/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* ThreadPool */ #include "sles_allinclusive.h" // Entry point for each worker thread static void *ThreadPool_start(void *context) { ThreadPool *tp = (ThreadPool *) context; assert(NULL != tp); for (;;) { Closure *pClosure = ThreadPool_remove(tp); // closure is NULL when thread pool is being destroyed if (NULL == pClosure) { break; } // make a copy of parameters, then free the parameters const Closure closure = *pClosure; free(pClosure); // extract parameters and call the right method depending on kind ClosureKind kind = closure.mKind; void *context1 = closure.mContext1; void *context2 = closure.mContext2; int parameter1 = closure.mParameter1; switch (kind) { case CLOSURE_KIND_PPI: { ClosureHandler_ppi handler_ppi = closure.mHandler.mHandler_ppi; assert(NULL != handler_ppi); (*handler_ppi)(context1, context2, parameter1); } break; case CLOSURE_KIND_PPII: { ClosureHandler_ppii handler_ppii = closure.mHandler.mHandler_ppii; assert(NULL != handler_ppii); int parameter2 = closure.mParameter2; (*handler_ppii)(context1, context2, parameter1, parameter2); } break; case CLOSURE_KIND_PIIPP: { ClosureHandler_piipp handler_piipp = closure.mHandler.mHandler_piipp; assert(NULL != handler_piipp); int parameter2 = closure.mParameter2; void *context3 = closure.mContext3; (*handler_piipp)(context1, parameter1, parameter2, context2, context3); } break; default: SL_LOGE("Unexpected callback kind %d", kind); assert(false); break; } } return NULL; } #define INITIALIZED_NONE 0 #define INITIALIZED_MUTEX 1 #define INITIALIZED_CONDNOTFULL 2 #define INITIALIZED_CONDNOTEMPTY 4 #define INITIALIZED_ALL 7 static void ThreadPool_deinit_internal(ThreadPool *tp, unsigned initialized, unsigned nThreads); // Initialize a ThreadPool // maxClosures defaults to CLOSURE_TYPICAL if 0 // maxThreads defaults to THREAD_TYPICAL if 0 SLresult ThreadPool_init(ThreadPool *tp, unsigned maxClosures, unsigned maxThreads) { assert(NULL != tp); memset(tp, 0, sizeof(ThreadPool)); tp->mShutdown = SL_BOOLEAN_FALSE; unsigned initialized = INITIALIZED_NONE; // which objects were successfully initialized unsigned nThreads = 0; // number of threads successfully created int err; SLresult result; // initialize mutex and condition variables err = pthread_mutex_init(&tp->mMutex, (const pthread_mutexattr_t *) NULL); result = err_to_result(err); if (SL_RESULT_SUCCESS != result) goto fail; initialized |= INITIALIZED_MUTEX; err = pthread_cond_init(&tp->mCondNotFull, (const pthread_condattr_t *) NULL); result = err_to_result(err); if (SL_RESULT_SUCCESS != result) goto fail; initialized |= INITIALIZED_CONDNOTFULL; err = pthread_cond_init(&tp->mCondNotEmpty, (const pthread_condattr_t *) NULL); result = err_to_result(err); if (SL_RESULT_SUCCESS != result) goto fail; initialized |= INITIALIZED_CONDNOTEMPTY; // use default values for parameters, if not specified explicitly tp->mWaitingNotFull = 0; tp->mWaitingNotEmpty = 0; if (0 == maxClosures) maxClosures = CLOSURE_TYPICAL; tp->mMaxClosures = maxClosures; if (0 == maxThreads) maxThreads = THREAD_TYPICAL; tp->mMaxThreads = maxThreads; // initialize circular buffer for closures if (CLOSURE_TYPICAL >= maxClosures) { tp->mClosureArray = tp->mClosureTypical; } else { tp->mClosureArray = (Closure **) malloc((maxClosures + 1) * sizeof(Closure *)); if (NULL == tp->mClosureArray) { result = SL_RESULT_RESOURCE_ERROR; goto fail; } } tp->mClosureFront = tp->mClosureArray; tp->mClosureRear = tp->mClosureArray; // initialize thread pool if (THREAD_TYPICAL >= maxThreads) { tp->mThreadArray = tp->mThreadTypical; } else { tp->mThreadArray = (pthread_t *) malloc(maxThreads * sizeof(pthread_t)); if (NULL == tp->mThreadArray) { result = SL_RESULT_RESOURCE_ERROR; goto fail; } } unsigned i; for (i = 0; i < maxThreads; ++i) { int err = pthread_create(&tp->mThreadArray[i], (const pthread_attr_t *) NULL, ThreadPool_start, tp); result = err_to_result(err); if (SL_RESULT_SUCCESS != result) goto fail; ++nThreads; } tp->mInitialized = initialized; // done return SL_RESULT_SUCCESS; // here on any kind of error fail: ThreadPool_deinit_internal(tp, initialized, nThreads); return result; } static void ThreadPool_deinit_internal(ThreadPool *tp, unsigned initialized, unsigned nThreads) { int ok; assert(NULL != tp); // Destroy all threads if (0 < nThreads) { assert(INITIALIZED_ALL == initialized); ok = pthread_mutex_lock(&tp->mMutex); assert(0 == ok); tp->mShutdown = SL_BOOLEAN_TRUE; ok = pthread_cond_broadcast(&tp->mCondNotEmpty); assert(0 == ok); ok = pthread_cond_broadcast(&tp->mCondNotFull); assert(0 == ok); ok = pthread_mutex_unlock(&tp->mMutex); assert(0 == ok); unsigned i; for (i = 0; i < nThreads; ++i) { ok = pthread_join(tp->mThreadArray[i], (void **) NULL); assert(ok == 0); } // Empty out the circular buffer of closures ok = pthread_mutex_lock(&tp->mMutex); assert(0 == ok); Closure **oldFront = tp->mClosureFront; while (oldFront != tp->mClosureRear) { Closure **newFront = oldFront; if (++newFront == &tp->mClosureArray[tp->mMaxClosures + 1]) newFront = tp->mClosureArray; Closure *pClosure = *oldFront; assert(NULL != pClosure); *oldFront = NULL; tp->mClosureFront = newFront; ok = pthread_mutex_unlock(&tp->mMutex); assert(0 == ok); free(pClosure); ok = pthread_mutex_lock(&tp->mMutex); assert(0 == ok); } ok = pthread_mutex_unlock(&tp->mMutex); assert(0 == ok); // Note that we can't be sure when mWaitingNotFull will drop to zero } // destroy the mutex and condition variables if (initialized & INITIALIZED_CONDNOTEMPTY) { ok = pthread_cond_destroy(&tp->mCondNotEmpty); assert(0 == ok); } if (initialized & INITIALIZED_CONDNOTFULL) { ok = pthread_cond_destroy(&tp->mCondNotFull); assert(0 == ok); } if (initialized & INITIALIZED_MUTEX) { ok = pthread_mutex_destroy(&tp->mMutex); assert(0 == ok); } tp->mInitialized = INITIALIZED_NONE; // release the closure circular buffer if (tp->mClosureTypical != tp->mClosureArray && NULL != tp->mClosureArray) { free(tp->mClosureArray); tp->mClosureArray = NULL; } // release the thread pool if (tp->mThreadTypical != tp->mThreadArray && NULL != tp->mThreadArray) { free(tp->mThreadArray); tp->mThreadArray = NULL; } } void ThreadPool_deinit(ThreadPool *tp) { ThreadPool_deinit_internal(tp, tp->mInitialized, tp->mMaxThreads); } // Enqueue a closure to be executed later by a worker thread. // Note that this raw interface requires an explicit "kind" and full parameter list. // There are convenience methods below that make this easier to use. SLresult ThreadPool_add(ThreadPool *tp, ClosureKind kind, ClosureHandler_generic handler, void *context1, void *context2, void *context3, int parameter1, int parameter2) { assert(NULL != tp); assert(NULL != handler); Closure *closure = (Closure *) malloc(sizeof(Closure)); if (NULL == closure) { return SL_RESULT_RESOURCE_ERROR; } closure->mKind = kind; switch (kind) { case CLOSURE_KIND_PPI: closure->mHandler.mHandler_ppi = (ClosureHandler_ppi)handler; break; case CLOSURE_KIND_PPII: closure->mHandler.mHandler_ppii = (ClosureHandler_ppii)handler; break; case CLOSURE_KIND_PIIPP: closure->mHandler.mHandler_piipp = (ClosureHandler_piipp)handler; break; default: SL_LOGE("ThreadPool_add() invalid closure kind %d", kind); assert(false); } closure->mContext1 = context1; closure->mContext2 = context2; closure->mContext3 = context3; closure->mParameter1 = parameter1; closure->mParameter2 = parameter2; int ok; ok = pthread_mutex_lock(&tp->mMutex); assert(0 == ok); // can't enqueue while thread pool shutting down if (tp->mShutdown) { ok = pthread_mutex_unlock(&tp->mMutex); assert(0 == ok); free(closure); return SL_RESULT_PRECONDITIONS_VIOLATED; } for (;;) { Closure **oldRear = tp->mClosureRear; Closure **newRear = oldRear; if (++newRear == &tp->mClosureArray[tp->mMaxClosures + 1]) newRear = tp->mClosureArray; // if closure circular buffer is full, then wait for it to become non-full if (newRear == tp->mClosureFront) { ++tp->mWaitingNotFull; ok = pthread_cond_wait(&tp->mCondNotFull, &tp->mMutex); assert(0 == ok); // can't enqueue while thread pool shutting down if (tp->mShutdown) { assert(0 < tp->mWaitingNotFull); --tp->mWaitingNotFull; ok = pthread_mutex_unlock(&tp->mMutex); assert(0 == ok); free(closure); return SL_RESULT_PRECONDITIONS_VIOLATED; } continue; } assert(NULL == *oldRear); *oldRear = closure; tp->mClosureRear = newRear; // if a worker thread was waiting to dequeue, then suggest that it try again if (0 < tp->mWaitingNotEmpty) { --tp->mWaitingNotEmpty; ok = pthread_cond_signal(&tp->mCondNotEmpty); assert(0 == ok); } break; } ok = pthread_mutex_unlock(&tp->mMutex); assert(0 == ok); return SL_RESULT_SUCCESS; } // Called by a worker thread when it is ready to accept the next closure to execute Closure *ThreadPool_remove(ThreadPool *tp) { Closure *pClosure; int ok; ok = pthread_mutex_lock(&tp->mMutex); assert(0 == ok); for (;;) { // fail if thread pool is shutting down if (tp->mShutdown) { pClosure = NULL; break; } Closure **oldFront = tp->mClosureFront; // if closure circular buffer is empty, then wait for it to become non-empty if (oldFront == tp->mClosureRear) { ++tp->mWaitingNotEmpty; ok = pthread_cond_wait(&tp->mCondNotEmpty, &tp->mMutex); assert(0 == ok); // try again continue; } // dequeue the closure at front of circular buffer Closure **newFront = oldFront; if (++newFront == &tp->mClosureArray[tp->mMaxClosures + 1]) { newFront = tp->mClosureArray; } pClosure = *oldFront; assert(NULL != pClosure); *oldFront = NULL; tp->mClosureFront = newFront; // if a client thread was waiting to enqueue, then suggest that it try again if (0 < tp->mWaitingNotFull) { --tp->mWaitingNotFull; ok = pthread_cond_signal(&tp->mCondNotFull); assert(0 == ok); } break; } ok = pthread_mutex_unlock(&tp->mMutex); assert(0 == ok); return pClosure; } // Convenience methods for applications SLresult ThreadPool_add_ppi(ThreadPool *tp, ClosureHandler_ppi handler, void *context1, void *context2, int parameter1) { // function pointers are the same size so this is a safe cast return ThreadPool_add(tp, CLOSURE_KIND_PPI, (ClosureHandler_generic) handler, context1, context2, NULL, parameter1, 0); } SLresult ThreadPool_add_ppii(ThreadPool *tp, ClosureHandler_ppii handler, void *context1, void *context2, int parameter1, int parameter2) { // function pointers are the same size so this is a safe cast return ThreadPool_add(tp, CLOSURE_KIND_PPII, (ClosureHandler_generic) handler, context1, context2, NULL, parameter1, parameter2); } SLresult ThreadPool_add_piipp(ThreadPool *tp, ClosureHandler_piipp handler, void *cntxt1, int param1, int param2, void *cntxt2, void *cntxt3) { // function pointers are the same size so this is a safe cast return ThreadPool_add(tp, CLOSURE_KIND_PIIPP, (ClosureHandler_generic) handler, cntxt1, cntxt2, cntxt3, param1, param2); }