// // Copyright (C) 2015 The Android Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "update_engine/boot_control_recovery.h" #include #include #include #include #include #include "update_engine/common/utils.h" #include "update_engine/utils_android.h" using std::string; #ifndef _UE_SIDELOAD #error "BootControlRecovery should only be used for update_engine_sideload." #endif // When called from update_engine_sideload, we don't attempt to dynamically load // the right boot_control HAL, instead we use the only HAL statically linked in // via the PRODUCT_STATIC_BOOT_CONTROL_HAL make variable and access the module // struct directly. extern const hw_module_t HAL_MODULE_INFO_SYM; namespace chromeos_update_engine { namespace boot_control { // Factory defined in boot_control.h. std::unique_ptr CreateBootControl() { std::unique_ptr boot_control(new BootControlRecovery()); if (!boot_control->Init()) { return nullptr; } return std::move(boot_control); } } // namespace boot_control bool BootControlRecovery::Init() { const hw_module_t* hw_module; int ret; // For update_engine_sideload, we simulate the hw_get_module() by accessing it // from the current process directly. hw_module = &HAL_MODULE_INFO_SYM; ret = 0; if (!hw_module || strcmp(BOOT_CONTROL_HARDWARE_MODULE_ID, hw_module->id) != 0) { ret = -EINVAL; } if (ret != 0) { LOG(ERROR) << "Error loading boot_control HAL implementation."; return false; } module_ = reinterpret_cast( const_cast(hw_module)); module_->init(module_); LOG(INFO) << "Loaded boot_control HAL " << "'" << hw_module->name << "' " << "version " << (hw_module->module_api_version >> 8) << "." << (hw_module->module_api_version & 0xff) << " " << "authored by '" << hw_module->author << "'."; return true; } unsigned int BootControlRecovery::GetNumSlots() const { return module_->getNumberSlots(module_); } BootControlInterface::Slot BootControlRecovery::GetCurrentSlot() const { return module_->getCurrentSlot(module_); } bool BootControlRecovery::GetPartitionDevice(const string& partition_name, Slot slot, string* device) const { // We can't use fs_mgr to look up |partition_name| because fstab // doesn't list every slot partition (it uses the slotselect option // to mask the suffix). // // We can however assume that there's an entry for the /misc mount // point and use that to get the device file for the misc // partition. This helps us locate the disk that |partition_name| // resides on. From there we'll assume that a by-name scheme is used // so we can just replace the trailing "misc" by the given // |partition_name| and suffix corresponding to |slot|, e.g. // // /dev/block/platform/soc.0/7824900.sdhci/by-name/misc -> // /dev/block/platform/soc.0/7824900.sdhci/by-name/boot_a // // If needed, it's possible to relax the by-name assumption in the // future by trawling /sys/block looking for the appropriate sibling // of misc and then finding an entry in /dev matching the sysfs // entry. base::FilePath misc_device; if (!utils::DeviceForMountPoint("/misc", &misc_device)) return false; if (!utils::IsSymlink(misc_device.value().c_str())) { LOG(ERROR) << "Device file " << misc_device.value() << " for /misc " << "is not a symlink."; return false; } const char* suffix = module_->getSuffix(module_, slot); if (suffix == nullptr) { LOG(ERROR) << "boot_control impl returned no suffix for slot " << SlotName(slot); return false; } base::FilePath path = misc_device.DirName().Append(partition_name + suffix); if (!base::PathExists(path)) { LOG(ERROR) << "Device file " << path.value() << " does not exist."; return false; } *device = path.value(); return true; } bool BootControlRecovery::IsSlotBootable(Slot slot) const { int ret = module_->isSlotBootable(module_, slot); if (ret < 0) { LOG(ERROR) << "Unable to determine if slot " << SlotName(slot) << " is bootable: " << strerror(-ret); return false; } return ret == 1; } bool BootControlRecovery::MarkSlotUnbootable(Slot slot) { int ret = module_->setSlotAsUnbootable(module_, slot); if (ret < 0) { LOG(ERROR) << "Unable to mark slot " << SlotName(slot) << " as bootable: " << strerror(-ret); return false; } return ret == 0; } bool BootControlRecovery::SetActiveBootSlot(Slot slot) { int ret = module_->setActiveBootSlot(module_, slot); if (ret < 0) { LOG(ERROR) << "Unable to set the active slot to slot " << SlotName(slot) << ": " << strerror(-ret); } return ret == 0; } bool BootControlRecovery::MarkBootSuccessfulAsync( base::Callback callback) { int ret = module_->markBootSuccessful(module_); if (ret < 0) { LOG(ERROR) << "Unable to mark boot successful: " << strerror(-ret); } return brillo::MessageLoop::current()->PostTask( FROM_HERE, base::Bind(callback, ret == 0)) != brillo::MessageLoop::kTaskIdNull; } } // namespace chromeos_update_engine