1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "thread_list.h"
18
19 #include <dirent.h>
20 #include <sys/types.h>
21 #include <unistd.h>
22
23 #include <sstream>
24 #include <vector>
25
26 #include "android-base/stringprintf.h"
27 #include "backtrace/BacktraceMap.h"
28 #include "nativehelper/scoped_local_ref.h"
29 #include "nativehelper/scoped_utf_chars.h"
30
31 #include "base/aborting.h"
32 #include "base/histogram-inl.h"
33 #include "base/mutex-inl.h"
34 #include "base/systrace.h"
35 #include "base/time_utils.h"
36 #include "base/timing_logger.h"
37 #include "debugger.h"
38 #include "gc/collector/concurrent_copying.h"
39 #include "gc/gc_pause_listener.h"
40 #include "gc/heap.h"
41 #include "gc/reference_processor.h"
42 #include "gc_root.h"
43 #include "jni_internal.h"
44 #include "lock_word.h"
45 #include "monitor.h"
46 #include "native_stack_dump.h"
47 #include "scoped_thread_state_change-inl.h"
48 #include "thread.h"
49 #include "trace.h"
50 #include "well_known_classes.h"
51
52 #if ART_USE_FUTEXES
53 #include "linux/futex.h"
54 #include "sys/syscall.h"
55 #ifndef SYS_futex
56 #define SYS_futex __NR_futex
57 #endif
58 #endif // ART_USE_FUTEXES
59
60 namespace art {
61
62 using android::base::StringPrintf;
63
64 static constexpr uint64_t kLongThreadSuspendThreshold = MsToNs(5);
65 // Use 0 since we want to yield to prevent blocking for an unpredictable amount of time.
66 static constexpr useconds_t kThreadSuspendInitialSleepUs = 0;
67 static constexpr useconds_t kThreadSuspendMaxYieldUs = 3000;
68 static constexpr useconds_t kThreadSuspendMaxSleepUs = 5000;
69
70 // Whether we should try to dump the native stack of unattached threads. See commit ed8b723 for
71 // some history.
72 static constexpr bool kDumpUnattachedThreadNativeStackForSigQuit = true;
73
ThreadList(uint64_t thread_suspend_timeout_ns)74 ThreadList::ThreadList(uint64_t thread_suspend_timeout_ns)
75 : suspend_all_count_(0),
76 debug_suspend_all_count_(0),
77 unregistering_count_(0),
78 suspend_all_historam_("suspend all histogram", 16, 64),
79 long_suspend_(false),
80 shut_down_(false),
81 thread_suspend_timeout_ns_(thread_suspend_timeout_ns),
82 empty_checkpoint_barrier_(new Barrier(0)) {
83 CHECK(Monitor::IsValidLockWord(LockWord::FromThinLockId(kMaxThreadId, 1, 0U)));
84 }
85
~ThreadList()86 ThreadList::~ThreadList() {
87 CHECK(shut_down_);
88 }
89
ShutDown()90 void ThreadList::ShutDown() {
91 ScopedTrace trace(__PRETTY_FUNCTION__);
92 // Detach the current thread if necessary. If we failed to start, there might not be any threads.
93 // We need to detach the current thread here in case there's another thread waiting to join with
94 // us.
95 bool contains = false;
96 Thread* self = Thread::Current();
97 {
98 MutexLock mu(self, *Locks::thread_list_lock_);
99 contains = Contains(self);
100 }
101 if (contains) {
102 Runtime::Current()->DetachCurrentThread();
103 }
104 WaitForOtherNonDaemonThreadsToExit();
105 // Disable GC and wait for GC to complete in case there are still daemon threads doing
106 // allocations.
107 gc::Heap* const heap = Runtime::Current()->GetHeap();
108 heap->DisableGCForShutdown();
109 // In case a GC is in progress, wait for it to finish.
110 heap->WaitForGcToComplete(gc::kGcCauseBackground, Thread::Current());
111 // TODO: there's an unaddressed race here where a thread may attach during shutdown, see
112 // Thread::Init.
113 SuspendAllDaemonThreadsForShutdown();
114
115 shut_down_ = true;
116 }
117
Contains(Thread * thread)118 bool ThreadList::Contains(Thread* thread) {
119 return find(list_.begin(), list_.end(), thread) != list_.end();
120 }
121
Contains(pid_t tid)122 bool ThreadList::Contains(pid_t tid) {
123 for (const auto& thread : list_) {
124 if (thread->GetTid() == tid) {
125 return true;
126 }
127 }
128 return false;
129 }
130
GetLockOwner()131 pid_t ThreadList::GetLockOwner() {
132 return Locks::thread_list_lock_->GetExclusiveOwnerTid();
133 }
134
DumpNativeStacks(std::ostream & os)135 void ThreadList::DumpNativeStacks(std::ostream& os) {
136 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
137 std::unique_ptr<BacktraceMap> map(BacktraceMap::Create(getpid()));
138 for (const auto& thread : list_) {
139 os << "DUMPING THREAD " << thread->GetTid() << "\n";
140 DumpNativeStack(os, thread->GetTid(), map.get(), "\t");
141 os << "\n";
142 }
143 }
144
DumpForSigQuit(std::ostream & os)145 void ThreadList::DumpForSigQuit(std::ostream& os) {
146 {
147 ScopedObjectAccess soa(Thread::Current());
148 // Only print if we have samples.
149 if (suspend_all_historam_.SampleSize() > 0) {
150 Histogram<uint64_t>::CumulativeData data;
151 suspend_all_historam_.CreateHistogram(&data);
152 suspend_all_historam_.PrintConfidenceIntervals(os, 0.99, data); // Dump time to suspend.
153 }
154 }
155 bool dump_native_stack = Runtime::Current()->GetDumpNativeStackOnSigQuit();
156 Dump(os, dump_native_stack);
157 DumpUnattachedThreads(os, dump_native_stack && kDumpUnattachedThreadNativeStackForSigQuit);
158 }
159
DumpUnattachedThread(std::ostream & os,pid_t tid,bool dump_native_stack)160 static void DumpUnattachedThread(std::ostream& os, pid_t tid, bool dump_native_stack)
161 NO_THREAD_SAFETY_ANALYSIS {
162 // TODO: No thread safety analysis as DumpState with a null thread won't access fields, should
163 // refactor DumpState to avoid skipping analysis.
164 Thread::DumpState(os, nullptr, tid);
165 DumpKernelStack(os, tid, " kernel: ", false);
166 if (dump_native_stack) {
167 DumpNativeStack(os, tid, nullptr, " native: ");
168 }
169 os << std::endl;
170 }
171
DumpUnattachedThreads(std::ostream & os,bool dump_native_stack)172 void ThreadList::DumpUnattachedThreads(std::ostream& os, bool dump_native_stack) {
173 DIR* d = opendir("/proc/self/task");
174 if (!d) {
175 return;
176 }
177
178 Thread* self = Thread::Current();
179 dirent* e;
180 while ((e = readdir(d)) != nullptr) {
181 char* end;
182 pid_t tid = strtol(e->d_name, &end, 10);
183 if (!*end) {
184 bool contains;
185 {
186 MutexLock mu(self, *Locks::thread_list_lock_);
187 contains = Contains(tid);
188 }
189 if (!contains) {
190 DumpUnattachedThread(os, tid, dump_native_stack);
191 }
192 }
193 }
194 closedir(d);
195 }
196
197 // Dump checkpoint timeout in milliseconds. Larger amount on the target, since the device could be
198 // overloaded with ANR dumps.
199 static constexpr uint32_t kDumpWaitTimeout = kIsTargetBuild ? 100000 : 20000;
200
201 // A closure used by Thread::Dump.
202 class DumpCheckpoint FINAL : public Closure {
203 public:
DumpCheckpoint(std::ostream * os,bool dump_native_stack)204 DumpCheckpoint(std::ostream* os, bool dump_native_stack)
205 : os_(os),
206 barrier_(0),
207 backtrace_map_(dump_native_stack ? BacktraceMap::Create(getpid()) : nullptr),
208 dump_native_stack_(dump_native_stack) {
209 if (backtrace_map_ != nullptr) {
210 backtrace_map_->SetSuffixesToIgnore(std::vector<std::string> { "oat", "odex" });
211 }
212 }
213
Run(Thread * thread)214 void Run(Thread* thread) OVERRIDE {
215 // Note thread and self may not be equal if thread was already suspended at the point of the
216 // request.
217 Thread* self = Thread::Current();
218 CHECK(self != nullptr);
219 std::ostringstream local_os;
220 {
221 ScopedObjectAccess soa(self);
222 thread->Dump(local_os, dump_native_stack_, backtrace_map_.get());
223 }
224 {
225 // Use the logging lock to ensure serialization when writing to the common ostream.
226 MutexLock mu(self, *Locks::logging_lock_);
227 *os_ << local_os.str() << std::endl;
228 }
229 barrier_.Pass(self);
230 }
231
WaitForThreadsToRunThroughCheckpoint(size_t threads_running_checkpoint)232 void WaitForThreadsToRunThroughCheckpoint(size_t threads_running_checkpoint) {
233 Thread* self = Thread::Current();
234 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
235 bool timed_out = barrier_.Increment(self, threads_running_checkpoint, kDumpWaitTimeout);
236 if (timed_out) {
237 // Avoid a recursive abort.
238 LOG((kIsDebugBuild && (gAborting == 0)) ? ::android::base::FATAL : ::android::base::ERROR)
239 << "Unexpected time out during dump checkpoint.";
240 }
241 }
242
243 private:
244 // The common stream that will accumulate all the dumps.
245 std::ostream* const os_;
246 // The barrier to be passed through and for the requestor to wait upon.
247 Barrier barrier_;
248 // A backtrace map, so that all threads use a shared info and don't reacquire/parse separately.
249 std::unique_ptr<BacktraceMap> backtrace_map_;
250 // Whether we should dump the native stack.
251 const bool dump_native_stack_;
252 };
253
Dump(std::ostream & os,bool dump_native_stack)254 void ThreadList::Dump(std::ostream& os, bool dump_native_stack) {
255 Thread* self = Thread::Current();
256 {
257 MutexLock mu(self, *Locks::thread_list_lock_);
258 os << "DALVIK THREADS (" << list_.size() << "):\n";
259 }
260 if (self != nullptr) {
261 DumpCheckpoint checkpoint(&os, dump_native_stack);
262 size_t threads_running_checkpoint;
263 {
264 // Use SOA to prevent deadlocks if multiple threads are calling Dump() at the same time.
265 ScopedObjectAccess soa(self);
266 threads_running_checkpoint = RunCheckpoint(&checkpoint);
267 }
268 if (threads_running_checkpoint != 0) {
269 checkpoint.WaitForThreadsToRunThroughCheckpoint(threads_running_checkpoint);
270 }
271 } else {
272 DumpUnattachedThreads(os, dump_native_stack);
273 }
274 }
275
AssertThreadsAreSuspended(Thread * self,Thread * ignore1,Thread * ignore2)276 void ThreadList::AssertThreadsAreSuspended(Thread* self, Thread* ignore1, Thread* ignore2) {
277 MutexLock mu(self, *Locks::thread_list_lock_);
278 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
279 for (const auto& thread : list_) {
280 if (thread != ignore1 && thread != ignore2) {
281 CHECK(thread->IsSuspended())
282 << "\nUnsuspended thread: <<" << *thread << "\n"
283 << "self: <<" << *Thread::Current();
284 }
285 }
286 }
287
288 #if HAVE_TIMED_RWLOCK
289 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForThreadSuspendAllTimeout()290 NO_RETURN static void UnsafeLogFatalForThreadSuspendAllTimeout() {
291 // Increment gAborting before doing the thread list dump since we don't want any failures from
292 // AssertThreadSuspensionIsAllowable in cases where thread suspension is not allowed.
293 // See b/69044468.
294 ++gAborting;
295 Runtime* runtime = Runtime::Current();
296 std::ostringstream ss;
297 ss << "Thread suspend timeout\n";
298 Locks::mutator_lock_->Dump(ss);
299 ss << "\n";
300 runtime->GetThreadList()->Dump(ss);
301 --gAborting;
302 LOG(FATAL) << ss.str();
303 exit(0);
304 }
305 #endif
306
307 // Unlike suspending all threads where we can wait to acquire the mutator_lock_, suspending an
308 // individual thread requires polling. delay_us is the requested sleep wait. If delay_us is 0 then
309 // we use sched_yield instead of calling usleep.
310 // Although there is the possibility, here and elsewhere, that usleep could return -1 and
311 // errno = EINTR, there should be no problem if interrupted, so we do not check.
ThreadSuspendSleep(useconds_t delay_us)312 static void ThreadSuspendSleep(useconds_t delay_us) {
313 if (delay_us == 0) {
314 sched_yield();
315 } else {
316 usleep(delay_us);
317 }
318 }
319
RunCheckpoint(Closure * checkpoint_function,Closure * callback)320 size_t ThreadList::RunCheckpoint(Closure* checkpoint_function, Closure* callback) {
321 Thread* self = Thread::Current();
322 Locks::mutator_lock_->AssertNotExclusiveHeld(self);
323 Locks::thread_list_lock_->AssertNotHeld(self);
324 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
325
326 std::vector<Thread*> suspended_count_modified_threads;
327 size_t count = 0;
328 {
329 // Call a checkpoint function for each thread, threads which are suspend get their checkpoint
330 // manually called.
331 MutexLock mu(self, *Locks::thread_list_lock_);
332 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
333 count = list_.size();
334 for (const auto& thread : list_) {
335 if (thread != self) {
336 while (true) {
337 if (thread->RequestCheckpoint(checkpoint_function)) {
338 // This thread will run its checkpoint some time in the near future.
339 break;
340 } else {
341 // We are probably suspended, try to make sure that we stay suspended.
342 // The thread switched back to runnable.
343 if (thread->GetState() == kRunnable) {
344 // Spurious fail, try again.
345 continue;
346 }
347 bool updated = thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
348 DCHECK(updated);
349 suspended_count_modified_threads.push_back(thread);
350 break;
351 }
352 }
353 }
354 }
355 // Run the callback to be called inside this critical section.
356 if (callback != nullptr) {
357 callback->Run(self);
358 }
359 }
360
361 // Run the checkpoint on ourself while we wait for threads to suspend.
362 checkpoint_function->Run(self);
363
364 // Run the checkpoint on the suspended threads.
365 for (const auto& thread : suspended_count_modified_threads) {
366 if (!thread->IsSuspended()) {
367 ScopedTrace trace([&]() {
368 std::ostringstream oss;
369 thread->ShortDump(oss);
370 return std::string("Waiting for suspension of thread ") + oss.str();
371 });
372 // Busy wait until the thread is suspended.
373 const uint64_t start_time = NanoTime();
374 do {
375 ThreadSuspendSleep(kThreadSuspendInitialSleepUs);
376 } while (!thread->IsSuspended());
377 const uint64_t total_delay = NanoTime() - start_time;
378 // Shouldn't need to wait for longer than 1000 microseconds.
379 constexpr uint64_t kLongWaitThreshold = MsToNs(1);
380 if (UNLIKELY(total_delay > kLongWaitThreshold)) {
381 LOG(WARNING) << "Long wait of " << PrettyDuration(total_delay) << " for "
382 << *thread << " suspension!";
383 }
384 }
385 // We know for sure that the thread is suspended at this point.
386 checkpoint_function->Run(thread);
387 {
388 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
389 bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
390 DCHECK(updated);
391 }
392 }
393
394 {
395 // Imitate ResumeAll, threads may be waiting on Thread::resume_cond_ since we raised their
396 // suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
397 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
398 Thread::resume_cond_->Broadcast(self);
399 }
400
401 return count;
402 }
403
RunEmptyCheckpoint()404 void ThreadList::RunEmptyCheckpoint() {
405 Thread* self = Thread::Current();
406 Locks::mutator_lock_->AssertNotExclusiveHeld(self);
407 Locks::thread_list_lock_->AssertNotHeld(self);
408 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
409 std::vector<uint32_t> runnable_thread_ids;
410 size_t count = 0;
411 Barrier* barrier = empty_checkpoint_barrier_.get();
412 barrier->Init(self, 0);
413 {
414 MutexLock mu(self, *Locks::thread_list_lock_);
415 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
416 for (Thread* thread : list_) {
417 if (thread != self) {
418 while (true) {
419 if (thread->RequestEmptyCheckpoint()) {
420 // This thread will run an empty checkpoint (decrement the empty checkpoint barrier)
421 // some time in the near future.
422 ++count;
423 if (kIsDebugBuild) {
424 runnable_thread_ids.push_back(thread->GetThreadId());
425 }
426 break;
427 }
428 if (thread->GetState() != kRunnable) {
429 // It's seen suspended, we are done because it must not be in the middle of a mutator
430 // heap access.
431 break;
432 }
433 }
434 }
435 }
436 }
437
438 // Wake up the threads blocking for weak ref access so that they will respond to the empty
439 // checkpoint request. Otherwise we will hang as they are blocking in the kRunnable state.
440 Runtime::Current()->GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
441 Runtime::Current()->BroadcastForNewSystemWeaks(/*broadcast_for_checkpoint*/true);
442 {
443 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
444 uint64_t total_wait_time = 0;
445 bool first_iter = true;
446 while (true) {
447 // Wake up the runnable threads blocked on the mutexes that another thread, which is blocked
448 // on a weak ref access, holds (indirectly blocking for weak ref access through another thread
449 // and a mutex.) This needs to be done periodically because the thread may be preempted
450 // between the CheckEmptyCheckpointFromMutex call and the subsequent futex wait in
451 // Mutex::ExclusiveLock, etc. when the wakeup via WakeupToRespondToEmptyCheckpoint
452 // arrives. This could cause a *very rare* deadlock, if not repeated. Most of the cases are
453 // handled in the first iteration.
454 for (BaseMutex* mutex : Locks::expected_mutexes_on_weak_ref_access_) {
455 mutex->WakeupToRespondToEmptyCheckpoint();
456 }
457 static constexpr uint64_t kEmptyCheckpointPeriodicTimeoutMs = 100; // 100ms
458 static constexpr uint64_t kEmptyCheckpointTotalTimeoutMs = 600 * 1000; // 10 minutes.
459 size_t barrier_count = first_iter ? count : 0;
460 first_iter = false; // Don't add to the barrier count from the second iteration on.
461 bool timed_out = barrier->Increment(self, barrier_count, kEmptyCheckpointPeriodicTimeoutMs);
462 if (!timed_out) {
463 break; // Success
464 }
465 // This is a very rare case.
466 total_wait_time += kEmptyCheckpointPeriodicTimeoutMs;
467 if (kIsDebugBuild && total_wait_time > kEmptyCheckpointTotalTimeoutMs) {
468 std::ostringstream ss;
469 ss << "Empty checkpoint timeout\n";
470 ss << "Barrier count " << barrier->GetCount(self) << "\n";
471 ss << "Runnable thread IDs";
472 for (uint32_t tid : runnable_thread_ids) {
473 ss << " " << tid;
474 }
475 ss << "\n";
476 Locks::mutator_lock_->Dump(ss);
477 ss << "\n";
478 LOG(FATAL_WITHOUT_ABORT) << ss.str();
479 // Some threads in 'runnable_thread_ids' are probably stuck. Try to dump their stacks.
480 // Avoid using ThreadList::Dump() initially because it is likely to get stuck as well.
481 {
482 ScopedObjectAccess soa(self);
483 MutexLock mu1(self, *Locks::thread_list_lock_);
484 for (Thread* thread : GetList()) {
485 uint32_t tid = thread->GetThreadId();
486 bool is_in_runnable_thread_ids =
487 std::find(runnable_thread_ids.begin(), runnable_thread_ids.end(), tid) !=
488 runnable_thread_ids.end();
489 if (is_in_runnable_thread_ids &&
490 thread->ReadFlag(kEmptyCheckpointRequest)) {
491 // Found a runnable thread that hasn't responded to the empty checkpoint request.
492 // Assume it's stuck and safe to dump its stack.
493 thread->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT),
494 /*dump_native_stack*/ true,
495 /*backtrace_map*/ nullptr,
496 /*force_dump_stack*/ true);
497 }
498 }
499 }
500 LOG(FATAL_WITHOUT_ABORT)
501 << "Dumped runnable threads that haven't responded to empty checkpoint.";
502 // Now use ThreadList::Dump() to dump more threads, noting it may get stuck.
503 Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
504 LOG(FATAL) << "Dumped all threads.";
505 }
506 }
507 }
508 }
509
510 // Request that a checkpoint function be run on all active (non-suspended)
511 // threads. Returns the number of successful requests.
RunCheckpointOnRunnableThreads(Closure * checkpoint_function)512 size_t ThreadList::RunCheckpointOnRunnableThreads(Closure* checkpoint_function) {
513 Thread* self = Thread::Current();
514 Locks::mutator_lock_->AssertNotExclusiveHeld(self);
515 Locks::thread_list_lock_->AssertNotHeld(self);
516 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
517 CHECK_NE(self->GetState(), kRunnable);
518
519 size_t count = 0;
520 {
521 // Call a checkpoint function for each non-suspended thread.
522 MutexLock mu(self, *Locks::thread_list_lock_);
523 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
524 for (const auto& thread : list_) {
525 if (thread != self) {
526 if (thread->RequestCheckpoint(checkpoint_function)) {
527 // This thread will run its checkpoint some time in the near future.
528 count++;
529 }
530 }
531 }
532 }
533
534 // Return the number of threads that will run the checkpoint function.
535 return count;
536 }
537
538 // A checkpoint/suspend-all hybrid to switch thread roots from
539 // from-space to to-space refs. Used to synchronize threads at a point
540 // to mark the initiation of marking while maintaining the to-space
541 // invariant.
FlipThreadRoots(Closure * thread_flip_visitor,Closure * flip_callback,gc::collector::GarbageCollector * collector,gc::GcPauseListener * pause_listener)542 size_t ThreadList::FlipThreadRoots(Closure* thread_flip_visitor,
543 Closure* flip_callback,
544 gc::collector::GarbageCollector* collector,
545 gc::GcPauseListener* pause_listener) {
546 TimingLogger::ScopedTiming split("ThreadListFlip", collector->GetTimings());
547 Thread* self = Thread::Current();
548 Locks::mutator_lock_->AssertNotHeld(self);
549 Locks::thread_list_lock_->AssertNotHeld(self);
550 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
551 CHECK_NE(self->GetState(), kRunnable);
552
553 collector->GetHeap()->ThreadFlipBegin(self); // Sync with JNI critical calls.
554
555 // ThreadFlipBegin happens before we suspend all the threads, so it does not count towards the
556 // pause.
557 const uint64_t suspend_start_time = NanoTime();
558 SuspendAllInternal(self, self, nullptr);
559 if (pause_listener != nullptr) {
560 pause_listener->StartPause();
561 }
562
563 // Run the flip callback for the collector.
564 Locks::mutator_lock_->ExclusiveLock(self);
565 suspend_all_historam_.AdjustAndAddValue(NanoTime() - suspend_start_time);
566 flip_callback->Run(self);
567 Locks::mutator_lock_->ExclusiveUnlock(self);
568 collector->RegisterPause(NanoTime() - suspend_start_time);
569 if (pause_listener != nullptr) {
570 pause_listener->EndPause();
571 }
572
573 // Resume runnable threads.
574 size_t runnable_thread_count = 0;
575 std::vector<Thread*> other_threads;
576 {
577 TimingLogger::ScopedTiming split2("ResumeRunnableThreads", collector->GetTimings());
578 MutexLock mu(self, *Locks::thread_list_lock_);
579 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
580 --suspend_all_count_;
581 for (const auto& thread : list_) {
582 // Set the flip function for all threads because Thread::DumpState/DumpJavaStack() (invoked by
583 // a checkpoint) may cause the flip function to be run for a runnable/suspended thread before
584 // a runnable thread runs it for itself or we run it for a suspended thread below.
585 thread->SetFlipFunction(thread_flip_visitor);
586 if (thread == self) {
587 continue;
588 }
589 // Resume early the threads that were runnable but are suspended just for this thread flip or
590 // about to transition from non-runnable (eg. kNative at the SOA entry in a JNI function) to
591 // runnable (both cases waiting inside Thread::TransitionFromSuspendedToRunnable), or waiting
592 // for the thread flip to end at the JNI critical section entry (kWaitingForGcThreadFlip),
593 ThreadState state = thread->GetState();
594 if ((state == kWaitingForGcThreadFlip || thread->IsTransitioningToRunnable()) &&
595 thread->GetSuspendCount() == 1) {
596 // The thread will resume right after the broadcast.
597 bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
598 DCHECK(updated);
599 ++runnable_thread_count;
600 } else {
601 other_threads.push_back(thread);
602 }
603 }
604 Thread::resume_cond_->Broadcast(self);
605 }
606
607 collector->GetHeap()->ThreadFlipEnd(self);
608
609 // Run the closure on the other threads and let them resume.
610 {
611 TimingLogger::ScopedTiming split3("FlipOtherThreads", collector->GetTimings());
612 ReaderMutexLock mu(self, *Locks::mutator_lock_);
613 for (const auto& thread : other_threads) {
614 Closure* flip_func = thread->GetFlipFunction();
615 if (flip_func != nullptr) {
616 flip_func->Run(thread);
617 }
618 }
619 // Run it for self.
620 Closure* flip_func = self->GetFlipFunction();
621 if (flip_func != nullptr) {
622 flip_func->Run(self);
623 }
624 }
625
626 // Resume other threads.
627 {
628 TimingLogger::ScopedTiming split4("ResumeOtherThreads", collector->GetTimings());
629 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
630 for (const auto& thread : other_threads) {
631 bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
632 DCHECK(updated);
633 }
634 Thread::resume_cond_->Broadcast(self);
635 }
636
637 return runnable_thread_count + other_threads.size() + 1; // +1 for self.
638 }
639
SuspendAll(const char * cause,bool long_suspend)640 void ThreadList::SuspendAll(const char* cause, bool long_suspend) {
641 Thread* self = Thread::Current();
642
643 if (self != nullptr) {
644 VLOG(threads) << *self << " SuspendAll for " << cause << " starting...";
645 } else {
646 VLOG(threads) << "Thread[null] SuspendAll for " << cause << " starting...";
647 }
648 {
649 ScopedTrace trace("Suspending mutator threads");
650 const uint64_t start_time = NanoTime();
651
652 SuspendAllInternal(self, self);
653 // All threads are known to have suspended (but a thread may still own the mutator lock)
654 // Make sure this thread grabs exclusive access to the mutator lock and its protected data.
655 #if HAVE_TIMED_RWLOCK
656 while (true) {
657 if (Locks::mutator_lock_->ExclusiveLockWithTimeout(self,
658 NsToMs(thread_suspend_timeout_ns_),
659 0)) {
660 break;
661 } else if (!long_suspend_) {
662 // Reading long_suspend without the mutator lock is slightly racy, in some rare cases, this
663 // could result in a thread suspend timeout.
664 // Timeout if we wait more than thread_suspend_timeout_ns_ nanoseconds.
665 UnsafeLogFatalForThreadSuspendAllTimeout();
666 }
667 }
668 #else
669 Locks::mutator_lock_->ExclusiveLock(self);
670 #endif
671
672 long_suspend_ = long_suspend;
673
674 const uint64_t end_time = NanoTime();
675 const uint64_t suspend_time = end_time - start_time;
676 suspend_all_historam_.AdjustAndAddValue(suspend_time);
677 if (suspend_time > kLongThreadSuspendThreshold) {
678 LOG(WARNING) << "Suspending all threads took: " << PrettyDuration(suspend_time);
679 }
680
681 if (kDebugLocking) {
682 // Debug check that all threads are suspended.
683 AssertThreadsAreSuspended(self, self);
684 }
685 }
686 ATRACE_BEGIN((std::string("Mutator threads suspended for ") + cause).c_str());
687
688 if (self != nullptr) {
689 VLOG(threads) << *self << " SuspendAll complete";
690 } else {
691 VLOG(threads) << "Thread[null] SuspendAll complete";
692 }
693 }
694
695 // Ensures all threads running Java suspend and that those not running Java don't start.
696 // Debugger thread might be set to kRunnable for a short period of time after the
697 // SuspendAllInternal. This is safe because it will be set back to suspended state before
698 // the SuspendAll returns.
SuspendAllInternal(Thread * self,Thread * ignore1,Thread * ignore2,SuspendReason reason)699 void ThreadList::SuspendAllInternal(Thread* self,
700 Thread* ignore1,
701 Thread* ignore2,
702 SuspendReason reason) {
703 Locks::mutator_lock_->AssertNotExclusiveHeld(self);
704 Locks::thread_list_lock_->AssertNotHeld(self);
705 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
706 if (kDebugLocking && self != nullptr) {
707 CHECK_NE(self->GetState(), kRunnable);
708 }
709
710 // First request that all threads suspend, then wait for them to suspend before
711 // returning. This suspension scheme also relies on other behaviour:
712 // 1. Threads cannot be deleted while they are suspended or have a suspend-
713 // request flag set - (see Unregister() below).
714 // 2. When threads are created, they are created in a suspended state (actually
715 // kNative) and will never begin executing Java code without first checking
716 // the suspend-request flag.
717
718 // The atomic counter for number of threads that need to pass the barrier.
719 AtomicInteger pending_threads;
720 uint32_t num_ignored = 0;
721 if (ignore1 != nullptr) {
722 ++num_ignored;
723 }
724 if (ignore2 != nullptr && ignore1 != ignore2) {
725 ++num_ignored;
726 }
727 {
728 MutexLock mu(self, *Locks::thread_list_lock_);
729 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
730 // Update global suspend all state for attaching threads.
731 ++suspend_all_count_;
732 if (reason == SuspendReason::kForDebugger) {
733 ++debug_suspend_all_count_;
734 }
735 pending_threads.StoreRelaxed(list_.size() - num_ignored);
736 // Increment everybody's suspend count (except those that should be ignored).
737 for (const auto& thread : list_) {
738 if (thread == ignore1 || thread == ignore2) {
739 continue;
740 }
741 VLOG(threads) << "requesting thread suspend: " << *thread;
742 bool updated = thread->ModifySuspendCount(self, +1, &pending_threads, reason);
743 DCHECK(updated);
744
745 // Must install the pending_threads counter first, then check thread->IsSuspend() and clear
746 // the counter. Otherwise there's a race with Thread::TransitionFromRunnableToSuspended()
747 // that can lead a thread to miss a call to PassActiveSuspendBarriers().
748 if (thread->IsSuspended()) {
749 // Only clear the counter for the current thread.
750 thread->ClearSuspendBarrier(&pending_threads);
751 pending_threads.FetchAndSubSequentiallyConsistent(1);
752 }
753 }
754 }
755
756 // Wait for the barrier to be passed by all runnable threads. This wait
757 // is done with a timeout so that we can detect problems.
758 #if ART_USE_FUTEXES
759 timespec wait_timeout;
760 InitTimeSpec(false, CLOCK_MONOTONIC, NsToMs(thread_suspend_timeout_ns_), 0, &wait_timeout);
761 #endif
762 const uint64_t start_time = NanoTime();
763 while (true) {
764 int32_t cur_val = pending_threads.LoadRelaxed();
765 if (LIKELY(cur_val > 0)) {
766 #if ART_USE_FUTEXES
767 if (futex(pending_threads.Address(), FUTEX_WAIT, cur_val, &wait_timeout, nullptr, 0) != 0) {
768 // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
769 if ((errno != EAGAIN) && (errno != EINTR)) {
770 if (errno == ETIMEDOUT) {
771 LOG(kIsDebugBuild ? ::android::base::FATAL : ::android::base::ERROR)
772 << "Timed out waiting for threads to suspend, waited for "
773 << PrettyDuration(NanoTime() - start_time);
774 } else {
775 PLOG(FATAL) << "futex wait failed for SuspendAllInternal()";
776 }
777 }
778 } // else re-check pending_threads in the next iteration (this may be a spurious wake-up).
779 #else
780 // Spin wait. This is likely to be slow, but on most architecture ART_USE_FUTEXES is set.
781 UNUSED(start_time);
782 #endif
783 } else {
784 CHECK_EQ(cur_val, 0);
785 break;
786 }
787 }
788 }
789
ResumeAll()790 void ThreadList::ResumeAll() {
791 Thread* self = Thread::Current();
792
793 if (self != nullptr) {
794 VLOG(threads) << *self << " ResumeAll starting";
795 } else {
796 VLOG(threads) << "Thread[null] ResumeAll starting";
797 }
798
799 ATRACE_END();
800
801 ScopedTrace trace("Resuming mutator threads");
802
803 if (kDebugLocking) {
804 // Debug check that all threads are suspended.
805 AssertThreadsAreSuspended(self, self);
806 }
807
808 long_suspend_ = false;
809
810 Locks::mutator_lock_->ExclusiveUnlock(self);
811 {
812 MutexLock mu(self, *Locks::thread_list_lock_);
813 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
814 // Update global suspend all state for attaching threads.
815 --suspend_all_count_;
816 // Decrement the suspend counts for all threads.
817 for (const auto& thread : list_) {
818 if (thread == self) {
819 continue;
820 }
821 bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
822 DCHECK(updated);
823 }
824
825 // Broadcast a notification to all suspended threads, some or all of
826 // which may choose to wake up. No need to wait for them.
827 if (self != nullptr) {
828 VLOG(threads) << *self << " ResumeAll waking others";
829 } else {
830 VLOG(threads) << "Thread[null] ResumeAll waking others";
831 }
832 Thread::resume_cond_->Broadcast(self);
833 }
834
835 if (self != nullptr) {
836 VLOG(threads) << *self << " ResumeAll complete";
837 } else {
838 VLOG(threads) << "Thread[null] ResumeAll complete";
839 }
840 }
841
Resume(Thread * thread,SuspendReason reason)842 bool ThreadList::Resume(Thread* thread, SuspendReason reason) {
843 // This assumes there was an ATRACE_BEGIN when we suspended the thread.
844 ATRACE_END();
845
846 Thread* self = Thread::Current();
847 DCHECK_NE(thread, self);
848 VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") starting..." << reason;
849
850 {
851 // To check Contains.
852 MutexLock mu(self, *Locks::thread_list_lock_);
853 // To check IsSuspended.
854 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
855 if (UNLIKELY(!thread->IsSuspended())) {
856 LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
857 << ") thread not suspended";
858 return false;
859 }
860 if (!Contains(thread)) {
861 // We only expect threads within the thread-list to have been suspended otherwise we can't
862 // stop such threads from delete-ing themselves.
863 LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
864 << ") thread not within thread list";
865 return false;
866 }
867 if (UNLIKELY(!thread->ModifySuspendCount(self, -1, nullptr, reason))) {
868 LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
869 << ") could not modify suspend count.";
870 return false;
871 }
872 }
873
874 {
875 VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") waking others";
876 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
877 Thread::resume_cond_->Broadcast(self);
878 }
879
880 VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") complete";
881 return true;
882 }
883
ThreadSuspendByPeerWarning(Thread * self,LogSeverity severity,const char * message,jobject peer)884 static void ThreadSuspendByPeerWarning(Thread* self,
885 LogSeverity severity,
886 const char* message,
887 jobject peer) {
888 JNIEnvExt* env = self->GetJniEnv();
889 ScopedLocalRef<jstring>
890 scoped_name_string(env, static_cast<jstring>(env->GetObjectField(
891 peer, WellKnownClasses::java_lang_Thread_name)));
892 ScopedUtfChars scoped_name_chars(env, scoped_name_string.get());
893 if (scoped_name_chars.c_str() == nullptr) {
894 LOG(severity) << message << ": " << peer;
895 env->ExceptionClear();
896 } else {
897 LOG(severity) << message << ": " << peer << ":" << scoped_name_chars.c_str();
898 }
899 }
900
SuspendThreadByPeer(jobject peer,bool request_suspension,SuspendReason reason,bool * timed_out)901 Thread* ThreadList::SuspendThreadByPeer(jobject peer,
902 bool request_suspension,
903 SuspendReason reason,
904 bool* timed_out) {
905 const uint64_t start_time = NanoTime();
906 useconds_t sleep_us = kThreadSuspendInitialSleepUs;
907 *timed_out = false;
908 Thread* const self = Thread::Current();
909 Thread* suspended_thread = nullptr;
910 VLOG(threads) << "SuspendThreadByPeer starting";
911 while (true) {
912 Thread* thread;
913 {
914 // Note: this will transition to runnable and potentially suspend. We ensure only one thread
915 // is requesting another suspend, to avoid deadlock, by requiring this function be called
916 // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather
917 // than request thread suspension, to avoid potential cycles in threads requesting each other
918 // suspend.
919 ScopedObjectAccess soa(self);
920 MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
921 thread = Thread::FromManagedThread(soa, peer);
922 if (thread == nullptr) {
923 if (suspended_thread != nullptr) {
924 MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
925 // If we incremented the suspend count but the thread reset its peer, we need to
926 // re-decrement it since it is shutting down and may deadlock the runtime in
927 // ThreadList::WaitForOtherNonDaemonThreadsToExit.
928 bool updated = suspended_thread->ModifySuspendCount(soa.Self(),
929 -1,
930 nullptr,
931 reason);
932 DCHECK(updated);
933 }
934 ThreadSuspendByPeerWarning(self,
935 ::android::base::WARNING,
936 "No such thread for suspend",
937 peer);
938 return nullptr;
939 }
940 if (!Contains(thread)) {
941 CHECK(suspended_thread == nullptr);
942 VLOG(threads) << "SuspendThreadByPeer failed for unattached thread: "
943 << reinterpret_cast<void*>(thread);
944 return nullptr;
945 }
946 VLOG(threads) << "SuspendThreadByPeer found thread: " << *thread;
947 {
948 MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
949 if (request_suspension) {
950 if (self->GetSuspendCount() > 0) {
951 // We hold the suspend count lock but another thread is trying to suspend us. Its not
952 // safe to try to suspend another thread in case we get a cycle. Start the loop again
953 // which will allow this thread to be suspended.
954 continue;
955 }
956 CHECK(suspended_thread == nullptr);
957 suspended_thread = thread;
958 bool updated = suspended_thread->ModifySuspendCount(self, +1, nullptr, reason);
959 DCHECK(updated);
960 request_suspension = false;
961 } else {
962 // If the caller isn't requesting suspension, a suspension should have already occurred.
963 CHECK_GT(thread->GetSuspendCount(), 0);
964 }
965 // IsSuspended on the current thread will fail as the current thread is changed into
966 // Runnable above. As the suspend count is now raised if this is the current thread
967 // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
968 // to just explicitly handle the current thread in the callers to this code.
969 CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger";
970 // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
971 // count, or else we've waited and it has self suspended) or is the current thread, we're
972 // done.
973 if (thread->IsSuspended()) {
974 VLOG(threads) << "SuspendThreadByPeer thread suspended: " << *thread;
975 if (ATRACE_ENABLED()) {
976 std::string name;
977 thread->GetThreadName(name);
978 ATRACE_BEGIN(StringPrintf("SuspendThreadByPeer suspended %s for peer=%p", name.c_str(),
979 peer).c_str());
980 }
981 return thread;
982 }
983 const uint64_t total_delay = NanoTime() - start_time;
984 if (total_delay >= thread_suspend_timeout_ns_) {
985 ThreadSuspendByPeerWarning(self,
986 ::android::base::FATAL,
987 "Thread suspension timed out",
988 peer);
989 if (suspended_thread != nullptr) {
990 CHECK_EQ(suspended_thread, thread);
991 bool updated = suspended_thread->ModifySuspendCount(soa.Self(),
992 -1,
993 nullptr,
994 reason);
995 DCHECK(updated);
996 }
997 *timed_out = true;
998 return nullptr;
999 } else if (sleep_us == 0 &&
1000 total_delay > static_cast<uint64_t>(kThreadSuspendMaxYieldUs) * 1000) {
1001 // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent
1002 // excessive CPU usage.
1003 sleep_us = kThreadSuspendMaxYieldUs / 2;
1004 }
1005 }
1006 // Release locks and come out of runnable state.
1007 }
1008 VLOG(threads) << "SuspendThreadByPeer waiting to allow thread chance to suspend";
1009 ThreadSuspendSleep(sleep_us);
1010 // This may stay at 0 if sleep_us == 0, but this is WAI since we want to avoid using usleep at
1011 // all if possible. This shouldn't be an issue since time to suspend should always be small.
1012 sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs);
1013 }
1014 }
1015
ThreadSuspendByThreadIdWarning(LogSeverity severity,const char * message,uint32_t thread_id)1016 static void ThreadSuspendByThreadIdWarning(LogSeverity severity,
1017 const char* message,
1018 uint32_t thread_id) {
1019 LOG(severity) << StringPrintf("%s: %d", message, thread_id);
1020 }
1021
SuspendThreadByThreadId(uint32_t thread_id,SuspendReason reason,bool * timed_out)1022 Thread* ThreadList::SuspendThreadByThreadId(uint32_t thread_id,
1023 SuspendReason reason,
1024 bool* timed_out) {
1025 const uint64_t start_time = NanoTime();
1026 useconds_t sleep_us = kThreadSuspendInitialSleepUs;
1027 *timed_out = false;
1028 Thread* suspended_thread = nullptr;
1029 Thread* const self = Thread::Current();
1030 CHECK_NE(thread_id, kInvalidThreadId);
1031 VLOG(threads) << "SuspendThreadByThreadId starting";
1032 while (true) {
1033 {
1034 // Note: this will transition to runnable and potentially suspend. We ensure only one thread
1035 // is requesting another suspend, to avoid deadlock, by requiring this function be called
1036 // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather
1037 // than request thread suspension, to avoid potential cycles in threads requesting each other
1038 // suspend.
1039 ScopedObjectAccess soa(self);
1040 MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
1041 Thread* thread = nullptr;
1042 for (const auto& it : list_) {
1043 if (it->GetThreadId() == thread_id) {
1044 thread = it;
1045 break;
1046 }
1047 }
1048 if (thread == nullptr) {
1049 CHECK(suspended_thread == nullptr) << "Suspended thread " << suspended_thread
1050 << " no longer in thread list";
1051 // There's a race in inflating a lock and the owner giving up ownership and then dying.
1052 ThreadSuspendByThreadIdWarning(::android::base::WARNING,
1053 "No such thread id for suspend",
1054 thread_id);
1055 return nullptr;
1056 }
1057 VLOG(threads) << "SuspendThreadByThreadId found thread: " << *thread;
1058 DCHECK(Contains(thread));
1059 {
1060 MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
1061 if (suspended_thread == nullptr) {
1062 if (self->GetSuspendCount() > 0) {
1063 // We hold the suspend count lock but another thread is trying to suspend us. Its not
1064 // safe to try to suspend another thread in case we get a cycle. Start the loop again
1065 // which will allow this thread to be suspended.
1066 continue;
1067 }
1068 bool updated = thread->ModifySuspendCount(self, +1, nullptr, reason);
1069 DCHECK(updated);
1070 suspended_thread = thread;
1071 } else {
1072 CHECK_EQ(suspended_thread, thread);
1073 // If the caller isn't requesting suspension, a suspension should have already occurred.
1074 CHECK_GT(thread->GetSuspendCount(), 0);
1075 }
1076 // IsSuspended on the current thread will fail as the current thread is changed into
1077 // Runnable above. As the suspend count is now raised if this is the current thread
1078 // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
1079 // to just explicitly handle the current thread in the callers to this code.
1080 CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger";
1081 // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
1082 // count, or else we've waited and it has self suspended) or is the current thread, we're
1083 // done.
1084 if (thread->IsSuspended()) {
1085 if (ATRACE_ENABLED()) {
1086 std::string name;
1087 thread->GetThreadName(name);
1088 ATRACE_BEGIN(StringPrintf("SuspendThreadByThreadId suspended %s id=%d",
1089 name.c_str(), thread_id).c_str());
1090 }
1091 VLOG(threads) << "SuspendThreadByThreadId thread suspended: " << *thread;
1092 return thread;
1093 }
1094 const uint64_t total_delay = NanoTime() - start_time;
1095 if (total_delay >= thread_suspend_timeout_ns_) {
1096 ThreadSuspendByThreadIdWarning(::android::base::WARNING,
1097 "Thread suspension timed out",
1098 thread_id);
1099 if (suspended_thread != nullptr) {
1100 bool updated = thread->ModifySuspendCount(soa.Self(), -1, nullptr, reason);
1101 DCHECK(updated);
1102 }
1103 *timed_out = true;
1104 return nullptr;
1105 } else if (sleep_us == 0 &&
1106 total_delay > static_cast<uint64_t>(kThreadSuspendMaxYieldUs) * 1000) {
1107 // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent
1108 // excessive CPU usage.
1109 sleep_us = kThreadSuspendMaxYieldUs / 2;
1110 }
1111 }
1112 // Release locks and come out of runnable state.
1113 }
1114 VLOG(threads) << "SuspendThreadByThreadId waiting to allow thread chance to suspend";
1115 ThreadSuspendSleep(sleep_us);
1116 sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs);
1117 }
1118 }
1119
FindThreadByThreadId(uint32_t thread_id)1120 Thread* ThreadList::FindThreadByThreadId(uint32_t thread_id) {
1121 for (const auto& thread : list_) {
1122 if (thread->GetThreadId() == thread_id) {
1123 return thread;
1124 }
1125 }
1126 return nullptr;
1127 }
1128
SuspendAllForDebugger()1129 void ThreadList::SuspendAllForDebugger() {
1130 Thread* self = Thread::Current();
1131 Thread* debug_thread = Dbg::GetDebugThread();
1132
1133 VLOG(threads) << *self << " SuspendAllForDebugger starting...";
1134
1135 SuspendAllInternal(self, self, debug_thread, SuspendReason::kForDebugger);
1136 // Block on the mutator lock until all Runnable threads release their share of access then
1137 // immediately unlock again.
1138 #if HAVE_TIMED_RWLOCK
1139 // Timeout if we wait more than 30 seconds.
1140 if (!Locks::mutator_lock_->ExclusiveLockWithTimeout(self, 30 * 1000, 0)) {
1141 UnsafeLogFatalForThreadSuspendAllTimeout();
1142 } else {
1143 Locks::mutator_lock_->ExclusiveUnlock(self);
1144 }
1145 #else
1146 Locks::mutator_lock_->ExclusiveLock(self);
1147 Locks::mutator_lock_->ExclusiveUnlock(self);
1148 #endif
1149 // Disabled for the following race condition:
1150 // Thread 1 calls SuspendAllForDebugger, gets preempted after pulsing the mutator lock.
1151 // Thread 2 calls SuspendAll and SetStateUnsafe (perhaps from Dbg::Disconnected).
1152 // Thread 1 fails assertion that all threads are suspended due to thread 2 being in a runnable
1153 // state (from SetStateUnsafe).
1154 // AssertThreadsAreSuspended(self, self, debug_thread);
1155
1156 VLOG(threads) << *self << " SuspendAllForDebugger complete";
1157 }
1158
SuspendSelfForDebugger()1159 void ThreadList::SuspendSelfForDebugger() {
1160 Thread* const self = Thread::Current();
1161 self->SetReadyForDebugInvoke(true);
1162
1163 // The debugger thread must not suspend itself due to debugger activity!
1164 Thread* debug_thread = Dbg::GetDebugThread();
1165 CHECK(self != debug_thread);
1166 CHECK_NE(self->GetState(), kRunnable);
1167 Locks::mutator_lock_->AssertNotHeld(self);
1168
1169 // The debugger may have detached while we were executing an invoke request. In that case, we
1170 // must not suspend ourself.
1171 DebugInvokeReq* pReq = self->GetInvokeReq();
1172 const bool skip_thread_suspension = (pReq != nullptr && !Dbg::IsDebuggerActive());
1173 if (!skip_thread_suspension) {
1174 // Collisions with other suspends aren't really interesting. We want
1175 // to ensure that we're the only one fiddling with the suspend count
1176 // though.
1177 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1178 bool updated = self->ModifySuspendCount(self, +1, nullptr, SuspendReason::kForDebugger);
1179 DCHECK(updated);
1180 CHECK_GT(self->GetSuspendCount(), 0);
1181
1182 VLOG(threads) << *self << " self-suspending (debugger)";
1183 } else {
1184 // We must no longer be subject to debugger suspension.
1185 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1186 CHECK_EQ(self->GetDebugSuspendCount(), 0) << "Debugger detached without resuming us";
1187
1188 VLOG(threads) << *self << " not self-suspending because debugger detached during invoke";
1189 }
1190
1191 // If the debugger requested an invoke, we need to send the reply and clear the request.
1192 if (pReq != nullptr) {
1193 Dbg::FinishInvokeMethod(pReq);
1194 self->ClearDebugInvokeReq();
1195 pReq = nullptr; // object has been deleted, clear it for safety.
1196 }
1197
1198 // Tell JDWP that we've completed suspension. The JDWP thread can't
1199 // tell us to resume before we're fully asleep because we hold the
1200 // suspend count lock.
1201 Dbg::ClearWaitForEventThread();
1202
1203 {
1204 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1205 while (self->GetSuspendCount() != 0) {
1206 Thread::resume_cond_->Wait(self);
1207 if (self->GetSuspendCount() != 0) {
1208 // The condition was signaled but we're still suspended. This
1209 // can happen when we suspend then resume all threads to
1210 // update instrumentation or compute monitor info. This can
1211 // also happen if the debugger lets go while a SIGQUIT thread
1212 // dump event is pending (assuming SignalCatcher was resumed for
1213 // just long enough to try to grab the thread-suspend lock).
1214 VLOG(jdwp) << *self << " still suspended after undo "
1215 << "(suspend count=" << self->GetSuspendCount() << ", "
1216 << "debug suspend count=" << self->GetDebugSuspendCount() << ")";
1217 }
1218 }
1219 CHECK_EQ(self->GetSuspendCount(), 0);
1220 }
1221
1222 self->SetReadyForDebugInvoke(false);
1223 VLOG(threads) << *self << " self-reviving (debugger)";
1224 }
1225
ResumeAllForDebugger()1226 void ThreadList::ResumeAllForDebugger() {
1227 Thread* self = Thread::Current();
1228 Thread* debug_thread = Dbg::GetDebugThread();
1229
1230 VLOG(threads) << *self << " ResumeAllForDebugger starting...";
1231
1232 // Threads can't resume if we exclusively hold the mutator lock.
1233 Locks::mutator_lock_->AssertNotExclusiveHeld(self);
1234
1235 {
1236 MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
1237 {
1238 MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
1239 // Update global suspend all state for attaching threads.
1240 DCHECK_GE(suspend_all_count_, debug_suspend_all_count_);
1241 if (debug_suspend_all_count_ > 0) {
1242 --suspend_all_count_;
1243 --debug_suspend_all_count_;
1244 } else {
1245 // We've been asked to resume all threads without being asked to
1246 // suspend them all before. That may happen if a debugger tries
1247 // to resume some suspended threads (with suspend count == 1)
1248 // at once with a VirtualMachine.Resume command. Let's print a
1249 // warning.
1250 LOG(WARNING) << "Debugger attempted to resume all threads without "
1251 << "having suspended them all before.";
1252 }
1253 // Decrement everybody's suspend count (except our own).
1254 for (const auto& thread : list_) {
1255 if (thread == self || thread == debug_thread) {
1256 continue;
1257 }
1258 if (thread->GetDebugSuspendCount() == 0) {
1259 // This thread may have been individually resumed with ThreadReference.Resume.
1260 continue;
1261 }
1262 VLOG(threads) << "requesting thread resume: " << *thread;
1263 bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kForDebugger);
1264 DCHECK(updated);
1265 }
1266 }
1267 }
1268
1269 {
1270 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1271 Thread::resume_cond_->Broadcast(self);
1272 }
1273
1274 VLOG(threads) << *self << " ResumeAllForDebugger complete";
1275 }
1276
UndoDebuggerSuspensions()1277 void ThreadList::UndoDebuggerSuspensions() {
1278 Thread* self = Thread::Current();
1279
1280 VLOG(threads) << *self << " UndoDebuggerSuspensions starting";
1281
1282 {
1283 MutexLock mu(self, *Locks::thread_list_lock_);
1284 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1285 // Update global suspend all state for attaching threads.
1286 suspend_all_count_ -= debug_suspend_all_count_;
1287 debug_suspend_all_count_ = 0;
1288 // Update running threads.
1289 for (const auto& thread : list_) {
1290 if (thread == self || thread->GetDebugSuspendCount() == 0) {
1291 continue;
1292 }
1293 bool suspended = thread->ModifySuspendCount(self,
1294 -thread->GetDebugSuspendCount(),
1295 nullptr,
1296 SuspendReason::kForDebugger);
1297 DCHECK(suspended);
1298 }
1299 }
1300
1301 {
1302 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1303 Thread::resume_cond_->Broadcast(self);
1304 }
1305
1306 VLOG(threads) << "UndoDebuggerSuspensions(" << *self << ") complete";
1307 }
1308
WaitForOtherNonDaemonThreadsToExit()1309 void ThreadList::WaitForOtherNonDaemonThreadsToExit() {
1310 ScopedTrace trace(__PRETTY_FUNCTION__);
1311 Thread* self = Thread::Current();
1312 Locks::mutator_lock_->AssertNotHeld(self);
1313 while (true) {
1314 {
1315 // No more threads can be born after we start to shutdown.
1316 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
1317 CHECK(Runtime::Current()->IsShuttingDownLocked());
1318 CHECK_EQ(Runtime::Current()->NumberOfThreadsBeingBorn(), 0U);
1319 }
1320 MutexLock mu(self, *Locks::thread_list_lock_);
1321 // Also wait for any threads that are unregistering to finish. This is required so that no
1322 // threads access the thread list after it is deleted. TODO: This may not work for user daemon
1323 // threads since they could unregister at the wrong time.
1324 bool done = unregistering_count_ == 0;
1325 if (done) {
1326 for (const auto& thread : list_) {
1327 if (thread != self && !thread->IsDaemon()) {
1328 done = false;
1329 break;
1330 }
1331 }
1332 }
1333 if (done) {
1334 break;
1335 }
1336 // Wait for another thread to exit before re-checking.
1337 Locks::thread_exit_cond_->Wait(self);
1338 }
1339 }
1340
SuspendAllDaemonThreadsForShutdown()1341 void ThreadList::SuspendAllDaemonThreadsForShutdown() {
1342 ScopedTrace trace(__PRETTY_FUNCTION__);
1343 Thread* self = Thread::Current();
1344 size_t daemons_left = 0;
1345 {
1346 // Tell all the daemons it's time to suspend.
1347 MutexLock mu(self, *Locks::thread_list_lock_);
1348 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1349 for (const auto& thread : list_) {
1350 // This is only run after all non-daemon threads have exited, so the remainder should all be
1351 // daemons.
1352 CHECK(thread->IsDaemon()) << *thread;
1353 if (thread != self) {
1354 bool updated = thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
1355 DCHECK(updated);
1356 ++daemons_left;
1357 }
1358 // We are shutting down the runtime, set the JNI functions of all the JNIEnvs to be
1359 // the sleep forever one.
1360 thread->GetJniEnv()->SetFunctionsToRuntimeShutdownFunctions();
1361 }
1362 }
1363 // If we have any daemons left, wait 200ms to ensure they are not stuck in a place where they
1364 // are about to access runtime state and are not in a runnable state. Examples: Monitor code
1365 // or waking up from a condition variable. TODO: Try and see if there is a better way to wait
1366 // for daemon threads to be in a blocked state.
1367 if (daemons_left > 0) {
1368 static constexpr size_t kDaemonSleepTime = 200 * 1000;
1369 usleep(kDaemonSleepTime);
1370 }
1371 // Give the threads a chance to suspend, complaining if they're slow.
1372 bool have_complained = false;
1373 static constexpr size_t kTimeoutMicroseconds = 2000 * 1000;
1374 static constexpr size_t kSleepMicroseconds = 1000;
1375 for (size_t i = 0; i < kTimeoutMicroseconds / kSleepMicroseconds; ++i) {
1376 bool all_suspended = true;
1377 {
1378 MutexLock mu(self, *Locks::thread_list_lock_);
1379 for (const auto& thread : list_) {
1380 if (thread != self && thread->GetState() == kRunnable) {
1381 if (!have_complained) {
1382 LOG(WARNING) << "daemon thread not yet suspended: " << *thread;
1383 have_complained = true;
1384 }
1385 all_suspended = false;
1386 }
1387 }
1388 }
1389 if (all_suspended) {
1390 return;
1391 }
1392 usleep(kSleepMicroseconds);
1393 }
1394 LOG(WARNING) << "timed out suspending all daemon threads";
1395 }
1396
Register(Thread * self)1397 void ThreadList::Register(Thread* self) {
1398 DCHECK_EQ(self, Thread::Current());
1399 CHECK(!shut_down_);
1400
1401 if (VLOG_IS_ON(threads)) {
1402 std::ostringstream oss;
1403 self->ShortDump(oss); // We don't hold the mutator_lock_ yet and so cannot call Dump.
1404 LOG(INFO) << "ThreadList::Register() " << *self << "\n" << oss.str();
1405 }
1406
1407 // Atomically add self to the thread list and make its thread_suspend_count_ reflect ongoing
1408 // SuspendAll requests.
1409 MutexLock mu(self, *Locks::thread_list_lock_);
1410 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1411 CHECK_GE(suspend_all_count_, debug_suspend_all_count_);
1412 // Modify suspend count in increments of 1 to maintain invariants in ModifySuspendCount. While
1413 // this isn't particularly efficient the suspend counts are most commonly 0 or 1.
1414 for (int delta = debug_suspend_all_count_; delta > 0; delta--) {
1415 bool updated = self->ModifySuspendCount(self, +1, nullptr, SuspendReason::kForDebugger);
1416 DCHECK(updated);
1417 }
1418 for (int delta = suspend_all_count_ - debug_suspend_all_count_; delta > 0; delta--) {
1419 bool updated = self->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
1420 DCHECK(updated);
1421 }
1422 CHECK(!Contains(self));
1423 list_.push_back(self);
1424 if (kUseReadBarrier) {
1425 gc::collector::ConcurrentCopying* const cc =
1426 Runtime::Current()->GetHeap()->ConcurrentCopyingCollector();
1427 // Initialize according to the state of the CC collector.
1428 self->SetIsGcMarkingAndUpdateEntrypoints(cc->IsMarking());
1429 if (cc->IsUsingReadBarrierEntrypoints()) {
1430 self->SetReadBarrierEntrypoints();
1431 }
1432 self->SetWeakRefAccessEnabled(cc->IsWeakRefAccessEnabled());
1433 }
1434 }
1435
Unregister(Thread * self)1436 void ThreadList::Unregister(Thread* self) {
1437 DCHECK_EQ(self, Thread::Current());
1438 CHECK_NE(self->GetState(), kRunnable);
1439 Locks::mutator_lock_->AssertNotHeld(self);
1440
1441 VLOG(threads) << "ThreadList::Unregister() " << *self;
1442
1443 {
1444 MutexLock mu(self, *Locks::thread_list_lock_);
1445 ++unregistering_count_;
1446 }
1447
1448 // Any time-consuming destruction, plus anything that can call back into managed code or
1449 // suspend and so on, must happen at this point, and not in ~Thread. The self->Destroy is what
1450 // causes the threads to join. It is important to do this after incrementing unregistering_count_
1451 // since we want the runtime to wait for the daemon threads to exit before deleting the thread
1452 // list.
1453 self->Destroy();
1454
1455 // If tracing, remember thread id and name before thread exits.
1456 Trace::StoreExitingThreadInfo(self);
1457
1458 uint32_t thin_lock_id = self->GetThreadId();
1459 while (true) {
1460 // Remove and delete the Thread* while holding the thread_list_lock_ and
1461 // thread_suspend_count_lock_ so that the unregistering thread cannot be suspended.
1462 // Note: deliberately not using MutexLock that could hold a stale self pointer.
1463 MutexLock mu(self, *Locks::thread_list_lock_);
1464 if (!Contains(self)) {
1465 std::string thread_name;
1466 self->GetThreadName(thread_name);
1467 std::ostringstream os;
1468 DumpNativeStack(os, GetTid(), nullptr, " native: ", nullptr);
1469 LOG(ERROR) << "Request to unregister unattached thread " << thread_name << "\n" << os.str();
1470 break;
1471 } else {
1472 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1473 if (!self->IsSuspended()) {
1474 list_.remove(self);
1475 break;
1476 }
1477 }
1478 // We failed to remove the thread due to a suspend request, loop and try again.
1479 }
1480 delete self;
1481
1482 // Release the thread ID after the thread is finished and deleted to avoid cases where we can
1483 // temporarily have multiple threads with the same thread id. When this occurs, it causes
1484 // problems in FindThreadByThreadId / SuspendThreadByThreadId.
1485 ReleaseThreadId(nullptr, thin_lock_id);
1486
1487 // Clear the TLS data, so that the underlying native thread is recognizably detached.
1488 // (It may wish to reattach later.)
1489 #ifdef ART_TARGET_ANDROID
1490 __get_tls()[TLS_SLOT_ART_THREAD_SELF] = nullptr;
1491 #else
1492 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, nullptr), "detach self");
1493 #endif
1494
1495 // Signal that a thread just detached.
1496 MutexLock mu(nullptr, *Locks::thread_list_lock_);
1497 --unregistering_count_;
1498 Locks::thread_exit_cond_->Broadcast(nullptr);
1499 }
1500
ForEach(void (* callback)(Thread *,void *),void * context)1501 void ThreadList::ForEach(void (*callback)(Thread*, void*), void* context) {
1502 for (const auto& thread : list_) {
1503 callback(thread, context);
1504 }
1505 }
1506
VisitRootsForSuspendedThreads(RootVisitor * visitor)1507 void ThreadList::VisitRootsForSuspendedThreads(RootVisitor* visitor) {
1508 Thread* const self = Thread::Current();
1509 std::vector<Thread*> threads_to_visit;
1510
1511 // Tell threads to suspend and copy them into list.
1512 {
1513 MutexLock mu(self, *Locks::thread_list_lock_);
1514 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1515 for (Thread* thread : list_) {
1516 bool suspended = thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
1517 DCHECK(suspended);
1518 if (thread == self || thread->IsSuspended()) {
1519 threads_to_visit.push_back(thread);
1520 } else {
1521 bool resumed = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
1522 DCHECK(resumed);
1523 }
1524 }
1525 }
1526
1527 // Visit roots without holding thread_list_lock_ and thread_suspend_count_lock_ to prevent lock
1528 // order violations.
1529 for (Thread* thread : threads_to_visit) {
1530 thread->VisitRoots(visitor, kVisitRootFlagAllRoots);
1531 }
1532
1533 // Restore suspend counts.
1534 {
1535 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1536 for (Thread* thread : threads_to_visit) {
1537 bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
1538 DCHECK(updated);
1539 }
1540 }
1541 }
1542
VisitRoots(RootVisitor * visitor,VisitRootFlags flags) const1543 void ThreadList::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) const {
1544 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
1545 for (const auto& thread : list_) {
1546 thread->VisitRoots(visitor, flags);
1547 }
1548 }
1549
AllocThreadId(Thread * self)1550 uint32_t ThreadList::AllocThreadId(Thread* self) {
1551 MutexLock mu(self, *Locks::allocated_thread_ids_lock_);
1552 for (size_t i = 0; i < allocated_ids_.size(); ++i) {
1553 if (!allocated_ids_[i]) {
1554 allocated_ids_.set(i);
1555 return i + 1; // Zero is reserved to mean "invalid".
1556 }
1557 }
1558 LOG(FATAL) << "Out of internal thread ids";
1559 return 0;
1560 }
1561
ReleaseThreadId(Thread * self,uint32_t id)1562 void ThreadList::ReleaseThreadId(Thread* self, uint32_t id) {
1563 MutexLock mu(self, *Locks::allocated_thread_ids_lock_);
1564 --id; // Zero is reserved to mean "invalid".
1565 DCHECK(allocated_ids_[id]) << id;
1566 allocated_ids_.reset(id);
1567 }
1568
ScopedSuspendAll(const char * cause,bool long_suspend)1569 ScopedSuspendAll::ScopedSuspendAll(const char* cause, bool long_suspend) {
1570 Runtime::Current()->GetThreadList()->SuspendAll(cause, long_suspend);
1571 }
1572
~ScopedSuspendAll()1573 ScopedSuspendAll::~ScopedSuspendAll() {
1574 Runtime::Current()->GetThreadList()->ResumeAll();
1575 }
1576
1577 } // namespace art
1578