main thread) bool mProtectedByApp; // application requires protected path to external sink // protected by mLock mutable Mutex mLock; const wp mClientRef; // This layer can be a cursor on some displays. bool mPotentialCursor; // Local copy of the queued contents of the incoming BufferQueue mutable Mutex mQueueItemLock; Condition mQueueItemCondition; Vector mQueueItems; std::atomic mLastFrameNumberReceived; bool mAutoRefresh; bool mFreezeGeometryUpdates; // Child list about to be committed/used for editing. LayerVector mCurrentChildren; // Child list used for rendering. LayerVector mDrawingChildren; wp mCurrentParent; wp mDrawingParent; mutable LayerBE mBE; private: /** * Returns an unsorted vector of all layers that are part of this tree. * That includes the current layer and all its descendants. */ std::vector getLayersInTree(LayerVector::StateSet stateSet); /** * Traverses layers that are part of this tree in the correct z order. * layersInTree must be sorted before calling this method. */ void traverseChildrenInZOrderInner(const std::vector& layersInTree, LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor); LayerVector makeChildrenTraversalList(LayerVector::StateSet stateSet, const std::vector& layersInTree); }; // --------------------------------------------------------------------------- }; // namespace android #endif // ANDROID_LAYER_H