1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "ssa_builder.h"
18 
19 #include "data_type-inl.h"
20 #include "dex/bytecode_utils.h"
21 #include "mirror/class-inl.h"
22 #include "nodes.h"
23 #include "reference_type_propagation.h"
24 #include "scoped_thread_state_change-inl.h"
25 #include "ssa_phi_elimination.h"
26 
27 namespace art {
28 
FixNullConstantType()29 void SsaBuilder::FixNullConstantType() {
30   // The order doesn't matter here.
31   for (HBasicBlock* block : graph_->GetReversePostOrder()) {
32     for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
33       HInstruction* equality_instr = it.Current();
34       if (!equality_instr->IsEqual() && !equality_instr->IsNotEqual()) {
35         continue;
36       }
37       HInstruction* left = equality_instr->InputAt(0);
38       HInstruction* right = equality_instr->InputAt(1);
39       HInstruction* int_operand = nullptr;
40 
41       if ((left->GetType() == DataType::Type::kReference) &&
42           (right->GetType() == DataType::Type::kInt32)) {
43         int_operand = right;
44       } else if ((right->GetType() == DataType::Type::kReference) &&
45                  (left->GetType() == DataType::Type::kInt32)) {
46         int_operand = left;
47       } else {
48         continue;
49       }
50 
51       // If we got here, we are comparing against a reference and the int constant
52       // should be replaced with a null constant.
53       // Both type propagation and redundant phi elimination ensure `int_operand`
54       // can only be the 0 constant.
55       DCHECK(int_operand->IsIntConstant()) << int_operand->DebugName();
56       DCHECK_EQ(0, int_operand->AsIntConstant()->GetValue());
57       equality_instr->ReplaceInput(graph_->GetNullConstant(), int_operand == right ? 1 : 0);
58     }
59   }
60 }
61 
EquivalentPhisCleanup()62 void SsaBuilder::EquivalentPhisCleanup() {
63   // The order doesn't matter here.
64   for (HBasicBlock* block : graph_->GetReversePostOrder()) {
65     for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
66       HPhi* phi = it.Current()->AsPhi();
67       HPhi* next = phi->GetNextEquivalentPhiWithSameType();
68       if (next != nullptr) {
69         // Make sure we do not replace a live phi with a dead phi. A live phi
70         // has been handled by the type propagation phase, unlike a dead phi.
71         if (next->IsLive()) {
72           phi->ReplaceWith(next);
73           phi->SetDead();
74         } else {
75           next->ReplaceWith(phi);
76         }
77         DCHECK(next->GetNextEquivalentPhiWithSameType() == nullptr)
78             << "More then one phi equivalent with type " << phi->GetType()
79             << " found for phi" << phi->GetId();
80       }
81     }
82   }
83 }
84 
FixEnvironmentPhis()85 void SsaBuilder::FixEnvironmentPhis() {
86   for (HBasicBlock* block : graph_->GetReversePostOrder()) {
87     for (HInstructionIterator it_phis(block->GetPhis()); !it_phis.Done(); it_phis.Advance()) {
88       HPhi* phi = it_phis.Current()->AsPhi();
89       // If the phi is not dead, or has no environment uses, there is nothing to do.
90       if (!phi->IsDead() || !phi->HasEnvironmentUses()) continue;
91       HInstruction* next = phi->GetNext();
92       if (!phi->IsVRegEquivalentOf(next)) continue;
93       if (next->AsPhi()->IsDead()) {
94         // If the phi equivalent is dead, check if there is another one.
95         next = next->GetNext();
96         if (!phi->IsVRegEquivalentOf(next)) continue;
97         // There can be at most two phi equivalents.
98         DCHECK(!phi->IsVRegEquivalentOf(next->GetNext()));
99         if (next->AsPhi()->IsDead()) continue;
100       }
101       // We found a live phi equivalent. Update the environment uses of `phi` with it.
102       phi->ReplaceWith(next);
103     }
104   }
105 }
106 
AddDependentInstructionsToWorklist(HInstruction * instruction,ScopedArenaVector<HPhi * > * worklist)107 static void AddDependentInstructionsToWorklist(HInstruction* instruction,
108                                                ScopedArenaVector<HPhi*>* worklist) {
109   // If `instruction` is a dead phi, type conflict was just identified. All its
110   // live phi users, and transitively users of those users, therefore need to be
111   // marked dead/conflicting too, so we add them to the worklist. Otherwise we
112   // add users whose type does not match and needs to be updated.
113   bool add_all_live_phis = instruction->IsPhi() && instruction->AsPhi()->IsDead();
114   for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
115     HInstruction* user = use.GetUser();
116     if (user->IsPhi() && user->AsPhi()->IsLive()) {
117       if (add_all_live_phis || user->GetType() != instruction->GetType()) {
118         worklist->push_back(user->AsPhi());
119       }
120     }
121   }
122 }
123 
124 // Find a candidate primitive type for `phi` by merging the type of its inputs.
125 // Return false if conflict is identified.
TypePhiFromInputs(HPhi * phi)126 static bool TypePhiFromInputs(HPhi* phi) {
127   DataType::Type common_type = phi->GetType();
128 
129   for (HInstruction* input : phi->GetInputs()) {
130     if (input->IsPhi() && input->AsPhi()->IsDead()) {
131       // Phis are constructed live so if an input is a dead phi, it must have
132       // been made dead due to type conflict. Mark this phi conflicting too.
133       return false;
134     }
135 
136     DataType::Type input_type = HPhi::ToPhiType(input->GetType());
137     if (common_type == input_type) {
138       // No change in type.
139     } else if (DataType::Is64BitType(common_type) != DataType::Is64BitType(input_type)) {
140       // Types are of different sizes, e.g. int vs. long. Must be a conflict.
141       return false;
142     } else if (DataType::IsIntegralType(common_type)) {
143       // Previous inputs were integral, this one is not but is of the same size.
144       // This does not imply conflict since some bytecode instruction types are
145       // ambiguous. TypeInputsOfPhi will either type them or detect a conflict.
146       DCHECK(DataType::IsFloatingPointType(input_type) ||
147              input_type == DataType::Type::kReference);
148       common_type = input_type;
149     } else if (DataType::IsIntegralType(input_type)) {
150       // Input is integral, common type is not. Same as in the previous case, if
151       // there is a conflict, it will be detected during TypeInputsOfPhi.
152       DCHECK(DataType::IsFloatingPointType(common_type) ||
153              common_type == DataType::Type::kReference);
154     } else {
155       // Combining float and reference types. Clearly a conflict.
156       DCHECK(
157           (common_type == DataType::Type::kFloat32 && input_type == DataType::Type::kReference) ||
158           (common_type == DataType::Type::kReference && input_type == DataType::Type::kFloat32));
159       return false;
160     }
161   }
162 
163   // We have found a candidate type for the phi. Set it and return true. We may
164   // still discover conflict whilst typing the individual inputs in TypeInputsOfPhi.
165   phi->SetType(common_type);
166   return true;
167 }
168 
169 // Replace inputs of `phi` to match its type. Return false if conflict is identified.
TypeInputsOfPhi(HPhi * phi,ScopedArenaVector<HPhi * > * worklist)170 bool SsaBuilder::TypeInputsOfPhi(HPhi* phi, ScopedArenaVector<HPhi*>* worklist) {
171   DataType::Type common_type = phi->GetType();
172   if (DataType::IsIntegralType(common_type)) {
173     // We do not need to retype ambiguous inputs because they are always constructed
174     // with the integral type candidate.
175     if (kIsDebugBuild) {
176       for (HInstruction* input : phi->GetInputs()) {
177         DCHECK(HPhi::ToPhiType(input->GetType()) == common_type);
178       }
179     }
180     // Inputs did not need to be replaced, hence no conflict. Report success.
181     return true;
182   } else {
183     DCHECK(common_type == DataType::Type::kReference ||
184            DataType::IsFloatingPointType(common_type));
185     HInputsRef inputs = phi->GetInputs();
186     for (size_t i = 0; i < inputs.size(); ++i) {
187       HInstruction* input = inputs[i];
188       if (input->GetType() != common_type) {
189         // Input type does not match phi's type. Try to retype the input or
190         // generate a suitably typed equivalent.
191         HInstruction* equivalent = (common_type == DataType::Type::kReference)
192             ? GetReferenceTypeEquivalent(input)
193             : GetFloatOrDoubleEquivalent(input, common_type);
194         if (equivalent == nullptr) {
195           // Input could not be typed. Report conflict.
196           return false;
197         }
198         // Make sure the input did not change its type and we do not need to
199         // update its users.
200         DCHECK_NE(input, equivalent);
201 
202         phi->ReplaceInput(equivalent, i);
203         if (equivalent->IsPhi()) {
204           worklist->push_back(equivalent->AsPhi());
205         }
206       }
207     }
208     // All inputs either matched the type of the phi or we successfully replaced
209     // them with a suitable equivalent. Report success.
210     return true;
211   }
212 }
213 
214 // Attempt to set the primitive type of `phi` to match its inputs. Return whether
215 // it was changed by the algorithm or not.
UpdatePrimitiveType(HPhi * phi,ScopedArenaVector<HPhi * > * worklist)216 bool SsaBuilder::UpdatePrimitiveType(HPhi* phi, ScopedArenaVector<HPhi*>* worklist) {
217   DCHECK(phi->IsLive());
218   DataType::Type original_type = phi->GetType();
219 
220   // Try to type the phi in two stages:
221   // (1) find a candidate type for the phi by merging types of all its inputs,
222   // (2) try to type the phi's inputs to that candidate type.
223   // Either of these stages may detect a type conflict and fail, in which case
224   // we immediately abort.
225   if (!TypePhiFromInputs(phi) || !TypeInputsOfPhi(phi, worklist)) {
226     // Conflict detected. Mark the phi dead and return true because it changed.
227     phi->SetDead();
228     return true;
229   }
230 
231   // Return true if the type of the phi has changed.
232   return phi->GetType() != original_type;
233 }
234 
RunPrimitiveTypePropagation()235 void SsaBuilder::RunPrimitiveTypePropagation() {
236   ScopedArenaVector<HPhi*> worklist(local_allocator_->Adapter(kArenaAllocGraphBuilder));
237 
238   for (HBasicBlock* block : graph_->GetReversePostOrder()) {
239     if (block->IsLoopHeader()) {
240       for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
241         HPhi* phi = phi_it.Current()->AsPhi();
242         if (phi->IsLive()) {
243           worklist.push_back(phi);
244         }
245       }
246     } else {
247       for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
248         // Eagerly compute the type of the phi, for quicker convergence. Note
249         // that we don't need to add users to the worklist because we are
250         // doing a reverse post-order visit, therefore either the phi users are
251         // non-loop phi and will be visited later in the visit, or are loop-phis,
252         // and they are already in the work list.
253         HPhi* phi = phi_it.Current()->AsPhi();
254         if (phi->IsLive()) {
255           UpdatePrimitiveType(phi, &worklist);
256         }
257       }
258     }
259   }
260 
261   ProcessPrimitiveTypePropagationWorklist(&worklist);
262   EquivalentPhisCleanup();
263 }
264 
ProcessPrimitiveTypePropagationWorklist(ScopedArenaVector<HPhi * > * worklist)265 void SsaBuilder::ProcessPrimitiveTypePropagationWorklist(ScopedArenaVector<HPhi*>* worklist) {
266   // Process worklist
267   while (!worklist->empty()) {
268     HPhi* phi = worklist->back();
269     worklist->pop_back();
270     // The phi could have been made dead as a result of conflicts while in the
271     // worklist. If it is now dead, there is no point in updating its type.
272     if (phi->IsLive() && UpdatePrimitiveType(phi, worklist)) {
273       AddDependentInstructionsToWorklist(phi, worklist);
274     }
275   }
276 }
277 
FindFloatOrDoubleEquivalentOfArrayGet(HArrayGet * aget)278 static HArrayGet* FindFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) {
279   DataType::Type type = aget->GetType();
280   DCHECK(DataType::IsIntOrLongType(type));
281   HInstruction* next = aget->GetNext();
282   if (next != nullptr && next->IsArrayGet()) {
283     HArrayGet* next_aget = next->AsArrayGet();
284     if (next_aget->IsEquivalentOf(aget)) {
285       return next_aget;
286     }
287   }
288   return nullptr;
289 }
290 
CreateFloatOrDoubleEquivalentOfArrayGet(HArrayGet * aget)291 static HArrayGet* CreateFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) {
292   DataType::Type type = aget->GetType();
293   DCHECK(DataType::IsIntOrLongType(type));
294   DCHECK(FindFloatOrDoubleEquivalentOfArrayGet(aget) == nullptr);
295 
296   HArrayGet* equivalent = new (aget->GetBlock()->GetGraph()->GetAllocator()) HArrayGet(
297       aget->GetArray(),
298       aget->GetIndex(),
299       type == DataType::Type::kInt32 ? DataType::Type::kFloat32 : DataType::Type::kFloat64,
300       aget->GetDexPc());
301   aget->GetBlock()->InsertInstructionAfter(equivalent, aget);
302   return equivalent;
303 }
304 
GetPrimitiveArrayComponentType(HInstruction * array)305 static DataType::Type GetPrimitiveArrayComponentType(HInstruction* array)
306     REQUIRES_SHARED(Locks::mutator_lock_) {
307   ReferenceTypeInfo array_type = array->GetReferenceTypeInfo();
308   DCHECK(array_type.IsPrimitiveArrayClass());
309   return DataTypeFromPrimitive(
310       array_type.GetTypeHandle()->GetComponentType()->GetPrimitiveType());
311 }
312 
FixAmbiguousArrayOps()313 bool SsaBuilder::FixAmbiguousArrayOps() {
314   if (ambiguous_agets_.empty() && ambiguous_asets_.empty()) {
315     return true;
316   }
317 
318   // The wrong ArrayGet equivalent may still have Phi uses coming from ArraySet
319   // uses (because they are untyped) and environment uses (if --debuggable).
320   // After resolving all ambiguous ArrayGets, we will re-run primitive type
321   // propagation on the Phis which need to be updated.
322   ScopedArenaVector<HPhi*> worklist(local_allocator_->Adapter(kArenaAllocGraphBuilder));
323 
324   {
325     ScopedObjectAccess soa(Thread::Current());
326 
327     for (HArrayGet* aget_int : ambiguous_agets_) {
328       HInstruction* array = aget_int->GetArray();
329       if (!array->GetReferenceTypeInfo().IsPrimitiveArrayClass()) {
330         // RTP did not type the input array. Bail.
331         VLOG(compiler) << "Not compiled: Could not infer an array type for array operation at "
332                        << aget_int->GetDexPc();
333         return false;
334       }
335 
336       HArrayGet* aget_float = FindFloatOrDoubleEquivalentOfArrayGet(aget_int);
337       DataType::Type array_type = GetPrimitiveArrayComponentType(array);
338       DCHECK_EQ(DataType::Is64BitType(aget_int->GetType()), DataType::Is64BitType(array_type));
339 
340       if (DataType::IsIntOrLongType(array_type)) {
341         if (aget_float != nullptr) {
342           // There is a float/double equivalent. We must replace it and re-run
343           // primitive type propagation on all dependent instructions.
344           aget_float->ReplaceWith(aget_int);
345           aget_float->GetBlock()->RemoveInstruction(aget_float);
346           AddDependentInstructionsToWorklist(aget_int, &worklist);
347         }
348       } else {
349         DCHECK(DataType::IsFloatingPointType(array_type));
350         if (aget_float == nullptr) {
351           // This is a float/double ArrayGet but there were no typed uses which
352           // would create the typed equivalent. Create it now.
353           aget_float = CreateFloatOrDoubleEquivalentOfArrayGet(aget_int);
354         }
355         // Replace the original int/long instruction. Note that it may have phi
356         // uses, environment uses, as well as real uses (from untyped ArraySets).
357         // We need to re-run primitive type propagation on its dependent instructions.
358         aget_int->ReplaceWith(aget_float);
359         aget_int->GetBlock()->RemoveInstruction(aget_int);
360         AddDependentInstructionsToWorklist(aget_float, &worklist);
361       }
362     }
363 
364     // Set a flag stating that types of ArrayGets have been resolved. Requesting
365     // equivalent of the wrong type with GetFloatOrDoubleEquivalentOfArrayGet
366     // will fail from now on.
367     agets_fixed_ = true;
368 
369     for (HArraySet* aset : ambiguous_asets_) {
370       HInstruction* array = aset->GetArray();
371       if (!array->GetReferenceTypeInfo().IsPrimitiveArrayClass()) {
372         // RTP did not type the input array. Bail.
373         VLOG(compiler) << "Not compiled: Could not infer an array type for array operation at "
374                        << aset->GetDexPc();
375         return false;
376       }
377 
378       HInstruction* value = aset->GetValue();
379       DataType::Type value_type = value->GetType();
380       DataType::Type array_type = GetPrimitiveArrayComponentType(array);
381       DCHECK_EQ(DataType::Is64BitType(value_type), DataType::Is64BitType(array_type));
382 
383       if (DataType::IsFloatingPointType(array_type)) {
384         if (!DataType::IsFloatingPointType(value_type)) {
385           DCHECK(DataType::IsIntegralType(value_type));
386           // Array elements are floating-point but the value has not been replaced
387           // with its floating-point equivalent. The replacement must always
388           // succeed in code validated by the verifier.
389           HInstruction* equivalent = GetFloatOrDoubleEquivalent(value, array_type);
390           DCHECK(equivalent != nullptr);
391           aset->ReplaceInput(equivalent, /* input_index */ 2);
392           if (equivalent->IsPhi()) {
393             // Returned equivalent is a phi which may not have had its inputs
394             // replaced yet. We need to run primitive type propagation on it.
395             worklist.push_back(equivalent->AsPhi());
396           }
397         }
398         // Refine the side effects of this floating point aset. Note that we do this even if
399         // no replacement occurs, since the right-hand-side may have been corrected already.
400         aset->SetSideEffects(HArraySet::ComputeSideEffects(aset->GetComponentType()));
401       } else {
402         // Array elements are integral and the value assigned to it initially
403         // was integral too. Nothing to do.
404         DCHECK(DataType::IsIntegralType(array_type));
405         DCHECK(DataType::IsIntegralType(value_type));
406       }
407     }
408   }
409 
410   if (!worklist.empty()) {
411     ProcessPrimitiveTypePropagationWorklist(&worklist);
412     EquivalentPhisCleanup();
413   }
414 
415   return true;
416 }
417 
HasAliasInEnvironments(HInstruction * instruction)418 static bool HasAliasInEnvironments(HInstruction* instruction) {
419   HEnvironment* last_user = nullptr;
420   for (const HUseListNode<HEnvironment*>& use : instruction->GetEnvUses()) {
421     DCHECK(use.GetUser() != nullptr);
422     // Note: The first comparison (== null) always fails.
423     if (use.GetUser() == last_user) {
424       return true;
425     }
426     last_user = use.GetUser();
427   }
428 
429   if (kIsDebugBuild) {
430     // Do a quadratic search to ensure same environment uses are next
431     // to each other.
432     const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses();
433     for (auto current = env_uses.begin(), end = env_uses.end(); current != end; ++current) {
434       auto next = current;
435       for (++next; next != end; ++next) {
436         DCHECK(next->GetUser() != current->GetUser());
437       }
438     }
439   }
440   return false;
441 }
442 
RemoveRedundantUninitializedStrings()443 void SsaBuilder::RemoveRedundantUninitializedStrings() {
444   if (graph_->IsDebuggable()) {
445     // Do not perform the optimization for consistency with the interpreter
446     // which always allocates an object for new-instance of String.
447     return;
448   }
449 
450   for (HNewInstance* new_instance : uninitialized_strings_) {
451     DCHECK(new_instance->IsInBlock());
452     DCHECK(new_instance->IsStringAlloc());
453 
454     // Replace NewInstance of String with NullConstant if not used prior to
455     // calling StringFactory. In case of deoptimization, the interpreter is
456     // expected to skip null check on the `this` argument of the StringFactory call.
457     if (!new_instance->HasNonEnvironmentUses() && !HasAliasInEnvironments(new_instance)) {
458       new_instance->ReplaceWith(graph_->GetNullConstant());
459       new_instance->GetBlock()->RemoveInstruction(new_instance);
460 
461       // Remove LoadClass if not needed any more.
462       HInstruction* input = new_instance->InputAt(0);
463       HLoadClass* load_class = nullptr;
464 
465       // If the class was not present in the dex cache at the point of building
466       // the graph, the builder inserted a HClinitCheck in between. Since the String
467       // class is always initialized at the point of running Java code, we can remove
468       // that check.
469       if (input->IsClinitCheck()) {
470         load_class = input->InputAt(0)->AsLoadClass();
471         input->ReplaceWith(load_class);
472         input->GetBlock()->RemoveInstruction(input);
473       } else {
474         load_class = input->AsLoadClass();
475         DCHECK(new_instance->IsStringAlloc());
476         DCHECK(!load_class->NeedsAccessCheck()) << "String class is always accessible";
477       }
478       DCHECK(load_class != nullptr);
479       if (!load_class->HasUses()) {
480         // Even if the HLoadClass needs access check, we can remove it, as we know the
481         // String class does not need it.
482         load_class->GetBlock()->RemoveInstruction(load_class);
483       }
484     }
485   }
486 }
487 
BuildSsa()488 GraphAnalysisResult SsaBuilder::BuildSsa() {
489   DCHECK(!graph_->IsInSsaForm());
490 
491   // 1) Propagate types of phis. At this point, phis are typed void in the general
492   // case, or float/double/reference if we created an equivalent phi. So we need
493   // to propagate the types across phis to give them a correct type. If a type
494   // conflict is detected in this stage, the phi is marked dead.
495   RunPrimitiveTypePropagation();
496 
497   // 2) Now that the correct primitive types have been assigned, we can get rid
498   // of redundant phis. Note that we cannot do this phase before type propagation,
499   // otherwise we could get rid of phi equivalents, whose presence is a requirement
500   // for the type propagation phase. Note that this is to satisfy statement (a)
501   // of the SsaBuilder (see ssa_builder.h).
502   SsaRedundantPhiElimination(graph_).Run();
503 
504   // 3) Fix the type for null constants which are part of an equality comparison.
505   // We need to do this after redundant phi elimination, to ensure the only cases
506   // that we can see are reference comparison against 0. The redundant phi
507   // elimination ensures we do not see a phi taking two 0 constants in a HEqual
508   // or HNotEqual.
509   FixNullConstantType();
510 
511   // 4) Compute type of reference type instructions. The pass assumes that
512   // NullConstant has been fixed up.
513   ReferenceTypePropagation(graph_,
514                            class_loader_,
515                            dex_cache_,
516                            handles_,
517                            /* is_first_run */ true).Run();
518 
519   // 5) HInstructionBuilder duplicated ArrayGet instructions with ambiguous type
520   // (int/float or long/double) and marked ArraySets with ambiguous input type.
521   // Now that RTP computed the type of the array input, the ambiguity can be
522   // resolved and the correct equivalents kept.
523   if (!FixAmbiguousArrayOps()) {
524     return kAnalysisFailAmbiguousArrayOp;
525   }
526 
527   // 6) Mark dead phis. This will mark phis which are not used by instructions
528   // or other live phis. If compiling as debuggable code, phis will also be kept
529   // live if they have an environment use.
530   SsaDeadPhiElimination dead_phi_elimimation(graph_);
531   dead_phi_elimimation.MarkDeadPhis();
532 
533   // 7) Make sure environments use the right phi equivalent: a phi marked dead
534   // can have a phi equivalent that is not dead. In that case we have to replace
535   // it with the live equivalent because deoptimization and try/catch rely on
536   // environments containing values of all live vregs at that point. Note that
537   // there can be multiple phis for the same Dex register that are live
538   // (for example when merging constants), in which case it is okay for the
539   // environments to just reference one.
540   FixEnvironmentPhis();
541 
542   // 8) Now that the right phis are used for the environments, we can eliminate
543   // phis we do not need. Regardless of the debuggable status, this phase is
544   /// necessary for statement (b) of the SsaBuilder (see ssa_builder.h), as well
545   // as for the code generation, which does not deal with phis of conflicting
546   // input types.
547   dead_phi_elimimation.EliminateDeadPhis();
548 
549   // 9) HInstructionBuidler replaced uses of NewInstances of String with the
550   // results of their corresponding StringFactory calls. Unless the String
551   // objects are used before they are initialized, they can be replaced with
552   // NullConstant. Note that this optimization is valid only if unsimplified
553   // code does not use the uninitialized value because we assume execution can
554   // be deoptimized at any safepoint. We must therefore perform it before any
555   // other optimizations.
556   RemoveRedundantUninitializedStrings();
557 
558   graph_->SetInSsaForm();
559   return kAnalysisSuccess;
560 }
561 
562 /**
563  * Constants in the Dex format are not typed. So the builder types them as
564  * integers, but when doing the SSA form, we might realize the constant
565  * is used for floating point operations. We create a floating-point equivalent
566  * constant to make the operations correctly typed.
567  */
GetFloatEquivalent(HIntConstant * constant)568 HFloatConstant* SsaBuilder::GetFloatEquivalent(HIntConstant* constant) {
569   // We place the floating point constant next to this constant.
570   HFloatConstant* result = constant->GetNext()->AsFloatConstant();
571   if (result == nullptr) {
572     float value = bit_cast<float, int32_t>(constant->GetValue());
573     result = new (graph_->GetAllocator()) HFloatConstant(value);
574     constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext());
575     graph_->CacheFloatConstant(result);
576   } else {
577     // If there is already a constant with the expected type, we know it is
578     // the floating point equivalent of this constant.
579     DCHECK_EQ((bit_cast<int32_t, float>(result->GetValue())), constant->GetValue());
580   }
581   return result;
582 }
583 
584 /**
585  * Wide constants in the Dex format are not typed. So the builder types them as
586  * longs, but when doing the SSA form, we might realize the constant
587  * is used for floating point operations. We create a floating-point equivalent
588  * constant to make the operations correctly typed.
589  */
GetDoubleEquivalent(HLongConstant * constant)590 HDoubleConstant* SsaBuilder::GetDoubleEquivalent(HLongConstant* constant) {
591   // We place the floating point constant next to this constant.
592   HDoubleConstant* result = constant->GetNext()->AsDoubleConstant();
593   if (result == nullptr) {
594     double value = bit_cast<double, int64_t>(constant->GetValue());
595     result = new (graph_->GetAllocator()) HDoubleConstant(value);
596     constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext());
597     graph_->CacheDoubleConstant(result);
598   } else {
599     // If there is already a constant with the expected type, we know it is
600     // the floating point equivalent of this constant.
601     DCHECK_EQ((bit_cast<int64_t, double>(result->GetValue())), constant->GetValue());
602   }
603   return result;
604 }
605 
606 /**
607  * Because of Dex format, we might end up having the same phi being
608  * used for non floating point operations and floating point / reference operations.
609  * Because we want the graph to be correctly typed (and thereafter avoid moves between
610  * floating point registers and core registers), we need to create a copy of the
611  * phi with a floating point / reference type.
612  */
GetFloatDoubleOrReferenceEquivalentOfPhi(HPhi * phi,DataType::Type type)613 HPhi* SsaBuilder::GetFloatDoubleOrReferenceEquivalentOfPhi(HPhi* phi, DataType::Type type) {
614   DCHECK(phi->IsLive()) << "Cannot get equivalent of a dead phi since it would create a live one.";
615 
616   // We place the floating point /reference phi next to this phi.
617   HInstruction* next = phi->GetNext();
618   if (next != nullptr
619       && next->AsPhi()->GetRegNumber() == phi->GetRegNumber()
620       && next->GetType() != type) {
621     // Move to the next phi to see if it is the one we are looking for.
622     next = next->GetNext();
623   }
624 
625   if (next == nullptr
626       || (next->AsPhi()->GetRegNumber() != phi->GetRegNumber())
627       || (next->GetType() != type)) {
628     ArenaAllocator* allocator = graph_->GetAllocator();
629     HInputsRef inputs = phi->GetInputs();
630     HPhi* new_phi = new (allocator) HPhi(allocator, phi->GetRegNumber(), inputs.size(), type);
631     // Copy the inputs. Note that the graph may not be correctly typed
632     // by doing this copy, but the type propagation phase will fix it.
633     ArrayRef<HUserRecord<HInstruction*>> new_input_records = new_phi->GetInputRecords();
634     for (size_t i = 0; i < inputs.size(); ++i) {
635       new_input_records[i] = HUserRecord<HInstruction*>(inputs[i]);
636     }
637     phi->GetBlock()->InsertPhiAfter(new_phi, phi);
638     DCHECK(new_phi->IsLive());
639     return new_phi;
640   } else {
641     // An existing equivalent was found. If it is dead, conflict was previously
642     // identified and we return nullptr instead.
643     HPhi* next_phi = next->AsPhi();
644     DCHECK_EQ(next_phi->GetType(), type);
645     return next_phi->IsLive() ? next_phi : nullptr;
646   }
647 }
648 
GetFloatOrDoubleEquivalentOfArrayGet(HArrayGet * aget)649 HArrayGet* SsaBuilder::GetFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) {
650   DCHECK(DataType::IsIntegralType(aget->GetType()));
651 
652   if (!DataType::IsIntOrLongType(aget->GetType())) {
653     // Cannot type boolean, char, byte, short to float/double.
654     return nullptr;
655   }
656 
657   DCHECK(ContainsElement(ambiguous_agets_, aget));
658   if (agets_fixed_) {
659     // This used to be an ambiguous ArrayGet but its type has been resolved to
660     // int/long. Requesting a float/double equivalent should lead to a conflict.
661     if (kIsDebugBuild) {
662       ScopedObjectAccess soa(Thread::Current());
663       DCHECK(DataType::IsIntOrLongType(GetPrimitiveArrayComponentType(aget->GetArray())));
664     }
665     return nullptr;
666   } else {
667     // This is an ambiguous ArrayGet which has not been resolved yet. Return an
668     // equivalent float/double instruction to use until it is resolved.
669     HArrayGet* equivalent = FindFloatOrDoubleEquivalentOfArrayGet(aget);
670     return (equivalent == nullptr) ? CreateFloatOrDoubleEquivalentOfArrayGet(aget) : equivalent;
671   }
672 }
673 
GetFloatOrDoubleEquivalent(HInstruction * value,DataType::Type type)674 HInstruction* SsaBuilder::GetFloatOrDoubleEquivalent(HInstruction* value, DataType::Type type) {
675   if (value->IsArrayGet()) {
676     return GetFloatOrDoubleEquivalentOfArrayGet(value->AsArrayGet());
677   } else if (value->IsLongConstant()) {
678     return GetDoubleEquivalent(value->AsLongConstant());
679   } else if (value->IsIntConstant()) {
680     return GetFloatEquivalent(value->AsIntConstant());
681   } else if (value->IsPhi()) {
682     return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), type);
683   } else {
684     return nullptr;
685   }
686 }
687 
GetReferenceTypeEquivalent(HInstruction * value)688 HInstruction* SsaBuilder::GetReferenceTypeEquivalent(HInstruction* value) {
689   if (value->IsIntConstant() && value->AsIntConstant()->GetValue() == 0) {
690     return graph_->GetNullConstant();
691   } else if (value->IsPhi()) {
692     return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), DataType::Type::kReference);
693   } else {
694     return nullptr;
695   }
696 }
697 
698 }  // namespace art
699