1 /* DWARF 2 support.
2 Copyright (C) 1994-2016 Free Software Foundation, Inc.
3
4 Adapted from gdb/dwarf2read.c by Gavin Koch of Cygnus Solutions
5 (gavin@cygnus.com).
6
7 From the dwarf2read.c header:
8 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
9 Inc. with support from Florida State University (under contract
10 with the Ada Joint Program Office), and Silicon Graphics, Inc.
11 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
12 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
13 support in dwarfread.c
14
15 This file is part of BFD.
16
17 This program is free software; you can redistribute it and/or modify
18 it under the terms of the GNU General Public License as published by
19 the Free Software Foundation; either version 3 of the License, or (at
20 your option) any later version.
21
22 This program is distributed in the hope that it will be useful, but
23 WITHOUT ANY WARRANTY; without even the implied warranty of
24 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 General Public License for more details.
26
27 You should have received a copy of the GNU General Public License
28 along with this program; if not, write to the Free Software
29 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
30 MA 02110-1301, USA. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libiberty.h"
35 #include "libbfd.h"
36 #include "elf-bfd.h"
37 #include "dwarf2.h"
38
39 /* The data in the .debug_line statement prologue looks like this. */
40
41 struct line_head
42 {
43 bfd_vma total_length;
44 unsigned short version;
45 bfd_vma prologue_length;
46 unsigned char minimum_instruction_length;
47 unsigned char maximum_ops_per_insn;
48 unsigned char default_is_stmt;
49 int line_base;
50 unsigned char line_range;
51 unsigned char opcode_base;
52 unsigned char *standard_opcode_lengths;
53 };
54
55 /* Attributes have a name and a value. */
56
57 struct attribute
58 {
59 enum dwarf_attribute name;
60 enum dwarf_form form;
61 union
62 {
63 char *str;
64 struct dwarf_block *blk;
65 bfd_uint64_t val;
66 bfd_int64_t sval;
67 }
68 u;
69 };
70
71 /* Blocks are a bunch of untyped bytes. */
72 struct dwarf_block
73 {
74 unsigned int size;
75 bfd_byte *data;
76 };
77
78 struct adjusted_section
79 {
80 asection *section;
81 bfd_vma adj_vma;
82 };
83
84 struct dwarf2_debug
85 {
86 /* A list of all previously read comp_units. */
87 struct comp_unit *all_comp_units;
88
89 /* Last comp unit in list above. */
90 struct comp_unit *last_comp_unit;
91
92 /* Names of the debug sections. */
93 const struct dwarf_debug_section *debug_sections;
94
95 /* The next unread compilation unit within the .debug_info section.
96 Zero indicates that the .debug_info section has not been loaded
97 into a buffer yet. */
98 bfd_byte *info_ptr;
99
100 /* Pointer to the end of the .debug_info section memory buffer. */
101 bfd_byte *info_ptr_end;
102
103 /* Pointer to the bfd, section and address of the beginning of the
104 section. The bfd might be different than expected because of
105 gnu_debuglink sections. */
106 bfd *bfd_ptr;
107 asection *sec;
108 bfd_byte *sec_info_ptr;
109
110 /* Support for alternate debug info sections created by the DWZ utility:
111 This includes a pointer to an alternate bfd which contains *extra*,
112 possibly duplicate debug sections, and pointers to the loaded
113 .debug_str and .debug_info sections from this bfd. */
114 bfd * alt_bfd_ptr;
115 bfd_byte * alt_dwarf_str_buffer;
116 bfd_size_type alt_dwarf_str_size;
117 bfd_byte * alt_dwarf_info_buffer;
118 bfd_size_type alt_dwarf_info_size;
119
120 /* A pointer to the memory block allocated for info_ptr. Neither
121 info_ptr nor sec_info_ptr are guaranteed to stay pointing to the
122 beginning of the malloc block. This is used only to free the
123 memory later. */
124 bfd_byte *info_ptr_memory;
125
126 /* Pointer to the symbol table. */
127 asymbol **syms;
128
129 /* Pointer to the .debug_abbrev section loaded into memory. */
130 bfd_byte *dwarf_abbrev_buffer;
131
132 /* Length of the loaded .debug_abbrev section. */
133 bfd_size_type dwarf_abbrev_size;
134
135 /* Buffer for decode_line_info. */
136 bfd_byte *dwarf_line_buffer;
137
138 /* Length of the loaded .debug_line section. */
139 bfd_size_type dwarf_line_size;
140
141 /* Pointer to the .debug_str section loaded into memory. */
142 bfd_byte *dwarf_str_buffer;
143
144 /* Length of the loaded .debug_str section. */
145 bfd_size_type dwarf_str_size;
146
147 /* Pointer to the .debug_ranges section loaded into memory. */
148 bfd_byte *dwarf_ranges_buffer;
149
150 /* Length of the loaded .debug_ranges section. */
151 bfd_size_type dwarf_ranges_size;
152
153 /* If the most recent call to bfd_find_nearest_line was given an
154 address in an inlined function, preserve a pointer into the
155 calling chain for subsequent calls to bfd_find_inliner_info to
156 use. */
157 struct funcinfo *inliner_chain;
158
159 /* Section VMAs at the time the stash was built. */
160 bfd_vma *sec_vma;
161
162 /* Number of sections whose VMA we must adjust. */
163 int adjusted_section_count;
164
165 /* Array of sections with adjusted VMA. */
166 struct adjusted_section *adjusted_sections;
167
168 /* Number of times find_line is called. This is used in
169 the heuristic for enabling the info hash tables. */
170 int info_hash_count;
171
172 #define STASH_INFO_HASH_TRIGGER 100
173
174 /* Hash table mapping symbol names to function infos. */
175 struct info_hash_table *funcinfo_hash_table;
176
177 /* Hash table mapping symbol names to variable infos. */
178 struct info_hash_table *varinfo_hash_table;
179
180 /* Head of comp_unit list in the last hash table update. */
181 struct comp_unit *hash_units_head;
182
183 /* Status of info hash. */
184 int info_hash_status;
185 #define STASH_INFO_HASH_OFF 0
186 #define STASH_INFO_HASH_ON 1
187 #define STASH_INFO_HASH_DISABLED 2
188
189 /* True if we opened bfd_ptr. */
190 bfd_boolean close_on_cleanup;
191 };
192
193 struct arange
194 {
195 struct arange *next;
196 bfd_vma low;
197 bfd_vma high;
198 };
199
200 /* A minimal decoding of DWARF2 compilation units. We only decode
201 what's needed to get to the line number information. */
202
203 struct comp_unit
204 {
205 /* Chain the previously read compilation units. */
206 struct comp_unit *next_unit;
207
208 /* Likewise, chain the compilation unit read after this one.
209 The comp units are stored in reversed reading order. */
210 struct comp_unit *prev_unit;
211
212 /* Keep the bfd convenient (for memory allocation). */
213 bfd *abfd;
214
215 /* The lowest and highest addresses contained in this compilation
216 unit as specified in the compilation unit header. */
217 struct arange arange;
218
219 /* The DW_AT_name attribute (for error messages). */
220 char *name;
221
222 /* The abbrev hash table. */
223 struct abbrev_info **abbrevs;
224
225 /* DW_AT_language. */
226 int lang;
227
228 /* Note that an error was found by comp_unit_find_nearest_line. */
229 int error;
230
231 /* The DW_AT_comp_dir attribute. */
232 char *comp_dir;
233
234 /* TRUE if there is a line number table associated with this comp. unit. */
235 int stmtlist;
236
237 /* Pointer to the current comp_unit so that we can find a given entry
238 by its reference. */
239 bfd_byte *info_ptr_unit;
240
241 /* Pointer to the start of the debug section, for DW_FORM_ref_addr. */
242 bfd_byte *sec_info_ptr;
243
244 /* The offset into .debug_line of the line number table. */
245 unsigned long line_offset;
246
247 /* Pointer to the first child die for the comp unit. */
248 bfd_byte *first_child_die_ptr;
249
250 /* The end of the comp unit. */
251 bfd_byte *end_ptr;
252
253 /* The decoded line number, NULL if not yet decoded. */
254 struct line_info_table *line_table;
255
256 /* A list of the functions found in this comp. unit. */
257 struct funcinfo *function_table;
258
259 /* A list of the variables found in this comp. unit. */
260 struct varinfo *variable_table;
261
262 /* Pointer to dwarf2_debug structure. */
263 struct dwarf2_debug *stash;
264
265 /* DWARF format version for this unit - from unit header. */
266 int version;
267
268 /* Address size for this unit - from unit header. */
269 unsigned char addr_size;
270
271 /* Offset size for this unit - from unit header. */
272 unsigned char offset_size;
273
274 /* Base address for this unit - from DW_AT_low_pc attribute of
275 DW_TAG_compile_unit DIE */
276 bfd_vma base_address;
277
278 /* TRUE if symbols are cached in hash table for faster lookup by name. */
279 bfd_boolean cached;
280 };
281
282 /* This data structure holds the information of an abbrev. */
283 struct abbrev_info
284 {
285 unsigned int number; /* Number identifying abbrev. */
286 enum dwarf_tag tag; /* DWARF tag. */
287 int has_children; /* Boolean. */
288 unsigned int num_attrs; /* Number of attributes. */
289 struct attr_abbrev *attrs; /* An array of attribute descriptions. */
290 struct abbrev_info *next; /* Next in chain. */
291 };
292
293 struct attr_abbrev
294 {
295 enum dwarf_attribute name;
296 enum dwarf_form form;
297 };
298
299 /* Map of uncompressed DWARF debug section name to compressed one. It
300 is terminated by NULL uncompressed_name. */
301
302 const struct dwarf_debug_section dwarf_debug_sections[] =
303 {
304 { ".debug_abbrev", ".zdebug_abbrev" },
305 { ".debug_aranges", ".zdebug_aranges" },
306 { ".debug_frame", ".zdebug_frame" },
307 { ".debug_info", ".zdebug_info" },
308 { ".debug_info", ".zdebug_info" },
309 { ".debug_line", ".zdebug_line" },
310 { ".debug_loc", ".zdebug_loc" },
311 { ".debug_macinfo", ".zdebug_macinfo" },
312 { ".debug_macro", ".zdebug_macro" },
313 { ".debug_pubnames", ".zdebug_pubnames" },
314 { ".debug_pubtypes", ".zdebug_pubtypes" },
315 { ".debug_ranges", ".zdebug_ranges" },
316 { ".debug_static_func", ".zdebug_static_func" },
317 { ".debug_static_vars", ".zdebug_static_vars" },
318 { ".debug_str", ".zdebug_str", },
319 { ".debug_str", ".zdebug_str", },
320 { ".debug_types", ".zdebug_types" },
321 /* GNU DWARF 1 extensions */
322 { ".debug_sfnames", ".zdebug_sfnames" },
323 { ".debug_srcinfo", ".zebug_srcinfo" },
324 /* SGI/MIPS DWARF 2 extensions */
325 { ".debug_funcnames", ".zdebug_funcnames" },
326 { ".debug_typenames", ".zdebug_typenames" },
327 { ".debug_varnames", ".zdebug_varnames" },
328 { ".debug_weaknames", ".zdebug_weaknames" },
329 { NULL, NULL },
330 };
331
332 /* NB/ Numbers in this enum must match up with indicies
333 into the dwarf_debug_sections[] array above. */
334 enum dwarf_debug_section_enum
335 {
336 debug_abbrev = 0,
337 debug_aranges,
338 debug_frame,
339 debug_info,
340 debug_info_alt,
341 debug_line,
342 debug_loc,
343 debug_macinfo,
344 debug_macro,
345 debug_pubnames,
346 debug_pubtypes,
347 debug_ranges,
348 debug_static_func,
349 debug_static_vars,
350 debug_str,
351 debug_str_alt,
352 debug_types,
353 debug_sfnames,
354 debug_srcinfo,
355 debug_funcnames,
356 debug_typenames,
357 debug_varnames,
358 debug_weaknames
359 };
360
361 #ifndef ABBREV_HASH_SIZE
362 #define ABBREV_HASH_SIZE 121
363 #endif
364 #ifndef ATTR_ALLOC_CHUNK
365 #define ATTR_ALLOC_CHUNK 4
366 #endif
367
368 /* Variable and function hash tables. This is used to speed up look-up
369 in lookup_symbol_in_var_table() and lookup_symbol_in_function_table().
370 In order to share code between variable and function infos, we use
371 a list of untyped pointer for all variable/function info associated with
372 a symbol. We waste a bit of memory for list with one node but that
373 simplifies the code. */
374
375 struct info_list_node
376 {
377 struct info_list_node *next;
378 void *info;
379 };
380
381 /* Info hash entry. */
382 struct info_hash_entry
383 {
384 struct bfd_hash_entry root;
385 struct info_list_node *head;
386 };
387
388 struct info_hash_table
389 {
390 struct bfd_hash_table base;
391 };
392
393 /* Function to create a new entry in info hash table. */
394
395 static struct bfd_hash_entry *
info_hash_table_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)396 info_hash_table_newfunc (struct bfd_hash_entry *entry,
397 struct bfd_hash_table *table,
398 const char *string)
399 {
400 struct info_hash_entry *ret = (struct info_hash_entry *) entry;
401
402 /* Allocate the structure if it has not already been allocated by a
403 derived class. */
404 if (ret == NULL)
405 {
406 ret = (struct info_hash_entry *) bfd_hash_allocate (table,
407 sizeof (* ret));
408 if (ret == NULL)
409 return NULL;
410 }
411
412 /* Call the allocation method of the base class. */
413 ret = ((struct info_hash_entry *)
414 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
415
416 /* Initialize the local fields here. */
417 if (ret)
418 ret->head = NULL;
419
420 return (struct bfd_hash_entry *) ret;
421 }
422
423 /* Function to create a new info hash table. It returns a pointer to the
424 newly created table or NULL if there is any error. We need abfd
425 solely for memory allocation. */
426
427 static struct info_hash_table *
create_info_hash_table(bfd * abfd)428 create_info_hash_table (bfd *abfd)
429 {
430 struct info_hash_table *hash_table;
431
432 hash_table = ((struct info_hash_table *)
433 bfd_alloc (abfd, sizeof (struct info_hash_table)));
434 if (!hash_table)
435 return hash_table;
436
437 if (!bfd_hash_table_init (&hash_table->base, info_hash_table_newfunc,
438 sizeof (struct info_hash_entry)))
439 {
440 bfd_release (abfd, hash_table);
441 return NULL;
442 }
443
444 return hash_table;
445 }
446
447 /* Insert an info entry into an info hash table. We do not check of
448 duplicate entries. Also, the caller need to guarantee that the
449 right type of info in inserted as info is passed as a void* pointer.
450 This function returns true if there is no error. */
451
452 static bfd_boolean
insert_info_hash_table(struct info_hash_table * hash_table,const char * key,void * info,bfd_boolean copy_p)453 insert_info_hash_table (struct info_hash_table *hash_table,
454 const char *key,
455 void *info,
456 bfd_boolean copy_p)
457 {
458 struct info_hash_entry *entry;
459 struct info_list_node *node;
460
461 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base,
462 key, TRUE, copy_p);
463 if (!entry)
464 return FALSE;
465
466 node = (struct info_list_node *) bfd_hash_allocate (&hash_table->base,
467 sizeof (*node));
468 if (!node)
469 return FALSE;
470
471 node->info = info;
472 node->next = entry->head;
473 entry->head = node;
474
475 return TRUE;
476 }
477
478 /* Look up an info entry list from an info hash table. Return NULL
479 if there is none. */
480
481 static struct info_list_node *
lookup_info_hash_table(struct info_hash_table * hash_table,const char * key)482 lookup_info_hash_table (struct info_hash_table *hash_table, const char *key)
483 {
484 struct info_hash_entry *entry;
485
486 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base, key,
487 FALSE, FALSE);
488 return entry ? entry->head : NULL;
489 }
490
491 /* Read a section into its appropriate place in the dwarf2_debug
492 struct (indicated by SECTION_BUFFER and SECTION_SIZE). If SYMS is
493 not NULL, use bfd_simple_get_relocated_section_contents to read the
494 section contents, otherwise use bfd_get_section_contents. Fail if
495 the located section does not contain at least OFFSET bytes. */
496
497 static bfd_boolean
read_section(bfd * abfd,const struct dwarf_debug_section * sec,asymbol ** syms,bfd_uint64_t offset,bfd_byte ** section_buffer,bfd_size_type * section_size)498 read_section (bfd * abfd,
499 const struct dwarf_debug_section *sec,
500 asymbol ** syms,
501 bfd_uint64_t offset,
502 bfd_byte ** section_buffer,
503 bfd_size_type * section_size)
504 {
505 asection *msec;
506 const char *section_name = sec->uncompressed_name;
507
508 /* The section may have already been read. */
509 if (*section_buffer == NULL)
510 {
511 msec = bfd_get_section_by_name (abfd, section_name);
512 if (! msec)
513 {
514 section_name = sec->compressed_name;
515 if (section_name != NULL)
516 msec = bfd_get_section_by_name (abfd, section_name);
517 }
518 if (! msec)
519 {
520 (*_bfd_error_handler) (_("Dwarf Error: Can't find %s section."),
521 sec->uncompressed_name);
522 bfd_set_error (bfd_error_bad_value);
523 return FALSE;
524 }
525
526 *section_size = msec->rawsize ? msec->rawsize : msec->size;
527 if (syms)
528 {
529 *section_buffer
530 = bfd_simple_get_relocated_section_contents (abfd, msec, NULL, syms);
531 if (! *section_buffer)
532 return FALSE;
533 }
534 else
535 {
536 *section_buffer = (bfd_byte *) bfd_malloc (*section_size);
537 if (! *section_buffer)
538 return FALSE;
539 if (! bfd_get_section_contents (abfd, msec, *section_buffer,
540 0, *section_size))
541 return FALSE;
542 }
543 }
544
545 /* It is possible to get a bad value for the offset into the section
546 that the client wants. Validate it here to avoid trouble later. */
547 if (offset != 0 && offset >= *section_size)
548 {
549 (*_bfd_error_handler) (_("Dwarf Error: Offset (%lu)"
550 " greater than or equal to %s size (%lu)."),
551 (long) offset, section_name, *section_size);
552 bfd_set_error (bfd_error_bad_value);
553 return FALSE;
554 }
555
556 return TRUE;
557 }
558
559 /* Read dwarf information from a buffer. */
560
561 static unsigned int
read_1_byte(bfd * abfd ATTRIBUTE_UNUSED,bfd_byte * buf,bfd_byte * end)562 read_1_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
563 {
564 if (buf + 1 > end)
565 return 0;
566 return bfd_get_8 (abfd, buf);
567 }
568
569 static int
read_1_signed_byte(bfd * abfd ATTRIBUTE_UNUSED,bfd_byte * buf,bfd_byte * end)570 read_1_signed_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
571 {
572 if (buf + 1 > end)
573 return 0;
574 return bfd_get_signed_8 (abfd, buf);
575 }
576
577 static unsigned int
read_2_bytes(bfd * abfd,bfd_byte * buf,bfd_byte * end)578 read_2_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
579 {
580 if (buf + 2 > end)
581 return 0;
582 return bfd_get_16 (abfd, buf);
583 }
584
585 static unsigned int
read_4_bytes(bfd * abfd,bfd_byte * buf,bfd_byte * end)586 read_4_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
587 {
588 if (buf + 4 > end)
589 return 0;
590 return bfd_get_32 (abfd, buf);
591 }
592
593 static bfd_uint64_t
read_8_bytes(bfd * abfd,bfd_byte * buf,bfd_byte * end)594 read_8_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
595 {
596 if (buf + 8 > end)
597 return 0;
598 return bfd_get_64 (abfd, buf);
599 }
600
601 static bfd_byte *
read_n_bytes(bfd * abfd ATTRIBUTE_UNUSED,bfd_byte * buf,bfd_byte * end,unsigned int size ATTRIBUTE_UNUSED)602 read_n_bytes (bfd *abfd ATTRIBUTE_UNUSED,
603 bfd_byte *buf,
604 bfd_byte *end,
605 unsigned int size ATTRIBUTE_UNUSED)
606 {
607 if (buf + size > end)
608 return NULL;
609 return buf;
610 }
611
612 /* Scans a NUL terminated string starting at BUF, returning a pointer to it.
613 Returns the number of characters in the string, *including* the NUL byte,
614 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
615 at or beyond BUF_END will not be read. Returns NULL if there was a
616 problem, or if the string is empty. */
617
618 static char *
read_string(bfd * abfd ATTRIBUTE_UNUSED,bfd_byte * buf,bfd_byte * buf_end,unsigned int * bytes_read_ptr)619 read_string (bfd * abfd ATTRIBUTE_UNUSED,
620 bfd_byte * buf,
621 bfd_byte * buf_end,
622 unsigned int * bytes_read_ptr)
623 {
624 bfd_byte *str = buf;
625
626 if (buf >= buf_end)
627 {
628 * bytes_read_ptr = 0;
629 return NULL;
630 }
631
632 if (*str == '\0')
633 {
634 * bytes_read_ptr = 1;
635 return NULL;
636 }
637
638 while (buf < buf_end)
639 if (* buf ++ == 0)
640 {
641 * bytes_read_ptr = buf - str;
642 return (char *) str;
643 }
644
645 * bytes_read_ptr = buf - str;
646 return NULL;
647 }
648
649 /* Reads an offset from BUF and then locates the string at this offset
650 inside the debug string section. Returns a pointer to the string.
651 Returns the number of bytes read from BUF, *not* the length of the string,
652 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
653 at or beyond BUF_END will not be read from BUF. Returns NULL if there was
654 a problem, or if the string is empty. Does not check for NUL termination
655 of the string. */
656
657 static char *
read_indirect_string(struct comp_unit * unit,bfd_byte * buf,bfd_byte * buf_end,unsigned int * bytes_read_ptr)658 read_indirect_string (struct comp_unit * unit,
659 bfd_byte * buf,
660 bfd_byte * buf_end,
661 unsigned int * bytes_read_ptr)
662 {
663 bfd_uint64_t offset;
664 struct dwarf2_debug *stash = unit->stash;
665 char *str;
666
667 if (buf + unit->offset_size > buf_end)
668 {
669 * bytes_read_ptr = 0;
670 return NULL;
671 }
672
673 if (unit->offset_size == 4)
674 offset = read_4_bytes (unit->abfd, buf, buf_end);
675 else
676 offset = read_8_bytes (unit->abfd, buf, buf_end);
677
678 *bytes_read_ptr = unit->offset_size;
679
680 if (! read_section (unit->abfd, &stash->debug_sections[debug_str],
681 stash->syms, offset,
682 &stash->dwarf_str_buffer, &stash->dwarf_str_size))
683 return NULL;
684
685 if (offset >= stash->dwarf_str_size)
686 return NULL;
687 str = (char *) stash->dwarf_str_buffer + offset;
688 if (*str == '\0')
689 return NULL;
690 return str;
691 }
692
693 /* Like read_indirect_string but uses a .debug_str located in
694 an alternate file pointed to by the .gnu_debugaltlink section.
695 Used to impement DW_FORM_GNU_strp_alt. */
696
697 static char *
read_alt_indirect_string(struct comp_unit * unit,bfd_byte * buf,bfd_byte * buf_end,unsigned int * bytes_read_ptr)698 read_alt_indirect_string (struct comp_unit * unit,
699 bfd_byte * buf,
700 bfd_byte * buf_end,
701 unsigned int * bytes_read_ptr)
702 {
703 bfd_uint64_t offset;
704 struct dwarf2_debug *stash = unit->stash;
705 char *str;
706
707 if (buf + unit->offset_size > buf_end)
708 {
709 * bytes_read_ptr = 0;
710 return NULL;
711 }
712
713 if (unit->offset_size == 4)
714 offset = read_4_bytes (unit->abfd, buf, buf_end);
715 else
716 offset = read_8_bytes (unit->abfd, buf, buf_end);
717
718 *bytes_read_ptr = unit->offset_size;
719
720 if (stash->alt_bfd_ptr == NULL)
721 {
722 bfd * debug_bfd;
723 char * debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
724
725 if (debug_filename == NULL)
726 return NULL;
727
728 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
729 || ! bfd_check_format (debug_bfd, bfd_object))
730 {
731 if (debug_bfd)
732 bfd_close (debug_bfd);
733
734 /* FIXME: Should we report our failure to follow the debuglink ? */
735 free (debug_filename);
736 return NULL;
737 }
738 stash->alt_bfd_ptr = debug_bfd;
739 }
740
741 if (! read_section (unit->stash->alt_bfd_ptr,
742 stash->debug_sections + debug_str_alt,
743 NULL, /* FIXME: Do we need to load alternate symbols ? */
744 offset,
745 &stash->alt_dwarf_str_buffer,
746 &stash->alt_dwarf_str_size))
747 return NULL;
748
749 if (offset >= stash->alt_dwarf_str_size)
750 return NULL;
751 str = (char *) stash->alt_dwarf_str_buffer + offset;
752 if (*str == '\0')
753 return NULL;
754
755 return str;
756 }
757
758 /* Resolve an alternate reference from UNIT at OFFSET.
759 Returns a pointer into the loaded alternate CU upon success
760 or NULL upon failure. */
761
762 static bfd_byte *
read_alt_indirect_ref(struct comp_unit * unit,bfd_uint64_t offset)763 read_alt_indirect_ref (struct comp_unit * unit,
764 bfd_uint64_t offset)
765 {
766 struct dwarf2_debug *stash = unit->stash;
767
768 if (stash->alt_bfd_ptr == NULL)
769 {
770 bfd * debug_bfd;
771 char * debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
772
773 if (debug_filename == NULL)
774 return FALSE;
775
776 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
777 || ! bfd_check_format (debug_bfd, bfd_object))
778 {
779 if (debug_bfd)
780 bfd_close (debug_bfd);
781
782 /* FIXME: Should we report our failure to follow the debuglink ? */
783 free (debug_filename);
784 return NULL;
785 }
786 stash->alt_bfd_ptr = debug_bfd;
787 }
788
789 if (! read_section (unit->stash->alt_bfd_ptr,
790 stash->debug_sections + debug_info_alt,
791 NULL, /* FIXME: Do we need to load alternate symbols ? */
792 offset,
793 &stash->alt_dwarf_info_buffer,
794 &stash->alt_dwarf_info_size))
795 return NULL;
796
797 if (offset >= stash->alt_dwarf_info_size)
798 return NULL;
799 return stash->alt_dwarf_info_buffer + offset;
800 }
801
802 static bfd_uint64_t
read_address(struct comp_unit * unit,bfd_byte * buf,bfd_byte * buf_end)803 read_address (struct comp_unit *unit, bfd_byte *buf, bfd_byte * buf_end)
804 {
805 int signed_vma = 0;
806
807 if (bfd_get_flavour (unit->abfd) == bfd_target_elf_flavour)
808 signed_vma = get_elf_backend_data (unit->abfd)->sign_extend_vma;
809
810 if (buf + unit->addr_size > buf_end)
811 return 0;
812
813 if (signed_vma)
814 {
815 switch (unit->addr_size)
816 {
817 case 8:
818 return bfd_get_signed_64 (unit->abfd, buf);
819 case 4:
820 return bfd_get_signed_32 (unit->abfd, buf);
821 case 2:
822 return bfd_get_signed_16 (unit->abfd, buf);
823 default:
824 abort ();
825 }
826 }
827 else
828 {
829 switch (unit->addr_size)
830 {
831 case 8:
832 return bfd_get_64 (unit->abfd, buf);
833 case 4:
834 return bfd_get_32 (unit->abfd, buf);
835 case 2:
836 return bfd_get_16 (unit->abfd, buf);
837 default:
838 abort ();
839 }
840 }
841 }
842
843 /* Lookup an abbrev_info structure in the abbrev hash table. */
844
845 static struct abbrev_info *
lookup_abbrev(unsigned int number,struct abbrev_info ** abbrevs)846 lookup_abbrev (unsigned int number, struct abbrev_info **abbrevs)
847 {
848 unsigned int hash_number;
849 struct abbrev_info *abbrev;
850
851 hash_number = number % ABBREV_HASH_SIZE;
852 abbrev = abbrevs[hash_number];
853
854 while (abbrev)
855 {
856 if (abbrev->number == number)
857 return abbrev;
858 else
859 abbrev = abbrev->next;
860 }
861
862 return NULL;
863 }
864
865 /* In DWARF version 2, the description of the debugging information is
866 stored in a separate .debug_abbrev section. Before we read any
867 dies from a section we read in all abbreviations and install them
868 in a hash table. */
869
870 static struct abbrev_info**
read_abbrevs(bfd * abfd,bfd_uint64_t offset,struct dwarf2_debug * stash)871 read_abbrevs (bfd *abfd, bfd_uint64_t offset, struct dwarf2_debug *stash)
872 {
873 struct abbrev_info **abbrevs;
874 bfd_byte *abbrev_ptr;
875 bfd_byte *abbrev_end;
876 struct abbrev_info *cur_abbrev;
877 unsigned int abbrev_number, bytes_read, abbrev_name;
878 unsigned int abbrev_form, hash_number;
879 bfd_size_type amt;
880
881 if (! read_section (abfd, &stash->debug_sections[debug_abbrev],
882 stash->syms, offset,
883 &stash->dwarf_abbrev_buffer, &stash->dwarf_abbrev_size))
884 return NULL;
885
886 if (offset >= stash->dwarf_abbrev_size)
887 return NULL;
888
889 amt = sizeof (struct abbrev_info*) * ABBREV_HASH_SIZE;
890 abbrevs = (struct abbrev_info **) bfd_zalloc (abfd, amt);
891 if (abbrevs == NULL)
892 return NULL;
893
894 abbrev_ptr = stash->dwarf_abbrev_buffer + offset;
895 abbrev_end = stash->dwarf_abbrev_buffer + stash->dwarf_abbrev_size;
896 abbrev_number = safe_read_leb128 (abfd, abbrev_ptr, &bytes_read, FALSE, abbrev_end);
897 abbrev_ptr += bytes_read;
898
899 /* Loop until we reach an abbrev number of 0. */
900 while (abbrev_number)
901 {
902 amt = sizeof (struct abbrev_info);
903 cur_abbrev = (struct abbrev_info *) bfd_zalloc (abfd, amt);
904 if (cur_abbrev == NULL)
905 return NULL;
906
907 /* Read in abbrev header. */
908 cur_abbrev->number = abbrev_number;
909 cur_abbrev->tag = (enum dwarf_tag)
910 safe_read_leb128 (abfd, abbrev_ptr, &bytes_read, FALSE, abbrev_end);
911 abbrev_ptr += bytes_read;
912 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr, abbrev_end);
913 abbrev_ptr += 1;
914
915 /* Now read in declarations. */
916 abbrev_name = safe_read_leb128 (abfd, abbrev_ptr, &bytes_read, FALSE, abbrev_end);
917 abbrev_ptr += bytes_read;
918 abbrev_form = safe_read_leb128 (abfd, abbrev_ptr, &bytes_read, FALSE, abbrev_end);
919 abbrev_ptr += bytes_read;
920
921 while (abbrev_name)
922 {
923 if ((cur_abbrev->num_attrs % ATTR_ALLOC_CHUNK) == 0)
924 {
925 struct attr_abbrev *tmp;
926
927 amt = cur_abbrev->num_attrs + ATTR_ALLOC_CHUNK;
928 amt *= sizeof (struct attr_abbrev);
929 tmp = (struct attr_abbrev *) bfd_realloc (cur_abbrev->attrs, amt);
930 if (tmp == NULL)
931 {
932 size_t i;
933
934 for (i = 0; i < ABBREV_HASH_SIZE; i++)
935 {
936 struct abbrev_info *abbrev = abbrevs[i];
937
938 while (abbrev)
939 {
940 free (abbrev->attrs);
941 abbrev = abbrev->next;
942 }
943 }
944 return NULL;
945 }
946 cur_abbrev->attrs = tmp;
947 }
948
949 cur_abbrev->attrs[cur_abbrev->num_attrs].name
950 = (enum dwarf_attribute) abbrev_name;
951 cur_abbrev->attrs[cur_abbrev->num_attrs++].form
952 = (enum dwarf_form) abbrev_form;
953 abbrev_name = safe_read_leb128 (abfd, abbrev_ptr, &bytes_read, FALSE, abbrev_end);
954 abbrev_ptr += bytes_read;
955 abbrev_form = safe_read_leb128 (abfd, abbrev_ptr, &bytes_read, FALSE, abbrev_end);
956 abbrev_ptr += bytes_read;
957 }
958
959 hash_number = abbrev_number % ABBREV_HASH_SIZE;
960 cur_abbrev->next = abbrevs[hash_number];
961 abbrevs[hash_number] = cur_abbrev;
962
963 /* Get next abbreviation.
964 Under Irix6 the abbreviations for a compilation unit are not
965 always properly terminated with an abbrev number of 0.
966 Exit loop if we encounter an abbreviation which we have
967 already read (which means we are about to read the abbreviations
968 for the next compile unit) or if the end of the abbreviation
969 table is reached. */
970 if ((unsigned int) (abbrev_ptr - stash->dwarf_abbrev_buffer)
971 >= stash->dwarf_abbrev_size)
972 break;
973 abbrev_number = safe_read_leb128 (abfd, abbrev_ptr, &bytes_read, FALSE, abbrev_end);
974 abbrev_ptr += bytes_read;
975 if (lookup_abbrev (abbrev_number, abbrevs) != NULL)
976 break;
977 }
978
979 return abbrevs;
980 }
981
982 /* Returns true if the form is one which has a string value. */
983
984 static inline bfd_boolean
is_str_attr(enum dwarf_form form)985 is_str_attr (enum dwarf_form form)
986 {
987 return form == DW_FORM_string || form == DW_FORM_strp || form == DW_FORM_GNU_strp_alt;
988 }
989
990 /* Read and fill in the value of attribute ATTR as described by FORM.
991 Read data starting from INFO_PTR, but never at or beyond INFO_PTR_END.
992 Returns an updated INFO_PTR taking into account the amount of data read. */
993
994 static bfd_byte *
read_attribute_value(struct attribute * attr,unsigned form,struct comp_unit * unit,bfd_byte * info_ptr,bfd_byte * info_ptr_end)995 read_attribute_value (struct attribute * attr,
996 unsigned form,
997 struct comp_unit * unit,
998 bfd_byte * info_ptr,
999 bfd_byte * info_ptr_end)
1000 {
1001 bfd *abfd = unit->abfd;
1002 unsigned int bytes_read;
1003 struct dwarf_block *blk;
1004 bfd_size_type amt;
1005
1006 if (info_ptr >= info_ptr_end && form != DW_FORM_flag_present)
1007 {
1008 (*_bfd_error_handler) (_("Dwarf Error: Info pointer extends beyond end of attributes"));
1009 bfd_set_error (bfd_error_bad_value);
1010 return info_ptr;
1011 }
1012
1013 attr->form = (enum dwarf_form) form;
1014
1015 switch (form)
1016 {
1017 case DW_FORM_ref_addr:
1018 /* DW_FORM_ref_addr is an address in DWARF2, and an offset in
1019 DWARF3. */
1020 if (unit->version == 3 || unit->version == 4)
1021 {
1022 if (unit->offset_size == 4)
1023 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1024 else
1025 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1026 info_ptr += unit->offset_size;
1027 break;
1028 }
1029 /* FALLTHROUGH */
1030 case DW_FORM_addr:
1031 attr->u.val = read_address (unit, info_ptr, info_ptr_end);
1032 info_ptr += unit->addr_size;
1033 break;
1034 case DW_FORM_GNU_ref_alt:
1035 case DW_FORM_sec_offset:
1036 if (unit->offset_size == 4)
1037 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1038 else
1039 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1040 info_ptr += unit->offset_size;
1041 break;
1042 case DW_FORM_block2:
1043 amt = sizeof (struct dwarf_block);
1044 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1045 if (blk == NULL)
1046 return NULL;
1047 blk->size = read_2_bytes (abfd, info_ptr, info_ptr_end);
1048 info_ptr += 2;
1049 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1050 info_ptr += blk->size;
1051 attr->u.blk = blk;
1052 break;
1053 case DW_FORM_block4:
1054 amt = sizeof (struct dwarf_block);
1055 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1056 if (blk == NULL)
1057 return NULL;
1058 blk->size = read_4_bytes (abfd, info_ptr, info_ptr_end);
1059 info_ptr += 4;
1060 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1061 info_ptr += blk->size;
1062 attr->u.blk = blk;
1063 break;
1064 case DW_FORM_data2:
1065 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1066 info_ptr += 2;
1067 break;
1068 case DW_FORM_data4:
1069 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1070 info_ptr += 4;
1071 break;
1072 case DW_FORM_data8:
1073 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1074 info_ptr += 8;
1075 break;
1076 case DW_FORM_string:
1077 attr->u.str = read_string (abfd, info_ptr, info_ptr_end, &bytes_read);
1078 info_ptr += bytes_read;
1079 break;
1080 case DW_FORM_strp:
1081 attr->u.str = read_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1082 info_ptr += bytes_read;
1083 break;
1084 case DW_FORM_GNU_strp_alt:
1085 attr->u.str = read_alt_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1086 info_ptr += bytes_read;
1087 break;
1088 case DW_FORM_exprloc:
1089 case DW_FORM_block:
1090 amt = sizeof (struct dwarf_block);
1091 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1092 if (blk == NULL)
1093 return NULL;
1094 blk->size = safe_read_leb128 (abfd, info_ptr, &bytes_read, FALSE, info_ptr_end);
1095 info_ptr += bytes_read;
1096 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1097 info_ptr += blk->size;
1098 attr->u.blk = blk;
1099 break;
1100 case DW_FORM_block1:
1101 amt = sizeof (struct dwarf_block);
1102 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1103 if (blk == NULL)
1104 return NULL;
1105 blk->size = read_1_byte (abfd, info_ptr, info_ptr_end);
1106 info_ptr += 1;
1107 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size);
1108 info_ptr += blk->size;
1109 attr->u.blk = blk;
1110 break;
1111 case DW_FORM_data1:
1112 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1113 info_ptr += 1;
1114 break;
1115 case DW_FORM_flag:
1116 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1117 info_ptr += 1;
1118 break;
1119 case DW_FORM_flag_present:
1120 attr->u.val = 1;
1121 break;
1122 case DW_FORM_sdata:
1123 attr->u.sval = safe_read_leb128 (abfd, info_ptr, &bytes_read, TRUE, info_ptr_end);
1124 info_ptr += bytes_read;
1125 break;
1126 case DW_FORM_udata:
1127 attr->u.val = safe_read_leb128 (abfd, info_ptr, &bytes_read, FALSE, info_ptr_end);
1128 info_ptr += bytes_read;
1129 break;
1130 case DW_FORM_ref1:
1131 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1132 info_ptr += 1;
1133 break;
1134 case DW_FORM_ref2:
1135 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1136 info_ptr += 2;
1137 break;
1138 case DW_FORM_ref4:
1139 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1140 info_ptr += 4;
1141 break;
1142 case DW_FORM_ref8:
1143 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1144 info_ptr += 8;
1145 break;
1146 case DW_FORM_ref_sig8:
1147 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1148 info_ptr += 8;
1149 break;
1150 case DW_FORM_ref_udata:
1151 attr->u.val = safe_read_leb128 (abfd, info_ptr, &bytes_read, FALSE, info_ptr_end);
1152 info_ptr += bytes_read;
1153 break;
1154 case DW_FORM_indirect:
1155 form = safe_read_leb128 (abfd, info_ptr, &bytes_read, FALSE, info_ptr_end);
1156 info_ptr += bytes_read;
1157 info_ptr = read_attribute_value (attr, form, unit, info_ptr, info_ptr_end);
1158 break;
1159 default:
1160 (*_bfd_error_handler) (_("Dwarf Error: Invalid or unhandled FORM value: %#x."),
1161 form);
1162 bfd_set_error (bfd_error_bad_value);
1163 return NULL;
1164 }
1165 return info_ptr;
1166 }
1167
1168 /* Read an attribute described by an abbreviated attribute. */
1169
1170 static bfd_byte *
read_attribute(struct attribute * attr,struct attr_abbrev * abbrev,struct comp_unit * unit,bfd_byte * info_ptr,bfd_byte * info_ptr_end)1171 read_attribute (struct attribute * attr,
1172 struct attr_abbrev * abbrev,
1173 struct comp_unit * unit,
1174 bfd_byte * info_ptr,
1175 bfd_byte * info_ptr_end)
1176 {
1177 attr->name = abbrev->name;
1178 info_ptr = read_attribute_value (attr, abbrev->form, unit, info_ptr, info_ptr_end);
1179 return info_ptr;
1180 }
1181
1182 /* Return whether DW_AT_name will return the same as DW_AT_linkage_name
1183 for a function. */
1184
1185 static bfd_boolean
non_mangled(int lang)1186 non_mangled (int lang)
1187 {
1188 switch (lang)
1189 {
1190 default:
1191 return FALSE;
1192
1193 case DW_LANG_C89:
1194 case DW_LANG_C:
1195 case DW_LANG_Ada83:
1196 case DW_LANG_Cobol74:
1197 case DW_LANG_Cobol85:
1198 case DW_LANG_Fortran77:
1199 case DW_LANG_Pascal83:
1200 case DW_LANG_C99:
1201 case DW_LANG_Ada95:
1202 case DW_LANG_PLI:
1203 case DW_LANG_UPC:
1204 case DW_LANG_C11:
1205 return TRUE;
1206 }
1207 }
1208
1209 /* Source line information table routines. */
1210
1211 #define FILE_ALLOC_CHUNK 5
1212 #define DIR_ALLOC_CHUNK 5
1213
1214 struct line_info
1215 {
1216 struct line_info* prev_line;
1217 bfd_vma address;
1218 char *filename;
1219 unsigned int line;
1220 unsigned int column;
1221 unsigned int discriminator;
1222 unsigned char op_index;
1223 unsigned char end_sequence; /* End of (sequential) code sequence. */
1224 };
1225
1226 struct fileinfo
1227 {
1228 char *name;
1229 unsigned int dir;
1230 unsigned int time;
1231 unsigned int size;
1232 };
1233
1234 struct line_sequence
1235 {
1236 bfd_vma low_pc;
1237 struct line_sequence* prev_sequence;
1238 struct line_info* last_line; /* Largest VMA. */
1239 };
1240
1241 struct line_info_table
1242 {
1243 bfd* abfd;
1244 unsigned int num_files;
1245 unsigned int num_dirs;
1246 unsigned int num_sequences;
1247 char * comp_dir;
1248 char ** dirs;
1249 struct fileinfo* files;
1250 struct line_sequence* sequences;
1251 struct line_info* lcl_head; /* Local head; used in 'add_line_info'. */
1252 };
1253
1254 /* Remember some information about each function. If the function is
1255 inlined (DW_TAG_inlined_subroutine) it may have two additional
1256 attributes, DW_AT_call_file and DW_AT_call_line, which specify the
1257 source code location where this function was inlined. */
1258
1259 struct funcinfo
1260 {
1261 /* Pointer to previous function in list of all functions. */
1262 struct funcinfo *prev_func;
1263 /* Pointer to function one scope higher. */
1264 struct funcinfo *caller_func;
1265 /* Source location file name where caller_func inlines this func. */
1266 char *caller_file;
1267 /* Source location file name. */
1268 char *file;
1269 /* Source location line number where caller_func inlines this func. */
1270 int caller_line;
1271 /* Source location line number. */
1272 int line;
1273 int tag;
1274 bfd_boolean is_linkage;
1275 const char *name;
1276 struct arange arange;
1277 /* Where the symbol is defined. */
1278 asection *sec;
1279 };
1280
1281 struct varinfo
1282 {
1283 /* Pointer to previous variable in list of all variables */
1284 struct varinfo *prev_var;
1285 /* Source location file name */
1286 char *file;
1287 /* Source location line number */
1288 int line;
1289 int tag;
1290 char *name;
1291 bfd_vma addr;
1292 /* Where the symbol is defined */
1293 asection *sec;
1294 /* Is this a stack variable? */
1295 unsigned int stack: 1;
1296 };
1297
1298 /* Return TRUE if NEW_LINE should sort after LINE. */
1299
1300 static inline bfd_boolean
new_line_sorts_after(struct line_info * new_line,struct line_info * line)1301 new_line_sorts_after (struct line_info *new_line, struct line_info *line)
1302 {
1303 return (new_line->address > line->address
1304 || (new_line->address == line->address
1305 && (new_line->op_index > line->op_index
1306 || (new_line->op_index == line->op_index
1307 && new_line->end_sequence < line->end_sequence))));
1308 }
1309
1310
1311 /* Adds a new entry to the line_info list in the line_info_table, ensuring
1312 that the list is sorted. Note that the line_info list is sorted from
1313 highest to lowest VMA (with possible duplicates); that is,
1314 line_info->prev_line always accesses an equal or smaller VMA. */
1315
1316 static bfd_boolean
add_line_info(struct line_info_table * table,bfd_vma address,unsigned char op_index,char * filename,unsigned int line,unsigned int column,unsigned int discriminator,int end_sequence)1317 add_line_info (struct line_info_table *table,
1318 bfd_vma address,
1319 unsigned char op_index,
1320 char *filename,
1321 unsigned int line,
1322 unsigned int column,
1323 unsigned int discriminator,
1324 int end_sequence)
1325 {
1326 bfd_size_type amt = sizeof (struct line_info);
1327 struct line_sequence* seq = table->sequences;
1328 struct line_info* info = (struct line_info *) bfd_alloc (table->abfd, amt);
1329
1330 if (info == NULL)
1331 return FALSE;
1332
1333 /* Set member data of 'info'. */
1334 info->prev_line = NULL;
1335 info->address = address;
1336 info->op_index = op_index;
1337 info->line = line;
1338 info->column = column;
1339 info->discriminator = discriminator;
1340 info->end_sequence = end_sequence;
1341
1342 if (filename && filename[0])
1343 {
1344 info->filename = (char *) bfd_alloc (table->abfd, strlen (filename) + 1);
1345 if (info->filename == NULL)
1346 return FALSE;
1347 strcpy (info->filename, filename);
1348 }
1349 else
1350 info->filename = NULL;
1351
1352 /* Find the correct location for 'info'. Normally we will receive
1353 new line_info data 1) in order and 2) with increasing VMAs.
1354 However some compilers break the rules (cf. decode_line_info) and
1355 so we include some heuristics for quickly finding the correct
1356 location for 'info'. In particular, these heuristics optimize for
1357 the common case in which the VMA sequence that we receive is a
1358 list of locally sorted VMAs such as
1359 p...z a...j (where a < j < p < z)
1360
1361 Note: table->lcl_head is used to head an *actual* or *possible*
1362 sub-sequence within the list (such as a...j) that is not directly
1363 headed by table->last_line
1364
1365 Note: we may receive duplicate entries from 'decode_line_info'. */
1366
1367 if (seq
1368 && seq->last_line->address == address
1369 && seq->last_line->op_index == op_index
1370 && seq->last_line->end_sequence == end_sequence)
1371 {
1372 /* We only keep the last entry with the same address and end
1373 sequence. See PR ld/4986. */
1374 if (table->lcl_head == seq->last_line)
1375 table->lcl_head = info;
1376 info->prev_line = seq->last_line->prev_line;
1377 seq->last_line = info;
1378 }
1379 else if (!seq || seq->last_line->end_sequence)
1380 {
1381 /* Start a new line sequence. */
1382 amt = sizeof (struct line_sequence);
1383 seq = (struct line_sequence *) bfd_malloc (amt);
1384 if (seq == NULL)
1385 return FALSE;
1386 seq->low_pc = address;
1387 seq->prev_sequence = table->sequences;
1388 seq->last_line = info;
1389 table->lcl_head = info;
1390 table->sequences = seq;
1391 table->num_sequences++;
1392 }
1393 else if (new_line_sorts_after (info, seq->last_line))
1394 {
1395 /* Normal case: add 'info' to the beginning of the current sequence. */
1396 info->prev_line = seq->last_line;
1397 seq->last_line = info;
1398
1399 /* lcl_head: initialize to head a *possible* sequence at the end. */
1400 if (!table->lcl_head)
1401 table->lcl_head = info;
1402 }
1403 else if (!new_line_sorts_after (info, table->lcl_head)
1404 && (!table->lcl_head->prev_line
1405 || new_line_sorts_after (info, table->lcl_head->prev_line)))
1406 {
1407 /* Abnormal but easy: lcl_head is the head of 'info'. */
1408 info->prev_line = table->lcl_head->prev_line;
1409 table->lcl_head->prev_line = info;
1410 }
1411 else
1412 {
1413 /* Abnormal and hard: Neither 'last_line' nor 'lcl_head'
1414 are valid heads for 'info'. Reset 'lcl_head'. */
1415 struct line_info* li2 = seq->last_line; /* Always non-NULL. */
1416 struct line_info* li1 = li2->prev_line;
1417
1418 while (li1)
1419 {
1420 if (!new_line_sorts_after (info, li2)
1421 && new_line_sorts_after (info, li1))
1422 break;
1423
1424 li2 = li1; /* always non-NULL */
1425 li1 = li1->prev_line;
1426 }
1427 table->lcl_head = li2;
1428 info->prev_line = table->lcl_head->prev_line;
1429 table->lcl_head->prev_line = info;
1430 if (address < seq->low_pc)
1431 seq->low_pc = address;
1432 }
1433 return TRUE;
1434 }
1435
1436 /* Extract a fully qualified filename from a line info table.
1437 The returned string has been malloc'ed and it is the caller's
1438 responsibility to free it. */
1439
1440 static char *
concat_filename(struct line_info_table * table,unsigned int file)1441 concat_filename (struct line_info_table *table, unsigned int file)
1442 {
1443 char *filename;
1444
1445 if (file - 1 >= table->num_files)
1446 {
1447 /* FILE == 0 means unknown. */
1448 if (file)
1449 (*_bfd_error_handler)
1450 (_("Dwarf Error: mangled line number section (bad file number)."));
1451 return strdup ("<unknown>");
1452 }
1453
1454 filename = table->files[file - 1].name;
1455
1456 if (!IS_ABSOLUTE_PATH (filename))
1457 {
1458 char *dir_name = NULL;
1459 char *subdir_name = NULL;
1460 char *name;
1461 size_t len;
1462
1463 if (table->files[file - 1].dir
1464 /* PR 17512: file: 0317e960. */
1465 && table->files[file - 1].dir <= table->num_dirs
1466 /* PR 17512: file: 7f3d2e4b. */
1467 && table->dirs != NULL)
1468 subdir_name = table->dirs[table->files[file - 1].dir - 1];
1469
1470 if (!subdir_name || !IS_ABSOLUTE_PATH (subdir_name))
1471 dir_name = table->comp_dir;
1472
1473 if (!dir_name)
1474 {
1475 dir_name = subdir_name;
1476 subdir_name = NULL;
1477 }
1478
1479 if (!dir_name)
1480 return strdup (filename);
1481
1482 len = strlen (dir_name) + strlen (filename) + 2;
1483
1484 if (subdir_name)
1485 {
1486 len += strlen (subdir_name) + 1;
1487 name = (char *) bfd_malloc (len);
1488 if (name)
1489 sprintf (name, "%s/%s/%s", dir_name, subdir_name, filename);
1490 }
1491 else
1492 {
1493 name = (char *) bfd_malloc (len);
1494 if (name)
1495 sprintf (name, "%s/%s", dir_name, filename);
1496 }
1497
1498 return name;
1499 }
1500
1501 return strdup (filename);
1502 }
1503
1504 static bfd_boolean
arange_add(const struct comp_unit * unit,struct arange * first_arange,bfd_vma low_pc,bfd_vma high_pc)1505 arange_add (const struct comp_unit *unit, struct arange *first_arange,
1506 bfd_vma low_pc, bfd_vma high_pc)
1507 {
1508 struct arange *arange;
1509
1510 /* Ignore empty ranges. */
1511 if (low_pc == high_pc)
1512 return TRUE;
1513
1514 /* If the first arange is empty, use it. */
1515 if (first_arange->high == 0)
1516 {
1517 first_arange->low = low_pc;
1518 first_arange->high = high_pc;
1519 return TRUE;
1520 }
1521
1522 /* Next see if we can cheaply extend an existing range. */
1523 arange = first_arange;
1524 do
1525 {
1526 if (low_pc == arange->high)
1527 {
1528 arange->high = high_pc;
1529 return TRUE;
1530 }
1531 if (high_pc == arange->low)
1532 {
1533 arange->low = low_pc;
1534 return TRUE;
1535 }
1536 arange = arange->next;
1537 }
1538 while (arange);
1539
1540 /* Need to allocate a new arange and insert it into the arange list.
1541 Order isn't significant, so just insert after the first arange. */
1542 arange = (struct arange *) bfd_alloc (unit->abfd, sizeof (*arange));
1543 if (arange == NULL)
1544 return FALSE;
1545 arange->low = low_pc;
1546 arange->high = high_pc;
1547 arange->next = first_arange->next;
1548 first_arange->next = arange;
1549 return TRUE;
1550 }
1551
1552 /* Compare function for line sequences. */
1553
1554 static int
compare_sequences(const void * a,const void * b)1555 compare_sequences (const void* a, const void* b)
1556 {
1557 const struct line_sequence* seq1 = a;
1558 const struct line_sequence* seq2 = b;
1559
1560 /* Sort by low_pc as the primary key. */
1561 if (seq1->low_pc < seq2->low_pc)
1562 return -1;
1563 if (seq1->low_pc > seq2->low_pc)
1564 return 1;
1565
1566 /* If low_pc values are equal, sort in reverse order of
1567 high_pc, so that the largest region comes first. */
1568 if (seq1->last_line->address < seq2->last_line->address)
1569 return 1;
1570 if (seq1->last_line->address > seq2->last_line->address)
1571 return -1;
1572
1573 if (seq1->last_line->op_index < seq2->last_line->op_index)
1574 return 1;
1575 if (seq1->last_line->op_index > seq2->last_line->op_index)
1576 return -1;
1577
1578 return 0;
1579 }
1580
1581 /* Sort the line sequences for quick lookup. */
1582
1583 static bfd_boolean
sort_line_sequences(struct line_info_table * table)1584 sort_line_sequences (struct line_info_table* table)
1585 {
1586 bfd_size_type amt;
1587 struct line_sequence* sequences;
1588 struct line_sequence* seq;
1589 unsigned int n = 0;
1590 unsigned int num_sequences = table->num_sequences;
1591 bfd_vma last_high_pc;
1592
1593 if (num_sequences == 0)
1594 return TRUE;
1595
1596 /* Allocate space for an array of sequences. */
1597 amt = sizeof (struct line_sequence) * num_sequences;
1598 sequences = (struct line_sequence *) bfd_alloc (table->abfd, amt);
1599 if (sequences == NULL)
1600 return FALSE;
1601
1602 /* Copy the linked list into the array, freeing the original nodes. */
1603 seq = table->sequences;
1604 for (n = 0; n < num_sequences; n++)
1605 {
1606 struct line_sequence* last_seq = seq;
1607
1608 BFD_ASSERT (seq);
1609 sequences[n].low_pc = seq->low_pc;
1610 sequences[n].prev_sequence = NULL;
1611 sequences[n].last_line = seq->last_line;
1612 seq = seq->prev_sequence;
1613 free (last_seq);
1614 }
1615 BFD_ASSERT (seq == NULL);
1616
1617 qsort (sequences, n, sizeof (struct line_sequence), compare_sequences);
1618
1619 /* Make the list binary-searchable by trimming overlapping entries
1620 and removing nested entries. */
1621 num_sequences = 1;
1622 last_high_pc = sequences[0].last_line->address;
1623 for (n = 1; n < table->num_sequences; n++)
1624 {
1625 if (sequences[n].low_pc < last_high_pc)
1626 {
1627 if (sequences[n].last_line->address <= last_high_pc)
1628 /* Skip nested entries. */
1629 continue;
1630
1631 /* Trim overlapping entries. */
1632 sequences[n].low_pc = last_high_pc;
1633 }
1634 last_high_pc = sequences[n].last_line->address;
1635 if (n > num_sequences)
1636 {
1637 /* Close up the gap. */
1638 sequences[num_sequences].low_pc = sequences[n].low_pc;
1639 sequences[num_sequences].last_line = sequences[n].last_line;
1640 }
1641 num_sequences++;
1642 }
1643
1644 table->sequences = sequences;
1645 table->num_sequences = num_sequences;
1646 return TRUE;
1647 }
1648
1649 /* Decode the line number information for UNIT. */
1650
1651 static struct line_info_table*
decode_line_info(struct comp_unit * unit,struct dwarf2_debug * stash)1652 decode_line_info (struct comp_unit *unit, struct dwarf2_debug *stash)
1653 {
1654 bfd *abfd = unit->abfd;
1655 struct line_info_table* table;
1656 bfd_byte *line_ptr;
1657 bfd_byte *line_end;
1658 struct line_head lh;
1659 unsigned int i, bytes_read, offset_size;
1660 char *cur_file, *cur_dir;
1661 unsigned char op_code, extended_op, adj_opcode;
1662 unsigned int exop_len;
1663 bfd_size_type amt;
1664
1665 if (! read_section (abfd, &stash->debug_sections[debug_line],
1666 stash->syms, unit->line_offset,
1667 &stash->dwarf_line_buffer, &stash->dwarf_line_size))
1668 return NULL;
1669
1670 amt = sizeof (struct line_info_table);
1671 table = (struct line_info_table *) bfd_alloc (abfd, amt);
1672 if (table == NULL)
1673 return NULL;
1674 table->abfd = abfd;
1675 table->comp_dir = unit->comp_dir;
1676
1677 table->num_files = 0;
1678 table->files = NULL;
1679
1680 table->num_dirs = 0;
1681 table->dirs = NULL;
1682
1683 table->num_sequences = 0;
1684 table->sequences = NULL;
1685
1686 table->lcl_head = NULL;
1687
1688 if (stash->dwarf_line_size < 16)
1689 {
1690 (*_bfd_error_handler)
1691 (_("Dwarf Error: Line info section is too small (%ld)"),
1692 (long) stash->dwarf_line_size);
1693 bfd_set_error (bfd_error_bad_value);
1694 return NULL;
1695 }
1696 line_ptr = stash->dwarf_line_buffer + unit->line_offset;
1697 line_end = stash->dwarf_line_buffer + stash->dwarf_line_size;
1698
1699 /* Read in the prologue. */
1700 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
1701 line_ptr += 4;
1702 offset_size = 4;
1703 if (lh.total_length == 0xffffffff)
1704 {
1705 lh.total_length = read_8_bytes (abfd, line_ptr, line_end);
1706 line_ptr += 8;
1707 offset_size = 8;
1708 }
1709 else if (lh.total_length == 0 && unit->addr_size == 8)
1710 {
1711 /* Handle (non-standard) 64-bit DWARF2 formats. */
1712 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
1713 line_ptr += 4;
1714 offset_size = 8;
1715 }
1716
1717 if (lh.total_length > stash->dwarf_line_size)
1718 {
1719 (*_bfd_error_handler)
1720 (_("Dwarf Error: Line info data is bigger (0x%lx) than the section (0x%lx)"),
1721 (long) lh.total_length, (long) stash->dwarf_line_size);
1722 bfd_set_error (bfd_error_bad_value);
1723 return NULL;
1724 }
1725
1726 line_end = line_ptr + lh.total_length;
1727
1728 lh.version = read_2_bytes (abfd, line_ptr, line_end);
1729 if (lh.version < 2 || lh.version > 4)
1730 {
1731 (*_bfd_error_handler)
1732 (_("Dwarf Error: Unhandled .debug_line version %d."), lh.version);
1733 bfd_set_error (bfd_error_bad_value);
1734 return NULL;
1735 }
1736 line_ptr += 2;
1737
1738 if (line_ptr + offset_size + (lh.version >=4 ? 6 : 5) >= line_end)
1739 {
1740 (*_bfd_error_handler)
1741 (_("Dwarf Error: Ran out of room reading prologue"));
1742 bfd_set_error (bfd_error_bad_value);
1743 return NULL;
1744 }
1745
1746 if (offset_size == 4)
1747 lh.prologue_length = read_4_bytes (abfd, line_ptr, line_end);
1748 else
1749 lh.prologue_length = read_8_bytes (abfd, line_ptr, line_end);
1750 line_ptr += offset_size;
1751
1752 lh.minimum_instruction_length = read_1_byte (abfd, line_ptr, line_end);
1753 line_ptr += 1;
1754
1755 if (lh.version >= 4)
1756 {
1757 lh.maximum_ops_per_insn = read_1_byte (abfd, line_ptr, line_end);
1758 line_ptr += 1;
1759 }
1760 else
1761 lh.maximum_ops_per_insn = 1;
1762
1763 if (lh.maximum_ops_per_insn == 0)
1764 {
1765 (*_bfd_error_handler)
1766 (_("Dwarf Error: Invalid maximum operations per instruction."));
1767 bfd_set_error (bfd_error_bad_value);
1768 return NULL;
1769 }
1770
1771 lh.default_is_stmt = read_1_byte (abfd, line_ptr, line_end);
1772 line_ptr += 1;
1773
1774 lh.line_base = read_1_signed_byte (abfd, line_ptr, line_end);
1775 line_ptr += 1;
1776
1777 lh.line_range = read_1_byte (abfd, line_ptr, line_end);
1778 line_ptr += 1;
1779
1780 lh.opcode_base = read_1_byte (abfd, line_ptr, line_end);
1781 line_ptr += 1;
1782
1783 if (line_ptr + (lh.opcode_base - 1) >= line_end)
1784 {
1785 (*_bfd_error_handler) (_("Dwarf Error: Ran out of room reading opcodes"));
1786 bfd_set_error (bfd_error_bad_value);
1787 return NULL;
1788 }
1789
1790 amt = lh.opcode_base * sizeof (unsigned char);
1791 lh.standard_opcode_lengths = (unsigned char *) bfd_alloc (abfd, amt);
1792
1793 lh.standard_opcode_lengths[0] = 1;
1794
1795 for (i = 1; i < lh.opcode_base; ++i)
1796 {
1797 lh.standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr, line_end);
1798 line_ptr += 1;
1799 }
1800
1801 /* Read directory table. */
1802 while ((cur_dir = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
1803 {
1804 line_ptr += bytes_read;
1805
1806 if ((table->num_dirs % DIR_ALLOC_CHUNK) == 0)
1807 {
1808 char **tmp;
1809
1810 amt = table->num_dirs + DIR_ALLOC_CHUNK;
1811 amt *= sizeof (char *);
1812
1813 tmp = (char **) bfd_realloc (table->dirs, amt);
1814 if (tmp == NULL)
1815 goto fail;
1816 table->dirs = tmp;
1817 }
1818
1819 table->dirs[table->num_dirs++] = cur_dir;
1820 }
1821
1822 line_ptr += bytes_read;
1823
1824 /* Read file name table. */
1825 while ((cur_file = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
1826 {
1827 line_ptr += bytes_read;
1828
1829 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
1830 {
1831 struct fileinfo *tmp;
1832
1833 amt = table->num_files + FILE_ALLOC_CHUNK;
1834 amt *= sizeof (struct fileinfo);
1835
1836 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
1837 if (tmp == NULL)
1838 goto fail;
1839 table->files = tmp;
1840 }
1841
1842 table->files[table->num_files].name = cur_file;
1843 table->files[table->num_files].dir =
1844 safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
1845 line_ptr += bytes_read;
1846 table->files[table->num_files].time = safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
1847 line_ptr += bytes_read;
1848 table->files[table->num_files].size = safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
1849 line_ptr += bytes_read;
1850 table->num_files++;
1851 }
1852
1853 line_ptr += bytes_read;
1854
1855 /* Read the statement sequences until there's nothing left. */
1856 while (line_ptr < line_end)
1857 {
1858 /* State machine registers. */
1859 bfd_vma address = 0;
1860 unsigned char op_index = 0;
1861 char * filename = table->num_files ? concat_filename (table, 1) : NULL;
1862 unsigned int line = 1;
1863 unsigned int column = 0;
1864 unsigned int discriminator = 0;
1865 int is_stmt = lh.default_is_stmt;
1866 int end_sequence = 0;
1867 /* eraxxon@alumni.rice.edu: Against the DWARF2 specs, some
1868 compilers generate address sequences that are wildly out of
1869 order using DW_LNE_set_address (e.g. Intel C++ 6.0 compiler
1870 for ia64-Linux). Thus, to determine the low and high
1871 address, we must compare on every DW_LNS_copy, etc. */
1872 bfd_vma low_pc = (bfd_vma) -1;
1873 bfd_vma high_pc = 0;
1874
1875 /* Decode the table. */
1876 while (! end_sequence)
1877 {
1878 op_code = read_1_byte (abfd, line_ptr, line_end);
1879 line_ptr += 1;
1880
1881 if (op_code >= lh.opcode_base)
1882 {
1883 /* Special operand. */
1884 adj_opcode = op_code - lh.opcode_base;
1885 if (lh.line_range == 0)
1886 goto line_fail;
1887 if (lh.maximum_ops_per_insn == 1)
1888 address += (adj_opcode / lh.line_range
1889 * lh.minimum_instruction_length);
1890 else
1891 {
1892 address += ((op_index + adj_opcode / lh.line_range)
1893 / lh.maximum_ops_per_insn
1894 * lh.minimum_instruction_length);
1895 op_index = ((op_index + adj_opcode / lh.line_range)
1896 % lh.maximum_ops_per_insn);
1897 }
1898 line += lh.line_base + (adj_opcode % lh.line_range);
1899 /* Append row to matrix using current values. */
1900 if (!add_line_info (table, address, op_index, filename,
1901 line, column, discriminator, 0))
1902 goto line_fail;
1903 discriminator = 0;
1904 if (address < low_pc)
1905 low_pc = address;
1906 if (address > high_pc)
1907 high_pc = address;
1908 }
1909 else switch (op_code)
1910 {
1911 case DW_LNS_extended_op:
1912 exop_len = safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
1913 line_ptr += bytes_read;
1914 extended_op = read_1_byte (abfd, line_ptr, line_end);
1915 line_ptr += 1;
1916
1917 switch (extended_op)
1918 {
1919 case DW_LNE_end_sequence:
1920 end_sequence = 1;
1921 if (!add_line_info (table, address, op_index, filename, line,
1922 column, discriminator, end_sequence))
1923 goto line_fail;
1924 discriminator = 0;
1925 if (address < low_pc)
1926 low_pc = address;
1927 if (address > high_pc)
1928 high_pc = address;
1929 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
1930 goto line_fail;
1931 break;
1932 case DW_LNE_set_address:
1933 address = read_address (unit, line_ptr, line_end);
1934 op_index = 0;
1935 line_ptr += unit->addr_size;
1936 break;
1937 case DW_LNE_define_file:
1938 cur_file = read_string (abfd, line_ptr, line_end, &bytes_read);
1939 line_ptr += bytes_read;
1940 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
1941 {
1942 struct fileinfo *tmp;
1943
1944 amt = table->num_files + FILE_ALLOC_CHUNK;
1945 amt *= sizeof (struct fileinfo);
1946 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
1947 if (tmp == NULL)
1948 goto line_fail;
1949 table->files = tmp;
1950 }
1951 table->files[table->num_files].name = cur_file;
1952 table->files[table->num_files].dir =
1953 safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
1954 line_ptr += bytes_read;
1955 table->files[table->num_files].time =
1956 safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
1957 line_ptr += bytes_read;
1958 table->files[table->num_files].size =
1959 safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
1960 line_ptr += bytes_read;
1961 table->num_files++;
1962 break;
1963 case DW_LNE_set_discriminator:
1964 discriminator =
1965 safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
1966 line_ptr += bytes_read;
1967 break;
1968 case DW_LNE_HP_source_file_correlation:
1969 line_ptr += exop_len - 1;
1970 break;
1971 default:
1972 (*_bfd_error_handler)
1973 (_("Dwarf Error: mangled line number section."));
1974 bfd_set_error (bfd_error_bad_value);
1975 line_fail:
1976 if (filename != NULL)
1977 free (filename);
1978 goto fail;
1979 }
1980 break;
1981 case DW_LNS_copy:
1982 if (!add_line_info (table, address, op_index,
1983 filename, line, column, discriminator, 0))
1984 goto line_fail;
1985 discriminator = 0;
1986 if (address < low_pc)
1987 low_pc = address;
1988 if (address > high_pc)
1989 high_pc = address;
1990 break;
1991 case DW_LNS_advance_pc:
1992 if (lh.maximum_ops_per_insn == 1)
1993 address += (lh.minimum_instruction_length
1994 * safe_read_leb128 (abfd, line_ptr, &bytes_read,
1995 FALSE, line_end));
1996 else
1997 {
1998 bfd_vma adjust = safe_read_leb128 (abfd, line_ptr, &bytes_read,
1999 FALSE, line_end);
2000 address = ((op_index + adjust) / lh.maximum_ops_per_insn
2001 * lh.minimum_instruction_length);
2002 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2003 }
2004 line_ptr += bytes_read;
2005 break;
2006 case DW_LNS_advance_line:
2007 line += safe_read_leb128 (abfd, line_ptr, &bytes_read, TRUE, line_end);
2008 line_ptr += bytes_read;
2009 break;
2010 case DW_LNS_set_file:
2011 {
2012 unsigned int file;
2013
2014 /* The file and directory tables are 0
2015 based, the references are 1 based. */
2016 file = safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2017 line_ptr += bytes_read;
2018 if (filename)
2019 free (filename);
2020 filename = concat_filename (table, file);
2021 break;
2022 }
2023 case DW_LNS_set_column:
2024 column = safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2025 line_ptr += bytes_read;
2026 break;
2027 case DW_LNS_negate_stmt:
2028 is_stmt = (!is_stmt);
2029 break;
2030 case DW_LNS_set_basic_block:
2031 break;
2032 case DW_LNS_const_add_pc:
2033 if (lh.maximum_ops_per_insn == 1)
2034 address += (lh.minimum_instruction_length
2035 * ((255 - lh.opcode_base) / lh.line_range));
2036 else
2037 {
2038 bfd_vma adjust = ((255 - lh.opcode_base) / lh.line_range);
2039 address += (lh.minimum_instruction_length
2040 * ((op_index + adjust)
2041 / lh.maximum_ops_per_insn));
2042 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2043 }
2044 break;
2045 case DW_LNS_fixed_advance_pc:
2046 address += read_2_bytes (abfd, line_ptr, line_end);
2047 op_index = 0;
2048 line_ptr += 2;
2049 break;
2050 default:
2051 /* Unknown standard opcode, ignore it. */
2052 for (i = 0; i < lh.standard_opcode_lengths[op_code]; i++)
2053 {
2054 (void) safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2055 line_ptr += bytes_read;
2056 }
2057 break;
2058 }
2059 }
2060
2061 if (filename)
2062 free (filename);
2063 }
2064
2065 if (sort_line_sequences (table))
2066 return table;
2067
2068 fail:
2069 if (table->sequences != NULL)
2070 free (table->sequences);
2071 if (table->files != NULL)
2072 free (table->files);
2073 if (table->dirs != NULL)
2074 free (table->dirs);
2075 return NULL;
2076 }
2077
2078 /* If ADDR is within TABLE set the output parameters and return the
2079 range of addresses covered by the entry used to fill them out.
2080 Otherwise set * FILENAME_PTR to NULL and return 0.
2081 The parameters FILENAME_PTR, LINENUMBER_PTR and DISCRIMINATOR_PTR
2082 are pointers to the objects to be filled in. */
2083
2084 static bfd_vma
lookup_address_in_line_info_table(struct line_info_table * table,bfd_vma addr,const char ** filename_ptr,unsigned int * linenumber_ptr,unsigned int * discriminator_ptr)2085 lookup_address_in_line_info_table (struct line_info_table *table,
2086 bfd_vma addr,
2087 const char **filename_ptr,
2088 unsigned int *linenumber_ptr,
2089 unsigned int *discriminator_ptr)
2090 {
2091 struct line_sequence *seq = NULL;
2092 struct line_info *each_line;
2093 int low, high, mid;
2094
2095 /* Binary search the array of sequences. */
2096 low = 0;
2097 high = table->num_sequences;
2098 while (low < high)
2099 {
2100 mid = (low + high) / 2;
2101 seq = &table->sequences[mid];
2102 if (addr < seq->low_pc)
2103 high = mid;
2104 else if (addr >= seq->last_line->address)
2105 low = mid + 1;
2106 else
2107 break;
2108 }
2109
2110 if (seq && addr >= seq->low_pc && addr < seq->last_line->address)
2111 {
2112 /* Note: seq->last_line should be a descendingly sorted list. */
2113 for (each_line = seq->last_line;
2114 each_line;
2115 each_line = each_line->prev_line)
2116 if (addr >= each_line->address)
2117 break;
2118
2119 if (each_line
2120 && !(each_line->end_sequence || each_line == seq->last_line))
2121 {
2122 *filename_ptr = each_line->filename;
2123 *linenumber_ptr = each_line->line;
2124 if (discriminator_ptr)
2125 *discriminator_ptr = each_line->discriminator;
2126 return seq->last_line->address - seq->low_pc;
2127 }
2128 }
2129
2130 *filename_ptr = NULL;
2131 return 0;
2132 }
2133
2134 /* Read in the .debug_ranges section for future reference. */
2135
2136 static bfd_boolean
read_debug_ranges(struct comp_unit * unit)2137 read_debug_ranges (struct comp_unit *unit)
2138 {
2139 struct dwarf2_debug *stash = unit->stash;
2140 return read_section (unit->abfd, &stash->debug_sections[debug_ranges],
2141 stash->syms, 0,
2142 &stash->dwarf_ranges_buffer, &stash->dwarf_ranges_size);
2143 }
2144
2145 /* Function table functions. */
2146
2147 /* If ADDR is within UNIT's function tables, set FUNCTION_PTR, and return
2148 TRUE. Note that we need to find the function that has the smallest range
2149 that contains ADDR, to handle inlined functions without depending upon
2150 them being ordered in TABLE by increasing range. */
2151
2152 static bfd_boolean
lookup_address_in_function_table(struct comp_unit * unit,bfd_vma addr,struct funcinfo ** function_ptr)2153 lookup_address_in_function_table (struct comp_unit *unit,
2154 bfd_vma addr,
2155 struct funcinfo **function_ptr)
2156 {
2157 struct funcinfo* each_func;
2158 struct funcinfo* best_fit = NULL;
2159 bfd_vma best_fit_len = 0;
2160 struct arange *arange;
2161
2162 for (each_func = unit->function_table;
2163 each_func;
2164 each_func = each_func->prev_func)
2165 {
2166 for (arange = &each_func->arange;
2167 arange;
2168 arange = arange->next)
2169 {
2170 if (addr >= arange->low && addr < arange->high)
2171 {
2172 if (!best_fit
2173 || arange->high - arange->low < best_fit_len)
2174 {
2175 best_fit = each_func;
2176 best_fit_len = arange->high - arange->low;
2177 }
2178 }
2179 }
2180 }
2181
2182 if (best_fit)
2183 {
2184 *function_ptr = best_fit;
2185 return TRUE;
2186 }
2187 return FALSE;
2188 }
2189
2190 /* If SYM at ADDR is within function table of UNIT, set FILENAME_PTR
2191 and LINENUMBER_PTR, and return TRUE. */
2192
2193 static bfd_boolean
lookup_symbol_in_function_table(struct comp_unit * unit,asymbol * sym,bfd_vma addr,const char ** filename_ptr,unsigned int * linenumber_ptr)2194 lookup_symbol_in_function_table (struct comp_unit *unit,
2195 asymbol *sym,
2196 bfd_vma addr,
2197 const char **filename_ptr,
2198 unsigned int *linenumber_ptr)
2199 {
2200 struct funcinfo* each_func;
2201 struct funcinfo* best_fit = NULL;
2202 bfd_vma best_fit_len = 0;
2203 struct arange *arange;
2204 const char *name = bfd_asymbol_name (sym);
2205 asection *sec = bfd_get_section (sym);
2206
2207 for (each_func = unit->function_table;
2208 each_func;
2209 each_func = each_func->prev_func)
2210 {
2211 for (arange = &each_func->arange;
2212 arange;
2213 arange = arange->next)
2214 {
2215 if ((!each_func->sec || each_func->sec == sec)
2216 && addr >= arange->low
2217 && addr < arange->high
2218 && each_func->name
2219 && strcmp (name, each_func->name) == 0
2220 && (!best_fit
2221 || arange->high - arange->low < best_fit_len))
2222 {
2223 best_fit = each_func;
2224 best_fit_len = arange->high - arange->low;
2225 }
2226 }
2227 }
2228
2229 if (best_fit)
2230 {
2231 best_fit->sec = sec;
2232 *filename_ptr = best_fit->file;
2233 *linenumber_ptr = best_fit->line;
2234 return TRUE;
2235 }
2236 else
2237 return FALSE;
2238 }
2239
2240 /* Variable table functions. */
2241
2242 /* If SYM is within variable table of UNIT, set FILENAME_PTR and
2243 LINENUMBER_PTR, and return TRUE. */
2244
2245 static bfd_boolean
lookup_symbol_in_variable_table(struct comp_unit * unit,asymbol * sym,bfd_vma addr,const char ** filename_ptr,unsigned int * linenumber_ptr)2246 lookup_symbol_in_variable_table (struct comp_unit *unit,
2247 asymbol *sym,
2248 bfd_vma addr,
2249 const char **filename_ptr,
2250 unsigned int *linenumber_ptr)
2251 {
2252 const char *name = bfd_asymbol_name (sym);
2253 asection *sec = bfd_get_section (sym);
2254 struct varinfo* each;
2255
2256 for (each = unit->variable_table; each; each = each->prev_var)
2257 if (each->stack == 0
2258 && each->file != NULL
2259 && each->name != NULL
2260 && each->addr == addr
2261 && (!each->sec || each->sec == sec)
2262 && strcmp (name, each->name) == 0)
2263 break;
2264
2265 if (each)
2266 {
2267 each->sec = sec;
2268 *filename_ptr = each->file;
2269 *linenumber_ptr = each->line;
2270 return TRUE;
2271 }
2272 else
2273 return FALSE;
2274 }
2275
2276 static char *
find_abstract_instance_name(struct comp_unit * unit,struct attribute * attr_ptr,bfd_boolean * is_linkage)2277 find_abstract_instance_name (struct comp_unit *unit,
2278 struct attribute *attr_ptr,
2279 bfd_boolean *is_linkage)
2280 {
2281 bfd *abfd = unit->abfd;
2282 bfd_byte *info_ptr;
2283 bfd_byte *info_ptr_end;
2284 unsigned int abbrev_number, bytes_read, i;
2285 struct abbrev_info *abbrev;
2286 bfd_uint64_t die_ref = attr_ptr->u.val;
2287 struct attribute attr;
2288 char *name = NULL;
2289
2290 /* DW_FORM_ref_addr can reference an entry in a different CU. It
2291 is an offset from the .debug_info section, not the current CU. */
2292 if (attr_ptr->form == DW_FORM_ref_addr)
2293 {
2294 /* We only support DW_FORM_ref_addr within the same file, so
2295 any relocations should be resolved already. */
2296 if (!die_ref)
2297 abort ();
2298
2299 info_ptr = unit->sec_info_ptr + die_ref;
2300 info_ptr_end = unit->end_ptr;
2301
2302 /* Now find the CU containing this pointer. */
2303 if (info_ptr >= unit->info_ptr_unit && info_ptr < unit->end_ptr)
2304 ;
2305 else
2306 {
2307 /* Check other CUs to see if they contain the abbrev. */
2308 struct comp_unit * u;
2309
2310 for (u = unit->prev_unit; u != NULL; u = u->prev_unit)
2311 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2312 break;
2313
2314 if (u == NULL)
2315 for (u = unit->next_unit; u != NULL; u = u->next_unit)
2316 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2317 break;
2318
2319 if (u)
2320 unit = u;
2321 /* else FIXME: What do we do now ? */
2322 }
2323 }
2324 else if (attr_ptr->form == DW_FORM_GNU_ref_alt)
2325 {
2326 info_ptr = read_alt_indirect_ref (unit, die_ref);
2327 if (info_ptr == NULL)
2328 {
2329 (*_bfd_error_handler)
2330 (_("Dwarf Error: Unable to read alt ref %u."), die_ref);
2331 bfd_set_error (bfd_error_bad_value);
2332 return NULL;
2333 }
2334 info_ptr_end = unit->stash->alt_dwarf_info_buffer + unit->stash->alt_dwarf_info_size;
2335
2336 /* FIXME: Do we need to locate the correct CU, in a similar
2337 fashion to the code in the DW_FORM_ref_addr case above ? */
2338 }
2339 else
2340 {
2341 info_ptr = unit->info_ptr_unit + die_ref;
2342 info_ptr_end = unit->end_ptr;
2343 }
2344
2345 abbrev_number = safe_read_leb128 (abfd, info_ptr, &bytes_read, FALSE, info_ptr_end);
2346 info_ptr += bytes_read;
2347
2348 if (abbrev_number)
2349 {
2350 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
2351 if (! abbrev)
2352 {
2353 (*_bfd_error_handler)
2354 (_("Dwarf Error: Could not find abbrev number %u."), abbrev_number);
2355 bfd_set_error (bfd_error_bad_value);
2356 }
2357 else
2358 {
2359 for (i = 0; i < abbrev->num_attrs; ++i)
2360 {
2361 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit,
2362 info_ptr, info_ptr_end);
2363 if (info_ptr == NULL)
2364 break;
2365 switch (attr.name)
2366 {
2367 case DW_AT_name:
2368 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
2369 over DW_AT_name. */
2370 if (name == NULL && is_str_attr (attr.form))
2371 {
2372 name = attr.u.str;
2373 if (non_mangled (unit->lang))
2374 *is_linkage = TRUE;
2375 }
2376 break;
2377 case DW_AT_specification:
2378 name = find_abstract_instance_name (unit, &attr, is_linkage);
2379 break;
2380 case DW_AT_linkage_name:
2381 case DW_AT_MIPS_linkage_name:
2382 /* PR 16949: Corrupt debug info can place
2383 non-string forms into these attributes. */
2384 if (is_str_attr (attr.form))
2385 {
2386 name = attr.u.str;
2387 *is_linkage = TRUE;
2388 }
2389 break;
2390 default:
2391 break;
2392 }
2393 }
2394 }
2395 }
2396 return name;
2397 }
2398
2399 static bfd_boolean
read_rangelist(struct comp_unit * unit,struct arange * arange,bfd_uint64_t offset)2400 read_rangelist (struct comp_unit *unit, struct arange *arange,
2401 bfd_uint64_t offset)
2402 {
2403 bfd_byte *ranges_ptr;
2404 bfd_byte *ranges_end;
2405 bfd_vma base_address = unit->base_address;
2406
2407 if (! unit->stash->dwarf_ranges_buffer)
2408 {
2409 if (! read_debug_ranges (unit))
2410 return FALSE;
2411 }
2412
2413 ranges_ptr = unit->stash->dwarf_ranges_buffer + offset;
2414 if (ranges_ptr < unit->stash->dwarf_ranges_buffer)
2415 return FALSE;
2416 ranges_end = unit->stash->dwarf_ranges_buffer + unit->stash->dwarf_ranges_size;
2417
2418 for (;;)
2419 {
2420 bfd_vma low_pc;
2421 bfd_vma high_pc;
2422
2423 /* PR 17512: file: 62cada7d. */
2424 if (ranges_ptr + 2 * unit->addr_size > ranges_end)
2425 return FALSE;
2426
2427 low_pc = read_address (unit, ranges_ptr, ranges_end);
2428 ranges_ptr += unit->addr_size;
2429 high_pc = read_address (unit, ranges_ptr, ranges_end);
2430 ranges_ptr += unit->addr_size;
2431
2432 if (low_pc == 0 && high_pc == 0)
2433 break;
2434 if (low_pc == -1UL && high_pc != -1UL)
2435 base_address = high_pc;
2436 else
2437 {
2438 if (!arange_add (unit, arange,
2439 base_address + low_pc, base_address + high_pc))
2440 return FALSE;
2441 }
2442 }
2443 return TRUE;
2444 }
2445
2446 /* DWARF2 Compilation unit functions. */
2447
2448 /* Scan over each die in a comp. unit looking for functions to add
2449 to the function table and variables to the variable table. */
2450
2451 static bfd_boolean
scan_unit_for_symbols(struct comp_unit * unit)2452 scan_unit_for_symbols (struct comp_unit *unit)
2453 {
2454 bfd *abfd = unit->abfd;
2455 bfd_byte *info_ptr = unit->first_child_die_ptr;
2456 bfd_byte *info_ptr_end = unit->stash->info_ptr_end;
2457 int nesting_level = 1;
2458 struct funcinfo **nested_funcs;
2459 int nested_funcs_size;
2460
2461 /* Maintain a stack of in-scope functions and inlined functions, which we
2462 can use to set the caller_func field. */
2463 nested_funcs_size = 32;
2464 nested_funcs = (struct funcinfo **)
2465 bfd_malloc (nested_funcs_size * sizeof (struct funcinfo *));
2466 if (nested_funcs == NULL)
2467 return FALSE;
2468 nested_funcs[nesting_level] = 0;
2469
2470 while (nesting_level)
2471 {
2472 unsigned int abbrev_number, bytes_read, i;
2473 struct abbrev_info *abbrev;
2474 struct attribute attr;
2475 struct funcinfo *func;
2476 struct varinfo *var;
2477 bfd_vma low_pc = 0;
2478 bfd_vma high_pc = 0;
2479 bfd_boolean high_pc_relative = FALSE;
2480
2481 /* PR 17512: file: 9f405d9d. */
2482 if (info_ptr >= info_ptr_end)
2483 goto fail;
2484
2485 abbrev_number = safe_read_leb128 (abfd, info_ptr, &bytes_read, FALSE, info_ptr_end);
2486 info_ptr += bytes_read;
2487
2488 if (! abbrev_number)
2489 {
2490 nesting_level--;
2491 continue;
2492 }
2493
2494 abbrev = lookup_abbrev (abbrev_number,unit->abbrevs);
2495 if (! abbrev)
2496 {
2497 (*_bfd_error_handler)
2498 (_("Dwarf Error: Could not find abbrev number %u."),
2499 abbrev_number);
2500 bfd_set_error (bfd_error_bad_value);
2501 goto fail;
2502 }
2503
2504 var = NULL;
2505 if (abbrev->tag == DW_TAG_subprogram
2506 || abbrev->tag == DW_TAG_entry_point
2507 || abbrev->tag == DW_TAG_inlined_subroutine)
2508 {
2509 bfd_size_type amt = sizeof (struct funcinfo);
2510 func = (struct funcinfo *) bfd_zalloc (abfd, amt);
2511 if (func == NULL)
2512 goto fail;
2513 func->tag = abbrev->tag;
2514 func->prev_func = unit->function_table;
2515 unit->function_table = func;
2516 BFD_ASSERT (!unit->cached);
2517
2518 if (func->tag == DW_TAG_inlined_subroutine)
2519 for (i = nesting_level - 1; i >= 1; i--)
2520 if (nested_funcs[i])
2521 {
2522 func->caller_func = nested_funcs[i];
2523 break;
2524 }
2525 nested_funcs[nesting_level] = func;
2526 }
2527 else
2528 {
2529 func = NULL;
2530 if (abbrev->tag == DW_TAG_variable)
2531 {
2532 bfd_size_type amt = sizeof (struct varinfo);
2533 var = (struct varinfo *) bfd_zalloc (abfd, amt);
2534 if (var == NULL)
2535 goto fail;
2536 var->tag = abbrev->tag;
2537 var->stack = 1;
2538 var->prev_var = unit->variable_table;
2539 unit->variable_table = var;
2540 BFD_ASSERT (!unit->cached);
2541 }
2542
2543 /* No inline function in scope at this nesting level. */
2544 nested_funcs[nesting_level] = 0;
2545 }
2546
2547 for (i = 0; i < abbrev->num_attrs; ++i)
2548 {
2549 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr, info_ptr_end);
2550 if (info_ptr == NULL)
2551 goto fail;
2552
2553 if (func)
2554 {
2555 switch (attr.name)
2556 {
2557 case DW_AT_call_file:
2558 func->caller_file = concat_filename (unit->line_table,
2559 attr.u.val);
2560 break;
2561
2562 case DW_AT_call_line:
2563 func->caller_line = attr.u.val;
2564 break;
2565
2566 case DW_AT_abstract_origin:
2567 case DW_AT_specification:
2568 func->name = find_abstract_instance_name (unit, &attr,
2569 &func->is_linkage);
2570 break;
2571
2572 case DW_AT_name:
2573 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
2574 over DW_AT_name. */
2575 if (func->name == NULL && is_str_attr (attr.form))
2576 {
2577 func->name = attr.u.str;
2578 if (non_mangled (unit->lang))
2579 func->is_linkage = TRUE;
2580 }
2581 break;
2582
2583 case DW_AT_linkage_name:
2584 case DW_AT_MIPS_linkage_name:
2585 /* PR 16949: Corrupt debug info can place
2586 non-string forms into these attributes. */
2587 if (is_str_attr (attr.form))
2588 {
2589 func->name = attr.u.str;
2590 func->is_linkage = TRUE;
2591 }
2592 break;
2593
2594 case DW_AT_low_pc:
2595 low_pc = attr.u.val;
2596 break;
2597
2598 case DW_AT_high_pc:
2599 high_pc = attr.u.val;
2600 high_pc_relative = attr.form != DW_FORM_addr;
2601 break;
2602
2603 case DW_AT_ranges:
2604 if (!read_rangelist (unit, &func->arange, attr.u.val))
2605 goto fail;
2606 break;
2607
2608 case DW_AT_decl_file:
2609 func->file = concat_filename (unit->line_table,
2610 attr.u.val);
2611 break;
2612
2613 case DW_AT_decl_line:
2614 func->line = attr.u.val;
2615 break;
2616
2617 default:
2618 break;
2619 }
2620 }
2621 else if (var)
2622 {
2623 switch (attr.name)
2624 {
2625 case DW_AT_name:
2626 var->name = attr.u.str;
2627 break;
2628
2629 case DW_AT_decl_file:
2630 var->file = concat_filename (unit->line_table,
2631 attr.u.val);
2632 break;
2633
2634 case DW_AT_decl_line:
2635 var->line = attr.u.val;
2636 break;
2637
2638 case DW_AT_external:
2639 if (attr.u.val != 0)
2640 var->stack = 0;
2641 break;
2642
2643 case DW_AT_location:
2644 switch (attr.form)
2645 {
2646 case DW_FORM_block:
2647 case DW_FORM_block1:
2648 case DW_FORM_block2:
2649 case DW_FORM_block4:
2650 case DW_FORM_exprloc:
2651 if (*attr.u.blk->data == DW_OP_addr)
2652 {
2653 var->stack = 0;
2654
2655 /* Verify that DW_OP_addr is the only opcode in the
2656 location, in which case the block size will be 1
2657 plus the address size. */
2658 /* ??? For TLS variables, gcc can emit
2659 DW_OP_addr <addr> DW_OP_GNU_push_tls_address
2660 which we don't handle here yet. */
2661 if (attr.u.blk->size == unit->addr_size + 1U)
2662 var->addr = bfd_get (unit->addr_size * 8,
2663 unit->abfd,
2664 attr.u.blk->data + 1);
2665 }
2666 break;
2667
2668 default:
2669 break;
2670 }
2671 break;
2672
2673 default:
2674 break;
2675 }
2676 }
2677 }
2678
2679 if (high_pc_relative)
2680 high_pc += low_pc;
2681
2682 if (func && high_pc != 0)
2683 {
2684 if (!arange_add (unit, &func->arange, low_pc, high_pc))
2685 goto fail;
2686 }
2687
2688 if (abbrev->has_children)
2689 {
2690 nesting_level++;
2691
2692 if (nesting_level >= nested_funcs_size)
2693 {
2694 struct funcinfo **tmp;
2695
2696 nested_funcs_size *= 2;
2697 tmp = (struct funcinfo **)
2698 bfd_realloc (nested_funcs,
2699 nested_funcs_size * sizeof (struct funcinfo *));
2700 if (tmp == NULL)
2701 goto fail;
2702 nested_funcs = tmp;
2703 }
2704 nested_funcs[nesting_level] = 0;
2705 }
2706 }
2707
2708 free (nested_funcs);
2709 return TRUE;
2710
2711 fail:
2712 free (nested_funcs);
2713 return FALSE;
2714 }
2715
2716 /* Parse a DWARF2 compilation unit starting at INFO_PTR. This
2717 includes the compilation unit header that proceeds the DIE's, but
2718 does not include the length field that precedes each compilation
2719 unit header. END_PTR points one past the end of this comp unit.
2720 OFFSET_SIZE is the size of DWARF2 offsets (either 4 or 8 bytes).
2721
2722 This routine does not read the whole compilation unit; only enough
2723 to get to the line number information for the compilation unit. */
2724
2725 static struct comp_unit *
parse_comp_unit(struct dwarf2_debug * stash,bfd_vma unit_length,bfd_byte * info_ptr_unit,unsigned int offset_size)2726 parse_comp_unit (struct dwarf2_debug *stash,
2727 bfd_vma unit_length,
2728 bfd_byte *info_ptr_unit,
2729 unsigned int offset_size)
2730 {
2731 struct comp_unit* unit;
2732 unsigned int version;
2733 bfd_uint64_t abbrev_offset = 0;
2734 unsigned int addr_size;
2735 struct abbrev_info** abbrevs;
2736 unsigned int abbrev_number, bytes_read, i;
2737 struct abbrev_info *abbrev;
2738 struct attribute attr;
2739 bfd_byte *info_ptr = stash->info_ptr;
2740 bfd_byte *end_ptr = info_ptr + unit_length;
2741 bfd_size_type amt;
2742 bfd_vma low_pc = 0;
2743 bfd_vma high_pc = 0;
2744 bfd *abfd = stash->bfd_ptr;
2745 bfd_boolean high_pc_relative = FALSE;
2746
2747 version = read_2_bytes (abfd, info_ptr, end_ptr);
2748 info_ptr += 2;
2749 BFD_ASSERT (offset_size == 4 || offset_size == 8);
2750 if (offset_size == 4)
2751 abbrev_offset = read_4_bytes (abfd, info_ptr, end_ptr);
2752 else
2753 abbrev_offset = read_8_bytes (abfd, info_ptr, end_ptr);
2754 info_ptr += offset_size;
2755 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
2756 info_ptr += 1;
2757
2758 if (version != 2 && version != 3 && version != 4)
2759 {
2760 /* PR 19872: A version number of 0 probably means that there is padding
2761 at the end of the .debug_info section. Gold puts it there when
2762 performing an incremental link, for example. So do not generate
2763 an error, just return a NULL. */
2764 if (version)
2765 {
2766 (*_bfd_error_handler)
2767 (_("Dwarf Error: found dwarf version '%u', this reader"
2768 " only handles version 2, 3 and 4 information."), version);
2769 bfd_set_error (bfd_error_bad_value);
2770 }
2771 return NULL;
2772 }
2773
2774 if (addr_size > sizeof (bfd_vma))
2775 {
2776 (*_bfd_error_handler)
2777 (_("Dwarf Error: found address size '%u', this reader"
2778 " can not handle sizes greater than '%u'."),
2779 addr_size,
2780 (unsigned int) sizeof (bfd_vma));
2781 bfd_set_error (bfd_error_bad_value);
2782 return NULL;
2783 }
2784
2785 if (addr_size != 2 && addr_size != 4 && addr_size != 8)
2786 {
2787 (*_bfd_error_handler)
2788 ("Dwarf Error: found address size '%u', this reader"
2789 " can only handle address sizes '2', '4' and '8'.", addr_size);
2790 bfd_set_error (bfd_error_bad_value);
2791 return NULL;
2792 }
2793
2794 /* Read the abbrevs for this compilation unit into a table. */
2795 abbrevs = read_abbrevs (abfd, abbrev_offset, stash);
2796 if (! abbrevs)
2797 return NULL;
2798
2799 abbrev_number = safe_read_leb128 (abfd, info_ptr, &bytes_read, FALSE, end_ptr);
2800 info_ptr += bytes_read;
2801 if (! abbrev_number)
2802 {
2803 /* PR 19872: An abbrev number of 0 probably means that there is padding
2804 at the end of the .debug_abbrev section. Gold puts it there when
2805 performing an incremental link, for example. So do not generate
2806 an error, just return a NULL. */
2807 return NULL;
2808 }
2809
2810 abbrev = lookup_abbrev (abbrev_number, abbrevs);
2811 if (! abbrev)
2812 {
2813 (*_bfd_error_handler) (_("Dwarf Error: Could not find abbrev number %u."),
2814 abbrev_number);
2815 bfd_set_error (bfd_error_bad_value);
2816 return NULL;
2817 }
2818
2819 amt = sizeof (struct comp_unit);
2820 unit = (struct comp_unit *) bfd_zalloc (abfd, amt);
2821 if (unit == NULL)
2822 return NULL;
2823 unit->abfd = abfd;
2824 unit->version = version;
2825 unit->addr_size = addr_size;
2826 unit->offset_size = offset_size;
2827 unit->abbrevs = abbrevs;
2828 unit->end_ptr = end_ptr;
2829 unit->stash = stash;
2830 unit->info_ptr_unit = info_ptr_unit;
2831 unit->sec_info_ptr = stash->sec_info_ptr;
2832
2833 for (i = 0; i < abbrev->num_attrs; ++i)
2834 {
2835 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr, end_ptr);
2836 if (info_ptr == NULL)
2837 return NULL;
2838
2839 /* Store the data if it is of an attribute we want to keep in a
2840 partial symbol table. */
2841 switch (attr.name)
2842 {
2843 case DW_AT_stmt_list:
2844 unit->stmtlist = 1;
2845 unit->line_offset = attr.u.val;
2846 break;
2847
2848 case DW_AT_name:
2849 unit->name = attr.u.str;
2850 break;
2851
2852 case DW_AT_low_pc:
2853 low_pc = attr.u.val;
2854 /* If the compilation unit DIE has a DW_AT_low_pc attribute,
2855 this is the base address to use when reading location
2856 lists or range lists. */
2857 if (abbrev->tag == DW_TAG_compile_unit)
2858 unit->base_address = low_pc;
2859 break;
2860
2861 case DW_AT_high_pc:
2862 high_pc = attr.u.val;
2863 high_pc_relative = attr.form != DW_FORM_addr;
2864 break;
2865
2866 case DW_AT_ranges:
2867 if (!read_rangelist (unit, &unit->arange, attr.u.val))
2868 return NULL;
2869 break;
2870
2871 case DW_AT_comp_dir:
2872 {
2873 char *comp_dir = attr.u.str;
2874
2875 /* PR 17512: file: 1fe726be. */
2876 if (! is_str_attr (attr.form))
2877 {
2878 (*_bfd_error_handler)
2879 (_("Dwarf Error: DW_AT_comp_dir attribute encountered with a non-string form."));
2880 comp_dir = NULL;
2881 }
2882
2883 if (comp_dir)
2884 {
2885 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2886 directory, get rid of it. */
2887 char *cp = strchr (comp_dir, ':');
2888
2889 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2890 comp_dir = cp + 1;
2891 }
2892 unit->comp_dir = comp_dir;
2893 break;
2894 }
2895
2896 case DW_AT_language:
2897 unit->lang = attr.u.val;
2898 break;
2899
2900 default:
2901 break;
2902 }
2903 }
2904 if (high_pc_relative)
2905 high_pc += low_pc;
2906 if (high_pc != 0)
2907 {
2908 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
2909 return NULL;
2910 }
2911
2912 unit->first_child_die_ptr = info_ptr;
2913 return unit;
2914 }
2915
2916 /* Return TRUE if UNIT may contain the address given by ADDR. When
2917 there are functions written entirely with inline asm statements, the
2918 range info in the compilation unit header may not be correct. We
2919 need to consult the line info table to see if a compilation unit
2920 really contains the given address. */
2921
2922 static bfd_boolean
comp_unit_contains_address(struct comp_unit * unit,bfd_vma addr)2923 comp_unit_contains_address (struct comp_unit *unit, bfd_vma addr)
2924 {
2925 struct arange *arange;
2926
2927 if (unit->error)
2928 return FALSE;
2929
2930 arange = &unit->arange;
2931 do
2932 {
2933 if (addr >= arange->low && addr < arange->high)
2934 return TRUE;
2935 arange = arange->next;
2936 }
2937 while (arange);
2938
2939 return FALSE;
2940 }
2941
2942 /* If UNIT contains ADDR, set the output parameters to the values for
2943 the line containing ADDR. The output parameters, FILENAME_PTR,
2944 FUNCTION_PTR, and LINENUMBER_PTR, are pointers to the objects
2945 to be filled in.
2946
2947 Returns the range of addresses covered by the entry that was used
2948 to fill in *LINENUMBER_PTR or 0 if it was not filled in. */
2949
2950 static bfd_vma
comp_unit_find_nearest_line(struct comp_unit * unit,bfd_vma addr,const char ** filename_ptr,struct funcinfo ** function_ptr,unsigned int * linenumber_ptr,unsigned int * discriminator_ptr,struct dwarf2_debug * stash)2951 comp_unit_find_nearest_line (struct comp_unit *unit,
2952 bfd_vma addr,
2953 const char **filename_ptr,
2954 struct funcinfo **function_ptr,
2955 unsigned int *linenumber_ptr,
2956 unsigned int *discriminator_ptr,
2957 struct dwarf2_debug *stash)
2958 {
2959 bfd_boolean func_p;
2960
2961 if (unit->error)
2962 return FALSE;
2963
2964 if (! unit->line_table)
2965 {
2966 if (! unit->stmtlist)
2967 {
2968 unit->error = 1;
2969 return FALSE;
2970 }
2971
2972 unit->line_table = decode_line_info (unit, stash);
2973
2974 if (! unit->line_table)
2975 {
2976 unit->error = 1;
2977 return FALSE;
2978 }
2979
2980 if (unit->first_child_die_ptr < unit->end_ptr
2981 && ! scan_unit_for_symbols (unit))
2982 {
2983 unit->error = 1;
2984 return FALSE;
2985 }
2986 }
2987
2988 *function_ptr = NULL;
2989 func_p = lookup_address_in_function_table (unit, addr, function_ptr);
2990 if (func_p && (*function_ptr)->tag == DW_TAG_inlined_subroutine)
2991 stash->inliner_chain = *function_ptr;
2992
2993 return lookup_address_in_line_info_table (unit->line_table, addr,
2994 filename_ptr,
2995 linenumber_ptr,
2996 discriminator_ptr);
2997 }
2998
2999 /* Check to see if line info is already decoded in a comp_unit.
3000 If not, decode it. Returns TRUE if no errors were encountered;
3001 FALSE otherwise. */
3002
3003 static bfd_boolean
comp_unit_maybe_decode_line_info(struct comp_unit * unit,struct dwarf2_debug * stash)3004 comp_unit_maybe_decode_line_info (struct comp_unit *unit,
3005 struct dwarf2_debug *stash)
3006 {
3007 if (unit->error)
3008 return FALSE;
3009
3010 if (! unit->line_table)
3011 {
3012 if (! unit->stmtlist)
3013 {
3014 unit->error = 1;
3015 return FALSE;
3016 }
3017
3018 unit->line_table = decode_line_info (unit, stash);
3019
3020 if (! unit->line_table)
3021 {
3022 unit->error = 1;
3023 return FALSE;
3024 }
3025
3026 if (unit->first_child_die_ptr < unit->end_ptr
3027 && ! scan_unit_for_symbols (unit))
3028 {
3029 unit->error = 1;
3030 return FALSE;
3031 }
3032 }
3033
3034 return TRUE;
3035 }
3036
3037 /* If UNIT contains SYM at ADDR, set the output parameters to the
3038 values for the line containing SYM. The output parameters,
3039 FILENAME_PTR, and LINENUMBER_PTR, are pointers to the objects to be
3040 filled in.
3041
3042 Return TRUE if UNIT contains SYM, and no errors were encountered;
3043 FALSE otherwise. */
3044
3045 static bfd_boolean
comp_unit_find_line(struct comp_unit * unit,asymbol * sym,bfd_vma addr,const char ** filename_ptr,unsigned int * linenumber_ptr,struct dwarf2_debug * stash)3046 comp_unit_find_line (struct comp_unit *unit,
3047 asymbol *sym,
3048 bfd_vma addr,
3049 const char **filename_ptr,
3050 unsigned int *linenumber_ptr,
3051 struct dwarf2_debug *stash)
3052 {
3053 if (!comp_unit_maybe_decode_line_info (unit, stash))
3054 return FALSE;
3055
3056 if (sym->flags & BSF_FUNCTION)
3057 return lookup_symbol_in_function_table (unit, sym, addr,
3058 filename_ptr,
3059 linenumber_ptr);
3060
3061 return lookup_symbol_in_variable_table (unit, sym, addr,
3062 filename_ptr,
3063 linenumber_ptr);
3064 }
3065
3066 static struct funcinfo *
reverse_funcinfo_list(struct funcinfo * head)3067 reverse_funcinfo_list (struct funcinfo *head)
3068 {
3069 struct funcinfo *rhead;
3070 struct funcinfo *temp;
3071
3072 for (rhead = NULL; head; head = temp)
3073 {
3074 temp = head->prev_func;
3075 head->prev_func = rhead;
3076 rhead = head;
3077 }
3078 return rhead;
3079 }
3080
3081 static struct varinfo *
reverse_varinfo_list(struct varinfo * head)3082 reverse_varinfo_list (struct varinfo *head)
3083 {
3084 struct varinfo *rhead;
3085 struct varinfo *temp;
3086
3087 for (rhead = NULL; head; head = temp)
3088 {
3089 temp = head->prev_var;
3090 head->prev_var = rhead;
3091 rhead = head;
3092 }
3093 return rhead;
3094 }
3095
3096 /* Extract all interesting funcinfos and varinfos of a compilation
3097 unit into hash tables for faster lookup. Returns TRUE if no
3098 errors were enountered; FALSE otherwise. */
3099
3100 static bfd_boolean
comp_unit_hash_info(struct dwarf2_debug * stash,struct comp_unit * unit,struct info_hash_table * funcinfo_hash_table,struct info_hash_table * varinfo_hash_table)3101 comp_unit_hash_info (struct dwarf2_debug *stash,
3102 struct comp_unit *unit,
3103 struct info_hash_table *funcinfo_hash_table,
3104 struct info_hash_table *varinfo_hash_table)
3105 {
3106 struct funcinfo* each_func;
3107 struct varinfo* each_var;
3108 bfd_boolean okay = TRUE;
3109
3110 BFD_ASSERT (stash->info_hash_status != STASH_INFO_HASH_DISABLED);
3111
3112 if (!comp_unit_maybe_decode_line_info (unit, stash))
3113 return FALSE;
3114
3115 BFD_ASSERT (!unit->cached);
3116
3117 /* To preserve the original search order, we went to visit the function
3118 infos in the reversed order of the list. However, making the list
3119 bi-directional use quite a bit of extra memory. So we reverse
3120 the list first, traverse the list in the now reversed order and
3121 finally reverse the list again to get back the original order. */
3122 unit->function_table = reverse_funcinfo_list (unit->function_table);
3123 for (each_func = unit->function_table;
3124 each_func && okay;
3125 each_func = each_func->prev_func)
3126 {
3127 /* Skip nameless functions. */
3128 if (each_func->name)
3129 /* There is no need to copy name string into hash table as
3130 name string is either in the dwarf string buffer or
3131 info in the stash. */
3132 okay = insert_info_hash_table (funcinfo_hash_table, each_func->name,
3133 (void*) each_func, FALSE);
3134 }
3135 unit->function_table = reverse_funcinfo_list (unit->function_table);
3136 if (!okay)
3137 return FALSE;
3138
3139 /* We do the same for variable infos. */
3140 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3141 for (each_var = unit->variable_table;
3142 each_var && okay;
3143 each_var = each_var->prev_var)
3144 {
3145 /* Skip stack vars and vars with no files or names. */
3146 if (each_var->stack == 0
3147 && each_var->file != NULL
3148 && each_var->name != NULL)
3149 /* There is no need to copy name string into hash table as
3150 name string is either in the dwarf string buffer or
3151 info in the stash. */
3152 okay = insert_info_hash_table (varinfo_hash_table, each_var->name,
3153 (void*) each_var, FALSE);
3154 }
3155
3156 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3157 unit->cached = TRUE;
3158 return okay;
3159 }
3160
3161 /* Locate a section in a BFD containing debugging info. The search starts
3162 from the section after AFTER_SEC, or from the first section in the BFD if
3163 AFTER_SEC is NULL. The search works by examining the names of the
3164 sections. There are three permissiable names. The first two are given
3165 by DEBUG_SECTIONS[debug_info] (whose standard DWARF2 names are .debug_info
3166 and .zdebug_info). The third is a prefix .gnu.linkonce.wi.
3167 This is a variation on the .debug_info section which has a checksum
3168 describing the contents appended onto the name. This allows the linker to
3169 identify and discard duplicate debugging sections for different
3170 compilation units. */
3171 #define GNU_LINKONCE_INFO ".gnu.linkonce.wi."
3172
3173 static asection *
find_debug_info(bfd * abfd,const struct dwarf_debug_section * debug_sections,asection * after_sec)3174 find_debug_info (bfd *abfd, const struct dwarf_debug_section *debug_sections,
3175 asection *after_sec)
3176 {
3177 asection *msec;
3178 const char *look;
3179
3180 if (after_sec == NULL)
3181 {
3182 look = debug_sections[debug_info].uncompressed_name;
3183 msec = bfd_get_section_by_name (abfd, look);
3184 if (msec != NULL)
3185 return msec;
3186
3187 look = debug_sections[debug_info].compressed_name;
3188 if (look != NULL)
3189 {
3190 msec = bfd_get_section_by_name (abfd, look);
3191 if (msec != NULL)
3192 return msec;
3193 }
3194
3195 for (msec = abfd->sections; msec != NULL; msec = msec->next)
3196 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
3197 return msec;
3198
3199 return NULL;
3200 }
3201
3202 for (msec = after_sec->next; msec != NULL; msec = msec->next)
3203 {
3204 look = debug_sections[debug_info].uncompressed_name;
3205 if (strcmp (msec->name, look) == 0)
3206 return msec;
3207
3208 look = debug_sections[debug_info].compressed_name;
3209 if (look != NULL && strcmp (msec->name, look) == 0)
3210 return msec;
3211
3212 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
3213 return msec;
3214 }
3215
3216 return NULL;
3217 }
3218
3219 /* Transfer VMAs from object file to separate debug file. */
3220
3221 static void
set_debug_vma(bfd * orig_bfd,bfd * debug_bfd)3222 set_debug_vma (bfd *orig_bfd, bfd *debug_bfd)
3223 {
3224 asection *s, *d;
3225
3226 for (s = orig_bfd->sections, d = debug_bfd->sections;
3227 s != NULL && d != NULL;
3228 s = s->next, d = d->next)
3229 {
3230 if ((d->flags & SEC_DEBUGGING) != 0)
3231 break;
3232 /* ??? Assumes 1-1 correspondence between sections in the
3233 two files. */
3234 if (strcmp (s->name, d->name) == 0)
3235 {
3236 d->output_section = s->output_section;
3237 d->output_offset = s->output_offset;
3238 d->vma = s->vma;
3239 }
3240 }
3241 }
3242
3243 /* Unset vmas for adjusted sections in STASH. */
3244
3245 static void
unset_sections(struct dwarf2_debug * stash)3246 unset_sections (struct dwarf2_debug *stash)
3247 {
3248 int i;
3249 struct adjusted_section *p;
3250
3251 i = stash->adjusted_section_count;
3252 p = stash->adjusted_sections;
3253 for (; i > 0; i--, p++)
3254 p->section->vma = 0;
3255 }
3256
3257 /* Set VMAs for allocated and .debug_info sections in ORIG_BFD, a
3258 relocatable object file. VMAs are normally all zero in relocatable
3259 object files, so if we want to distinguish locations in sections by
3260 address we need to set VMAs so the sections do not overlap. We
3261 also set VMA on .debug_info so that when we have multiple
3262 .debug_info sections (or the linkonce variant) they also do not
3263 overlap. The multiple .debug_info sections make up a single
3264 logical section. ??? We should probably do the same for other
3265 debug sections. */
3266
3267 static bfd_boolean
place_sections(bfd * orig_bfd,struct dwarf2_debug * stash)3268 place_sections (bfd *orig_bfd, struct dwarf2_debug *stash)
3269 {
3270 bfd *abfd;
3271 struct adjusted_section *p;
3272 int i;
3273 const char *debug_info_name;
3274
3275 if (stash->adjusted_section_count != 0)
3276 {
3277 i = stash->adjusted_section_count;
3278 p = stash->adjusted_sections;
3279 for (; i > 0; i--, p++)
3280 p->section->vma = p->adj_vma;
3281 return TRUE;
3282 }
3283
3284 debug_info_name = stash->debug_sections[debug_info].uncompressed_name;
3285 i = 0;
3286 abfd = orig_bfd;
3287 while (1)
3288 {
3289 asection *sect;
3290
3291 for (sect = abfd->sections; sect != NULL; sect = sect->next)
3292 {
3293 int is_debug_info;
3294
3295 if ((sect->output_section != NULL
3296 && sect->output_section != sect
3297 && (sect->flags & SEC_DEBUGGING) == 0)
3298 || sect->vma != 0)
3299 continue;
3300
3301 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
3302 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
3303
3304 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
3305 && !is_debug_info)
3306 continue;
3307
3308 i++;
3309 }
3310 if (abfd == stash->bfd_ptr)
3311 break;
3312 abfd = stash->bfd_ptr;
3313 }
3314
3315 if (i <= 1)
3316 stash->adjusted_section_count = -1;
3317 else
3318 {
3319 bfd_vma last_vma = 0, last_dwarf = 0;
3320 bfd_size_type amt = i * sizeof (struct adjusted_section);
3321
3322 p = (struct adjusted_section *) bfd_malloc (amt);
3323 if (p == NULL)
3324 return FALSE;
3325
3326 stash->adjusted_sections = p;
3327 stash->adjusted_section_count = i;
3328
3329 abfd = orig_bfd;
3330 while (1)
3331 {
3332 asection *sect;
3333
3334 for (sect = abfd->sections; sect != NULL; sect = sect->next)
3335 {
3336 bfd_size_type sz;
3337 int is_debug_info;
3338
3339 if ((sect->output_section != NULL
3340 && sect->output_section != sect
3341 && (sect->flags & SEC_DEBUGGING) == 0)
3342 || sect->vma != 0)
3343 continue;
3344
3345 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
3346 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
3347
3348 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
3349 && !is_debug_info)
3350 continue;
3351
3352 sz = sect->rawsize ? sect->rawsize : sect->size;
3353
3354 if (is_debug_info)
3355 {
3356 BFD_ASSERT (sect->alignment_power == 0);
3357 sect->vma = last_dwarf;
3358 last_dwarf += sz;
3359 }
3360 else
3361 {
3362 /* Align the new address to the current section
3363 alignment. */
3364 last_vma = ((last_vma
3365 + ~(-((bfd_vma) 1 << sect->alignment_power)))
3366 & (-((bfd_vma) 1 << sect->alignment_power)));
3367 sect->vma = last_vma;
3368 last_vma += sz;
3369 }
3370
3371 p->section = sect;
3372 p->adj_vma = sect->vma;
3373 p++;
3374 }
3375 if (abfd == stash->bfd_ptr)
3376 break;
3377 abfd = stash->bfd_ptr;
3378 }
3379 }
3380
3381 if (orig_bfd != stash->bfd_ptr)
3382 set_debug_vma (orig_bfd, stash->bfd_ptr);
3383
3384 return TRUE;
3385 }
3386
3387 /* Look up a funcinfo by name using the given info hash table. If found,
3388 also update the locations pointed to by filename_ptr and linenumber_ptr.
3389
3390 This function returns TRUE if a funcinfo that matches the given symbol
3391 and address is found with any error; otherwise it returns FALSE. */
3392
3393 static bfd_boolean
info_hash_lookup_funcinfo(struct info_hash_table * hash_table,asymbol * sym,bfd_vma addr,const char ** filename_ptr,unsigned int * linenumber_ptr)3394 info_hash_lookup_funcinfo (struct info_hash_table *hash_table,
3395 asymbol *sym,
3396 bfd_vma addr,
3397 const char **filename_ptr,
3398 unsigned int *linenumber_ptr)
3399 {
3400 struct funcinfo* each_func;
3401 struct funcinfo* best_fit = NULL;
3402 bfd_vma best_fit_len = 0;
3403 struct info_list_node *node;
3404 struct arange *arange;
3405 const char *name = bfd_asymbol_name (sym);
3406 asection *sec = bfd_get_section (sym);
3407
3408 for (node = lookup_info_hash_table (hash_table, name);
3409 node;
3410 node = node->next)
3411 {
3412 each_func = (struct funcinfo *) node->info;
3413 for (arange = &each_func->arange;
3414 arange;
3415 arange = arange->next)
3416 {
3417 if ((!each_func->sec || each_func->sec == sec)
3418 && addr >= arange->low
3419 && addr < arange->high
3420 && (!best_fit
3421 || arange->high - arange->low < best_fit_len))
3422 {
3423 best_fit = each_func;
3424 best_fit_len = arange->high - arange->low;
3425 }
3426 }
3427 }
3428
3429 if (best_fit)
3430 {
3431 best_fit->sec = sec;
3432 *filename_ptr = best_fit->file;
3433 *linenumber_ptr = best_fit->line;
3434 return TRUE;
3435 }
3436
3437 return FALSE;
3438 }
3439
3440 /* Look up a varinfo by name using the given info hash table. If found,
3441 also update the locations pointed to by filename_ptr and linenumber_ptr.
3442
3443 This function returns TRUE if a varinfo that matches the given symbol
3444 and address is found with any error; otherwise it returns FALSE. */
3445
3446 static bfd_boolean
info_hash_lookup_varinfo(struct info_hash_table * hash_table,asymbol * sym,bfd_vma addr,const char ** filename_ptr,unsigned int * linenumber_ptr)3447 info_hash_lookup_varinfo (struct info_hash_table *hash_table,
3448 asymbol *sym,
3449 bfd_vma addr,
3450 const char **filename_ptr,
3451 unsigned int *linenumber_ptr)
3452 {
3453 const char *name = bfd_asymbol_name (sym);
3454 asection *sec = bfd_get_section (sym);
3455 struct varinfo* each;
3456 struct info_list_node *node;
3457
3458 for (node = lookup_info_hash_table (hash_table, name);
3459 node;
3460 node = node->next)
3461 {
3462 each = (struct varinfo *) node->info;
3463 if (each->addr == addr
3464 && (!each->sec || each->sec == sec))
3465 {
3466 each->sec = sec;
3467 *filename_ptr = each->file;
3468 *linenumber_ptr = each->line;
3469 return TRUE;
3470 }
3471 }
3472
3473 return FALSE;
3474 }
3475
3476 /* Update the funcinfo and varinfo info hash tables if they are
3477 not up to date. Returns TRUE if there is no error; otherwise
3478 returns FALSE and disable the info hash tables. */
3479
3480 static bfd_boolean
stash_maybe_update_info_hash_tables(struct dwarf2_debug * stash)3481 stash_maybe_update_info_hash_tables (struct dwarf2_debug *stash)
3482 {
3483 struct comp_unit *each;
3484
3485 /* Exit if hash tables are up-to-date. */
3486 if (stash->all_comp_units == stash->hash_units_head)
3487 return TRUE;
3488
3489 if (stash->hash_units_head)
3490 each = stash->hash_units_head->prev_unit;
3491 else
3492 each = stash->last_comp_unit;
3493
3494 while (each)
3495 {
3496 if (!comp_unit_hash_info (stash, each, stash->funcinfo_hash_table,
3497 stash->varinfo_hash_table))
3498 {
3499 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
3500 return FALSE;
3501 }
3502 each = each->prev_unit;
3503 }
3504
3505 stash->hash_units_head = stash->all_comp_units;
3506 return TRUE;
3507 }
3508
3509 /* Check consistency of info hash tables. This is for debugging only. */
3510
3511 static void ATTRIBUTE_UNUSED
stash_verify_info_hash_table(struct dwarf2_debug * stash)3512 stash_verify_info_hash_table (struct dwarf2_debug *stash)
3513 {
3514 struct comp_unit *each_unit;
3515 struct funcinfo *each_func;
3516 struct varinfo *each_var;
3517 struct info_list_node *node;
3518 bfd_boolean found;
3519
3520 for (each_unit = stash->all_comp_units;
3521 each_unit;
3522 each_unit = each_unit->next_unit)
3523 {
3524 for (each_func = each_unit->function_table;
3525 each_func;
3526 each_func = each_func->prev_func)
3527 {
3528 if (!each_func->name)
3529 continue;
3530 node = lookup_info_hash_table (stash->funcinfo_hash_table,
3531 each_func->name);
3532 BFD_ASSERT (node);
3533 found = FALSE;
3534 while (node && !found)
3535 {
3536 found = node->info == each_func;
3537 node = node->next;
3538 }
3539 BFD_ASSERT (found);
3540 }
3541
3542 for (each_var = each_unit->variable_table;
3543 each_var;
3544 each_var = each_var->prev_var)
3545 {
3546 if (!each_var->name || !each_var->file || each_var->stack)
3547 continue;
3548 node = lookup_info_hash_table (stash->varinfo_hash_table,
3549 each_var->name);
3550 BFD_ASSERT (node);
3551 found = FALSE;
3552 while (node && !found)
3553 {
3554 found = node->info == each_var;
3555 node = node->next;
3556 }
3557 BFD_ASSERT (found);
3558 }
3559 }
3560 }
3561
3562 /* Check to see if we want to enable the info hash tables, which consume
3563 quite a bit of memory. Currently we only check the number times
3564 bfd_dwarf2_find_line is called. In the future, we may also want to
3565 take the number of symbols into account. */
3566
3567 static void
stash_maybe_enable_info_hash_tables(bfd * abfd,struct dwarf2_debug * stash)3568 stash_maybe_enable_info_hash_tables (bfd *abfd, struct dwarf2_debug *stash)
3569 {
3570 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_OFF);
3571
3572 if (stash->info_hash_count++ < STASH_INFO_HASH_TRIGGER)
3573 return;
3574
3575 /* FIXME: Maybe we should check the reduce_memory_overheads
3576 and optimize fields in the bfd_link_info structure ? */
3577
3578 /* Create hash tables. */
3579 stash->funcinfo_hash_table = create_info_hash_table (abfd);
3580 stash->varinfo_hash_table = create_info_hash_table (abfd);
3581 if (!stash->funcinfo_hash_table || !stash->varinfo_hash_table)
3582 {
3583 /* Turn off info hashes if any allocation above fails. */
3584 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
3585 return;
3586 }
3587 /* We need a forced update so that the info hash tables will
3588 be created even though there is no compilation unit. That
3589 happens if STASH_INFO_HASH_TRIGGER is 0. */
3590 stash_maybe_update_info_hash_tables (stash);
3591 stash->info_hash_status = STASH_INFO_HASH_ON;
3592 }
3593
3594 /* Find the file and line associated with a symbol and address using the
3595 info hash tables of a stash. If there is a match, the function returns
3596 TRUE and update the locations pointed to by filename_ptr and linenumber_ptr;
3597 otherwise it returns FALSE. */
3598
3599 static bfd_boolean
stash_find_line_fast(struct dwarf2_debug * stash,asymbol * sym,bfd_vma addr,const char ** filename_ptr,unsigned int * linenumber_ptr)3600 stash_find_line_fast (struct dwarf2_debug *stash,
3601 asymbol *sym,
3602 bfd_vma addr,
3603 const char **filename_ptr,
3604 unsigned int *linenumber_ptr)
3605 {
3606 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_ON);
3607
3608 if (sym->flags & BSF_FUNCTION)
3609 return info_hash_lookup_funcinfo (stash->funcinfo_hash_table, sym, addr,
3610 filename_ptr, linenumber_ptr);
3611 return info_hash_lookup_varinfo (stash->varinfo_hash_table, sym, addr,
3612 filename_ptr, linenumber_ptr);
3613 }
3614
3615 /* Save current section VMAs. */
3616
3617 static bfd_boolean
save_section_vma(const bfd * abfd,struct dwarf2_debug * stash)3618 save_section_vma (const bfd *abfd, struct dwarf2_debug *stash)
3619 {
3620 asection *s;
3621 unsigned int i;
3622
3623 if (abfd->section_count == 0)
3624 return TRUE;
3625 stash->sec_vma = bfd_malloc (sizeof (*stash->sec_vma) * abfd->section_count);
3626 if (stash->sec_vma == NULL)
3627 return FALSE;
3628 for (i = 0, s = abfd->sections; i < abfd->section_count; i++, s = s->next)
3629 {
3630 if (s->output_section != NULL)
3631 stash->sec_vma[i] = s->output_section->vma + s->output_offset;
3632 else
3633 stash->sec_vma[i] = s->vma;
3634 }
3635 return TRUE;
3636 }
3637
3638 /* Compare current section VMAs against those at the time the stash
3639 was created. If find_nearest_line is used in linker warnings or
3640 errors early in the link process, the debug info stash will be
3641 invalid for later calls. This is because we relocate debug info
3642 sections, so the stashed section contents depend on symbol values,
3643 which in turn depend on section VMAs. */
3644
3645 static bfd_boolean
section_vma_same(const bfd * abfd,const struct dwarf2_debug * stash)3646 section_vma_same (const bfd *abfd, const struct dwarf2_debug *stash)
3647 {
3648 asection *s;
3649 unsigned int i;
3650
3651 for (i = 0, s = abfd->sections; i < abfd->section_count; i++, s = s->next)
3652 {
3653 bfd_vma vma;
3654
3655 if (s->output_section != NULL)
3656 vma = s->output_section->vma + s->output_offset;
3657 else
3658 vma = s->vma;
3659 if (vma != stash->sec_vma[i])
3660 return FALSE;
3661 }
3662 return TRUE;
3663 }
3664
3665 /* Read debug information from DEBUG_BFD when DEBUG_BFD is specified.
3666 If DEBUG_BFD is not specified, we read debug information from ABFD
3667 or its gnu_debuglink. The results will be stored in PINFO.
3668 The function returns TRUE iff debug information is ready. */
3669
3670 bfd_boolean
_bfd_dwarf2_slurp_debug_info(bfd * abfd,bfd * debug_bfd,const struct dwarf_debug_section * debug_sections,asymbol ** symbols,void ** pinfo,bfd_boolean do_place)3671 _bfd_dwarf2_slurp_debug_info (bfd *abfd, bfd *debug_bfd,
3672 const struct dwarf_debug_section *debug_sections,
3673 asymbol **symbols,
3674 void **pinfo,
3675 bfd_boolean do_place)
3676 {
3677 bfd_size_type amt = sizeof (struct dwarf2_debug);
3678 bfd_size_type total_size;
3679 asection *msec;
3680 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
3681
3682 if (stash != NULL)
3683 {
3684 if (section_vma_same (abfd, stash))
3685 return TRUE;
3686 _bfd_dwarf2_cleanup_debug_info (abfd, pinfo);
3687 memset (stash, 0, amt);
3688 }
3689 else
3690 {
3691 stash = (struct dwarf2_debug *) bfd_zalloc (abfd, amt);
3692 if (! stash)
3693 return FALSE;
3694 }
3695 stash->debug_sections = debug_sections;
3696 stash->syms = symbols;
3697 if (!save_section_vma (abfd, stash))
3698 return FALSE;
3699
3700 *pinfo = stash;
3701
3702 if (debug_bfd == NULL)
3703 debug_bfd = abfd;
3704
3705 msec = find_debug_info (debug_bfd, debug_sections, NULL);
3706 if (msec == NULL && abfd == debug_bfd)
3707 {
3708 char * debug_filename = bfd_follow_gnu_debuglink (abfd, DEBUGDIR);
3709
3710 if (debug_filename == NULL)
3711 /* No dwarf2 info, and no gnu_debuglink to follow.
3712 Note that at this point the stash has been allocated, but
3713 contains zeros. This lets future calls to this function
3714 fail more quickly. */
3715 return FALSE;
3716
3717 /* Set BFD_DECOMPRESS to decompress debug sections. */
3718 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL
3719 || !(debug_bfd->flags |= BFD_DECOMPRESS,
3720 bfd_check_format (debug_bfd, bfd_object))
3721 || (msec = find_debug_info (debug_bfd,
3722 debug_sections, NULL)) == NULL
3723 || !bfd_generic_link_read_symbols (debug_bfd))
3724 {
3725 if (debug_bfd)
3726 bfd_close (debug_bfd);
3727 /* FIXME: Should we report our failure to follow the debuglink ? */
3728 free (debug_filename);
3729 return FALSE;
3730 }
3731
3732 symbols = bfd_get_outsymbols (debug_bfd);
3733 stash->syms = symbols;
3734 stash->close_on_cleanup = TRUE;
3735 }
3736 stash->bfd_ptr = debug_bfd;
3737
3738 if (do_place
3739 && !place_sections (abfd, stash))
3740 return FALSE;
3741
3742 /* There can be more than one DWARF2 info section in a BFD these
3743 days. First handle the easy case when there's only one. If
3744 there's more than one, try case two: none of the sections is
3745 compressed. In that case, read them all in and produce one
3746 large stash. We do this in two passes - in the first pass we
3747 just accumulate the section sizes, and in the second pass we
3748 read in the section's contents. (The allows us to avoid
3749 reallocing the data as we add sections to the stash.) If
3750 some or all sections are compressed, then do things the slow
3751 way, with a bunch of reallocs. */
3752
3753 if (! find_debug_info (debug_bfd, debug_sections, msec))
3754 {
3755 /* Case 1: only one info section. */
3756 total_size = msec->size;
3757 if (! read_section (debug_bfd, &stash->debug_sections[debug_info],
3758 symbols, 0,
3759 &stash->info_ptr_memory, &total_size))
3760 return FALSE;
3761 }
3762 else
3763 {
3764 /* Case 2: multiple sections. */
3765 for (total_size = 0;
3766 msec;
3767 msec = find_debug_info (debug_bfd, debug_sections, msec))
3768 total_size += msec->size;
3769
3770 stash->info_ptr_memory = (bfd_byte *) bfd_malloc (total_size);
3771 if (stash->info_ptr_memory == NULL)
3772 return FALSE;
3773
3774 total_size = 0;
3775 for (msec = find_debug_info (debug_bfd, debug_sections, NULL);
3776 msec;
3777 msec = find_debug_info (debug_bfd, debug_sections, msec))
3778 {
3779 bfd_size_type size;
3780
3781 size = msec->size;
3782 if (size == 0)
3783 continue;
3784
3785 if (!(bfd_simple_get_relocated_section_contents
3786 (debug_bfd, msec, stash->info_ptr_memory + total_size,
3787 symbols)))
3788 return FALSE;
3789
3790 total_size += size;
3791 }
3792 }
3793
3794 stash->info_ptr = stash->info_ptr_memory;
3795 stash->info_ptr_end = stash->info_ptr + total_size;
3796 stash->sec = find_debug_info (debug_bfd, debug_sections, NULL);
3797 stash->sec_info_ptr = stash->info_ptr;
3798 return TRUE;
3799 }
3800
3801 /* Scan the debug information in PINFO looking for a DW_TAG_subprogram
3802 abbrev with a DW_AT_low_pc attached to it. Then lookup that same
3803 symbol in SYMBOLS and return the difference between the low_pc and
3804 the symbol's address. Returns 0 if no suitable symbol could be found. */
3805
3806 bfd_signed_vma
_bfd_dwarf2_find_symbol_bias(asymbol ** symbols,void ** pinfo)3807 _bfd_dwarf2_find_symbol_bias (asymbol ** symbols, void ** pinfo)
3808 {
3809 struct dwarf2_debug *stash;
3810 struct comp_unit * unit;
3811
3812 stash = (struct dwarf2_debug *) *pinfo;
3813
3814 if (stash == NULL)
3815 return 0;
3816
3817 for (unit = stash->all_comp_units; unit; unit = unit->next_unit)
3818 {
3819 struct funcinfo * func;
3820
3821 if (unit->function_table == NULL)
3822 {
3823 if (unit->line_table == NULL)
3824 unit->line_table = decode_line_info (unit, stash);
3825 if (unit->line_table != NULL)
3826 scan_unit_for_symbols (unit);
3827 }
3828
3829 for (func = unit->function_table; func != NULL; func = func->prev_func)
3830 if (func->name && func->arange.low)
3831 {
3832 asymbol ** psym;
3833
3834 /* FIXME: Do we need to scan the aranges looking for the lowest pc value ? */
3835
3836 for (psym = symbols; * psym != NULL; psym++)
3837 {
3838 asymbol * sym = * psym;
3839
3840 if (sym->flags & BSF_FUNCTION
3841 && sym->section != NULL
3842 && strcmp (sym->name, func->name) == 0)
3843 return ((bfd_signed_vma) func->arange.low) -
3844 ((bfd_signed_vma) (sym->value + sym->section->vma));
3845 }
3846 }
3847 }
3848
3849 return 0;
3850 }
3851
3852 /* Find the source code location of SYMBOL. If SYMBOL is NULL
3853 then find the nearest source code location corresponding to
3854 the address SECTION + OFFSET.
3855 Returns TRUE if the line is found without error and fills in
3856 FILENAME_PTR and LINENUMBER_PTR. In the case where SYMBOL was
3857 NULL the FUNCTIONNAME_PTR is also filled in.
3858 SYMBOLS contains the symbol table for ABFD.
3859 DEBUG_SECTIONS contains the name of the dwarf debug sections.
3860 ADDR_SIZE is the number of bytes in the initial .debug_info length
3861 field and in the abbreviation offset, or zero to indicate that the
3862 default value should be used. */
3863
3864 bfd_boolean
_bfd_dwarf2_find_nearest_line(bfd * abfd,asymbol ** symbols,asymbol * symbol,asection * section,bfd_vma offset,const char ** filename_ptr,const char ** functionname_ptr,unsigned int * linenumber_ptr,unsigned int * discriminator_ptr,const struct dwarf_debug_section * debug_sections,unsigned int addr_size,void ** pinfo)3865 _bfd_dwarf2_find_nearest_line (bfd *abfd,
3866 asymbol **symbols,
3867 asymbol *symbol,
3868 asection *section,
3869 bfd_vma offset,
3870 const char **filename_ptr,
3871 const char **functionname_ptr,
3872 unsigned int *linenumber_ptr,
3873 unsigned int *discriminator_ptr,
3874 const struct dwarf_debug_section *debug_sections,
3875 unsigned int addr_size,
3876 void **pinfo)
3877 {
3878 /* Read each compilation unit from the section .debug_info, and check
3879 to see if it contains the address we are searching for. If yes,
3880 lookup the address, and return the line number info. If no, go
3881 on to the next compilation unit.
3882
3883 We keep a list of all the previously read compilation units, and
3884 a pointer to the next un-read compilation unit. Check the
3885 previously read units before reading more. */
3886 struct dwarf2_debug *stash;
3887 /* What address are we looking for? */
3888 bfd_vma addr;
3889 struct comp_unit* each;
3890 struct funcinfo *function = NULL;
3891 bfd_boolean found = FALSE;
3892 bfd_boolean do_line;
3893
3894 *filename_ptr = NULL;
3895 if (functionname_ptr != NULL)
3896 *functionname_ptr = NULL;
3897 *linenumber_ptr = 0;
3898 if (discriminator_ptr)
3899 *discriminator_ptr = 0;
3900
3901 if (! _bfd_dwarf2_slurp_debug_info (abfd, NULL, debug_sections,
3902 symbols, pinfo,
3903 (abfd->flags & (EXEC_P | DYNAMIC)) == 0))
3904 return FALSE;
3905
3906 stash = (struct dwarf2_debug *) *pinfo;
3907
3908 do_line = symbol != NULL;
3909 if (do_line)
3910 {
3911 BFD_ASSERT (section == NULL && offset == 0 && functionname_ptr == NULL);
3912 section = bfd_get_section (symbol);
3913 addr = symbol->value;
3914 }
3915 else
3916 {
3917 BFD_ASSERT (section != NULL && functionname_ptr != NULL);
3918 addr = offset;
3919 }
3920
3921 if (section->output_section)
3922 addr += section->output_section->vma + section->output_offset;
3923 else
3924 addr += section->vma;
3925
3926 /* A null info_ptr indicates that there is no dwarf2 info
3927 (or that an error occured while setting up the stash). */
3928 if (! stash->info_ptr)
3929 return FALSE;
3930
3931 stash->inliner_chain = NULL;
3932
3933 /* Check the previously read comp. units first. */
3934 if (do_line)
3935 {
3936 /* The info hash tables use quite a bit of memory. We may not want to
3937 always use them. We use some heuristics to decide if and when to
3938 turn it on. */
3939 if (stash->info_hash_status == STASH_INFO_HASH_OFF)
3940 stash_maybe_enable_info_hash_tables (abfd, stash);
3941
3942 /* Keep info hash table up to date if they are available. Note that we
3943 may disable the hash tables if there is any error duing update. */
3944 if (stash->info_hash_status == STASH_INFO_HASH_ON)
3945 stash_maybe_update_info_hash_tables (stash);
3946
3947 if (stash->info_hash_status == STASH_INFO_HASH_ON)
3948 {
3949 found = stash_find_line_fast (stash, symbol, addr, filename_ptr,
3950 linenumber_ptr);
3951 if (found)
3952 goto done;
3953 }
3954 else
3955 {
3956 /* Check the previously read comp. units first. */
3957 for (each = stash->all_comp_units; each; each = each->next_unit)
3958 if ((symbol->flags & BSF_FUNCTION) == 0
3959 || each->arange.high == 0
3960 || comp_unit_contains_address (each, addr))
3961 {
3962 found = comp_unit_find_line (each, symbol, addr, filename_ptr,
3963 linenumber_ptr, stash);
3964 if (found)
3965 goto done;
3966 }
3967 }
3968 }
3969 else
3970 {
3971 bfd_vma min_range = (bfd_vma) -1;
3972 const char * local_filename = NULL;
3973 struct funcinfo *local_function = NULL;
3974 unsigned int local_linenumber = 0;
3975 unsigned int local_discriminator = 0;
3976
3977 for (each = stash->all_comp_units; each; each = each->next_unit)
3978 {
3979 bfd_vma range = (bfd_vma) -1;
3980
3981 found = ((each->arange.high == 0
3982 || comp_unit_contains_address (each, addr))
3983 && (range = comp_unit_find_nearest_line (each, addr,
3984 & local_filename,
3985 & local_function,
3986 & local_linenumber,
3987 & local_discriminator,
3988 stash)) != 0);
3989 if (found)
3990 {
3991 /* PRs 15935 15994: Bogus debug information may have provided us
3992 with an erroneous match. We attempt to counter this by
3993 selecting the match that has the smallest address range
3994 associated with it. (We are assuming that corrupt debug info
3995 will tend to result in extra large address ranges rather than
3996 extra small ranges).
3997
3998 This does mean that we scan through all of the CUs associated
3999 with the bfd each time this function is called. But this does
4000 have the benefit of producing consistent results every time the
4001 function is called. */
4002 if (range <= min_range)
4003 {
4004 if (filename_ptr && local_filename)
4005 * filename_ptr = local_filename;
4006 if (local_function)
4007 function = local_function;
4008 if (discriminator_ptr && local_discriminator)
4009 * discriminator_ptr = local_discriminator;
4010 if (local_linenumber)
4011 * linenumber_ptr = local_linenumber;
4012 min_range = range;
4013 }
4014 }
4015 }
4016
4017 if (* linenumber_ptr)
4018 {
4019 found = TRUE;
4020 goto done;
4021 }
4022 }
4023
4024 /* The DWARF2 spec says that the initial length field, and the
4025 offset of the abbreviation table, should both be 4-byte values.
4026 However, some compilers do things differently. */
4027 if (addr_size == 0)
4028 addr_size = 4;
4029 BFD_ASSERT (addr_size == 4 || addr_size == 8);
4030
4031 /* Read each remaining comp. units checking each as they are read. */
4032 while (stash->info_ptr < stash->info_ptr_end)
4033 {
4034 bfd_vma length;
4035 unsigned int offset_size = addr_size;
4036 bfd_byte *info_ptr_unit = stash->info_ptr;
4037
4038 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr, stash->info_ptr_end);
4039 /* A 0xffffff length is the DWARF3 way of indicating
4040 we use 64-bit offsets, instead of 32-bit offsets. */
4041 if (length == 0xffffffff)
4042 {
4043 offset_size = 8;
4044 length = read_8_bytes (stash->bfd_ptr, stash->info_ptr + 4, stash->info_ptr_end);
4045 stash->info_ptr += 12;
4046 }
4047 /* A zero length is the IRIX way of indicating 64-bit offsets,
4048 mostly because the 64-bit length will generally fit in 32
4049 bits, and the endianness helps. */
4050 else if (length == 0)
4051 {
4052 offset_size = 8;
4053 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr + 4, stash->info_ptr_end);
4054 stash->info_ptr += 8;
4055 }
4056 /* In the absence of the hints above, we assume 32-bit DWARF2
4057 offsets even for targets with 64-bit addresses, because:
4058 a) most of the time these targets will not have generated
4059 more than 2Gb of debug info and so will not need 64-bit
4060 offsets,
4061 and
4062 b) if they do use 64-bit offsets but they are not using
4063 the size hints that are tested for above then they are
4064 not conforming to the DWARF3 standard anyway. */
4065 else if (addr_size == 8)
4066 {
4067 offset_size = 4;
4068 stash->info_ptr += 4;
4069 }
4070 else
4071 stash->info_ptr += 4;
4072
4073 if (length > 0)
4074 {
4075 bfd_byte * new_ptr;
4076
4077 each = parse_comp_unit (stash, length, info_ptr_unit,
4078 offset_size);
4079 if (!each)
4080 /* The dwarf information is damaged, don't trust it any
4081 more. */
4082 break;
4083
4084 new_ptr = stash->info_ptr + length;
4085 /* PR 17512: file: 1500698c. */
4086 if (new_ptr < stash->info_ptr)
4087 {
4088 /* A corrupt length value - do not trust the info any more. */
4089 found = FALSE;
4090 break;
4091 }
4092 else
4093 stash->info_ptr = new_ptr;
4094
4095 if (stash->all_comp_units)
4096 stash->all_comp_units->prev_unit = each;
4097 else
4098 stash->last_comp_unit = each;
4099
4100 each->next_unit = stash->all_comp_units;
4101 stash->all_comp_units = each;
4102
4103 /* DW_AT_low_pc and DW_AT_high_pc are optional for
4104 compilation units. If we don't have them (i.e.,
4105 unit->high == 0), we need to consult the line info table
4106 to see if a compilation unit contains the given
4107 address. */
4108 if (do_line)
4109 found = (((symbol->flags & BSF_FUNCTION) == 0
4110 || each->arange.high == 0
4111 || comp_unit_contains_address (each, addr))
4112 && comp_unit_find_line (each, symbol, addr,
4113 filename_ptr,
4114 linenumber_ptr,
4115 stash));
4116 else
4117 found = ((each->arange.high == 0
4118 || comp_unit_contains_address (each, addr))
4119 && comp_unit_find_nearest_line (each, addr,
4120 filename_ptr,
4121 &function,
4122 linenumber_ptr,
4123 discriminator_ptr,
4124 stash) != 0);
4125
4126 if ((bfd_vma) (stash->info_ptr - stash->sec_info_ptr)
4127 == stash->sec->size)
4128 {
4129 stash->sec = find_debug_info (stash->bfd_ptr, debug_sections,
4130 stash->sec);
4131 stash->sec_info_ptr = stash->info_ptr;
4132 }
4133
4134 if (found)
4135 goto done;
4136 }
4137 }
4138
4139 done:
4140 if (function)
4141 {
4142 if (!function->is_linkage)
4143 {
4144 asymbol *fun;
4145 bfd_vma sec_vma;
4146
4147 fun = _bfd_elf_find_function (abfd, symbols, section, offset,
4148 *filename_ptr ? NULL : filename_ptr,
4149 functionname_ptr);
4150 sec_vma = section->vma;
4151 if (section->output_section != NULL)
4152 sec_vma = section->output_section->vma + section->output_offset;
4153 if (fun != NULL
4154 && fun->value + sec_vma == function->arange.low)
4155 function->name = *functionname_ptr;
4156 /* Even if we didn't find a linkage name, say that we have
4157 to stop a repeated search of symbols. */
4158 function->is_linkage = TRUE;
4159 }
4160 *functionname_ptr = function->name;
4161 }
4162 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
4163 unset_sections (stash);
4164
4165 return found;
4166 }
4167
4168 bfd_boolean
_bfd_dwarf2_find_inliner_info(bfd * abfd ATTRIBUTE_UNUSED,const char ** filename_ptr,const char ** functionname_ptr,unsigned int * linenumber_ptr,void ** pinfo)4169 _bfd_dwarf2_find_inliner_info (bfd *abfd ATTRIBUTE_UNUSED,
4170 const char **filename_ptr,
4171 const char **functionname_ptr,
4172 unsigned int *linenumber_ptr,
4173 void **pinfo)
4174 {
4175 struct dwarf2_debug *stash;
4176
4177 stash = (struct dwarf2_debug *) *pinfo;
4178 if (stash)
4179 {
4180 struct funcinfo *func = stash->inliner_chain;
4181
4182 if (func && func->caller_func)
4183 {
4184 *filename_ptr = func->caller_file;
4185 *functionname_ptr = func->caller_func->name;
4186 *linenumber_ptr = func->caller_line;
4187 stash->inliner_chain = func->caller_func;
4188 return TRUE;
4189 }
4190 }
4191
4192 return FALSE;
4193 }
4194
4195 void
_bfd_dwarf2_cleanup_debug_info(bfd * abfd,void ** pinfo)4196 _bfd_dwarf2_cleanup_debug_info (bfd *abfd, void **pinfo)
4197 {
4198 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
4199 struct comp_unit *each;
4200
4201 if (abfd == NULL || stash == NULL)
4202 return;
4203
4204 for (each = stash->all_comp_units; each; each = each->next_unit)
4205 {
4206 struct abbrev_info **abbrevs = each->abbrevs;
4207 struct funcinfo *function_table = each->function_table;
4208 struct varinfo *variable_table = each->variable_table;
4209 size_t i;
4210
4211 for (i = 0; i < ABBREV_HASH_SIZE; i++)
4212 {
4213 struct abbrev_info *abbrev = abbrevs[i];
4214
4215 while (abbrev)
4216 {
4217 free (abbrev->attrs);
4218 abbrev = abbrev->next;
4219 }
4220 }
4221
4222 if (each->line_table)
4223 {
4224 free (each->line_table->dirs);
4225 free (each->line_table->files);
4226 }
4227
4228 while (function_table)
4229 {
4230 if (function_table->file)
4231 {
4232 free (function_table->file);
4233 function_table->file = NULL;
4234 }
4235
4236 if (function_table->caller_file)
4237 {
4238 free (function_table->caller_file);
4239 function_table->caller_file = NULL;
4240 }
4241 function_table = function_table->prev_func;
4242 }
4243
4244 while (variable_table)
4245 {
4246 if (variable_table->file)
4247 {
4248 free (variable_table->file);
4249 variable_table->file = NULL;
4250 }
4251
4252 variable_table = variable_table->prev_var;
4253 }
4254 }
4255
4256 if (stash->dwarf_abbrev_buffer)
4257 free (stash->dwarf_abbrev_buffer);
4258 if (stash->dwarf_line_buffer)
4259 free (stash->dwarf_line_buffer);
4260 if (stash->dwarf_str_buffer)
4261 free (stash->dwarf_str_buffer);
4262 if (stash->dwarf_ranges_buffer)
4263 free (stash->dwarf_ranges_buffer);
4264 if (stash->info_ptr_memory)
4265 free (stash->info_ptr_memory);
4266 if (stash->close_on_cleanup)
4267 bfd_close (stash->bfd_ptr);
4268 if (stash->alt_dwarf_str_buffer)
4269 free (stash->alt_dwarf_str_buffer);
4270 if (stash->alt_dwarf_info_buffer)
4271 free (stash->alt_dwarf_info_buffer);
4272 if (stash->sec_vma)
4273 free (stash->sec_vma);
4274 if (stash->adjusted_sections)
4275 free (stash->adjusted_sections);
4276 if (stash->alt_bfd_ptr)
4277 bfd_close (stash->alt_bfd_ptr);
4278 }
4279
4280 /* Find the function to a particular section and offset,
4281 for error reporting. */
4282
4283 asymbol *
_bfd_elf_find_function(bfd * abfd,asymbol ** symbols,asection * section,bfd_vma offset,const char ** filename_ptr,const char ** functionname_ptr)4284 _bfd_elf_find_function (bfd *abfd,
4285 asymbol **symbols,
4286 asection *section,
4287 bfd_vma offset,
4288 const char **filename_ptr,
4289 const char **functionname_ptr)
4290 {
4291 struct elf_find_function_cache
4292 {
4293 asection *last_section;
4294 asymbol *func;
4295 const char *filename;
4296 bfd_size_type func_size;
4297 } *cache;
4298
4299 if (symbols == NULL)
4300 return NULL;
4301
4302 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
4303 return NULL;
4304
4305 cache = elf_tdata (abfd)->elf_find_function_cache;
4306 if (cache == NULL)
4307 {
4308 cache = bfd_zalloc (abfd, sizeof (*cache));
4309 elf_tdata (abfd)->elf_find_function_cache = cache;
4310 if (cache == NULL)
4311 return NULL;
4312 }
4313 if (cache->last_section != section
4314 || cache->func == NULL
4315 || offset < cache->func->value
4316 || offset >= cache->func->value + cache->func_size)
4317 {
4318 asymbol *file;
4319 bfd_vma low_func;
4320 asymbol **p;
4321 /* ??? Given multiple file symbols, it is impossible to reliably
4322 choose the right file name for global symbols. File symbols are
4323 local symbols, and thus all file symbols must sort before any
4324 global symbols. The ELF spec may be interpreted to say that a
4325 file symbol must sort before other local symbols, but currently
4326 ld -r doesn't do this. So, for ld -r output, it is possible to
4327 make a better choice of file name for local symbols by ignoring
4328 file symbols appearing after a given local symbol. */
4329 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
4330 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4331
4332 file = NULL;
4333 low_func = 0;
4334 state = nothing_seen;
4335 cache->filename = NULL;
4336 cache->func = NULL;
4337 cache->func_size = 0;
4338 cache->last_section = section;
4339
4340 for (p = symbols; *p != NULL; p++)
4341 {
4342 asymbol *sym = *p;
4343 bfd_vma code_off;
4344 bfd_size_type size;
4345
4346 if ((sym->flags & BSF_FILE) != 0)
4347 {
4348 file = sym;
4349 if (state == symbol_seen)
4350 state = file_after_symbol_seen;
4351 continue;
4352 }
4353
4354 size = bed->maybe_function_sym (sym, section, &code_off);
4355 if (size != 0
4356 && code_off <= offset
4357 && (code_off > low_func
4358 || (code_off == low_func
4359 && size > cache->func_size)))
4360 {
4361 cache->func = sym;
4362 cache->func_size = size;
4363 cache->filename = NULL;
4364 low_func = code_off;
4365 if (file != NULL
4366 && ((sym->flags & BSF_LOCAL) != 0
4367 || state != file_after_symbol_seen))
4368 cache->filename = bfd_asymbol_name (file);
4369 }
4370 if (state == nothing_seen)
4371 state = symbol_seen;
4372 }
4373 }
4374
4375 if (cache->func == NULL)
4376 return NULL;
4377
4378 if (filename_ptr)
4379 *filename_ptr = cache->filename;
4380 if (functionname_ptr)
4381 *functionname_ptr = bfd_asymbol_name (cache->func);
4382
4383 return cache->func;
4384 }
4385