/* * Copyright 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ //#define LOG_NDEBUG 0 #undef LOG_TAG #define LOG_TAG "RenderEngine" #define ATRACE_TAG ATRACE_TAG_GRAPHICS #include #include #include #include #include #include #include #include #include #include #include "Description.h" #include "GLES20RenderEngine.h" #include "Mesh.h" #include "Program.h" #include "ProgramCache.h" #include "Texture.h" #include #include // --------------------------------------------------------------------------- bool checkGlError(const char* op, int lineNumber) { bool errorFound = false; GLint error = glGetError(); while (error != GL_NO_ERROR) { errorFound = true; error = glGetError(); ALOGV("after %s() (line # %d) glError (0x%x)\n", op, lineNumber, error); } return errorFound; } static constexpr bool outputDebugPPMs = false; void writePPM(const char* basename, GLuint width, GLuint height) { ALOGV("writePPM #%s: %d x %d", basename, width, height); std::vector pixels(width * height * 4); std::vector outBuffer(width * height * 3); // TODO(courtneygo): We can now have float formats, need // to remove this code or update to support. // Make returned pixels fit in uint32_t, one byte per component glReadPixels(0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, pixels.data()); if (checkGlError(__FUNCTION__, __LINE__)) { return; } std::string filename(basename); filename.append(".ppm"); std::ofstream file(filename.c_str(), std::ios::binary); if (!file.is_open()) { ALOGE("Unable to open file: %s", filename.c_str()); ALOGE("You may need to do: \"adb shell setenforce 0\" to enable " "surfaceflinger to write debug images"); return; } file << "P6\n"; file << width << "\n"; file << height << "\n"; file << 255 << "\n"; auto ptr = reinterpret_cast(pixels.data()); auto outPtr = reinterpret_cast(outBuffer.data()); for (int y = height - 1; y >= 0; y--) { char* data = ptr + y * width * sizeof(uint32_t); for (GLuint x = 0; x < width; x++) { // Only copy R, G and B components outPtr[0] = data[0]; outPtr[1] = data[1]; outPtr[2] = data[2]; data += sizeof(uint32_t); outPtr += 3; } } file.write(reinterpret_cast(outBuffer.data()), outBuffer.size()); } // --------------------------------------------------------------------------- namespace android { namespace RE { namespace impl { // --------------------------------------------------------------------------- using ui::Dataspace; GLES20RenderEngine::GLES20RenderEngine(uint32_t featureFlags) : RenderEngine(featureFlags), mVpWidth(0), mVpHeight(0), mPlatformHasWideColor((featureFlags & WIDE_COLOR_SUPPORT) != 0) { glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize); glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims); glPixelStorei(GL_UNPACK_ALIGNMENT, 4); glPixelStorei(GL_PACK_ALIGNMENT, 4); const uint16_t protTexData[] = {0}; glGenTextures(1, &mProtectedTexName); glBindTexture(GL_TEXTURE_2D, mProtectedTexName); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData); // mColorBlindnessCorrection = M; if (mPlatformHasWideColor) { ColorSpace srgb(ColorSpace::sRGB()); ColorSpace displayP3(ColorSpace::DisplayP3()); ColorSpace bt2020(ColorSpace::BT2020()); // Compute sRGB to Display P3 transform matrix. // NOTE: For now, we are limiting output wide color space support to // Display-P3 only. mSrgbToDisplayP3 = mat4(ColorSpaceConnector(srgb, displayP3).getTransform()); // Compute Display P3 to sRGB transform matrix. mDisplayP3ToSrgb = mat4(ColorSpaceConnector(displayP3, srgb).getTransform()); // no chromatic adaptation needed since all color spaces use D65 for their white points. mSrgbToXyz = srgb.getRGBtoXYZ(); mDisplayP3ToXyz = displayP3.getRGBtoXYZ(); mBt2020ToXyz = bt2020.getRGBtoXYZ(); mXyzToSrgb = mat4(srgb.getXYZtoRGB()); mXyzToDisplayP3 = mat4(displayP3.getXYZtoRGB()); mXyzToBt2020 = mat4(bt2020.getXYZtoRGB()); } } GLES20RenderEngine::~GLES20RenderEngine() {} size_t GLES20RenderEngine::getMaxTextureSize() const { return mMaxTextureSize; } size_t GLES20RenderEngine::getMaxViewportDims() const { return mMaxViewportDims[0] < mMaxViewportDims[1] ? mMaxViewportDims[0] : mMaxViewportDims[1]; } void GLES20RenderEngine::setViewportAndProjection(size_t vpw, size_t vph, Rect sourceCrop, size_t hwh, bool yswap, Transform::orientation_flags rotation) { int32_t l = sourceCrop.left; int32_t r = sourceCrop.right; // In GL, (0, 0) is the bottom-left corner, so flip y coordinates int32_t t = hwh - sourceCrop.top; int32_t b = hwh - sourceCrop.bottom; mat4 m; if (yswap) { m = mat4::ortho(l, r, t, b, 0, 1); } else { m = mat4::ortho(l, r, b, t, 0, 1); } // Apply custom rotation to the projection. float rot90InRadians = 2.0f * static_cast(M_PI) / 4.0f; switch (rotation) { case Transform::ROT_0: break; case Transform::ROT_90: m = mat4::rotate(rot90InRadians, vec3(0, 0, 1)) * m; break; case Transform::ROT_180: m = mat4::rotate(rot90InRadians * 2.0f, vec3(0, 0, 1)) * m; break; case Transform::ROT_270: m = mat4::rotate(rot90InRadians * 3.0f, vec3(0, 0, 1)) * m; break; default: break; } glViewport(0, 0, vpw, vph); mState.setProjectionMatrix(m); mVpWidth = vpw; mVpHeight = vph; } void GLES20RenderEngine::setupLayerBlending(bool premultipliedAlpha, bool opaque, bool disableTexture, const half4& color) { mState.setPremultipliedAlpha(premultipliedAlpha); mState.setOpaque(opaque); mState.setColor(color); if (disableTexture) { mState.disableTexture(); } if (color.a < 1.0f || !opaque) { glEnable(GL_BLEND); glBlendFunc(premultipliedAlpha ? GL_ONE : GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } else { glDisable(GL_BLEND); } } void GLES20RenderEngine::setSourceY410BT2020(bool enable) { mState.setY410BT2020(enable); } void GLES20RenderEngine::setSourceDataSpace(Dataspace source) { mDataSpace = source; } void GLES20RenderEngine::setOutputDataSpace(Dataspace dataspace) { mOutputDataSpace = dataspace; } void GLES20RenderEngine::setDisplayMaxLuminance(const float maxLuminance) { mState.setDisplayMaxLuminance(maxLuminance); } void GLES20RenderEngine::setupLayerTexturing(const Texture& texture) { GLuint target = texture.getTextureTarget(); glBindTexture(target, texture.getTextureName()); GLenum filter = GL_NEAREST; if (texture.getFiltering()) { filter = GL_LINEAR; } glTexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(target, GL_TEXTURE_MAG_FILTER, filter); glTexParameteri(target, GL_TEXTURE_MIN_FILTER, filter); mState.setTexture(texture); } void GLES20RenderEngine::setupLayerBlackedOut() { glBindTexture(GL_TEXTURE_2D, mProtectedTexName); Texture texture(Texture::TEXTURE_2D, mProtectedTexName); texture.setDimensions(1, 1); // FIXME: we should get that from somewhere mState.setTexture(texture); } void GLES20RenderEngine::setupColorTransform(const mat4& colorTransform) { mState.setColorMatrix(colorTransform); } void GLES20RenderEngine::setSaturationMatrix(const mat4& saturationMatrix) { mState.setSaturationMatrix(saturationMatrix); } void GLES20RenderEngine::disableTexturing() { mState.disableTexture(); } void GLES20RenderEngine::disableBlending() { glDisable(GL_BLEND); } void GLES20RenderEngine::bindImageAsFramebuffer(EGLImageKHR image, uint32_t* texName, uint32_t* fbName, uint32_t* status) { GLuint tname, name; // turn our EGLImage into a texture glGenTextures(1, &tname); glBindTexture(GL_TEXTURE_2D, tname); glEGLImageTargetTexture2DOES(GL_TEXTURE_2D, (GLeglImageOES)image); // create a Framebuffer Object to render into glGenFramebuffers(1, &name); glBindFramebuffer(GL_FRAMEBUFFER, name); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, tname, 0); *status = glCheckFramebufferStatus(GL_FRAMEBUFFER); *texName = tname; *fbName = name; } void GLES20RenderEngine::unbindFramebuffer(uint32_t texName, uint32_t fbName) { glBindFramebuffer(GL_FRAMEBUFFER, 0); glDeleteFramebuffers(1, &fbName); glDeleteTextures(1, &texName); } void GLES20RenderEngine::setupFillWithColor(float r, float g, float b, float a) { mState.setPremultipliedAlpha(true); mState.setOpaque(false); mState.setColor(half4(r, g, b, a)); mState.disableTexture(); glDisable(GL_BLEND); } void GLES20RenderEngine::drawMesh(const Mesh& mesh) { ATRACE_CALL(); if (mesh.getTexCoordsSize()) { glEnableVertexAttribArray(Program::texCoords); glVertexAttribPointer(Program::texCoords, mesh.getTexCoordsSize(), GL_FLOAT, GL_FALSE, mesh.getByteStride(), mesh.getTexCoords()); } glVertexAttribPointer(Program::position, mesh.getVertexSize(), GL_FLOAT, GL_FALSE, mesh.getByteStride(), mesh.getPositions()); // By default, DISPLAY_P3 is the only supported wide color output. However, // when HDR content is present, hardware composer may be able to handle // BT2020 data space, in that case, the output data space is set to be // BT2020_HLG or BT2020_PQ respectively. In GPU fall back we need // to respect this and convert non-HDR content to HDR format. if (mPlatformHasWideColor) { Description wideColorState = mState; Dataspace inputStandard = static_cast(mDataSpace & Dataspace::STANDARD_MASK); Dataspace inputTransfer = static_cast(mDataSpace & Dataspace::TRANSFER_MASK); Dataspace outputStandard = static_cast(mOutputDataSpace & Dataspace::STANDARD_MASK); Dataspace outputTransfer = static_cast(mOutputDataSpace & Dataspace::TRANSFER_MASK); bool needsXYZConversion = needsXYZTransformMatrix(); if (needsXYZConversion) { // The supported input color spaces are standard RGB, Display P3 and BT2020. switch (inputStandard) { case Dataspace::STANDARD_DCI_P3: wideColorState.setInputTransformMatrix(mDisplayP3ToXyz); break; case Dataspace::STANDARD_BT2020: wideColorState.setInputTransformMatrix(mBt2020ToXyz); break; default: wideColorState.setInputTransformMatrix(mSrgbToXyz); break; } // The supported output color spaces are BT2020, Display P3 and standard RGB. switch (outputStandard) { case Dataspace::STANDARD_BT2020: wideColorState.setOutputTransformMatrix(mXyzToBt2020); break; case Dataspace::STANDARD_DCI_P3: wideColorState.setOutputTransformMatrix(mXyzToDisplayP3); break; default: wideColorState.setOutputTransformMatrix(mXyzToSrgb); break; } } else if (inputStandard != outputStandard) { // At this point, the input data space and output data space could be both // HDR data spaces, but they match each other, we do nothing in this case. // In addition to the case above, the input data space could be // - scRGB linear // - scRGB non-linear // - sRGB // - Display P3 // The output data spaces could be // - sRGB // - Display P3 if (outputStandard == Dataspace::STANDARD_BT709) { wideColorState.setOutputTransformMatrix(mDisplayP3ToSrgb); } else if (outputStandard == Dataspace::STANDARD_DCI_P3) { wideColorState.setOutputTransformMatrix(mSrgbToDisplayP3); } } // we need to convert the RGB value to linear space and convert it back when: // - there is a color matrix that is not an identity matrix, or // - there is a saturation matrix that is not an identity matrix, or // - there is an output transform matrix that is not an identity matrix, or // - the input transfer function doesn't match the output transfer function. if (wideColorState.hasColorMatrix() || wideColorState.hasSaturationMatrix() || wideColorState.hasOutputTransformMatrix() || inputTransfer != outputTransfer) { switch (inputTransfer) { case Dataspace::TRANSFER_ST2084: wideColorState.setInputTransferFunction(Description::TransferFunction::ST2084); break; case Dataspace::TRANSFER_HLG: wideColorState.setInputTransferFunction(Description::TransferFunction::HLG); break; case Dataspace::TRANSFER_LINEAR: wideColorState.setInputTransferFunction(Description::TransferFunction::LINEAR); break; default: wideColorState.setInputTransferFunction(Description::TransferFunction::SRGB); break; } switch (outputTransfer) { case Dataspace::TRANSFER_ST2084: wideColorState.setOutputTransferFunction(Description::TransferFunction::ST2084); break; case Dataspace::TRANSFER_HLG: wideColorState.setOutputTransferFunction(Description::TransferFunction::HLG); break; default: wideColorState.setOutputTransferFunction(Description::TransferFunction::SRGB); break; } } ProgramCache::getInstance().useProgram(wideColorState); glDrawArrays(mesh.getPrimitive(), 0, mesh.getVertexCount()); if (outputDebugPPMs) { static uint64_t wideColorFrameCount = 0; std::ostringstream out; out << "/data/texture_out" << wideColorFrameCount++; writePPM(out.str().c_str(), mVpWidth, mVpHeight); } } else { ProgramCache::getInstance().useProgram(mState); glDrawArrays(mesh.getPrimitive(), 0, mesh.getVertexCount()); } if (mesh.getTexCoordsSize()) { glDisableVertexAttribArray(Program::texCoords); } } void GLES20RenderEngine::dump(String8& result) { RenderEngine::dump(result); result.appendFormat("RenderEngine last dataspace conversion: (%s) to (%s)\n", dataspaceDetails(static_cast(mDataSpace)).c_str(), dataspaceDetails(static_cast(mOutputDataSpace)).c_str()); } bool GLES20RenderEngine::isHdrDataSpace(const Dataspace dataSpace) const { const Dataspace standard = static_cast(dataSpace & Dataspace::STANDARD_MASK); const Dataspace transfer = static_cast(dataSpace & Dataspace::TRANSFER_MASK); return standard == Dataspace::STANDARD_BT2020 && (transfer == Dataspace::TRANSFER_ST2084 || transfer == Dataspace::TRANSFER_HLG); } // For convenience, we want to convert the input color space to XYZ color space first, // and then convert from XYZ color space to output color space when // - SDR and HDR contents are mixed, either SDR content will be converted to HDR or // HDR content will be tone-mapped to SDR; Or, // - there are HDR PQ and HLG contents presented at the same time, where we want to convert // HLG content to PQ content. // In either case above, we need to operate the Y value in XYZ color space. Thus, when either // input data space or output data space is HDR data space, and the input transfer function // doesn't match the output transfer function, we would enable an intermediate transfrom to // XYZ color space. bool GLES20RenderEngine::needsXYZTransformMatrix() const { const bool isInputHdrDataSpace = isHdrDataSpace(mDataSpace); const bool isOutputHdrDataSpace = isHdrDataSpace(mOutputDataSpace); const Dataspace inputTransfer = static_cast(mDataSpace & Dataspace::TRANSFER_MASK); const Dataspace outputTransfer = static_cast(mOutputDataSpace & Dataspace::TRANSFER_MASK); return (isInputHdrDataSpace || isOutputHdrDataSpace) && inputTransfer != outputTransfer; } // --------------------------------------------------------------------------- } // namespace impl } // namespace RE } // namespace android // --------------------------------------------------------------------------- #if defined(__gl_h_) #error "don't include gl/gl.h in this file" #endif