1 /* 2 * Copyright 2013 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ANDROID_SF_VIRTUAL_DISPLAY_SURFACE_H 18 #define ANDROID_SF_VIRTUAL_DISPLAY_SURFACE_H 19 20 #include "DisplaySurface.h" 21 #include "HWComposerBufferCache.h" 22 23 #include <gui/ConsumerBase.h> 24 #include <gui/IGraphicBufferProducer.h> 25 26 // --------------------------------------------------------------------------- 27 namespace android { 28 // --------------------------------------------------------------------------- 29 30 class HWComposer; 31 class IProducerListener; 32 33 /* This DisplaySurface implementation supports virtual displays, where GLES 34 * and/or HWC compose into a buffer that is then passed to an arbitrary 35 * consumer (the sink) running in another process. 36 * 37 * The simplest case is when the virtual display will never use the h/w 38 * composer -- either the h/w composer doesn't support writing to buffers, or 39 * there are more virtual displays than it supports simultaneously. In this 40 * case, the GLES driver works directly with the output buffer queue, and 41 * calls to the VirtualDisplay from SurfaceFlinger and DisplayHardware do 42 * nothing. 43 * 44 * If h/w composer might be used, then each frame will fall into one of three 45 * configurations: GLES-only, HWC-only, and MIXED composition. In all of these, 46 * we must provide a FB target buffer and output buffer for the HWC set() call. 47 * 48 * In GLES-only composition, the GLES driver is given a buffer from the sink to 49 * render into. When the GLES driver queues the buffer to the 50 * VirtualDisplaySurface, the VirtualDisplaySurface holds onto it instead of 51 * immediately queueing it to the sink. The buffer is used as both the FB 52 * target and output buffer for HWC, though on these frames the HWC doesn't 53 * do any work for this display and doesn't write to the output buffer. After 54 * composition is complete, the buffer is queued to the sink. 55 * 56 * In HWC-only composition, the VirtualDisplaySurface dequeues a buffer from 57 * the sink and passes it to HWC as both the FB target buffer and output 58 * buffer. The HWC doesn't need to read from the FB target buffer, but does 59 * write to the output buffer. After composition is complete, the buffer is 60 * queued to the sink. 61 * 62 * On MIXED frames, things become more complicated, since some h/w composer 63 * implementations can't read from and write to the same buffer. This class has 64 * an internal BufferQueue that it uses as a scratch buffer pool. The GLES 65 * driver is given a scratch buffer to render into. When it finishes rendering, 66 * the buffer is queued and then immediately acquired by the 67 * VirtualDisplaySurface. The scratch buffer is then used as the FB target 68 * buffer for HWC, and a separate buffer is dequeued from the sink and used as 69 * the HWC output buffer. When HWC composition is complete, the scratch buffer 70 * is released and the output buffer is queued to the sink. 71 */ 72 class VirtualDisplaySurface : public DisplaySurface, 73 public BnGraphicBufferProducer, 74 private ConsumerBase { 75 public: 76 VirtualDisplaySurface(HWComposer& hwc, int32_t dispId, 77 const sp<IGraphicBufferProducer>& sink, 78 const sp<IGraphicBufferProducer>& bqProducer, 79 const sp<IGraphicBufferConsumer>& bqConsumer, 80 const String8& name); 81 82 // 83 // DisplaySurface interface 84 // 85 virtual status_t beginFrame(bool mustRecompose); 86 virtual status_t prepareFrame(CompositionType compositionType); 87 virtual status_t advanceFrame(); 88 virtual void onFrameCommitted(); 89 virtual void dumpAsString(String8& result) const; 90 virtual void resizeBuffers(const uint32_t w, const uint32_t h); 91 virtual const sp<Fence>& getClientTargetAcquireFence() const override; 92 93 private: 94 enum Source {SOURCE_SINK = 0, SOURCE_SCRATCH = 1}; 95 96 virtual ~VirtualDisplaySurface(); 97 98 // 99 // IGraphicBufferProducer interface, used by the GLES driver. 100 // 101 virtual status_t requestBuffer(int pslot, sp<GraphicBuffer>* outBuf); 102 virtual status_t setMaxDequeuedBufferCount(int maxDequeuedBuffers); 103 virtual status_t setAsyncMode(bool async); 104 virtual status_t dequeueBuffer(int* pslot, sp<Fence>* fence, uint32_t w, uint32_t h, 105 PixelFormat format, uint64_t usage, uint64_t* outBufferAge, 106 FrameEventHistoryDelta* outTimestamps); 107 virtual status_t detachBuffer(int slot); 108 virtual status_t detachNextBuffer(sp<GraphicBuffer>* outBuffer, 109 sp<Fence>* outFence); 110 virtual status_t attachBuffer(int* slot, const sp<GraphicBuffer>& buffer); 111 virtual status_t queueBuffer(int pslot, 112 const QueueBufferInput& input, QueueBufferOutput* output); 113 virtual status_t cancelBuffer(int pslot, const sp<Fence>& fence); 114 virtual int query(int what, int* value); 115 virtual status_t connect(const sp<IProducerListener>& listener, 116 int api, bool producerControlledByApp, QueueBufferOutput* output); 117 virtual status_t disconnect(int api, DisconnectMode mode); 118 virtual status_t setSidebandStream(const sp<NativeHandle>& stream); 119 virtual void allocateBuffers(uint32_t width, uint32_t height, 120 PixelFormat format, uint64_t usage); 121 virtual status_t allowAllocation(bool allow); 122 virtual status_t setGenerationNumber(uint32_t generationNumber); 123 virtual String8 getConsumerName() const override; 124 virtual status_t setSharedBufferMode(bool sharedBufferMode) override; 125 virtual status_t setAutoRefresh(bool autoRefresh) override; 126 virtual status_t setDequeueTimeout(nsecs_t timeout) override; 127 virtual status_t getLastQueuedBuffer(sp<GraphicBuffer>* outBuffer, 128 sp<Fence>* outFence, float outTransformMatrix[16]) override; 129 virtual status_t getUniqueId(uint64_t* outId) const override; 130 virtual status_t getConsumerUsage(uint64_t* outUsage) const override; 131 132 // 133 // Utility methods 134 // 135 static Source fbSourceForCompositionType(CompositionType type); 136 status_t dequeueBuffer(Source source, PixelFormat format, uint64_t usage, 137 int* sslot, sp<Fence>* fence); 138 void updateQueueBufferOutput(QueueBufferOutput&& qbo); 139 void resetPerFrameState(); 140 status_t refreshOutputBuffer(); 141 142 // Both the sink and scratch buffer pools have their own set of slots 143 // ("source slots", or "sslot"). We have to merge these into the single 144 // set of slots used by the GLES producer ("producer slots" or "pslot") and 145 // internally in the VirtualDisplaySurface. To minimize the number of times 146 // a producer slot switches which source it comes from, we map source slot 147 // numbers to producer slot numbers differently for each source. 148 static int mapSource2ProducerSlot(Source source, int sslot); 149 static int mapProducer2SourceSlot(Source source, int pslot); 150 151 // 152 // Immutable after construction 153 // 154 HWComposer& mHwc; 155 const int32_t mDisplayId; 156 const String8 mDisplayName; 157 sp<IGraphicBufferProducer> mSource[2]; // indexed by SOURCE_* 158 uint32_t mDefaultOutputFormat; 159 160 // 161 // Inter-frame state 162 // 163 164 // To avoid buffer reallocations, we track the buffer usage and format 165 // we used on the previous frame and use it again on the new frame. If 166 // the composition type changes or the GLES driver starts requesting 167 // different usage/format, we'll get a new buffer. 168 uint32_t mOutputFormat; 169 uint64_t mOutputUsage; 170 171 // Since we present a single producer interface to the GLES driver, but 172 // are internally muxing between the sink and scratch producers, we have 173 // to keep track of which source last returned each producer slot from 174 // dequeueBuffer. Each bit in mProducerSlotSource corresponds to a producer 175 // slot. Both mProducerSlotSource and mProducerBuffers are indexed by a 176 // "producer slot"; see the mapSlot*() functions. 177 uint64_t mProducerSlotSource; 178 sp<GraphicBuffer> mProducerBuffers[BufferQueueDefs::NUM_BUFFER_SLOTS]; 179 180 // The QueueBufferOutput with the latest info from the sink, and with the 181 // transform hint cleared. Since we defer queueBuffer from the GLES driver 182 // to the sink, we have to return the previous version. 183 // Moves instead of copies are performed to avoid duplicate 184 // FrameEventHistoryDeltas. 185 QueueBufferOutput mQueueBufferOutput; 186 187 // Details of the current sink buffer. These become valid when a buffer is 188 // dequeued from the sink, and are used when queueing the buffer. 189 uint32_t mSinkBufferWidth, mSinkBufferHeight; 190 191 // 192 // Intra-frame state 193 // 194 195 // Composition type and GLES buffer source for the current frame. 196 // Valid after prepareFrame(), cleared in onFrameCommitted. 197 CompositionType mCompositionType; 198 199 // mFbFence is the fence HWC should wait for before reading the framebuffer 200 // target buffer. 201 sp<Fence> mFbFence; 202 203 // mOutputFence is the fence HWC should wait for before writing to the 204 // output buffer. 205 sp<Fence> mOutputFence; 206 207 // Producer slot numbers for the buffers to use for HWC framebuffer target 208 // and output. 209 int mFbProducerSlot; 210 int mOutputProducerSlot; 211 212 // Debug only -- track the sequence of events in each frame so we can make 213 // sure they happen in the order we expect. This class implicitly models 214 // a state machine; this enum/variable makes it explicit. 215 // 216 // +-----------+-------------------+-------------+ 217 // | State | Event || Next State | 218 // +-----------+-------------------+-------------+ 219 // | IDLE | beginFrame || BEGUN | 220 // | BEGUN | prepareFrame || PREPARED | 221 // | PREPARED | dequeueBuffer [1] || GLES | 222 // | PREPARED | advanceFrame [2] || HWC | 223 // | GLES | queueBuffer || GLES_DONE | 224 // | GLES_DONE | advanceFrame || HWC | 225 // | HWC | onFrameCommitted || IDLE | 226 // +-----------+-------------------++------------+ 227 // [1] COMPOSITION_GLES and COMPOSITION_MIXED frames. 228 // [2] COMPOSITION_HWC frames. 229 // 230 enum DbgState { 231 // no buffer dequeued, don't know anything about the next frame 232 DBG_STATE_IDLE, 233 // output buffer dequeued, framebuffer source not yet known 234 DBG_STATE_BEGUN, 235 // output buffer dequeued, framebuffer source known but not provided 236 // to GLES yet. 237 DBG_STATE_PREPARED, 238 // GLES driver has a buffer dequeued 239 DBG_STATE_GLES, 240 // GLES driver has queued the buffer, we haven't sent it to HWC yet 241 DBG_STATE_GLES_DONE, 242 // HWC has the buffer for this frame 243 DBG_STATE_HWC, 244 }; 245 DbgState mDbgState; 246 CompositionType mDbgLastCompositionType; 247 248 const char* dbgStateStr() const; 249 static const char* dbgSourceStr(Source s); 250 251 bool mMustRecompose; 252 253 HWComposerBufferCache mHwcBufferCache; 254 255 bool mForceHwcCopy; 256 }; 257 258 // --------------------------------------------------------------------------- 259 } // namespace android 260 // --------------------------------------------------------------------------- 261 262 #endif // ANDROID_SF_VIRTUAL_DISPLAY_SURFACE_H 263