1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "ssa_builder.h"
18
19 #include "data_type-inl.h"
20 #include "dex/bytecode_utils.h"
21 #include "mirror/class-inl.h"
22 #include "nodes.h"
23 #include "reference_type_propagation.h"
24 #include "scoped_thread_state_change-inl.h"
25 #include "ssa_phi_elimination.h"
26
27 namespace art {
28
FixNullConstantType()29 void SsaBuilder::FixNullConstantType() {
30 // The order doesn't matter here.
31 for (HBasicBlock* block : graph_->GetReversePostOrder()) {
32 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
33 HInstruction* equality_instr = it.Current();
34 if (!equality_instr->IsEqual() && !equality_instr->IsNotEqual()) {
35 continue;
36 }
37 HInstruction* left = equality_instr->InputAt(0);
38 HInstruction* right = equality_instr->InputAt(1);
39 HInstruction* int_operand = nullptr;
40
41 if ((left->GetType() == DataType::Type::kReference) &&
42 (right->GetType() == DataType::Type::kInt32)) {
43 int_operand = right;
44 } else if ((right->GetType() == DataType::Type::kReference) &&
45 (left->GetType() == DataType::Type::kInt32)) {
46 int_operand = left;
47 } else {
48 continue;
49 }
50
51 // If we got here, we are comparing against a reference and the int constant
52 // should be replaced with a null constant.
53 // Both type propagation and redundant phi elimination ensure `int_operand`
54 // can only be the 0 constant.
55 DCHECK(int_operand->IsIntConstant()) << int_operand->DebugName();
56 DCHECK_EQ(0, int_operand->AsIntConstant()->GetValue());
57 equality_instr->ReplaceInput(graph_->GetNullConstant(), int_operand == right ? 1 : 0);
58 }
59 }
60 }
61
EquivalentPhisCleanup()62 void SsaBuilder::EquivalentPhisCleanup() {
63 // The order doesn't matter here.
64 for (HBasicBlock* block : graph_->GetReversePostOrder()) {
65 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
66 HPhi* phi = it.Current()->AsPhi();
67 HPhi* next = phi->GetNextEquivalentPhiWithSameType();
68 if (next != nullptr) {
69 // Make sure we do not replace a live phi with a dead phi. A live phi
70 // has been handled by the type propagation phase, unlike a dead phi.
71 if (next->IsLive()) {
72 phi->ReplaceWith(next);
73 phi->SetDead();
74 } else {
75 next->ReplaceWith(phi);
76 }
77 DCHECK(next->GetNextEquivalentPhiWithSameType() == nullptr)
78 << "More then one phi equivalent with type " << phi->GetType()
79 << " found for phi" << phi->GetId();
80 }
81 }
82 }
83 }
84
FixEnvironmentPhis()85 void SsaBuilder::FixEnvironmentPhis() {
86 for (HBasicBlock* block : graph_->GetReversePostOrder()) {
87 for (HInstructionIterator it_phis(block->GetPhis()); !it_phis.Done(); it_phis.Advance()) {
88 HPhi* phi = it_phis.Current()->AsPhi();
89 // If the phi is not dead, or has no environment uses, there is nothing to do.
90 if (!phi->IsDead() || !phi->HasEnvironmentUses()) continue;
91 HInstruction* next = phi->GetNext();
92 if (!phi->IsVRegEquivalentOf(next)) continue;
93 if (next->AsPhi()->IsDead()) {
94 // If the phi equivalent is dead, check if there is another one.
95 next = next->GetNext();
96 if (!phi->IsVRegEquivalentOf(next)) continue;
97 // There can be at most two phi equivalents.
98 DCHECK(!phi->IsVRegEquivalentOf(next->GetNext()));
99 if (next->AsPhi()->IsDead()) continue;
100 }
101 // We found a live phi equivalent. Update the environment uses of `phi` with it.
102 phi->ReplaceWith(next);
103 }
104 }
105 }
106
AddDependentInstructionsToWorklist(HInstruction * instruction,ScopedArenaVector<HPhi * > * worklist)107 static void AddDependentInstructionsToWorklist(HInstruction* instruction,
108 ScopedArenaVector<HPhi*>* worklist) {
109 // If `instruction` is a dead phi, type conflict was just identified. All its
110 // live phi users, and transitively users of those users, therefore need to be
111 // marked dead/conflicting too, so we add them to the worklist. Otherwise we
112 // add users whose type does not match and needs to be updated.
113 bool add_all_live_phis = instruction->IsPhi() && instruction->AsPhi()->IsDead();
114 for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
115 HInstruction* user = use.GetUser();
116 if (user->IsPhi() && user->AsPhi()->IsLive()) {
117 if (add_all_live_phis || user->GetType() != instruction->GetType()) {
118 worklist->push_back(user->AsPhi());
119 }
120 }
121 }
122 }
123
124 // Find a candidate primitive type for `phi` by merging the type of its inputs.
125 // Return false if conflict is identified.
TypePhiFromInputs(HPhi * phi)126 static bool TypePhiFromInputs(HPhi* phi) {
127 DataType::Type common_type = phi->GetType();
128
129 for (HInstruction* input : phi->GetInputs()) {
130 if (input->IsPhi() && input->AsPhi()->IsDead()) {
131 // Phis are constructed live so if an input is a dead phi, it must have
132 // been made dead due to type conflict. Mark this phi conflicting too.
133 return false;
134 }
135
136 DataType::Type input_type = HPhi::ToPhiType(input->GetType());
137 if (common_type == input_type) {
138 // No change in type.
139 } else if (DataType::Is64BitType(common_type) != DataType::Is64BitType(input_type)) {
140 // Types are of different sizes, e.g. int vs. long. Must be a conflict.
141 return false;
142 } else if (DataType::IsIntegralType(common_type)) {
143 // Previous inputs were integral, this one is not but is of the same size.
144 // This does not imply conflict since some bytecode instruction types are
145 // ambiguous. TypeInputsOfPhi will either type them or detect a conflict.
146 DCHECK(DataType::IsFloatingPointType(input_type) ||
147 input_type == DataType::Type::kReference);
148 common_type = input_type;
149 } else if (DataType::IsIntegralType(input_type)) {
150 // Input is integral, common type is not. Same as in the previous case, if
151 // there is a conflict, it will be detected during TypeInputsOfPhi.
152 DCHECK(DataType::IsFloatingPointType(common_type) ||
153 common_type == DataType::Type::kReference);
154 } else {
155 // Combining float and reference types. Clearly a conflict.
156 DCHECK(
157 (common_type == DataType::Type::kFloat32 && input_type == DataType::Type::kReference) ||
158 (common_type == DataType::Type::kReference && input_type == DataType::Type::kFloat32));
159 return false;
160 }
161 }
162
163 // We have found a candidate type for the phi. Set it and return true. We may
164 // still discover conflict whilst typing the individual inputs in TypeInputsOfPhi.
165 phi->SetType(common_type);
166 return true;
167 }
168
169 // Replace inputs of `phi` to match its type. Return false if conflict is identified.
TypeInputsOfPhi(HPhi * phi,ScopedArenaVector<HPhi * > * worklist)170 bool SsaBuilder::TypeInputsOfPhi(HPhi* phi, ScopedArenaVector<HPhi*>* worklist) {
171 DataType::Type common_type = phi->GetType();
172 if (DataType::IsIntegralType(common_type)) {
173 // We do not need to retype ambiguous inputs because they are always constructed
174 // with the integral type candidate.
175 if (kIsDebugBuild) {
176 for (HInstruction* input : phi->GetInputs()) {
177 DCHECK(HPhi::ToPhiType(input->GetType()) == common_type);
178 }
179 }
180 // Inputs did not need to be replaced, hence no conflict. Report success.
181 return true;
182 } else {
183 DCHECK(common_type == DataType::Type::kReference ||
184 DataType::IsFloatingPointType(common_type));
185 HInputsRef inputs = phi->GetInputs();
186 for (size_t i = 0; i < inputs.size(); ++i) {
187 HInstruction* input = inputs[i];
188 if (input->GetType() != common_type) {
189 // Input type does not match phi's type. Try to retype the input or
190 // generate a suitably typed equivalent.
191 HInstruction* equivalent = (common_type == DataType::Type::kReference)
192 ? GetReferenceTypeEquivalent(input)
193 : GetFloatOrDoubleEquivalent(input, common_type);
194 if (equivalent == nullptr) {
195 // Input could not be typed. Report conflict.
196 return false;
197 }
198 // Make sure the input did not change its type and we do not need to
199 // update its users.
200 DCHECK_NE(input, equivalent);
201
202 phi->ReplaceInput(equivalent, i);
203 if (equivalent->IsPhi()) {
204 worklist->push_back(equivalent->AsPhi());
205 }
206 }
207 }
208 // All inputs either matched the type of the phi or we successfully replaced
209 // them with a suitable equivalent. Report success.
210 return true;
211 }
212 }
213
214 // Attempt to set the primitive type of `phi` to match its inputs. Return whether
215 // it was changed by the algorithm or not.
UpdatePrimitiveType(HPhi * phi,ScopedArenaVector<HPhi * > * worklist)216 bool SsaBuilder::UpdatePrimitiveType(HPhi* phi, ScopedArenaVector<HPhi*>* worklist) {
217 DCHECK(phi->IsLive());
218 DataType::Type original_type = phi->GetType();
219
220 // Try to type the phi in two stages:
221 // (1) find a candidate type for the phi by merging types of all its inputs,
222 // (2) try to type the phi's inputs to that candidate type.
223 // Either of these stages may detect a type conflict and fail, in which case
224 // we immediately abort.
225 if (!TypePhiFromInputs(phi) || !TypeInputsOfPhi(phi, worklist)) {
226 // Conflict detected. Mark the phi dead and return true because it changed.
227 phi->SetDead();
228 return true;
229 }
230
231 // Return true if the type of the phi has changed.
232 return phi->GetType() != original_type;
233 }
234
RunPrimitiveTypePropagation()235 void SsaBuilder::RunPrimitiveTypePropagation() {
236 ScopedArenaVector<HPhi*> worklist(local_allocator_->Adapter(kArenaAllocGraphBuilder));
237
238 for (HBasicBlock* block : graph_->GetReversePostOrder()) {
239 if (block->IsLoopHeader()) {
240 for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
241 HPhi* phi = phi_it.Current()->AsPhi();
242 if (phi->IsLive()) {
243 worklist.push_back(phi);
244 }
245 }
246 } else {
247 for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
248 // Eagerly compute the type of the phi, for quicker convergence. Note
249 // that we don't need to add users to the worklist because we are
250 // doing a reverse post-order visit, therefore either the phi users are
251 // non-loop phi and will be visited later in the visit, or are loop-phis,
252 // and they are already in the work list.
253 HPhi* phi = phi_it.Current()->AsPhi();
254 if (phi->IsLive()) {
255 UpdatePrimitiveType(phi, &worklist);
256 }
257 }
258 }
259 }
260
261 ProcessPrimitiveTypePropagationWorklist(&worklist);
262 EquivalentPhisCleanup();
263 }
264
ProcessPrimitiveTypePropagationWorklist(ScopedArenaVector<HPhi * > * worklist)265 void SsaBuilder::ProcessPrimitiveTypePropagationWorklist(ScopedArenaVector<HPhi*>* worklist) {
266 // Process worklist
267 while (!worklist->empty()) {
268 HPhi* phi = worklist->back();
269 worklist->pop_back();
270 // The phi could have been made dead as a result of conflicts while in the
271 // worklist. If it is now dead, there is no point in updating its type.
272 if (phi->IsLive() && UpdatePrimitiveType(phi, worklist)) {
273 AddDependentInstructionsToWorklist(phi, worklist);
274 }
275 }
276 }
277
FindFloatOrDoubleEquivalentOfArrayGet(HArrayGet * aget)278 static HArrayGet* FindFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) {
279 DataType::Type type = aget->GetType();
280 DCHECK(DataType::IsIntOrLongType(type));
281 HInstruction* next = aget->GetNext();
282 if (next != nullptr && next->IsArrayGet()) {
283 HArrayGet* next_aget = next->AsArrayGet();
284 if (next_aget->IsEquivalentOf(aget)) {
285 return next_aget;
286 }
287 }
288 return nullptr;
289 }
290
CreateFloatOrDoubleEquivalentOfArrayGet(HArrayGet * aget)291 static HArrayGet* CreateFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) {
292 DataType::Type type = aget->GetType();
293 DCHECK(DataType::IsIntOrLongType(type));
294 DCHECK(FindFloatOrDoubleEquivalentOfArrayGet(aget) == nullptr);
295
296 HArrayGet* equivalent = new (aget->GetBlock()->GetGraph()->GetAllocator()) HArrayGet(
297 aget->GetArray(),
298 aget->GetIndex(),
299 type == DataType::Type::kInt32 ? DataType::Type::kFloat32 : DataType::Type::kFloat64,
300 aget->GetDexPc());
301 aget->GetBlock()->InsertInstructionAfter(equivalent, aget);
302 return equivalent;
303 }
304
GetPrimitiveArrayComponentType(HInstruction * array)305 static DataType::Type GetPrimitiveArrayComponentType(HInstruction* array)
306 REQUIRES_SHARED(Locks::mutator_lock_) {
307 ReferenceTypeInfo array_type = array->GetReferenceTypeInfo();
308 DCHECK(array_type.IsPrimitiveArrayClass());
309 return DataTypeFromPrimitive(
310 array_type.GetTypeHandle()->GetComponentType()->GetPrimitiveType());
311 }
312
FixAmbiguousArrayOps()313 bool SsaBuilder::FixAmbiguousArrayOps() {
314 if (ambiguous_agets_.empty() && ambiguous_asets_.empty()) {
315 return true;
316 }
317
318 // The wrong ArrayGet equivalent may still have Phi uses coming from ArraySet
319 // uses (because they are untyped) and environment uses (if --debuggable).
320 // After resolving all ambiguous ArrayGets, we will re-run primitive type
321 // propagation on the Phis which need to be updated.
322 ScopedArenaVector<HPhi*> worklist(local_allocator_->Adapter(kArenaAllocGraphBuilder));
323
324 {
325 ScopedObjectAccess soa(Thread::Current());
326
327 for (HArrayGet* aget_int : ambiguous_agets_) {
328 HInstruction* array = aget_int->GetArray();
329 if (!array->GetReferenceTypeInfo().IsPrimitiveArrayClass()) {
330 // RTP did not type the input array. Bail.
331 VLOG(compiler) << "Not compiled: Could not infer an array type for array operation at "
332 << aget_int->GetDexPc();
333 return false;
334 }
335
336 HArrayGet* aget_float = FindFloatOrDoubleEquivalentOfArrayGet(aget_int);
337 DataType::Type array_type = GetPrimitiveArrayComponentType(array);
338 DCHECK_EQ(DataType::Is64BitType(aget_int->GetType()), DataType::Is64BitType(array_type));
339
340 if (DataType::IsIntOrLongType(array_type)) {
341 if (aget_float != nullptr) {
342 // There is a float/double equivalent. We must replace it and re-run
343 // primitive type propagation on all dependent instructions.
344 aget_float->ReplaceWith(aget_int);
345 aget_float->GetBlock()->RemoveInstruction(aget_float);
346 AddDependentInstructionsToWorklist(aget_int, &worklist);
347 }
348 } else {
349 DCHECK(DataType::IsFloatingPointType(array_type));
350 if (aget_float == nullptr) {
351 // This is a float/double ArrayGet but there were no typed uses which
352 // would create the typed equivalent. Create it now.
353 aget_float = CreateFloatOrDoubleEquivalentOfArrayGet(aget_int);
354 }
355 // Replace the original int/long instruction. Note that it may have phi
356 // uses, environment uses, as well as real uses (from untyped ArraySets).
357 // We need to re-run primitive type propagation on its dependent instructions.
358 aget_int->ReplaceWith(aget_float);
359 aget_int->GetBlock()->RemoveInstruction(aget_int);
360 AddDependentInstructionsToWorklist(aget_float, &worklist);
361 }
362 }
363
364 // Set a flag stating that types of ArrayGets have been resolved. Requesting
365 // equivalent of the wrong type with GetFloatOrDoubleEquivalentOfArrayGet
366 // will fail from now on.
367 agets_fixed_ = true;
368
369 for (HArraySet* aset : ambiguous_asets_) {
370 HInstruction* array = aset->GetArray();
371 if (!array->GetReferenceTypeInfo().IsPrimitiveArrayClass()) {
372 // RTP did not type the input array. Bail.
373 VLOG(compiler) << "Not compiled: Could not infer an array type for array operation at "
374 << aset->GetDexPc();
375 return false;
376 }
377
378 HInstruction* value = aset->GetValue();
379 DataType::Type value_type = value->GetType();
380 DataType::Type array_type = GetPrimitiveArrayComponentType(array);
381 DCHECK_EQ(DataType::Is64BitType(value_type), DataType::Is64BitType(array_type));
382
383 if (DataType::IsFloatingPointType(array_type)) {
384 if (!DataType::IsFloatingPointType(value_type)) {
385 DCHECK(DataType::IsIntegralType(value_type));
386 // Array elements are floating-point but the value has not been replaced
387 // with its floating-point equivalent. The replacement must always
388 // succeed in code validated by the verifier.
389 HInstruction* equivalent = GetFloatOrDoubleEquivalent(value, array_type);
390 DCHECK(equivalent != nullptr);
391 aset->ReplaceInput(equivalent, /* input_index */ 2);
392 if (equivalent->IsPhi()) {
393 // Returned equivalent is a phi which may not have had its inputs
394 // replaced yet. We need to run primitive type propagation on it.
395 worklist.push_back(equivalent->AsPhi());
396 }
397 }
398 // Refine the side effects of this floating point aset. Note that we do this even if
399 // no replacement occurs, since the right-hand-side may have been corrected already.
400 aset->SetSideEffects(HArraySet::ComputeSideEffects(aset->GetComponentType()));
401 } else {
402 // Array elements are integral and the value assigned to it initially
403 // was integral too. Nothing to do.
404 DCHECK(DataType::IsIntegralType(array_type));
405 DCHECK(DataType::IsIntegralType(value_type));
406 }
407 }
408 }
409
410 if (!worklist.empty()) {
411 ProcessPrimitiveTypePropagationWorklist(&worklist);
412 EquivalentPhisCleanup();
413 }
414
415 return true;
416 }
417
HasAliasInEnvironments(HInstruction * instruction)418 static bool HasAliasInEnvironments(HInstruction* instruction) {
419 HEnvironment* last_user = nullptr;
420 for (const HUseListNode<HEnvironment*>& use : instruction->GetEnvUses()) {
421 DCHECK(use.GetUser() != nullptr);
422 // Note: The first comparison (== null) always fails.
423 if (use.GetUser() == last_user) {
424 return true;
425 }
426 last_user = use.GetUser();
427 }
428
429 if (kIsDebugBuild) {
430 // Do a quadratic search to ensure same environment uses are next
431 // to each other.
432 const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses();
433 for (auto current = env_uses.begin(), end = env_uses.end(); current != end; ++current) {
434 auto next = current;
435 for (++next; next != end; ++next) {
436 DCHECK(next->GetUser() != current->GetUser());
437 }
438 }
439 }
440 return false;
441 }
442
RemoveRedundantUninitializedStrings()443 void SsaBuilder::RemoveRedundantUninitializedStrings() {
444 if (graph_->IsDebuggable()) {
445 // Do not perform the optimization for consistency with the interpreter
446 // which always allocates an object for new-instance of String.
447 return;
448 }
449
450 for (HNewInstance* new_instance : uninitialized_strings_) {
451 DCHECK(new_instance->IsInBlock());
452 DCHECK(new_instance->IsStringAlloc());
453
454 // Replace NewInstance of String with NullConstant if not used prior to
455 // calling StringFactory. In case of deoptimization, the interpreter is
456 // expected to skip null check on the `this` argument of the StringFactory call.
457 if (!new_instance->HasNonEnvironmentUses() && !HasAliasInEnvironments(new_instance)) {
458 new_instance->ReplaceWith(graph_->GetNullConstant());
459 new_instance->GetBlock()->RemoveInstruction(new_instance);
460
461 // Remove LoadClass if not needed any more.
462 HInstruction* input = new_instance->InputAt(0);
463 HLoadClass* load_class = nullptr;
464
465 // If the class was not present in the dex cache at the point of building
466 // the graph, the builder inserted a HClinitCheck in between. Since the String
467 // class is always initialized at the point of running Java code, we can remove
468 // that check.
469 if (input->IsClinitCheck()) {
470 load_class = input->InputAt(0)->AsLoadClass();
471 input->ReplaceWith(load_class);
472 input->GetBlock()->RemoveInstruction(input);
473 } else {
474 load_class = input->AsLoadClass();
475 DCHECK(new_instance->IsStringAlloc());
476 DCHECK(!load_class->NeedsAccessCheck()) << "String class is always accessible";
477 }
478 DCHECK(load_class != nullptr);
479 if (!load_class->HasUses()) {
480 // Even if the HLoadClass needs access check, we can remove it, as we know the
481 // String class does not need it.
482 load_class->GetBlock()->RemoveInstruction(load_class);
483 }
484 }
485 }
486 }
487
BuildSsa()488 GraphAnalysisResult SsaBuilder::BuildSsa() {
489 DCHECK(!graph_->IsInSsaForm());
490
491 // 1) Propagate types of phis. At this point, phis are typed void in the general
492 // case, or float/double/reference if we created an equivalent phi. So we need
493 // to propagate the types across phis to give them a correct type. If a type
494 // conflict is detected in this stage, the phi is marked dead.
495 RunPrimitiveTypePropagation();
496
497 // 2) Now that the correct primitive types have been assigned, we can get rid
498 // of redundant phis. Note that we cannot do this phase before type propagation,
499 // otherwise we could get rid of phi equivalents, whose presence is a requirement
500 // for the type propagation phase. Note that this is to satisfy statement (a)
501 // of the SsaBuilder (see ssa_builder.h).
502 SsaRedundantPhiElimination(graph_).Run();
503
504 // 3) Fix the type for null constants which are part of an equality comparison.
505 // We need to do this after redundant phi elimination, to ensure the only cases
506 // that we can see are reference comparison against 0. The redundant phi
507 // elimination ensures we do not see a phi taking two 0 constants in a HEqual
508 // or HNotEqual.
509 FixNullConstantType();
510
511 // 4) Compute type of reference type instructions. The pass assumes that
512 // NullConstant has been fixed up.
513 ReferenceTypePropagation(graph_,
514 class_loader_,
515 dex_cache_,
516 handles_,
517 /* is_first_run */ true).Run();
518
519 // 5) HInstructionBuilder duplicated ArrayGet instructions with ambiguous type
520 // (int/float or long/double) and marked ArraySets with ambiguous input type.
521 // Now that RTP computed the type of the array input, the ambiguity can be
522 // resolved and the correct equivalents kept.
523 if (!FixAmbiguousArrayOps()) {
524 return kAnalysisFailAmbiguousArrayOp;
525 }
526
527 // 6) Mark dead phis. This will mark phis which are not used by instructions
528 // or other live phis. If compiling as debuggable code, phis will also be kept
529 // live if they have an environment use.
530 SsaDeadPhiElimination dead_phi_elimimation(graph_);
531 dead_phi_elimimation.MarkDeadPhis();
532
533 // 7) Make sure environments use the right phi equivalent: a phi marked dead
534 // can have a phi equivalent that is not dead. In that case we have to replace
535 // it with the live equivalent because deoptimization and try/catch rely on
536 // environments containing values of all live vregs at that point. Note that
537 // there can be multiple phis for the same Dex register that are live
538 // (for example when merging constants), in which case it is okay for the
539 // environments to just reference one.
540 FixEnvironmentPhis();
541
542 // 8) Now that the right phis are used for the environments, we can eliminate
543 // phis we do not need. Regardless of the debuggable status, this phase is
544 /// necessary for statement (b) of the SsaBuilder (see ssa_builder.h), as well
545 // as for the code generation, which does not deal with phis of conflicting
546 // input types.
547 dead_phi_elimimation.EliminateDeadPhis();
548
549 // 9) HInstructionBuidler replaced uses of NewInstances of String with the
550 // results of their corresponding StringFactory calls. Unless the String
551 // objects are used before they are initialized, they can be replaced with
552 // NullConstant. Note that this optimization is valid only if unsimplified
553 // code does not use the uninitialized value because we assume execution can
554 // be deoptimized at any safepoint. We must therefore perform it before any
555 // other optimizations.
556 RemoveRedundantUninitializedStrings();
557
558 graph_->SetInSsaForm();
559 return kAnalysisSuccess;
560 }
561
562 /**
563 * Constants in the Dex format are not typed. So the builder types them as
564 * integers, but when doing the SSA form, we might realize the constant
565 * is used for floating point operations. We create a floating-point equivalent
566 * constant to make the operations correctly typed.
567 */
GetFloatEquivalent(HIntConstant * constant)568 HFloatConstant* SsaBuilder::GetFloatEquivalent(HIntConstant* constant) {
569 // We place the floating point constant next to this constant.
570 HFloatConstant* result = constant->GetNext()->AsFloatConstant();
571 if (result == nullptr) {
572 float value = bit_cast<float, int32_t>(constant->GetValue());
573 result = new (graph_->GetAllocator()) HFloatConstant(value);
574 constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext());
575 graph_->CacheFloatConstant(result);
576 } else {
577 // If there is already a constant with the expected type, we know it is
578 // the floating point equivalent of this constant.
579 DCHECK_EQ((bit_cast<int32_t, float>(result->GetValue())), constant->GetValue());
580 }
581 return result;
582 }
583
584 /**
585 * Wide constants in the Dex format are not typed. So the builder types them as
586 * longs, but when doing the SSA form, we might realize the constant
587 * is used for floating point operations. We create a floating-point equivalent
588 * constant to make the operations correctly typed.
589 */
GetDoubleEquivalent(HLongConstant * constant)590 HDoubleConstant* SsaBuilder::GetDoubleEquivalent(HLongConstant* constant) {
591 // We place the floating point constant next to this constant.
592 HDoubleConstant* result = constant->GetNext()->AsDoubleConstant();
593 if (result == nullptr) {
594 double value = bit_cast<double, int64_t>(constant->GetValue());
595 result = new (graph_->GetAllocator()) HDoubleConstant(value);
596 constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext());
597 graph_->CacheDoubleConstant(result);
598 } else {
599 // If there is already a constant with the expected type, we know it is
600 // the floating point equivalent of this constant.
601 DCHECK_EQ((bit_cast<int64_t, double>(result->GetValue())), constant->GetValue());
602 }
603 return result;
604 }
605
606 /**
607 * Because of Dex format, we might end up having the same phi being
608 * used for non floating point operations and floating point / reference operations.
609 * Because we want the graph to be correctly typed (and thereafter avoid moves between
610 * floating point registers and core registers), we need to create a copy of the
611 * phi with a floating point / reference type.
612 */
GetFloatDoubleOrReferenceEquivalentOfPhi(HPhi * phi,DataType::Type type)613 HPhi* SsaBuilder::GetFloatDoubleOrReferenceEquivalentOfPhi(HPhi* phi, DataType::Type type) {
614 DCHECK(phi->IsLive()) << "Cannot get equivalent of a dead phi since it would create a live one.";
615
616 // We place the floating point /reference phi next to this phi.
617 HInstruction* next = phi->GetNext();
618 if (next != nullptr
619 && next->AsPhi()->GetRegNumber() == phi->GetRegNumber()
620 && next->GetType() != type) {
621 // Move to the next phi to see if it is the one we are looking for.
622 next = next->GetNext();
623 }
624
625 if (next == nullptr
626 || (next->AsPhi()->GetRegNumber() != phi->GetRegNumber())
627 || (next->GetType() != type)) {
628 ArenaAllocator* allocator = graph_->GetAllocator();
629 HInputsRef inputs = phi->GetInputs();
630 HPhi* new_phi = new (allocator) HPhi(allocator, phi->GetRegNumber(), inputs.size(), type);
631 // Copy the inputs. Note that the graph may not be correctly typed
632 // by doing this copy, but the type propagation phase will fix it.
633 ArrayRef<HUserRecord<HInstruction*>> new_input_records = new_phi->GetInputRecords();
634 for (size_t i = 0; i < inputs.size(); ++i) {
635 new_input_records[i] = HUserRecord<HInstruction*>(inputs[i]);
636 }
637 phi->GetBlock()->InsertPhiAfter(new_phi, phi);
638 DCHECK(new_phi->IsLive());
639 return new_phi;
640 } else {
641 // An existing equivalent was found. If it is dead, conflict was previously
642 // identified and we return nullptr instead.
643 HPhi* next_phi = next->AsPhi();
644 DCHECK_EQ(next_phi->GetType(), type);
645 return next_phi->IsLive() ? next_phi : nullptr;
646 }
647 }
648
GetFloatOrDoubleEquivalentOfArrayGet(HArrayGet * aget)649 HArrayGet* SsaBuilder::GetFloatOrDoubleEquivalentOfArrayGet(HArrayGet* aget) {
650 DCHECK(DataType::IsIntegralType(aget->GetType()));
651
652 if (!DataType::IsIntOrLongType(aget->GetType())) {
653 // Cannot type boolean, char, byte, short to float/double.
654 return nullptr;
655 }
656
657 DCHECK(ContainsElement(ambiguous_agets_, aget));
658 if (agets_fixed_) {
659 // This used to be an ambiguous ArrayGet but its type has been resolved to
660 // int/long. Requesting a float/double equivalent should lead to a conflict.
661 if (kIsDebugBuild) {
662 ScopedObjectAccess soa(Thread::Current());
663 DCHECK(DataType::IsIntOrLongType(GetPrimitiveArrayComponentType(aget->GetArray())));
664 }
665 return nullptr;
666 } else {
667 // This is an ambiguous ArrayGet which has not been resolved yet. Return an
668 // equivalent float/double instruction to use until it is resolved.
669 HArrayGet* equivalent = FindFloatOrDoubleEquivalentOfArrayGet(aget);
670 return (equivalent == nullptr) ? CreateFloatOrDoubleEquivalentOfArrayGet(aget) : equivalent;
671 }
672 }
673
GetFloatOrDoubleEquivalent(HInstruction * value,DataType::Type type)674 HInstruction* SsaBuilder::GetFloatOrDoubleEquivalent(HInstruction* value, DataType::Type type) {
675 if (value->IsArrayGet()) {
676 return GetFloatOrDoubleEquivalentOfArrayGet(value->AsArrayGet());
677 } else if (value->IsLongConstant()) {
678 return GetDoubleEquivalent(value->AsLongConstant());
679 } else if (value->IsIntConstant()) {
680 return GetFloatEquivalent(value->AsIntConstant());
681 } else if (value->IsPhi()) {
682 return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), type);
683 } else {
684 return nullptr;
685 }
686 }
687
GetReferenceTypeEquivalent(HInstruction * value)688 HInstruction* SsaBuilder::GetReferenceTypeEquivalent(HInstruction* value) {
689 if (value->IsIntConstant() && value->AsIntConstant()->GetValue() == 0) {
690 return graph_->GetNullConstant();
691 } else if (value->IsPhi()) {
692 return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), DataType::Type::kReference);
693 } else {
694 return nullptr;
695 }
696 }
697
698 } // namespace art
699