/* * Copyright 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /****************************************************************************** * * Utility functions to help build and parse the AAC Codec Information * Element and Media Payload. * ******************************************************************************/ #define LOG_TAG "a2dp_aac" #include "bt_target.h" #include "a2dp_aac.h" #include #include #include "a2dp_aac_decoder.h" #include "a2dp_aac_encoder.h" #include "bt_utils.h" #include "osi/include/log.h" #include "osi/include/osi.h" #define A2DP_AAC_DEFAULT_BITRATE 320000 // 320 kbps #define A2DP_AAC_MIN_BITRATE 64000 // 64 kbps // data type for the AAC Codec Information Element */ // NOTE: bits_per_sample is needed only for AAC encoder initialization. typedef struct { uint8_t objectType; /* Object Type */ uint16_t sampleRate; /* Sampling Frequency */ uint8_t channelMode; /* STEREO/MONO */ uint8_t variableBitRateSupport; /* Variable Bit Rate Support*/ uint32_t bitRate; /* Bit rate */ btav_a2dp_codec_bits_per_sample_t bits_per_sample; } tA2DP_AAC_CIE; /* AAC Source codec capabilities */ static const tA2DP_AAC_CIE a2dp_aac_source_caps = { // objectType A2DP_AAC_OBJECT_TYPE_MPEG2_LC, // sampleRate // TODO: AAC 48.0kHz sampling rate should be added back - see b/62301376 A2DP_AAC_SAMPLING_FREQ_44100, // channelMode A2DP_AAC_CHANNEL_MODE_STEREO, // variableBitRateSupport A2DP_AAC_VARIABLE_BIT_RATE_DISABLED, // bitRate A2DP_AAC_DEFAULT_BITRATE, // bits_per_sample BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16}; /* AAC Sink codec capabilities */ static const tA2DP_AAC_CIE a2dp_aac_sink_caps = { // objectType A2DP_AAC_OBJECT_TYPE_MPEG2_LC, // sampleRate A2DP_AAC_SAMPLING_FREQ_44100 | A2DP_AAC_SAMPLING_FREQ_48000, // channelMode A2DP_AAC_CHANNEL_MODE_MONO | A2DP_AAC_CHANNEL_MODE_STEREO, // variableBitRateSupport A2DP_AAC_VARIABLE_BIT_RATE_ENABLED, // bitRate A2DP_AAC_DEFAULT_BITRATE, // bits_per_sample BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16}; /* Default AAC codec configuration */ static const tA2DP_AAC_CIE a2dp_aac_default_config = { A2DP_AAC_OBJECT_TYPE_MPEG2_LC, // objectType A2DP_AAC_SAMPLING_FREQ_44100, // sampleRate A2DP_AAC_CHANNEL_MODE_STEREO, // channelMode A2DP_AAC_VARIABLE_BIT_RATE_DISABLED, // variableBitRateSupport A2DP_AAC_DEFAULT_BITRATE, // bitRate BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16 // bits_per_sample }; static const tA2DP_ENCODER_INTERFACE a2dp_encoder_interface_aac = { a2dp_aac_encoder_init, a2dp_aac_encoder_cleanup, a2dp_aac_feeding_reset, a2dp_aac_feeding_flush, a2dp_aac_get_encoder_interval_ms, a2dp_aac_send_frames, nullptr // set_transmit_queue_length }; static const tA2DP_DECODER_INTERFACE a2dp_decoder_interface_aac = { a2dp_aac_decoder_init, a2dp_aac_decoder_cleanup, a2dp_aac_decoder_decode_packet, }; UNUSED_ATTR static tA2DP_STATUS A2DP_CodecInfoMatchesCapabilityAac( const tA2DP_AAC_CIE* p_cap, const uint8_t* p_codec_info, bool is_capability); // Builds the AAC Media Codec Capabilities byte sequence beginning from the // LOSC octet. |media_type| is the media type |AVDT_MEDIA_TYPE_*|. // |p_ie| is a pointer to the AAC Codec Information Element information. // The result is stored in |p_result|. Returns A2DP_SUCCESS on success, // otherwise the corresponding A2DP error status code. static tA2DP_STATUS A2DP_BuildInfoAac(uint8_t media_type, const tA2DP_AAC_CIE* p_ie, uint8_t* p_result) { if (p_ie == NULL || p_result == NULL) { return A2DP_INVALID_PARAMS; } *p_result++ = A2DP_AAC_CODEC_LEN; *p_result++ = (media_type << 4); *p_result++ = A2DP_MEDIA_CT_AAC; // Object Type if (p_ie->objectType == 0) return A2DP_INVALID_PARAMS; *p_result++ = p_ie->objectType; // Sampling Frequency if (p_ie->sampleRate == 0) return A2DP_INVALID_PARAMS; *p_result++ = (uint8_t)(p_ie->sampleRate & A2DP_AAC_SAMPLING_FREQ_MASK0); *p_result = (uint8_t)((p_ie->sampleRate & A2DP_AAC_SAMPLING_FREQ_MASK1) >> 8); // Channel Mode if (p_ie->channelMode == 0) return A2DP_INVALID_PARAMS; *p_result++ |= (p_ie->channelMode & A2DP_AAC_CHANNEL_MODE_MASK); // Variable Bit Rate Support *p_result = (p_ie->variableBitRateSupport & A2DP_AAC_VARIABLE_BIT_RATE_MASK); // Bit Rate *p_result++ |= (uint8_t)((p_ie->bitRate & A2DP_AAC_BIT_RATE_MASK0) >> 16); *p_result++ = (uint8_t)((p_ie->bitRate & A2DP_AAC_BIT_RATE_MASK1) >> 8); *p_result++ = (uint8_t)(p_ie->bitRate & A2DP_AAC_BIT_RATE_MASK2); return A2DP_SUCCESS; } // Parses the AAC Media Codec Capabilities byte sequence beginning from the // LOSC octet. The result is stored in |p_ie|. The byte sequence to parse is // |p_codec_info|. If |is_capability| is true, the byte sequence is // codec capabilities, otherwise is codec configuration. // Returns A2DP_SUCCESS on success, otherwise the corresponding A2DP error // status code. static tA2DP_STATUS A2DP_ParseInfoAac(tA2DP_AAC_CIE* p_ie, const uint8_t* p_codec_info, bool is_capability) { uint8_t losc; uint8_t media_type; tA2DP_CODEC_TYPE codec_type; if (p_ie == NULL || p_codec_info == NULL) return A2DP_INVALID_PARAMS; // Check the codec capability length losc = *p_codec_info++; if (losc != A2DP_AAC_CODEC_LEN) return A2DP_WRONG_CODEC; media_type = (*p_codec_info++) >> 4; codec_type = *p_codec_info++; /* Check the Media Type and Media Codec Type */ if (media_type != AVDT_MEDIA_TYPE_AUDIO || codec_type != A2DP_MEDIA_CT_AAC) { return A2DP_WRONG_CODEC; } p_ie->objectType = *p_codec_info++; p_ie->sampleRate = (*p_codec_info & A2DP_AAC_SAMPLING_FREQ_MASK0) | (*(p_codec_info + 1) << 8 & A2DP_AAC_SAMPLING_FREQ_MASK1); p_codec_info++; p_ie->channelMode = *p_codec_info & A2DP_AAC_CHANNEL_MODE_MASK; p_codec_info++; p_ie->variableBitRateSupport = *p_codec_info & A2DP_AAC_VARIABLE_BIT_RATE_MASK; p_ie->bitRate = ((*p_codec_info) << 16 & A2DP_AAC_BIT_RATE_MASK0) | (*(p_codec_info + 1) << 8 & A2DP_AAC_BIT_RATE_MASK1) | (*(p_codec_info + 2) & A2DP_AAC_BIT_RATE_MASK2); p_codec_info += 3; if (is_capability) return A2DP_SUCCESS; if (A2DP_BitsSet(p_ie->objectType) != A2DP_SET_ONE_BIT) return A2DP_BAD_OBJ_TYPE; if (A2DP_BitsSet(p_ie->sampleRate) != A2DP_SET_ONE_BIT) return A2DP_BAD_SAMP_FREQ; if (A2DP_BitsSet(p_ie->channelMode) != A2DP_SET_ONE_BIT) return A2DP_BAD_CH_MODE; return A2DP_SUCCESS; } bool A2DP_IsSourceCodecValidAac(const uint8_t* p_codec_info) { tA2DP_AAC_CIE cfg_cie; /* Use a liberal check when parsing the codec info */ return (A2DP_ParseInfoAac(&cfg_cie, p_codec_info, false) == A2DP_SUCCESS) || (A2DP_ParseInfoAac(&cfg_cie, p_codec_info, true) == A2DP_SUCCESS); } bool A2DP_IsSinkCodecValidAac(UNUSED_ATTR const uint8_t* p_codec_info) { tA2DP_AAC_CIE cfg_cie; /* Use a liberal check when parsing the codec info */ return (A2DP_ParseInfoAac(&cfg_cie, p_codec_info, false) == A2DP_SUCCESS) || (A2DP_ParseInfoAac(&cfg_cie, p_codec_info, true) == A2DP_SUCCESS); } bool A2DP_IsPeerSourceCodecValidAac(UNUSED_ATTR const uint8_t* p_codec_info) { tA2DP_AAC_CIE cfg_cie; /* Use a liberal check when parsing the codec info */ return (A2DP_ParseInfoAac(&cfg_cie, p_codec_info, false) == A2DP_SUCCESS) || (A2DP_ParseInfoAac(&cfg_cie, p_codec_info, true) == A2DP_SUCCESS); } bool A2DP_IsPeerSinkCodecValidAac(const uint8_t* p_codec_info) { tA2DP_AAC_CIE cfg_cie; /* Use a liberal check when parsing the codec info */ return (A2DP_ParseInfoAac(&cfg_cie, p_codec_info, false) == A2DP_SUCCESS) || (A2DP_ParseInfoAac(&cfg_cie, p_codec_info, true) == A2DP_SUCCESS); } bool A2DP_IsSinkCodecSupportedAac(const uint8_t* p_codec_info) { return A2DP_CodecInfoMatchesCapabilityAac(&a2dp_aac_sink_caps, p_codec_info, false) == A2DP_SUCCESS; } bool A2DP_IsPeerSourceCodecSupportedAac(const uint8_t* p_codec_info) { return A2DP_CodecInfoMatchesCapabilityAac(&a2dp_aac_sink_caps, p_codec_info, true) == A2DP_SUCCESS; } // Checks whether A2DP AAC codec configuration matches with a device's codec // capabilities. |p_cap| is the AAC codec configuration. |p_codec_info| is // the device's codec capabilities. |is_capability| is true if // |p_codec_info| contains A2DP codec capability. // Returns A2DP_SUCCESS if the codec configuration matches with capabilities, // otherwise the corresponding A2DP error status code. static tA2DP_STATUS A2DP_CodecInfoMatchesCapabilityAac( const tA2DP_AAC_CIE* p_cap, const uint8_t* p_codec_info, bool is_capability) { tA2DP_STATUS status; tA2DP_AAC_CIE cfg_cie; /* parse configuration */ status = A2DP_ParseInfoAac(&cfg_cie, p_codec_info, is_capability); if (status != A2DP_SUCCESS) { LOG_ERROR(LOG_TAG, "%s: parsing failed %d", __func__, status); return status; } /* verify that each parameter is in range */ LOG_VERBOSE(LOG_TAG, "%s: Object Type peer: 0x%x, capability 0x%x", __func__, cfg_cie.objectType, p_cap->objectType); LOG_VERBOSE(LOG_TAG, "%s: Sample Rate peer: %u, capability %u", __func__, cfg_cie.sampleRate, p_cap->sampleRate); LOG_VERBOSE(LOG_TAG, "%s: Channel Mode peer: 0x%x, capability 0x%x", __func__, cfg_cie.channelMode, p_cap->channelMode); LOG_VERBOSE( LOG_TAG, "%s: Variable Bit Rate Support peer: 0x%x, capability 0x%x", __func__, cfg_cie.variableBitRateSupport, p_cap->variableBitRateSupport); LOG_VERBOSE(LOG_TAG, "%s: Bit Rate peer: %u, capability %u", __func__, cfg_cie.bitRate, p_cap->bitRate); /* Object Type */ if ((cfg_cie.objectType & p_cap->objectType) == 0) return A2DP_BAD_OBJ_TYPE; /* Sample Rate */ if ((cfg_cie.sampleRate & p_cap->sampleRate) == 0) return A2DP_BAD_SAMP_FREQ; /* Channel Mode */ if ((cfg_cie.channelMode & p_cap->channelMode) == 0) return A2DP_NS_CH_MODE; return A2DP_SUCCESS; } bool A2DP_UsesRtpHeaderAac(UNUSED_ATTR bool content_protection_enabled, UNUSED_ATTR const uint8_t* p_codec_info) { return true; } const char* A2DP_CodecNameAac(UNUSED_ATTR const uint8_t* p_codec_info) { return "AAC"; } bool A2DP_CodecTypeEqualsAac(const uint8_t* p_codec_info_a, const uint8_t* p_codec_info_b) { tA2DP_AAC_CIE aac_cie_a; tA2DP_AAC_CIE aac_cie_b; // Check whether the codec info contains valid data tA2DP_STATUS a2dp_status = A2DP_ParseInfoAac(&aac_cie_a, p_codec_info_a, true); if (a2dp_status != A2DP_SUCCESS) { LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__, a2dp_status); return false; } a2dp_status = A2DP_ParseInfoAac(&aac_cie_b, p_codec_info_b, true); if (a2dp_status != A2DP_SUCCESS) { LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__, a2dp_status); return false; } return true; } bool A2DP_CodecEqualsAac(const uint8_t* p_codec_info_a, const uint8_t* p_codec_info_b) { tA2DP_AAC_CIE aac_cie_a; tA2DP_AAC_CIE aac_cie_b; // Check whether the codec info contains valid data tA2DP_STATUS a2dp_status = A2DP_ParseInfoAac(&aac_cie_a, p_codec_info_a, true); if (a2dp_status != A2DP_SUCCESS) { LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__, a2dp_status); return false; } a2dp_status = A2DP_ParseInfoAac(&aac_cie_b, p_codec_info_b, true); if (a2dp_status != A2DP_SUCCESS) { LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__, a2dp_status); return false; } return (aac_cie_a.objectType == aac_cie_b.objectType) && (aac_cie_a.sampleRate == aac_cie_b.sampleRate) && (aac_cie_a.channelMode == aac_cie_b.channelMode) && (aac_cie_a.variableBitRateSupport == aac_cie_b.variableBitRateSupport) && (aac_cie_a.bitRate == aac_cie_b.bitRate); } int A2DP_GetTrackSampleRateAac(const uint8_t* p_codec_info) { tA2DP_AAC_CIE aac_cie; // Check whether the codec info contains valid data tA2DP_STATUS a2dp_status = A2DP_ParseInfoAac(&aac_cie, p_codec_info, false); if (a2dp_status != A2DP_SUCCESS) { LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__, a2dp_status); return -1; } switch (aac_cie.sampleRate) { case A2DP_AAC_SAMPLING_FREQ_8000: return 8000; case A2DP_AAC_SAMPLING_FREQ_11025: return 11025; case A2DP_AAC_SAMPLING_FREQ_12000: return 12000; case A2DP_AAC_SAMPLING_FREQ_16000: return 16000; case A2DP_AAC_SAMPLING_FREQ_22050: return 22050; case A2DP_AAC_SAMPLING_FREQ_24000: return 24000; case A2DP_AAC_SAMPLING_FREQ_32000: return 32000; case A2DP_AAC_SAMPLING_FREQ_44100: return 44100; case A2DP_AAC_SAMPLING_FREQ_48000: return 48000; case A2DP_AAC_SAMPLING_FREQ_64000: return 64000; case A2DP_AAC_SAMPLING_FREQ_88200: return 88200; case A2DP_AAC_SAMPLING_FREQ_96000: return 96000; } return -1; } int A2DP_GetTrackChannelCountAac(const uint8_t* p_codec_info) { tA2DP_AAC_CIE aac_cie; // Check whether the codec info contains valid data tA2DP_STATUS a2dp_status = A2DP_ParseInfoAac(&aac_cie, p_codec_info, false); if (a2dp_status != A2DP_SUCCESS) { LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__, a2dp_status); return -1; } switch (aac_cie.channelMode) { case A2DP_AAC_CHANNEL_MODE_MONO: return 1; case A2DP_AAC_CHANNEL_MODE_STEREO: return 2; } return -1; } int A2DP_GetSinkTrackChannelTypeAac(const uint8_t* p_codec_info) { tA2DP_AAC_CIE aac_cie; // Check whether the codec info contains valid data tA2DP_STATUS a2dp_status = A2DP_ParseInfoAac(&aac_cie, p_codec_info, false); if (a2dp_status != A2DP_SUCCESS) { LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__, a2dp_status); return -1; } switch (aac_cie.channelMode) { case A2DP_AAC_CHANNEL_MODE_MONO: return 1; case A2DP_AAC_CHANNEL_MODE_STEREO: return 3; } return -1; } int A2DP_GetObjectTypeCodeAac(const uint8_t* p_codec_info) { tA2DP_AAC_CIE aac_cie; // Check whether the codec info contains valid data tA2DP_STATUS a2dp_status = A2DP_ParseInfoAac(&aac_cie, p_codec_info, false); if (a2dp_status != A2DP_SUCCESS) { LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__, a2dp_status); return -1; } switch (aac_cie.objectType) { case A2DP_AAC_OBJECT_TYPE_MPEG2_LC: case A2DP_AAC_OBJECT_TYPE_MPEG4_LC: case A2DP_AAC_OBJECT_TYPE_MPEG4_LTP: case A2DP_AAC_OBJECT_TYPE_MPEG4_SCALABLE: return aac_cie.objectType; default: break; } return -1; } int A2DP_GetChannelModeCodeAac(const uint8_t* p_codec_info) { tA2DP_AAC_CIE aac_cie; // Check whether the codec info contains valid data tA2DP_STATUS a2dp_status = A2DP_ParseInfoAac(&aac_cie, p_codec_info, false); if (a2dp_status != A2DP_SUCCESS) { LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__, a2dp_status); return -1; } switch (aac_cie.channelMode) { case A2DP_AAC_CHANNEL_MODE_MONO: case A2DP_AAC_CHANNEL_MODE_STEREO: return aac_cie.channelMode; default: break; } return -1; } int A2DP_GetVariableBitRateSupportAac(const uint8_t* p_codec_info) { tA2DP_AAC_CIE aac_cie; // Check whether the codec info contains valid data tA2DP_STATUS a2dp_status = A2DP_ParseInfoAac(&aac_cie, p_codec_info, false); if (a2dp_status != A2DP_SUCCESS) { LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__, a2dp_status); return -1; } switch (aac_cie.variableBitRateSupport) { case A2DP_AAC_VARIABLE_BIT_RATE_ENABLED: case A2DP_AAC_VARIABLE_BIT_RATE_DISABLED: return aac_cie.variableBitRateSupport; default: break; } return -1; } int A2DP_GetBitRateAac(const uint8_t* p_codec_info) { tA2DP_AAC_CIE aac_cie; // Check whether the codec info contains valid data tA2DP_STATUS a2dp_status = A2DP_ParseInfoAac(&aac_cie, p_codec_info, false); if (a2dp_status != A2DP_SUCCESS) { LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__, a2dp_status); return -1; } return aac_cie.bitRate; } int A2DP_ComputeMaxBitRateAac(const uint8_t* p_codec_info, uint16_t mtu) { tA2DP_AAC_CIE aac_cie; // Check whether the codec info contains valid data tA2DP_STATUS a2dp_status = A2DP_ParseInfoAac(&aac_cie, p_codec_info, false); if (a2dp_status != A2DP_SUCCESS) { LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__, a2dp_status); return -1; } int sampling_freq = A2DP_GetTrackSampleRateAac(p_codec_info); if (sampling_freq == -1) return -1; int pcm_channel_samples_per_frame = 0; switch (aac_cie.objectType) { case A2DP_AAC_OBJECT_TYPE_MPEG2_LC: case A2DP_AAC_OBJECT_TYPE_MPEG4_LC: pcm_channel_samples_per_frame = 1024; break; case A2DP_AAC_OBJECT_TYPE_MPEG4_LTP: case A2DP_AAC_OBJECT_TYPE_MPEG4_SCALABLE: // TODO: The MPEG documentation doesn't specify the value. break; default: break; } if (pcm_channel_samples_per_frame == 0) return -1; // See Section 3.2.1 Estimating Average Frame Size from // the aacEncoder.pdf document included with the AAC source code. return (8 * mtu * sampling_freq) / pcm_channel_samples_per_frame; } bool A2DP_GetPacketTimestampAac(const uint8_t* p_codec_info, const uint8_t* p_data, uint32_t* p_timestamp) { // TODO: Is this function really codec-specific? *p_timestamp = *(const uint32_t*)p_data; return true; } bool A2DP_BuildCodecHeaderAac(UNUSED_ATTR const uint8_t* p_codec_info, UNUSED_ATTR BT_HDR* p_buf, UNUSED_ATTR uint16_t frames_per_packet) { return true; } std::string A2DP_CodecInfoStringAac(const uint8_t* p_codec_info) { std::stringstream res; std::string field; tA2DP_STATUS a2dp_status; tA2DP_AAC_CIE aac_cie; a2dp_status = A2DP_ParseInfoAac(&aac_cie, p_codec_info, true); if (a2dp_status != A2DP_SUCCESS) { res << "A2DP_ParseInfoAac fail: " << loghex(a2dp_status); return res.str(); } res << "\tname: AAC\n"; // Object type field.clear(); AppendField(&field, (aac_cie.objectType == 0), "NONE"); AppendField(&field, (aac_cie.objectType & A2DP_AAC_OBJECT_TYPE_MPEG2_LC), "(MPEG-2 AAC LC)"); AppendField(&field, (aac_cie.objectType & A2DP_AAC_OBJECT_TYPE_MPEG4_LC), "(MPEG-4 AAC LC)"); AppendField(&field, (aac_cie.objectType & A2DP_AAC_OBJECT_TYPE_MPEG4_LTP), "(MPEG-4 AAC LTP)"); AppendField(&field, (aac_cie.objectType & A2DP_AAC_OBJECT_TYPE_MPEG4_SCALABLE), "(MPEG-4 AAC Scalable)"); res << "\tobjectType: " << field << " (" << loghex(aac_cie.objectType) << ")\n"; // Sample frequency field.clear(); AppendField(&field, (aac_cie.sampleRate == 0), "NONE"); AppendField(&field, (aac_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_8000), "8000"); AppendField(&field, (aac_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_11025), "11025"); AppendField(&field, (aac_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_12000), "12000"); AppendField(&field, (aac_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_16000), "16000"); AppendField(&field, (aac_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_22050), "22050"); AppendField(&field, (aac_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_24000), "24000"); AppendField(&field, (aac_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_32000), "32000"); AppendField(&field, (aac_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_44100), "44100"); AppendField(&field, (aac_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_48000), "48000"); AppendField(&field, (aac_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_64000), "64000"); AppendField(&field, (aac_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_88200), "88200"); AppendField(&field, (aac_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_96000), "96000"); res << "\tsamp_freq: " << field << " (" << loghex(aac_cie.sampleRate) << ")\n"; // Channel mode field.clear(); AppendField(&field, (aac_cie.channelMode == 0), "NONE"); AppendField(&field, (aac_cie.channelMode == A2DP_AAC_CHANNEL_MODE_MONO), "Mono"); AppendField(&field, (aac_cie.channelMode == A2DP_AAC_CHANNEL_MODE_STEREO), "Stereo"); res << "\tch_mode: " << field << " (" << loghex(aac_cie.channelMode) << ")\n"; // Variable bit rate support res << "\tvariableBitRateSupport: " << std::boolalpha << (aac_cie.variableBitRateSupport != 0) << "\n"; // Bit rate res << "\tbitRate: " << std::to_string(aac_cie.bitRate) << "\n"; return res.str(); } const tA2DP_ENCODER_INTERFACE* A2DP_GetEncoderInterfaceAac( const uint8_t* p_codec_info) { if (!A2DP_IsSourceCodecValidAac(p_codec_info)) return NULL; return &a2dp_encoder_interface_aac; } const tA2DP_DECODER_INTERFACE* A2DP_GetDecoderInterfaceAac( const uint8_t* p_codec_info) { if (!A2DP_IsSinkCodecValidAac(p_codec_info)) return NULL; return &a2dp_decoder_interface_aac; } bool A2DP_AdjustCodecAac(uint8_t* p_codec_info) { tA2DP_AAC_CIE cfg_cie; // Nothing to do: just verify the codec info is valid if (A2DP_ParseInfoAac(&cfg_cie, p_codec_info, true) != A2DP_SUCCESS) return false; return true; } btav_a2dp_codec_index_t A2DP_SourceCodecIndexAac( UNUSED_ATTR const uint8_t* p_codec_info) { return BTAV_A2DP_CODEC_INDEX_SOURCE_AAC; } btav_a2dp_codec_index_t A2DP_SinkCodecIndexAac( UNUSED_ATTR const uint8_t* p_codec_info) { return BTAV_A2DP_CODEC_INDEX_SINK_AAC; } const char* A2DP_CodecIndexStrAac(void) { return "AAC"; } const char* A2DP_CodecIndexStrAacSink(void) { return "AAC SINK"; } bool A2DP_InitCodecConfigAac(AvdtpSepConfig* p_cfg) { if (A2DP_BuildInfoAac(AVDT_MEDIA_TYPE_AUDIO, &a2dp_aac_source_caps, p_cfg->codec_info) != A2DP_SUCCESS) { return false; } #if (BTA_AV_CO_CP_SCMS_T == TRUE) /* Content protection info - support SCMS-T */ uint8_t* p = p_cfg->protect_info; *p++ = AVDT_CP_LOSC; UINT16_TO_STREAM(p, AVDT_CP_SCMS_T_ID); p_cfg->num_protect = 1; #endif return true; } bool A2DP_InitCodecConfigAacSink(AvdtpSepConfig* p_cfg) { return A2DP_BuildInfoAac(AVDT_MEDIA_TYPE_AUDIO, &a2dp_aac_sink_caps, p_cfg->codec_info) == A2DP_SUCCESS; } UNUSED_ATTR static void build_codec_config(const tA2DP_AAC_CIE& config_cie, btav_a2dp_codec_config_t* result) { if (config_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_44100) result->sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_44100; if (config_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_48000) result->sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_48000; if (config_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_88200) result->sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_88200; if (config_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_96000) result->sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_96000; result->bits_per_sample = config_cie.bits_per_sample; if (config_cie.channelMode & A2DP_AAC_CHANNEL_MODE_MONO) result->channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_MONO; if (config_cie.channelMode & A2DP_AAC_CHANNEL_MODE_STEREO) { result->channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO; } } A2dpCodecConfigAacSource::A2dpCodecConfigAacSource( btav_a2dp_codec_priority_t codec_priority) : A2dpCodecConfigAacBase(BTAV_A2DP_CODEC_INDEX_SOURCE_AAC, A2DP_CodecIndexStrAac(), codec_priority, true) { // Compute the local capability if (a2dp_aac_source_caps.sampleRate & A2DP_AAC_SAMPLING_FREQ_44100) { codec_local_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_44100; } if (a2dp_aac_source_caps.sampleRate & A2DP_AAC_SAMPLING_FREQ_48000) { codec_local_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_48000; } if (a2dp_aac_source_caps.sampleRate & A2DP_AAC_SAMPLING_FREQ_88200) { codec_local_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_88200; } if (a2dp_aac_source_caps.sampleRate & A2DP_AAC_SAMPLING_FREQ_96000) { codec_local_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_96000; } codec_local_capability_.bits_per_sample = a2dp_aac_source_caps.bits_per_sample; if (a2dp_aac_source_caps.channelMode & A2DP_AAC_CHANNEL_MODE_MONO) { codec_local_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_MONO; } if (a2dp_aac_source_caps.channelMode & A2DP_AAC_CHANNEL_MODE_STEREO) { codec_local_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO; } } A2dpCodecConfigAacSource::~A2dpCodecConfigAacSource() {} bool A2dpCodecConfigAacSource::init() { if (!isValid()) return false; // Load the encoder if (!A2DP_LoadEncoderAac()) { LOG_ERROR(LOG_TAG, "%s: cannot load the encoder", __func__); return false; } return true; } bool A2dpCodecConfigAacSource::useRtpHeaderMarkerBit() const { return true; } // // Selects the best sample rate from |sampleRate|. // The result is stored in |p_result| and |p_codec_config|. // Returns true if a selection was made, otherwise false. // static bool select_best_sample_rate(uint16_t sampleRate, tA2DP_AAC_CIE* p_result, btav_a2dp_codec_config_t* p_codec_config) { if (sampleRate & A2DP_AAC_SAMPLING_FREQ_96000) { p_result->sampleRate = A2DP_AAC_SAMPLING_FREQ_96000; p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_96000; return true; } if (sampleRate & A2DP_AAC_SAMPLING_FREQ_88200) { p_result->sampleRate = A2DP_AAC_SAMPLING_FREQ_88200; p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_88200; return true; } if (sampleRate & A2DP_AAC_SAMPLING_FREQ_48000) { p_result->sampleRate = A2DP_AAC_SAMPLING_FREQ_48000; p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_48000; return true; } if (sampleRate & A2DP_AAC_SAMPLING_FREQ_44100) { p_result->sampleRate = A2DP_AAC_SAMPLING_FREQ_44100; p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_44100; return true; } return false; } // // Selects the audio sample rate from |p_codec_audio_config|. // |sampleRate| contains the capability. // The result is stored in |p_result| and |p_codec_config|. // Returns true if a selection was made, otherwise false. // static bool select_audio_sample_rate( const btav_a2dp_codec_config_t* p_codec_audio_config, uint16_t sampleRate, tA2DP_AAC_CIE* p_result, btav_a2dp_codec_config_t* p_codec_config) { switch (p_codec_audio_config->sample_rate) { case BTAV_A2DP_CODEC_SAMPLE_RATE_44100: if (sampleRate & A2DP_AAC_SAMPLING_FREQ_44100) { p_result->sampleRate = A2DP_AAC_SAMPLING_FREQ_44100; p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_44100; return true; } break; case BTAV_A2DP_CODEC_SAMPLE_RATE_48000: if (sampleRate & A2DP_AAC_SAMPLING_FREQ_48000) { p_result->sampleRate = A2DP_AAC_SAMPLING_FREQ_48000; p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_48000; return true; } break; case BTAV_A2DP_CODEC_SAMPLE_RATE_88200: if (sampleRate & A2DP_AAC_SAMPLING_FREQ_88200) { p_result->sampleRate = A2DP_AAC_SAMPLING_FREQ_88200; p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_88200; return true; } break; case BTAV_A2DP_CODEC_SAMPLE_RATE_96000: if (sampleRate & A2DP_AAC_SAMPLING_FREQ_96000) { p_result->sampleRate = A2DP_AAC_SAMPLING_FREQ_96000; p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_96000; return true; } break; case BTAV_A2DP_CODEC_SAMPLE_RATE_176400: case BTAV_A2DP_CODEC_SAMPLE_RATE_192000: case BTAV_A2DP_CODEC_SAMPLE_RATE_16000: case BTAV_A2DP_CODEC_SAMPLE_RATE_24000: case BTAV_A2DP_CODEC_SAMPLE_RATE_NONE: break; } return false; } // // Selects the best bits per sample from |bits_per_sample|. // |bits_per_sample| contains the capability. // The result is stored in |p_result| and |p_codec_config|. // Returns true if a selection was made, otherwise false. // static bool select_best_bits_per_sample( btav_a2dp_codec_bits_per_sample_t bits_per_sample, tA2DP_AAC_CIE* p_result, btav_a2dp_codec_config_t* p_codec_config) { if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32) { p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32; p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32; return true; } if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24) { p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24; p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24; return true; } if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16) { p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16; p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16; return true; } return false; } // // Selects the audio bits per sample from |p_codec_audio_config|. // |bits_per_sample| contains the capability. // The result is stored in |p_result| and |p_codec_config|. // Returns true if a selection was made, otherwise false. // static bool select_audio_bits_per_sample( const btav_a2dp_codec_config_t* p_codec_audio_config, btav_a2dp_codec_bits_per_sample_t bits_per_sample, tA2DP_AAC_CIE* p_result, btav_a2dp_codec_config_t* p_codec_config) { switch (p_codec_audio_config->bits_per_sample) { case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16: if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16) { p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16; p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16; return true; } break; case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24: if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24) { p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24; p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24; return true; } break; case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32: if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32) { p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32; p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32; return true; } break; case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE: break; } return false; } // // Selects the best channel mode from |channelMode|. // The result is stored in |p_result| and |p_codec_config|. // Returns true if a selection was made, otherwise false. // static bool select_best_channel_mode(uint8_t channelMode, tA2DP_AAC_CIE* p_result, btav_a2dp_codec_config_t* p_codec_config) { if (channelMode & A2DP_AAC_CHANNEL_MODE_STEREO) { p_result->channelMode = A2DP_AAC_CHANNEL_MODE_STEREO; p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO; return true; } if (channelMode & A2DP_AAC_CHANNEL_MODE_MONO) { p_result->channelMode = A2DP_AAC_CHANNEL_MODE_MONO; p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_MONO; return true; } return false; } // // Selects the audio channel mode from |p_codec_audio_config|. // |channelMode| contains the capability. // The result is stored in |p_result| and |p_codec_config|. // Returns true if a selection was made, otherwise false. // static bool select_audio_channel_mode( const btav_a2dp_codec_config_t* p_codec_audio_config, uint8_t channelMode, tA2DP_AAC_CIE* p_result, btav_a2dp_codec_config_t* p_codec_config) { switch (p_codec_audio_config->channel_mode) { case BTAV_A2DP_CODEC_CHANNEL_MODE_MONO: if (channelMode & A2DP_AAC_CHANNEL_MODE_MONO) { p_result->channelMode = A2DP_AAC_CHANNEL_MODE_MONO; p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_MONO; return true; } break; case BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO: if (channelMode & A2DP_AAC_CHANNEL_MODE_STEREO) { p_result->channelMode = A2DP_AAC_CHANNEL_MODE_STEREO; p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO; return true; } break; case BTAV_A2DP_CODEC_CHANNEL_MODE_NONE: break; } return false; } bool A2dpCodecConfigAacBase::setCodecConfig(const uint8_t* p_peer_codec_info, bool is_capability, uint8_t* p_result_codec_config) { std::lock_guard lock(codec_mutex_); tA2DP_AAC_CIE peer_info_cie; tA2DP_AAC_CIE result_config_cie; uint8_t channelMode; uint16_t sampleRate; btav_a2dp_codec_bits_per_sample_t bits_per_sample; const tA2DP_AAC_CIE* p_a2dp_aac_caps = (is_source_) ? &a2dp_aac_source_caps : &a2dp_aac_sink_caps; // Save the internal state btav_a2dp_codec_config_t saved_codec_config = codec_config_; btav_a2dp_codec_config_t saved_codec_capability = codec_capability_; btav_a2dp_codec_config_t saved_codec_selectable_capability = codec_selectable_capability_; btav_a2dp_codec_config_t saved_codec_user_config = codec_user_config_; btav_a2dp_codec_config_t saved_codec_audio_config = codec_audio_config_; uint8_t saved_ota_codec_config[AVDT_CODEC_SIZE]; uint8_t saved_ota_codec_peer_capability[AVDT_CODEC_SIZE]; uint8_t saved_ota_codec_peer_config[AVDT_CODEC_SIZE]; memcpy(saved_ota_codec_config, ota_codec_config_, sizeof(ota_codec_config_)); memcpy(saved_ota_codec_peer_capability, ota_codec_peer_capability_, sizeof(ota_codec_peer_capability_)); memcpy(saved_ota_codec_peer_config, ota_codec_peer_config_, sizeof(ota_codec_peer_config_)); tA2DP_STATUS status = A2DP_ParseInfoAac(&peer_info_cie, p_peer_codec_info, is_capability); if (status != A2DP_SUCCESS) { LOG_ERROR(LOG_TAG, "%s: can't parse peer's capabilities: error = %d", __func__, status); goto fail; } // // Build the preferred configuration // memset(&result_config_cie, 0, sizeof(result_config_cie)); // NOTE: Always assign the Object Type and Variable Bit Rate Support. result_config_cie.objectType = p_a2dp_aac_caps->objectType; // The Variable Bit Rate Support is disabled if either side disables it result_config_cie.variableBitRateSupport = p_a2dp_aac_caps->variableBitRateSupport & peer_info_cie.variableBitRateSupport; // Set the bit rate as follows: // 1. If the remote device reports a bogus bit rate // (bitRate < A2DP_AAC_MIN_BITRATE), then use the bit rate from our // configuration. Examples of observed bogus bit rates are zero // and 24576. // 2. If the remote device reports valid bit rate // (bitRate >= A2DP_AAC_MIN_BITRATE), then use the smaller // of the remote device's bit rate and the bit rate from our configuration. // In either case, the actual streaming bit rate will also consider the MTU. if (peer_info_cie.bitRate < A2DP_AAC_MIN_BITRATE) { // Bogus bit rate result_config_cie.bitRate = p_a2dp_aac_caps->bitRate; } else { result_config_cie.bitRate = std::min(p_a2dp_aac_caps->bitRate, peer_info_cie.bitRate); } // // Select the sample frequency // sampleRate = p_a2dp_aac_caps->sampleRate & peer_info_cie.sampleRate; codec_config_.sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_NONE; switch (codec_user_config_.sample_rate) { case BTAV_A2DP_CODEC_SAMPLE_RATE_44100: if (sampleRate & A2DP_AAC_SAMPLING_FREQ_44100) { result_config_cie.sampleRate = A2DP_AAC_SAMPLING_FREQ_44100; codec_capability_.sample_rate = codec_user_config_.sample_rate; codec_config_.sample_rate = codec_user_config_.sample_rate; } break; case BTAV_A2DP_CODEC_SAMPLE_RATE_48000: if (sampleRate & A2DP_AAC_SAMPLING_FREQ_48000) { result_config_cie.sampleRate = A2DP_AAC_SAMPLING_FREQ_48000; codec_capability_.sample_rate = codec_user_config_.sample_rate; codec_config_.sample_rate = codec_user_config_.sample_rate; } break; case BTAV_A2DP_CODEC_SAMPLE_RATE_88200: if (sampleRate & A2DP_AAC_SAMPLING_FREQ_88200) { result_config_cie.sampleRate = A2DP_AAC_SAMPLING_FREQ_88200; codec_capability_.sample_rate = codec_user_config_.sample_rate; codec_config_.sample_rate = codec_user_config_.sample_rate; } break; case BTAV_A2DP_CODEC_SAMPLE_RATE_96000: if (sampleRate & A2DP_AAC_SAMPLING_FREQ_96000) { result_config_cie.sampleRate = A2DP_AAC_SAMPLING_FREQ_96000; codec_capability_.sample_rate = codec_user_config_.sample_rate; codec_config_.sample_rate = codec_user_config_.sample_rate; } break; case BTAV_A2DP_CODEC_SAMPLE_RATE_176400: case BTAV_A2DP_CODEC_SAMPLE_RATE_192000: case BTAV_A2DP_CODEC_SAMPLE_RATE_16000: case BTAV_A2DP_CODEC_SAMPLE_RATE_24000: case BTAV_A2DP_CODEC_SAMPLE_RATE_NONE: codec_capability_.sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_NONE; codec_config_.sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_NONE; break; } // Select the sample frequency if there is no user preference do { // Compute the selectable capability if (sampleRate & A2DP_AAC_SAMPLING_FREQ_44100) { codec_selectable_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_44100; } if (sampleRate & A2DP_AAC_SAMPLING_FREQ_48000) { codec_selectable_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_48000; } if (sampleRate & A2DP_AAC_SAMPLING_FREQ_88200) { codec_selectable_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_88200; } if (sampleRate & A2DP_AAC_SAMPLING_FREQ_96000) { codec_selectable_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_96000; } if (codec_config_.sample_rate != BTAV_A2DP_CODEC_SAMPLE_RATE_NONE) break; // Compute the common capability if (sampleRate & A2DP_AAC_SAMPLING_FREQ_44100) codec_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_44100; if (sampleRate & A2DP_AAC_SAMPLING_FREQ_48000) codec_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_48000; if (sampleRate & A2DP_AAC_SAMPLING_FREQ_88200) codec_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_88200; if (sampleRate & A2DP_AAC_SAMPLING_FREQ_96000) codec_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_96000; // No user preference - try the codec audio config if (select_audio_sample_rate(&codec_audio_config_, sampleRate, &result_config_cie, &codec_config_)) { break; } // No user preference - try the default config if (select_best_sample_rate( a2dp_aac_default_config.sampleRate & peer_info_cie.sampleRate, &result_config_cie, &codec_config_)) { break; } // No user preference - use the best match if (select_best_sample_rate(sampleRate, &result_config_cie, &codec_config_)) { break; } } while (false); if (codec_config_.sample_rate == BTAV_A2DP_CODEC_SAMPLE_RATE_NONE) { LOG_ERROR(LOG_TAG, "%s: cannot match sample frequency: source caps = 0x%x " "peer info = 0x%x", __func__, p_a2dp_aac_caps->sampleRate, peer_info_cie.sampleRate); goto fail; } // // Select the bits per sample // // NOTE: this information is NOT included in the AAC A2DP codec description // that is sent OTA. bits_per_sample = p_a2dp_aac_caps->bits_per_sample; codec_config_.bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE; switch (codec_user_config_.bits_per_sample) { case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16: if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16) { result_config_cie.bits_per_sample = codec_user_config_.bits_per_sample; codec_capability_.bits_per_sample = codec_user_config_.bits_per_sample; codec_config_.bits_per_sample = codec_user_config_.bits_per_sample; } break; case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24: if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24) { result_config_cie.bits_per_sample = codec_user_config_.bits_per_sample; codec_capability_.bits_per_sample = codec_user_config_.bits_per_sample; codec_config_.bits_per_sample = codec_user_config_.bits_per_sample; } break; case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32: if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32) { result_config_cie.bits_per_sample = codec_user_config_.bits_per_sample; codec_capability_.bits_per_sample = codec_user_config_.bits_per_sample; codec_config_.bits_per_sample = codec_user_config_.bits_per_sample; } break; case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE: result_config_cie.bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE; codec_capability_.bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE; codec_config_.bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE; break; } // Select the bits per sample if there is no user preference do { // Compute the selectable capability codec_selectable_capability_.bits_per_sample = p_a2dp_aac_caps->bits_per_sample; if (codec_config_.bits_per_sample != BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE) break; // Compute the common capability codec_capability_.bits_per_sample = bits_per_sample; // No user preference - the the codec audio config if (select_audio_bits_per_sample(&codec_audio_config_, p_a2dp_aac_caps->bits_per_sample, &result_config_cie, &codec_config_)) { break; } // No user preference - try the default config if (select_best_bits_per_sample(a2dp_aac_default_config.bits_per_sample, &result_config_cie, &codec_config_)) { break; } // No user preference - use the best match if (select_best_bits_per_sample(p_a2dp_aac_caps->bits_per_sample, &result_config_cie, &codec_config_)) { break; } } while (false); if (codec_config_.bits_per_sample == BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE) { LOG_ERROR(LOG_TAG, "%s: cannot match bits per sample: default = 0x%x " "user preference = 0x%x", __func__, a2dp_aac_default_config.bits_per_sample, codec_user_config_.bits_per_sample); goto fail; } // // Select the channel mode // channelMode = p_a2dp_aac_caps->channelMode & peer_info_cie.channelMode; codec_config_.channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_NONE; switch (codec_user_config_.channel_mode) { case BTAV_A2DP_CODEC_CHANNEL_MODE_MONO: if (channelMode & A2DP_AAC_CHANNEL_MODE_MONO) { result_config_cie.channelMode = A2DP_AAC_CHANNEL_MODE_MONO; codec_capability_.channel_mode = codec_user_config_.channel_mode; codec_config_.channel_mode = codec_user_config_.channel_mode; } break; case BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO: if (channelMode & A2DP_AAC_CHANNEL_MODE_STEREO) { result_config_cie.channelMode = A2DP_AAC_CHANNEL_MODE_STEREO; codec_capability_.channel_mode = codec_user_config_.channel_mode; codec_config_.channel_mode = codec_user_config_.channel_mode; } break; case BTAV_A2DP_CODEC_CHANNEL_MODE_NONE: codec_capability_.channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_NONE; codec_config_.channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_NONE; break; } // Select the channel mode if there is no user preference do { // Compute the selectable capability if (channelMode & A2DP_AAC_CHANNEL_MODE_MONO) { codec_selectable_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_MONO; } if (channelMode & A2DP_AAC_CHANNEL_MODE_STEREO) { codec_selectable_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO; } if (codec_config_.channel_mode != BTAV_A2DP_CODEC_CHANNEL_MODE_NONE) break; // Compute the common capability if (channelMode & A2DP_AAC_CHANNEL_MODE_MONO) codec_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_MONO; if (channelMode & A2DP_AAC_CHANNEL_MODE_STEREO) { codec_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO; } // No user preference - try the codec audio config if (select_audio_channel_mode(&codec_audio_config_, channelMode, &result_config_cie, &codec_config_)) { break; } // No user preference - try the default config if (select_best_channel_mode( a2dp_aac_default_config.channelMode & peer_info_cie.channelMode, &result_config_cie, &codec_config_)) { break; } // No user preference - use the best match if (select_best_channel_mode(channelMode, &result_config_cie, &codec_config_)) { break; } } while (false); if (codec_config_.channel_mode == BTAV_A2DP_CODEC_CHANNEL_MODE_NONE) { LOG_ERROR(LOG_TAG, "%s: cannot match channel mode: source caps = 0x%x " "peer info = 0x%x", __func__, p_a2dp_aac_caps->channelMode, peer_info_cie.channelMode); goto fail; } if (A2DP_BuildInfoAac(AVDT_MEDIA_TYPE_AUDIO, &result_config_cie, p_result_codec_config) != A2DP_SUCCESS) { goto fail; } // // Copy the codec-specific fields if they are not zero // if (codec_user_config_.codec_specific_1 != 0) codec_config_.codec_specific_1 = codec_user_config_.codec_specific_1; if (codec_user_config_.codec_specific_2 != 0) codec_config_.codec_specific_2 = codec_user_config_.codec_specific_2; if (codec_user_config_.codec_specific_3 != 0) codec_config_.codec_specific_3 = codec_user_config_.codec_specific_3; if (codec_user_config_.codec_specific_4 != 0) codec_config_.codec_specific_4 = codec_user_config_.codec_specific_4; // Create a local copy of the peer codec capability/config, and the // result codec config. if (is_capability) { status = A2DP_BuildInfoAac(AVDT_MEDIA_TYPE_AUDIO, &peer_info_cie, ota_codec_peer_capability_); } else { status = A2DP_BuildInfoAac(AVDT_MEDIA_TYPE_AUDIO, &peer_info_cie, ota_codec_peer_config_); } CHECK(status == A2DP_SUCCESS); status = A2DP_BuildInfoAac(AVDT_MEDIA_TYPE_AUDIO, &result_config_cie, ota_codec_config_); CHECK(status == A2DP_SUCCESS); return true; fail: // Restore the internal state codec_config_ = saved_codec_config; codec_capability_ = saved_codec_capability; codec_selectable_capability_ = saved_codec_selectable_capability; codec_user_config_ = saved_codec_user_config; codec_audio_config_ = saved_codec_audio_config; memcpy(ota_codec_config_, saved_ota_codec_config, sizeof(ota_codec_config_)); memcpy(ota_codec_peer_capability_, saved_ota_codec_peer_capability, sizeof(ota_codec_peer_capability_)); memcpy(ota_codec_peer_config_, saved_ota_codec_peer_config, sizeof(ota_codec_peer_config_)); return false; } bool A2dpCodecConfigAacBase::setPeerCodecCapabilities( const uint8_t* p_peer_codec_capabilities) { std::lock_guard lock(codec_mutex_); tA2DP_AAC_CIE peer_info_cie; uint8_t channelMode; uint16_t sampleRate; const tA2DP_AAC_CIE* p_a2dp_aac_caps = (is_source_) ? &a2dp_aac_source_caps : &a2dp_aac_sink_caps; // Save the internal state btav_a2dp_codec_config_t saved_codec_selectable_capability = codec_selectable_capability_; uint8_t saved_ota_codec_peer_capability[AVDT_CODEC_SIZE]; memcpy(saved_ota_codec_peer_capability, ota_codec_peer_capability_, sizeof(ota_codec_peer_capability_)); tA2DP_STATUS status = A2DP_ParseInfoAac(&peer_info_cie, p_peer_codec_capabilities, true); if (status != A2DP_SUCCESS) { LOG_ERROR(LOG_TAG, "%s: can't parse peer's capabilities: error = %d", __func__, status); goto fail; } // Compute the selectable capability - sample rate sampleRate = p_a2dp_aac_caps->sampleRate & peer_info_cie.sampleRate; if (sampleRate & A2DP_AAC_SAMPLING_FREQ_44100) { codec_selectable_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_44100; } if (sampleRate & A2DP_AAC_SAMPLING_FREQ_48000) { codec_selectable_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_48000; } if (sampleRate & A2DP_AAC_SAMPLING_FREQ_88200) { codec_selectable_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_88200; } if (sampleRate & A2DP_AAC_SAMPLING_FREQ_96000) { codec_selectable_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_96000; } // Compute the selectable capability - bits per sample codec_selectable_capability_.bits_per_sample = p_a2dp_aac_caps->bits_per_sample; // Compute the selectable capability - channel mode channelMode = p_a2dp_aac_caps->channelMode & peer_info_cie.channelMode; if (channelMode & A2DP_AAC_CHANNEL_MODE_MONO) { codec_selectable_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_MONO; } if (channelMode & A2DP_AAC_CHANNEL_MODE_STEREO) { codec_selectable_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO; } status = A2DP_BuildInfoAac(AVDT_MEDIA_TYPE_AUDIO, &peer_info_cie, ota_codec_peer_capability_); CHECK(status == A2DP_SUCCESS); return true; fail: // Restore the internal state codec_selectable_capability_ = saved_codec_selectable_capability; memcpy(ota_codec_peer_capability_, saved_ota_codec_peer_capability, sizeof(ota_codec_peer_capability_)); return false; } A2dpCodecConfigAacSink::A2dpCodecConfigAacSink( btav_a2dp_codec_priority_t codec_priority) : A2dpCodecConfigAacBase(BTAV_A2DP_CODEC_INDEX_SINK_AAC, A2DP_CodecIndexStrAacSink(), codec_priority, false) {} A2dpCodecConfigAacSink::~A2dpCodecConfigAacSink() {} bool A2dpCodecConfigAacSink::init() { if (!isValid()) return false; // Load the decoder if (!A2DP_LoadDecoderAac()) { LOG_ERROR(LOG_TAG, "%s: cannot load the decoder", __func__); return false; } return true; } period_ms_t A2dpCodecConfigAacSink::encoderIntervalMs() const { // TODO: This method applies only to Source codecs return 0; } int A2dpCodecConfigAacSink::getEffectiveMtu() const { // TODO: This method applies only to Source codecs return 0; } bool A2dpCodecConfigAacSink::useRtpHeaderMarkerBit() const { // TODO: This method applies only to Source codecs return false; } bool A2dpCodecConfigAacSink::updateEncoderUserConfig( UNUSED_ATTR const tA2DP_ENCODER_INIT_PEER_PARAMS* p_peer_params, UNUSED_ATTR bool* p_restart_input, UNUSED_ATTR bool* p_restart_output, UNUSED_ATTR bool* p_config_updated) { // TODO: This method applies only to Source codecs return false; }