1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
18 #define ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
19 
20 #include <map>
21 #include <unordered_set>
22 #include <vector>
23 
24 #include "art_field-inl.h"
25 #include "debug/dwarf/debug_abbrev_writer.h"
26 #include "debug/dwarf/debug_info_entry_writer.h"
27 #include "debug/elf_compilation_unit.h"
28 #include "debug/elf_debug_loc_writer.h"
29 #include "debug/method_debug_info.h"
30 #include "dex/code_item_accessors-inl.h"
31 #include "dex/dex_file-inl.h"
32 #include "dex/dex_file.h"
33 #include "heap_poisoning.h"
34 #include "linear_alloc.h"
35 #include "linker/elf_builder.h"
36 #include "mirror/array.h"
37 #include "mirror/class-inl.h"
38 #include "mirror/class.h"
39 #include "oat_file.h"
40 
41 namespace art {
42 namespace debug {
43 
44 typedef std::vector<DexFile::LocalInfo> LocalInfos;
45 
LocalInfoCallback(void * ctx,const DexFile::LocalInfo & entry)46 static void LocalInfoCallback(void* ctx, const DexFile::LocalInfo& entry) {
47   static_cast<LocalInfos*>(ctx)->push_back(entry);
48 }
49 
GetParamNames(const MethodDebugInfo * mi)50 static std::vector<const char*> GetParamNames(const MethodDebugInfo* mi) {
51   std::vector<const char*> names;
52   CodeItemDebugInfoAccessor accessor(*mi->dex_file, mi->code_item, mi->dex_method_index);
53   if (accessor.HasCodeItem()) {
54     DCHECK(mi->dex_file != nullptr);
55     const uint8_t* stream = mi->dex_file->GetDebugInfoStream(accessor.DebugInfoOffset());
56     if (stream != nullptr) {
57       DecodeUnsignedLeb128(&stream);  // line.
58       uint32_t parameters_size = DecodeUnsignedLeb128(&stream);
59       for (uint32_t i = 0; i < parameters_size; ++i) {
60         uint32_t id = DecodeUnsignedLeb128P1(&stream);
61         names.push_back(mi->dex_file->StringDataByIdx(dex::StringIndex(id)));
62       }
63     }
64   }
65   return names;
66 }
67 
68 // Helper class to write .debug_info and its supporting sections.
69 template<typename ElfTypes>
70 class ElfDebugInfoWriter {
71   using Elf_Addr = typename ElfTypes::Addr;
72 
73  public:
ElfDebugInfoWriter(linker::ElfBuilder<ElfTypes> * builder)74   explicit ElfDebugInfoWriter(linker::ElfBuilder<ElfTypes>* builder)
75       : builder_(builder),
76         debug_abbrev_(&debug_abbrev_buffer_) {
77   }
78 
Start()79   void Start() {
80     builder_->GetDebugInfo()->Start();
81   }
82 
End(bool write_oat_patches)83   void End(bool write_oat_patches) {
84     builder_->GetDebugInfo()->End();
85     if (write_oat_patches) {
86       builder_->WritePatches(".debug_info.oat_patches",
87                              ArrayRef<const uintptr_t>(debug_info_patches_));
88     }
89     builder_->WriteSection(".debug_abbrev", &debug_abbrev_buffer_);
90     if (!debug_loc_.empty()) {
91       builder_->WriteSection(".debug_loc", &debug_loc_);
92     }
93     if (!debug_ranges_.empty()) {
94       builder_->WriteSection(".debug_ranges", &debug_ranges_);
95     }
96   }
97 
98  private:
99   linker::ElfBuilder<ElfTypes>* builder_;
100   std::vector<uintptr_t> debug_info_patches_;
101   std::vector<uint8_t> debug_abbrev_buffer_;
102   dwarf::DebugAbbrevWriter<> debug_abbrev_;
103   std::vector<uint8_t> debug_loc_;
104   std::vector<uint8_t> debug_ranges_;
105 
106   std::unordered_set<const char*> defined_dex_classes_;  // For CHECKs only.
107 
108   template<typename ElfTypes2>
109   friend class ElfCompilationUnitWriter;
110 };
111 
112 // Helper class to write one compilation unit.
113 // It holds helper methods and temporary state.
114 template<typename ElfTypes>
115 class ElfCompilationUnitWriter {
116   using Elf_Addr = typename ElfTypes::Addr;
117 
118  public:
ElfCompilationUnitWriter(ElfDebugInfoWriter<ElfTypes> * owner)119   explicit ElfCompilationUnitWriter(ElfDebugInfoWriter<ElfTypes>* owner)
120     : owner_(owner),
121       info_(Is64BitInstructionSet(owner_->builder_->GetIsa()), &owner->debug_abbrev_) {
122   }
123 
Write(const ElfCompilationUnit & compilation_unit)124   void Write(const ElfCompilationUnit& compilation_unit) {
125     CHECK(!compilation_unit.methods.empty());
126     const Elf_Addr base_address = compilation_unit.is_code_address_text_relative
127         ? owner_->builder_->GetText()->GetAddress()
128         : 0;
129     const bool is64bit = Is64BitInstructionSet(owner_->builder_->GetIsa());
130     using namespace dwarf;  // NOLINT. For easy access to DWARF constants.
131 
132     info_.StartTag(DW_TAG_compile_unit);
133     info_.WriteString(DW_AT_producer, "Android dex2oat");
134     info_.WriteData1(DW_AT_language, DW_LANG_Java);
135     info_.WriteString(DW_AT_comp_dir, "$JAVA_SRC_ROOT");
136     // The low_pc acts as base address for several other addresses/ranges.
137     info_.WriteAddr(DW_AT_low_pc, base_address + compilation_unit.code_address);
138     info_.WriteSecOffset(DW_AT_stmt_list, compilation_unit.debug_line_offset);
139 
140     // Write .debug_ranges entries covering code ranges of the whole compilation unit.
141     dwarf::Writer<> debug_ranges(&owner_->debug_ranges_);
142     info_.WriteSecOffset(DW_AT_ranges, owner_->debug_ranges_.size());
143     for (auto mi : compilation_unit.methods) {
144       uint64_t low_pc = mi->code_address - compilation_unit.code_address;
145       uint64_t high_pc = low_pc + mi->code_size;
146       if (is64bit) {
147         debug_ranges.PushUint64(low_pc);
148         debug_ranges.PushUint64(high_pc);
149       } else {
150         debug_ranges.PushUint32(low_pc);
151         debug_ranges.PushUint32(high_pc);
152       }
153     }
154     if (is64bit) {
155       debug_ranges.PushUint64(0);  // End of list.
156       debug_ranges.PushUint64(0);
157     } else {
158       debug_ranges.PushUint32(0);  // End of list.
159       debug_ranges.PushUint32(0);
160     }
161 
162     const char* last_dex_class_desc = nullptr;
163     for (auto mi : compilation_unit.methods) {
164       DCHECK(mi->dex_file != nullptr);
165       const DexFile* dex = mi->dex_file;
166       CodeItemDebugInfoAccessor accessor(*dex, mi->code_item, mi->dex_method_index);
167       const DexFile::MethodId& dex_method = dex->GetMethodId(mi->dex_method_index);
168       const DexFile::ProtoId& dex_proto = dex->GetMethodPrototype(dex_method);
169       const DexFile::TypeList* dex_params = dex->GetProtoParameters(dex_proto);
170       const char* dex_class_desc = dex->GetMethodDeclaringClassDescriptor(dex_method);
171       const bool is_static = (mi->access_flags & kAccStatic) != 0;
172 
173       // Enclose the method in correct class definition.
174       if (last_dex_class_desc != dex_class_desc) {
175         if (last_dex_class_desc != nullptr) {
176           EndClassTag();
177         }
178         // Write reference tag for the class we are about to declare.
179         size_t reference_tag_offset = info_.StartTag(DW_TAG_reference_type);
180         type_cache_.emplace(std::string(dex_class_desc), reference_tag_offset);
181         size_t type_attrib_offset = info_.size();
182         info_.WriteRef4(DW_AT_type, 0);
183         info_.EndTag();
184         // Declare the class that owns this method.
185         size_t class_offset = StartClassTag(dex_class_desc);
186         info_.UpdateUint32(type_attrib_offset, class_offset);
187         info_.WriteFlagPresent(DW_AT_declaration);
188         // Check that each class is defined only once.
189         bool unique = owner_->defined_dex_classes_.insert(dex_class_desc).second;
190         CHECK(unique) << "Redefinition of " << dex_class_desc;
191         last_dex_class_desc = dex_class_desc;
192       }
193 
194       int start_depth = info_.Depth();
195       info_.StartTag(DW_TAG_subprogram);
196       WriteName(dex->GetMethodName(dex_method));
197       info_.WriteAddr(DW_AT_low_pc, base_address + mi->code_address);
198       info_.WriteUdata(DW_AT_high_pc, mi->code_size);
199       std::vector<uint8_t> expr_buffer;
200       Expression expr(&expr_buffer);
201       expr.WriteOpCallFrameCfa();
202       info_.WriteExprLoc(DW_AT_frame_base, expr);
203       WriteLazyType(dex->GetReturnTypeDescriptor(dex_proto));
204 
205       // Decode dex register locations for all stack maps.
206       // It might be expensive, so do it just once and reuse the result.
207       std::vector<DexRegisterMap> dex_reg_maps;
208       if (accessor.HasCodeItem() && mi->code_info != nullptr) {
209         const CodeInfo code_info(mi->code_info);
210         CodeInfoEncoding encoding = code_info.ExtractEncoding();
211         for (size_t s = 0; s < code_info.GetNumberOfStackMaps(encoding); ++s) {
212           const StackMap& stack_map = code_info.GetStackMapAt(s, encoding);
213           dex_reg_maps.push_back(code_info.GetDexRegisterMapOf(
214               stack_map, encoding, accessor.RegistersSize()));
215         }
216       }
217 
218       // Write parameters. DecodeDebugLocalInfo returns them as well, but it does not
219       // guarantee order or uniqueness so it is safer to iterate over them manually.
220       // DecodeDebugLocalInfo might not also be available if there is no debug info.
221       std::vector<const char*> param_names = GetParamNames(mi);
222       uint32_t arg_reg = 0;
223       if (!is_static) {
224         info_.StartTag(DW_TAG_formal_parameter);
225         WriteName("this");
226         info_.WriteFlagPresent(DW_AT_artificial);
227         WriteLazyType(dex_class_desc);
228         if (accessor.HasCodeItem()) {
229           // Write the stack location of the parameter.
230           const uint32_t vreg = accessor.RegistersSize() - accessor.InsSize() + arg_reg;
231           const bool is64bitValue = false;
232           WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address);
233         }
234         arg_reg++;
235         info_.EndTag();
236       }
237       if (dex_params != nullptr) {
238         for (uint32_t i = 0; i < dex_params->Size(); ++i) {
239           info_.StartTag(DW_TAG_formal_parameter);
240           // Parameter names may not be always available.
241           if (i < param_names.size()) {
242             WriteName(param_names[i]);
243           }
244           // Write the type.
245           const char* type_desc = dex->StringByTypeIdx(dex_params->GetTypeItem(i).type_idx_);
246           WriteLazyType(type_desc);
247           const bool is64bitValue = type_desc[0] == 'D' || type_desc[0] == 'J';
248           if (accessor.HasCodeItem()) {
249             // Write the stack location of the parameter.
250             const uint32_t vreg = accessor.RegistersSize() - accessor.InsSize() + arg_reg;
251             WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address);
252           }
253           arg_reg += is64bitValue ? 2 : 1;
254           info_.EndTag();
255         }
256         if (accessor.HasCodeItem()) {
257           DCHECK_EQ(arg_reg, accessor.InsSize());
258         }
259       }
260 
261       // Write local variables.
262       LocalInfos local_infos;
263       if (accessor.DecodeDebugLocalInfo(is_static,
264                                         mi->dex_method_index,
265                                         LocalInfoCallback,
266                                         &local_infos)) {
267         for (const DexFile::LocalInfo& var : local_infos) {
268           if (var.reg_ < accessor.RegistersSize() - accessor.InsSize()) {
269             info_.StartTag(DW_TAG_variable);
270             WriteName(var.name_);
271             WriteLazyType(var.descriptor_);
272             bool is64bitValue = var.descriptor_[0] == 'D' || var.descriptor_[0] == 'J';
273             WriteRegLocation(mi,
274                              dex_reg_maps,
275                              var.reg_,
276                              is64bitValue,
277                              compilation_unit.code_address,
278                              var.start_address_,
279                              var.end_address_);
280             info_.EndTag();
281           }
282         }
283       }
284 
285       info_.EndTag();
286       CHECK_EQ(info_.Depth(), start_depth);  // Balanced start/end.
287     }
288     if (last_dex_class_desc != nullptr) {
289       EndClassTag();
290     }
291     FinishLazyTypes();
292     CloseNamespacesAboveDepth(0);
293     info_.EndTag();  // DW_TAG_compile_unit
294     CHECK_EQ(info_.Depth(), 0);
295     std::vector<uint8_t> buffer;
296     buffer.reserve(info_.data()->size() + KB);
297     const size_t offset = owner_->builder_->GetDebugInfo()->GetPosition();
298     // All compilation units share single table which is at the start of .debug_abbrev.
299     const size_t debug_abbrev_offset = 0;
300     WriteDebugInfoCU(debug_abbrev_offset, info_, offset, &buffer, &owner_->debug_info_patches_);
301     owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size());
302   }
303 
Write(const ArrayRef<mirror::Class * > & types)304   void Write(const ArrayRef<mirror::Class*>& types) REQUIRES_SHARED(Locks::mutator_lock_) {
305     using namespace dwarf;  // NOLINT. For easy access to DWARF constants.
306 
307     info_.StartTag(DW_TAG_compile_unit);
308     info_.WriteString(DW_AT_producer, "Android dex2oat");
309     info_.WriteData1(DW_AT_language, DW_LANG_Java);
310 
311     // Base class references to be patched at the end.
312     std::map<size_t, mirror::Class*> base_class_references;
313 
314     // Already written declarations or definitions.
315     std::map<mirror::Class*, size_t> class_declarations;
316 
317     std::vector<uint8_t> expr_buffer;
318     for (mirror::Class* type : types) {
319       if (type->IsPrimitive()) {
320         // For primitive types the definition and the declaration is the same.
321         if (type->GetPrimitiveType() != Primitive::kPrimVoid) {
322           WriteTypeDeclaration(type->GetDescriptor(nullptr));
323         }
324       } else if (type->IsArrayClass()) {
325         mirror::Class* element_type = type->GetComponentType();
326         uint32_t component_size = type->GetComponentSize();
327         uint32_t data_offset = mirror::Array::DataOffset(component_size).Uint32Value();
328         uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
329 
330         CloseNamespacesAboveDepth(0);  // Declare in root namespace.
331         info_.StartTag(DW_TAG_array_type);
332         std::string descriptor_string;
333         WriteLazyType(element_type->GetDescriptor(&descriptor_string));
334         WriteLinkageName(type);
335         info_.WriteUdata(DW_AT_data_member_location, data_offset);
336         info_.StartTag(DW_TAG_subrange_type);
337         Expression count_expr(&expr_buffer);
338         count_expr.WriteOpPushObjectAddress();
339         count_expr.WriteOpPlusUconst(length_offset);
340         count_expr.WriteOpDerefSize(4);  // Array length is always 32-bit wide.
341         info_.WriteExprLoc(DW_AT_count, count_expr);
342         info_.EndTag();  // DW_TAG_subrange_type.
343         info_.EndTag();  // DW_TAG_array_type.
344       } else if (type->IsInterface()) {
345         // Skip.  Variables cannot have an interface as a dynamic type.
346         // We do not expose the interface information to the debugger in any way.
347       } else {
348         std::string descriptor_string;
349         const char* desc = type->GetDescriptor(&descriptor_string);
350         size_t class_offset = StartClassTag(desc);
351         class_declarations.emplace(type, class_offset);
352 
353         if (!type->IsVariableSize()) {
354           info_.WriteUdata(DW_AT_byte_size, type->GetObjectSize());
355         }
356 
357         WriteLinkageName(type);
358 
359         if (type->IsObjectClass()) {
360           // Generate artificial member which is used to get the dynamic type of variable.
361           // The run-time value of this field will correspond to linkage name of some type.
362           // We need to do it only once in j.l.Object since all other types inherit it.
363           info_.StartTag(DW_TAG_member);
364           WriteName(".dynamic_type");
365           WriteLazyType(sizeof(uintptr_t) == 8 ? "J" : "I");
366           info_.WriteFlagPresent(DW_AT_artificial);
367           // Create DWARF expression to get the value of the methods_ field.
368           Expression expr(&expr_buffer);
369           // The address of the object has been implicitly pushed on the stack.
370           // Dereference the klass_ field of Object (32-bit; possibly poisoned).
371           DCHECK_EQ(type->ClassOffset().Uint32Value(), 0u);
372           DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Class>), 4u);
373           expr.WriteOpDerefSize(4);
374           if (kPoisonHeapReferences) {
375             expr.WriteOpNeg();
376             // DWARF stack is pointer sized. Ensure that the high bits are clear.
377             expr.WriteOpConstu(0xFFFFFFFF);
378             expr.WriteOpAnd();
379           }
380           // Add offset to the methods_ field.
381           expr.WriteOpPlusUconst(mirror::Class::MethodsOffset().Uint32Value());
382           // Top of stack holds the location of the field now.
383           info_.WriteExprLoc(DW_AT_data_member_location, expr);
384           info_.EndTag();  // DW_TAG_member.
385         }
386 
387         // Base class.
388         mirror::Class* base_class = type->GetSuperClass();
389         if (base_class != nullptr) {
390           info_.StartTag(DW_TAG_inheritance);
391           base_class_references.emplace(info_.size(), base_class);
392           info_.WriteRef4(DW_AT_type, 0);
393           info_.WriteUdata(DW_AT_data_member_location, 0);
394           info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public);
395           info_.EndTag();  // DW_TAG_inheritance.
396         }
397 
398         // Member variables.
399         for (uint32_t i = 0, count = type->NumInstanceFields(); i < count; ++i) {
400           ArtField* field = type->GetInstanceField(i);
401           info_.StartTag(DW_TAG_member);
402           WriteName(field->GetName());
403           WriteLazyType(field->GetTypeDescriptor());
404           info_.WriteUdata(DW_AT_data_member_location, field->GetOffset().Uint32Value());
405           uint32_t access_flags = field->GetAccessFlags();
406           if (access_flags & kAccPublic) {
407             info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public);
408           } else if (access_flags & kAccProtected) {
409             info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_protected);
410           } else if (access_flags & kAccPrivate) {
411             info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private);
412           }
413           info_.EndTag();  // DW_TAG_member.
414         }
415 
416         if (type->IsStringClass()) {
417           // Emit debug info about an artifical class member for java.lang.String which represents
418           // the first element of the data stored in a string instance. Consumers of the debug
419           // info will be able to read the content of java.lang.String based on the count (real
420           // field) and based on the location of this data member.
421           info_.StartTag(DW_TAG_member);
422           WriteName("value");
423           // We don't support fields with C like array types so we just say its type is java char.
424           WriteLazyType("C");  // char.
425           info_.WriteUdata(DW_AT_data_member_location,
426                            mirror::String::ValueOffset().Uint32Value());
427           info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private);
428           info_.EndTag();  // DW_TAG_member.
429         }
430 
431         EndClassTag();
432       }
433     }
434 
435     // Write base class declarations.
436     for (const auto& base_class_reference : base_class_references) {
437       size_t reference_offset = base_class_reference.first;
438       mirror::Class* base_class = base_class_reference.second;
439       const auto it = class_declarations.find(base_class);
440       if (it != class_declarations.end()) {
441         info_.UpdateUint32(reference_offset, it->second);
442       } else {
443         // Declare base class.  We can not use the standard WriteLazyType
444         // since we want to avoid the DW_TAG_reference_tag wrapping.
445         std::string tmp_storage;
446         const char* base_class_desc = base_class->GetDescriptor(&tmp_storage);
447         size_t base_class_declaration_offset = StartClassTag(base_class_desc);
448         info_.WriteFlagPresent(DW_AT_declaration);
449         WriteLinkageName(base_class);
450         EndClassTag();
451         class_declarations.emplace(base_class, base_class_declaration_offset);
452         info_.UpdateUint32(reference_offset, base_class_declaration_offset);
453       }
454     }
455 
456     FinishLazyTypes();
457     CloseNamespacesAboveDepth(0);
458     info_.EndTag();  // DW_TAG_compile_unit.
459     CHECK_EQ(info_.Depth(), 0);
460     std::vector<uint8_t> buffer;
461     buffer.reserve(info_.data()->size() + KB);
462     const size_t offset = owner_->builder_->GetDebugInfo()->GetPosition();
463     // All compilation units share single table which is at the start of .debug_abbrev.
464     const size_t debug_abbrev_offset = 0;
465     WriteDebugInfoCU(debug_abbrev_offset, info_, offset, &buffer, &owner_->debug_info_patches_);
466     owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size());
467   }
468 
469   // Write table into .debug_loc which describes location of dex register.
470   // The dex register might be valid only at some points and it might
471   // move between machine registers and stack.
472   void WriteRegLocation(const MethodDebugInfo* method_info,
473                         const std::vector<DexRegisterMap>& dex_register_maps,
474                         uint16_t vreg,
475                         bool is64bitValue,
476                         uint64_t compilation_unit_code_address,
477                         uint32_t dex_pc_low = 0,
478                         uint32_t dex_pc_high = 0xFFFFFFFF) {
479     WriteDebugLocEntry(method_info,
480                        dex_register_maps,
481                        vreg,
482                        is64bitValue,
483                        compilation_unit_code_address,
484                        dex_pc_low,
485                        dex_pc_high,
486                        owner_->builder_->GetIsa(),
487                        &info_,
488                        &owner_->debug_loc_,
489                        &owner_->debug_ranges_);
490   }
491 
492   // Linkage name uniquely identifies type.
493   // It is used to determine the dynamic type of objects.
494   // We use the methods_ field of class since it is unique and it is not moved by the GC.
WriteLinkageName(mirror::Class * type)495   void WriteLinkageName(mirror::Class* type) REQUIRES_SHARED(Locks::mutator_lock_) {
496     auto* methods_ptr = type->GetMethodsPtr();
497     if (methods_ptr == nullptr) {
498       // Some types might have no methods.  Allocate empty array instead.
499       LinearAlloc* allocator = Runtime::Current()->GetLinearAlloc();
500       void* storage = allocator->Alloc(Thread::Current(), sizeof(LengthPrefixedArray<ArtMethod>));
501       methods_ptr = new (storage) LengthPrefixedArray<ArtMethod>(0);
502       type->SetMethodsPtr(methods_ptr, 0, 0);
503       DCHECK(type->GetMethodsPtr() != nullptr);
504     }
505     char name[32];
506     snprintf(name, sizeof(name), "0x%" PRIXPTR, reinterpret_cast<uintptr_t>(methods_ptr));
507     info_.WriteString(dwarf::DW_AT_linkage_name, name);
508   }
509 
510   // Some types are difficult to define as we go since they need
511   // to be enclosed in the right set of namespaces. Therefore we
512   // just define all types lazily at the end of compilation unit.
WriteLazyType(const char * type_descriptor)513   void WriteLazyType(const char* type_descriptor) {
514     if (type_descriptor != nullptr && type_descriptor[0] != 'V') {
515       lazy_types_.emplace(std::string(type_descriptor), info_.size());
516       info_.WriteRef4(dwarf::DW_AT_type, 0);
517     }
518   }
519 
FinishLazyTypes()520   void FinishLazyTypes() {
521     for (const auto& lazy_type : lazy_types_) {
522       info_.UpdateUint32(lazy_type.second, WriteTypeDeclaration(lazy_type.first));
523     }
524     lazy_types_.clear();
525   }
526 
527  private:
WriteName(const char * name)528   void WriteName(const char* name) {
529     if (name != nullptr) {
530       info_.WriteString(dwarf::DW_AT_name, name);
531     }
532   }
533 
534   // Convert dex type descriptor to DWARF.
535   // Returns offset in the compilation unit.
WriteTypeDeclaration(const std::string & desc)536   size_t WriteTypeDeclaration(const std::string& desc) {
537     using namespace dwarf;  // NOLINT. For easy access to DWARF constants.
538 
539     DCHECK(!desc.empty());
540     const auto it = type_cache_.find(desc);
541     if (it != type_cache_.end()) {
542       return it->second;
543     }
544 
545     size_t offset;
546     if (desc[0] == 'L') {
547       // Class type. For example: Lpackage/name;
548       size_t class_offset = StartClassTag(desc.c_str());
549       info_.WriteFlagPresent(DW_AT_declaration);
550       EndClassTag();
551       // Reference to the class type.
552       offset = info_.StartTag(DW_TAG_reference_type);
553       info_.WriteRef(DW_AT_type, class_offset);
554       info_.EndTag();
555     } else if (desc[0] == '[') {
556       // Array type.
557       size_t element_type = WriteTypeDeclaration(desc.substr(1));
558       CloseNamespacesAboveDepth(0);  // Declare in root namespace.
559       size_t array_type = info_.StartTag(DW_TAG_array_type);
560       info_.WriteFlagPresent(DW_AT_declaration);
561       info_.WriteRef(DW_AT_type, element_type);
562       info_.EndTag();
563       offset = info_.StartTag(DW_TAG_reference_type);
564       info_.WriteRef4(DW_AT_type, array_type);
565       info_.EndTag();
566     } else {
567       // Primitive types.
568       DCHECK_EQ(desc.size(), 1u);
569 
570       const char* name;
571       uint32_t encoding;
572       uint32_t byte_size;
573       switch (desc[0]) {
574       case 'B':
575         name = "byte";
576         encoding = DW_ATE_signed;
577         byte_size = 1;
578         break;
579       case 'C':
580         name = "char";
581         encoding = DW_ATE_UTF;
582         byte_size = 2;
583         break;
584       case 'D':
585         name = "double";
586         encoding = DW_ATE_float;
587         byte_size = 8;
588         break;
589       case 'F':
590         name = "float";
591         encoding = DW_ATE_float;
592         byte_size = 4;
593         break;
594       case 'I':
595         name = "int";
596         encoding = DW_ATE_signed;
597         byte_size = 4;
598         break;
599       case 'J':
600         name = "long";
601         encoding = DW_ATE_signed;
602         byte_size = 8;
603         break;
604       case 'S':
605         name = "short";
606         encoding = DW_ATE_signed;
607         byte_size = 2;
608         break;
609       case 'Z':
610         name = "boolean";
611         encoding = DW_ATE_boolean;
612         byte_size = 1;
613         break;
614       case 'V':
615         LOG(FATAL) << "Void type should not be encoded";
616         UNREACHABLE();
617       default:
618         LOG(FATAL) << "Unknown dex type descriptor: \"" << desc << "\"";
619         UNREACHABLE();
620       }
621       CloseNamespacesAboveDepth(0);  // Declare in root namespace.
622       offset = info_.StartTag(DW_TAG_base_type);
623       WriteName(name);
624       info_.WriteData1(DW_AT_encoding, encoding);
625       info_.WriteData1(DW_AT_byte_size, byte_size);
626       info_.EndTag();
627     }
628 
629     type_cache_.emplace(desc, offset);
630     return offset;
631   }
632 
633   // Start DW_TAG_class_type tag nested in DW_TAG_namespace tags.
634   // Returns offset of the class tag in the compilation unit.
StartClassTag(const char * desc)635   size_t StartClassTag(const char* desc) {
636     std::string name = SetNamespaceForClass(desc);
637     size_t offset = info_.StartTag(dwarf::DW_TAG_class_type);
638     WriteName(name.c_str());
639     return offset;
640   }
641 
EndClassTag()642   void EndClassTag() {
643     info_.EndTag();
644   }
645 
646   // Set the current namespace nesting to one required by the given class.
647   // Returns the class name with namespaces, 'L', and ';' stripped.
SetNamespaceForClass(const char * desc)648   std::string SetNamespaceForClass(const char* desc) {
649     DCHECK(desc != nullptr && desc[0] == 'L');
650     desc++;  // Skip the initial 'L'.
651     size_t depth = 0;
652     for (const char* end; (end = strchr(desc, '/')) != nullptr; desc = end + 1, ++depth) {
653       // Check whether the name at this depth is already what we need.
654       if (depth < current_namespace_.size()) {
655         const std::string& name = current_namespace_[depth];
656         if (name.compare(0, name.size(), desc, end - desc) == 0) {
657           continue;
658         }
659       }
660       // Otherwise we need to open a new namespace tag at this depth.
661       CloseNamespacesAboveDepth(depth);
662       info_.StartTag(dwarf::DW_TAG_namespace);
663       std::string name(desc, end - desc);
664       WriteName(name.c_str());
665       current_namespace_.push_back(std::move(name));
666     }
667     CloseNamespacesAboveDepth(depth);
668     return std::string(desc, strchr(desc, ';') - desc);
669   }
670 
671   // Close namespace tags to reach the given nesting depth.
CloseNamespacesAboveDepth(size_t depth)672   void CloseNamespacesAboveDepth(size_t depth) {
673     DCHECK_LE(depth, current_namespace_.size());
674     while (current_namespace_.size() > depth) {
675       info_.EndTag();
676       current_namespace_.pop_back();
677     }
678   }
679 
680   // For access to the ELF sections.
681   ElfDebugInfoWriter<ElfTypes>* owner_;
682   // Temporary buffer to create and store the entries.
683   dwarf::DebugInfoEntryWriter<> info_;
684   // Cache of already translated type descriptors.
685   std::map<std::string, size_t> type_cache_;  // type_desc -> definition_offset.
686   // 32-bit references which need to be resolved to a type later.
687   // Given type may be used multiple times.  Therefore we need a multimap.
688   std::multimap<std::string, size_t> lazy_types_;  // type_desc -> patch_offset.
689   // The current set of open namespace tags which are active and not closed yet.
690   std::vector<std::string> current_namespace_;
691 };
692 
693 }  // namespace debug
694 }  // namespace art
695 
696 #endif  // ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
697 
698