1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
18 #define ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
19
20 #include <map>
21 #include <unordered_set>
22 #include <vector>
23
24 #include "art_field-inl.h"
25 #include "debug/dwarf/debug_abbrev_writer.h"
26 #include "debug/dwarf/debug_info_entry_writer.h"
27 #include "debug/elf_compilation_unit.h"
28 #include "debug/elf_debug_loc_writer.h"
29 #include "debug/method_debug_info.h"
30 #include "dex/code_item_accessors-inl.h"
31 #include "dex/dex_file-inl.h"
32 #include "dex/dex_file.h"
33 #include "heap_poisoning.h"
34 #include "linear_alloc.h"
35 #include "linker/elf_builder.h"
36 #include "mirror/array.h"
37 #include "mirror/class-inl.h"
38 #include "mirror/class.h"
39 #include "oat_file.h"
40
41 namespace art {
42 namespace debug {
43
44 typedef std::vector<DexFile::LocalInfo> LocalInfos;
45
LocalInfoCallback(void * ctx,const DexFile::LocalInfo & entry)46 static void LocalInfoCallback(void* ctx, const DexFile::LocalInfo& entry) {
47 static_cast<LocalInfos*>(ctx)->push_back(entry);
48 }
49
GetParamNames(const MethodDebugInfo * mi)50 static std::vector<const char*> GetParamNames(const MethodDebugInfo* mi) {
51 std::vector<const char*> names;
52 CodeItemDebugInfoAccessor accessor(*mi->dex_file, mi->code_item, mi->dex_method_index);
53 if (accessor.HasCodeItem()) {
54 DCHECK(mi->dex_file != nullptr);
55 const uint8_t* stream = mi->dex_file->GetDebugInfoStream(accessor.DebugInfoOffset());
56 if (stream != nullptr) {
57 DecodeUnsignedLeb128(&stream); // line.
58 uint32_t parameters_size = DecodeUnsignedLeb128(&stream);
59 for (uint32_t i = 0; i < parameters_size; ++i) {
60 uint32_t id = DecodeUnsignedLeb128P1(&stream);
61 names.push_back(mi->dex_file->StringDataByIdx(dex::StringIndex(id)));
62 }
63 }
64 }
65 return names;
66 }
67
68 // Helper class to write .debug_info and its supporting sections.
69 template<typename ElfTypes>
70 class ElfDebugInfoWriter {
71 using Elf_Addr = typename ElfTypes::Addr;
72
73 public:
ElfDebugInfoWriter(linker::ElfBuilder<ElfTypes> * builder)74 explicit ElfDebugInfoWriter(linker::ElfBuilder<ElfTypes>* builder)
75 : builder_(builder),
76 debug_abbrev_(&debug_abbrev_buffer_) {
77 }
78
Start()79 void Start() {
80 builder_->GetDebugInfo()->Start();
81 }
82
End(bool write_oat_patches)83 void End(bool write_oat_patches) {
84 builder_->GetDebugInfo()->End();
85 if (write_oat_patches) {
86 builder_->WritePatches(".debug_info.oat_patches",
87 ArrayRef<const uintptr_t>(debug_info_patches_));
88 }
89 builder_->WriteSection(".debug_abbrev", &debug_abbrev_buffer_);
90 if (!debug_loc_.empty()) {
91 builder_->WriteSection(".debug_loc", &debug_loc_);
92 }
93 if (!debug_ranges_.empty()) {
94 builder_->WriteSection(".debug_ranges", &debug_ranges_);
95 }
96 }
97
98 private:
99 linker::ElfBuilder<ElfTypes>* builder_;
100 std::vector<uintptr_t> debug_info_patches_;
101 std::vector<uint8_t> debug_abbrev_buffer_;
102 dwarf::DebugAbbrevWriter<> debug_abbrev_;
103 std::vector<uint8_t> debug_loc_;
104 std::vector<uint8_t> debug_ranges_;
105
106 std::unordered_set<const char*> defined_dex_classes_; // For CHECKs only.
107
108 template<typename ElfTypes2>
109 friend class ElfCompilationUnitWriter;
110 };
111
112 // Helper class to write one compilation unit.
113 // It holds helper methods and temporary state.
114 template<typename ElfTypes>
115 class ElfCompilationUnitWriter {
116 using Elf_Addr = typename ElfTypes::Addr;
117
118 public:
ElfCompilationUnitWriter(ElfDebugInfoWriter<ElfTypes> * owner)119 explicit ElfCompilationUnitWriter(ElfDebugInfoWriter<ElfTypes>* owner)
120 : owner_(owner),
121 info_(Is64BitInstructionSet(owner_->builder_->GetIsa()), &owner->debug_abbrev_) {
122 }
123
Write(const ElfCompilationUnit & compilation_unit)124 void Write(const ElfCompilationUnit& compilation_unit) {
125 CHECK(!compilation_unit.methods.empty());
126 const Elf_Addr base_address = compilation_unit.is_code_address_text_relative
127 ? owner_->builder_->GetText()->GetAddress()
128 : 0;
129 const bool is64bit = Is64BitInstructionSet(owner_->builder_->GetIsa());
130 using namespace dwarf; // NOLINT. For easy access to DWARF constants.
131
132 info_.StartTag(DW_TAG_compile_unit);
133 info_.WriteString(DW_AT_producer, "Android dex2oat");
134 info_.WriteData1(DW_AT_language, DW_LANG_Java);
135 info_.WriteString(DW_AT_comp_dir, "$JAVA_SRC_ROOT");
136 // The low_pc acts as base address for several other addresses/ranges.
137 info_.WriteAddr(DW_AT_low_pc, base_address + compilation_unit.code_address);
138 info_.WriteSecOffset(DW_AT_stmt_list, compilation_unit.debug_line_offset);
139
140 // Write .debug_ranges entries covering code ranges of the whole compilation unit.
141 dwarf::Writer<> debug_ranges(&owner_->debug_ranges_);
142 info_.WriteSecOffset(DW_AT_ranges, owner_->debug_ranges_.size());
143 for (auto mi : compilation_unit.methods) {
144 uint64_t low_pc = mi->code_address - compilation_unit.code_address;
145 uint64_t high_pc = low_pc + mi->code_size;
146 if (is64bit) {
147 debug_ranges.PushUint64(low_pc);
148 debug_ranges.PushUint64(high_pc);
149 } else {
150 debug_ranges.PushUint32(low_pc);
151 debug_ranges.PushUint32(high_pc);
152 }
153 }
154 if (is64bit) {
155 debug_ranges.PushUint64(0); // End of list.
156 debug_ranges.PushUint64(0);
157 } else {
158 debug_ranges.PushUint32(0); // End of list.
159 debug_ranges.PushUint32(0);
160 }
161
162 const char* last_dex_class_desc = nullptr;
163 for (auto mi : compilation_unit.methods) {
164 DCHECK(mi->dex_file != nullptr);
165 const DexFile* dex = mi->dex_file;
166 CodeItemDebugInfoAccessor accessor(*dex, mi->code_item, mi->dex_method_index);
167 const DexFile::MethodId& dex_method = dex->GetMethodId(mi->dex_method_index);
168 const DexFile::ProtoId& dex_proto = dex->GetMethodPrototype(dex_method);
169 const DexFile::TypeList* dex_params = dex->GetProtoParameters(dex_proto);
170 const char* dex_class_desc = dex->GetMethodDeclaringClassDescriptor(dex_method);
171 const bool is_static = (mi->access_flags & kAccStatic) != 0;
172
173 // Enclose the method in correct class definition.
174 if (last_dex_class_desc != dex_class_desc) {
175 if (last_dex_class_desc != nullptr) {
176 EndClassTag();
177 }
178 // Write reference tag for the class we are about to declare.
179 size_t reference_tag_offset = info_.StartTag(DW_TAG_reference_type);
180 type_cache_.emplace(std::string(dex_class_desc), reference_tag_offset);
181 size_t type_attrib_offset = info_.size();
182 info_.WriteRef4(DW_AT_type, 0);
183 info_.EndTag();
184 // Declare the class that owns this method.
185 size_t class_offset = StartClassTag(dex_class_desc);
186 info_.UpdateUint32(type_attrib_offset, class_offset);
187 info_.WriteFlagPresent(DW_AT_declaration);
188 // Check that each class is defined only once.
189 bool unique = owner_->defined_dex_classes_.insert(dex_class_desc).second;
190 CHECK(unique) << "Redefinition of " << dex_class_desc;
191 last_dex_class_desc = dex_class_desc;
192 }
193
194 int start_depth = info_.Depth();
195 info_.StartTag(DW_TAG_subprogram);
196 WriteName(dex->GetMethodName(dex_method));
197 info_.WriteAddr(DW_AT_low_pc, base_address + mi->code_address);
198 info_.WriteUdata(DW_AT_high_pc, mi->code_size);
199 std::vector<uint8_t> expr_buffer;
200 Expression expr(&expr_buffer);
201 expr.WriteOpCallFrameCfa();
202 info_.WriteExprLoc(DW_AT_frame_base, expr);
203 WriteLazyType(dex->GetReturnTypeDescriptor(dex_proto));
204
205 // Decode dex register locations for all stack maps.
206 // It might be expensive, so do it just once and reuse the result.
207 std::vector<DexRegisterMap> dex_reg_maps;
208 if (accessor.HasCodeItem() && mi->code_info != nullptr) {
209 const CodeInfo code_info(mi->code_info);
210 CodeInfoEncoding encoding = code_info.ExtractEncoding();
211 for (size_t s = 0; s < code_info.GetNumberOfStackMaps(encoding); ++s) {
212 const StackMap& stack_map = code_info.GetStackMapAt(s, encoding);
213 dex_reg_maps.push_back(code_info.GetDexRegisterMapOf(
214 stack_map, encoding, accessor.RegistersSize()));
215 }
216 }
217
218 // Write parameters. DecodeDebugLocalInfo returns them as well, but it does not
219 // guarantee order or uniqueness so it is safer to iterate over them manually.
220 // DecodeDebugLocalInfo might not also be available if there is no debug info.
221 std::vector<const char*> param_names = GetParamNames(mi);
222 uint32_t arg_reg = 0;
223 if (!is_static) {
224 info_.StartTag(DW_TAG_formal_parameter);
225 WriteName("this");
226 info_.WriteFlagPresent(DW_AT_artificial);
227 WriteLazyType(dex_class_desc);
228 if (accessor.HasCodeItem()) {
229 // Write the stack location of the parameter.
230 const uint32_t vreg = accessor.RegistersSize() - accessor.InsSize() + arg_reg;
231 const bool is64bitValue = false;
232 WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address);
233 }
234 arg_reg++;
235 info_.EndTag();
236 }
237 if (dex_params != nullptr) {
238 for (uint32_t i = 0; i < dex_params->Size(); ++i) {
239 info_.StartTag(DW_TAG_formal_parameter);
240 // Parameter names may not be always available.
241 if (i < param_names.size()) {
242 WriteName(param_names[i]);
243 }
244 // Write the type.
245 const char* type_desc = dex->StringByTypeIdx(dex_params->GetTypeItem(i).type_idx_);
246 WriteLazyType(type_desc);
247 const bool is64bitValue = type_desc[0] == 'D' || type_desc[0] == 'J';
248 if (accessor.HasCodeItem()) {
249 // Write the stack location of the parameter.
250 const uint32_t vreg = accessor.RegistersSize() - accessor.InsSize() + arg_reg;
251 WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address);
252 }
253 arg_reg += is64bitValue ? 2 : 1;
254 info_.EndTag();
255 }
256 if (accessor.HasCodeItem()) {
257 DCHECK_EQ(arg_reg, accessor.InsSize());
258 }
259 }
260
261 // Write local variables.
262 LocalInfos local_infos;
263 if (accessor.DecodeDebugLocalInfo(is_static,
264 mi->dex_method_index,
265 LocalInfoCallback,
266 &local_infos)) {
267 for (const DexFile::LocalInfo& var : local_infos) {
268 if (var.reg_ < accessor.RegistersSize() - accessor.InsSize()) {
269 info_.StartTag(DW_TAG_variable);
270 WriteName(var.name_);
271 WriteLazyType(var.descriptor_);
272 bool is64bitValue = var.descriptor_[0] == 'D' || var.descriptor_[0] == 'J';
273 WriteRegLocation(mi,
274 dex_reg_maps,
275 var.reg_,
276 is64bitValue,
277 compilation_unit.code_address,
278 var.start_address_,
279 var.end_address_);
280 info_.EndTag();
281 }
282 }
283 }
284
285 info_.EndTag();
286 CHECK_EQ(info_.Depth(), start_depth); // Balanced start/end.
287 }
288 if (last_dex_class_desc != nullptr) {
289 EndClassTag();
290 }
291 FinishLazyTypes();
292 CloseNamespacesAboveDepth(0);
293 info_.EndTag(); // DW_TAG_compile_unit
294 CHECK_EQ(info_.Depth(), 0);
295 std::vector<uint8_t> buffer;
296 buffer.reserve(info_.data()->size() + KB);
297 const size_t offset = owner_->builder_->GetDebugInfo()->GetPosition();
298 // All compilation units share single table which is at the start of .debug_abbrev.
299 const size_t debug_abbrev_offset = 0;
300 WriteDebugInfoCU(debug_abbrev_offset, info_, offset, &buffer, &owner_->debug_info_patches_);
301 owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size());
302 }
303
Write(const ArrayRef<mirror::Class * > & types)304 void Write(const ArrayRef<mirror::Class*>& types) REQUIRES_SHARED(Locks::mutator_lock_) {
305 using namespace dwarf; // NOLINT. For easy access to DWARF constants.
306
307 info_.StartTag(DW_TAG_compile_unit);
308 info_.WriteString(DW_AT_producer, "Android dex2oat");
309 info_.WriteData1(DW_AT_language, DW_LANG_Java);
310
311 // Base class references to be patched at the end.
312 std::map<size_t, mirror::Class*> base_class_references;
313
314 // Already written declarations or definitions.
315 std::map<mirror::Class*, size_t> class_declarations;
316
317 std::vector<uint8_t> expr_buffer;
318 for (mirror::Class* type : types) {
319 if (type->IsPrimitive()) {
320 // For primitive types the definition and the declaration is the same.
321 if (type->GetPrimitiveType() != Primitive::kPrimVoid) {
322 WriteTypeDeclaration(type->GetDescriptor(nullptr));
323 }
324 } else if (type->IsArrayClass()) {
325 mirror::Class* element_type = type->GetComponentType();
326 uint32_t component_size = type->GetComponentSize();
327 uint32_t data_offset = mirror::Array::DataOffset(component_size).Uint32Value();
328 uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
329
330 CloseNamespacesAboveDepth(0); // Declare in root namespace.
331 info_.StartTag(DW_TAG_array_type);
332 std::string descriptor_string;
333 WriteLazyType(element_type->GetDescriptor(&descriptor_string));
334 WriteLinkageName(type);
335 info_.WriteUdata(DW_AT_data_member_location, data_offset);
336 info_.StartTag(DW_TAG_subrange_type);
337 Expression count_expr(&expr_buffer);
338 count_expr.WriteOpPushObjectAddress();
339 count_expr.WriteOpPlusUconst(length_offset);
340 count_expr.WriteOpDerefSize(4); // Array length is always 32-bit wide.
341 info_.WriteExprLoc(DW_AT_count, count_expr);
342 info_.EndTag(); // DW_TAG_subrange_type.
343 info_.EndTag(); // DW_TAG_array_type.
344 } else if (type->IsInterface()) {
345 // Skip. Variables cannot have an interface as a dynamic type.
346 // We do not expose the interface information to the debugger in any way.
347 } else {
348 std::string descriptor_string;
349 const char* desc = type->GetDescriptor(&descriptor_string);
350 size_t class_offset = StartClassTag(desc);
351 class_declarations.emplace(type, class_offset);
352
353 if (!type->IsVariableSize()) {
354 info_.WriteUdata(DW_AT_byte_size, type->GetObjectSize());
355 }
356
357 WriteLinkageName(type);
358
359 if (type->IsObjectClass()) {
360 // Generate artificial member which is used to get the dynamic type of variable.
361 // The run-time value of this field will correspond to linkage name of some type.
362 // We need to do it only once in j.l.Object since all other types inherit it.
363 info_.StartTag(DW_TAG_member);
364 WriteName(".dynamic_type");
365 WriteLazyType(sizeof(uintptr_t) == 8 ? "J" : "I");
366 info_.WriteFlagPresent(DW_AT_artificial);
367 // Create DWARF expression to get the value of the methods_ field.
368 Expression expr(&expr_buffer);
369 // The address of the object has been implicitly pushed on the stack.
370 // Dereference the klass_ field of Object (32-bit; possibly poisoned).
371 DCHECK_EQ(type->ClassOffset().Uint32Value(), 0u);
372 DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Class>), 4u);
373 expr.WriteOpDerefSize(4);
374 if (kPoisonHeapReferences) {
375 expr.WriteOpNeg();
376 // DWARF stack is pointer sized. Ensure that the high bits are clear.
377 expr.WriteOpConstu(0xFFFFFFFF);
378 expr.WriteOpAnd();
379 }
380 // Add offset to the methods_ field.
381 expr.WriteOpPlusUconst(mirror::Class::MethodsOffset().Uint32Value());
382 // Top of stack holds the location of the field now.
383 info_.WriteExprLoc(DW_AT_data_member_location, expr);
384 info_.EndTag(); // DW_TAG_member.
385 }
386
387 // Base class.
388 mirror::Class* base_class = type->GetSuperClass();
389 if (base_class != nullptr) {
390 info_.StartTag(DW_TAG_inheritance);
391 base_class_references.emplace(info_.size(), base_class);
392 info_.WriteRef4(DW_AT_type, 0);
393 info_.WriteUdata(DW_AT_data_member_location, 0);
394 info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public);
395 info_.EndTag(); // DW_TAG_inheritance.
396 }
397
398 // Member variables.
399 for (uint32_t i = 0, count = type->NumInstanceFields(); i < count; ++i) {
400 ArtField* field = type->GetInstanceField(i);
401 info_.StartTag(DW_TAG_member);
402 WriteName(field->GetName());
403 WriteLazyType(field->GetTypeDescriptor());
404 info_.WriteUdata(DW_AT_data_member_location, field->GetOffset().Uint32Value());
405 uint32_t access_flags = field->GetAccessFlags();
406 if (access_flags & kAccPublic) {
407 info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public);
408 } else if (access_flags & kAccProtected) {
409 info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_protected);
410 } else if (access_flags & kAccPrivate) {
411 info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private);
412 }
413 info_.EndTag(); // DW_TAG_member.
414 }
415
416 if (type->IsStringClass()) {
417 // Emit debug info about an artifical class member for java.lang.String which represents
418 // the first element of the data stored in a string instance. Consumers of the debug
419 // info will be able to read the content of java.lang.String based on the count (real
420 // field) and based on the location of this data member.
421 info_.StartTag(DW_TAG_member);
422 WriteName("value");
423 // We don't support fields with C like array types so we just say its type is java char.
424 WriteLazyType("C"); // char.
425 info_.WriteUdata(DW_AT_data_member_location,
426 mirror::String::ValueOffset().Uint32Value());
427 info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private);
428 info_.EndTag(); // DW_TAG_member.
429 }
430
431 EndClassTag();
432 }
433 }
434
435 // Write base class declarations.
436 for (const auto& base_class_reference : base_class_references) {
437 size_t reference_offset = base_class_reference.first;
438 mirror::Class* base_class = base_class_reference.second;
439 const auto it = class_declarations.find(base_class);
440 if (it != class_declarations.end()) {
441 info_.UpdateUint32(reference_offset, it->second);
442 } else {
443 // Declare base class. We can not use the standard WriteLazyType
444 // since we want to avoid the DW_TAG_reference_tag wrapping.
445 std::string tmp_storage;
446 const char* base_class_desc = base_class->GetDescriptor(&tmp_storage);
447 size_t base_class_declaration_offset = StartClassTag(base_class_desc);
448 info_.WriteFlagPresent(DW_AT_declaration);
449 WriteLinkageName(base_class);
450 EndClassTag();
451 class_declarations.emplace(base_class, base_class_declaration_offset);
452 info_.UpdateUint32(reference_offset, base_class_declaration_offset);
453 }
454 }
455
456 FinishLazyTypes();
457 CloseNamespacesAboveDepth(0);
458 info_.EndTag(); // DW_TAG_compile_unit.
459 CHECK_EQ(info_.Depth(), 0);
460 std::vector<uint8_t> buffer;
461 buffer.reserve(info_.data()->size() + KB);
462 const size_t offset = owner_->builder_->GetDebugInfo()->GetPosition();
463 // All compilation units share single table which is at the start of .debug_abbrev.
464 const size_t debug_abbrev_offset = 0;
465 WriteDebugInfoCU(debug_abbrev_offset, info_, offset, &buffer, &owner_->debug_info_patches_);
466 owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size());
467 }
468
469 // Write table into .debug_loc which describes location of dex register.
470 // The dex register might be valid only at some points and it might
471 // move between machine registers and stack.
472 void WriteRegLocation(const MethodDebugInfo* method_info,
473 const std::vector<DexRegisterMap>& dex_register_maps,
474 uint16_t vreg,
475 bool is64bitValue,
476 uint64_t compilation_unit_code_address,
477 uint32_t dex_pc_low = 0,
478 uint32_t dex_pc_high = 0xFFFFFFFF) {
479 WriteDebugLocEntry(method_info,
480 dex_register_maps,
481 vreg,
482 is64bitValue,
483 compilation_unit_code_address,
484 dex_pc_low,
485 dex_pc_high,
486 owner_->builder_->GetIsa(),
487 &info_,
488 &owner_->debug_loc_,
489 &owner_->debug_ranges_);
490 }
491
492 // Linkage name uniquely identifies type.
493 // It is used to determine the dynamic type of objects.
494 // We use the methods_ field of class since it is unique and it is not moved by the GC.
WriteLinkageName(mirror::Class * type)495 void WriteLinkageName(mirror::Class* type) REQUIRES_SHARED(Locks::mutator_lock_) {
496 auto* methods_ptr = type->GetMethodsPtr();
497 if (methods_ptr == nullptr) {
498 // Some types might have no methods. Allocate empty array instead.
499 LinearAlloc* allocator = Runtime::Current()->GetLinearAlloc();
500 void* storage = allocator->Alloc(Thread::Current(), sizeof(LengthPrefixedArray<ArtMethod>));
501 methods_ptr = new (storage) LengthPrefixedArray<ArtMethod>(0);
502 type->SetMethodsPtr(methods_ptr, 0, 0);
503 DCHECK(type->GetMethodsPtr() != nullptr);
504 }
505 char name[32];
506 snprintf(name, sizeof(name), "0x%" PRIXPTR, reinterpret_cast<uintptr_t>(methods_ptr));
507 info_.WriteString(dwarf::DW_AT_linkage_name, name);
508 }
509
510 // Some types are difficult to define as we go since they need
511 // to be enclosed in the right set of namespaces. Therefore we
512 // just define all types lazily at the end of compilation unit.
WriteLazyType(const char * type_descriptor)513 void WriteLazyType(const char* type_descriptor) {
514 if (type_descriptor != nullptr && type_descriptor[0] != 'V') {
515 lazy_types_.emplace(std::string(type_descriptor), info_.size());
516 info_.WriteRef4(dwarf::DW_AT_type, 0);
517 }
518 }
519
FinishLazyTypes()520 void FinishLazyTypes() {
521 for (const auto& lazy_type : lazy_types_) {
522 info_.UpdateUint32(lazy_type.second, WriteTypeDeclaration(lazy_type.first));
523 }
524 lazy_types_.clear();
525 }
526
527 private:
WriteName(const char * name)528 void WriteName(const char* name) {
529 if (name != nullptr) {
530 info_.WriteString(dwarf::DW_AT_name, name);
531 }
532 }
533
534 // Convert dex type descriptor to DWARF.
535 // Returns offset in the compilation unit.
WriteTypeDeclaration(const std::string & desc)536 size_t WriteTypeDeclaration(const std::string& desc) {
537 using namespace dwarf; // NOLINT. For easy access to DWARF constants.
538
539 DCHECK(!desc.empty());
540 const auto it = type_cache_.find(desc);
541 if (it != type_cache_.end()) {
542 return it->second;
543 }
544
545 size_t offset;
546 if (desc[0] == 'L') {
547 // Class type. For example: Lpackage/name;
548 size_t class_offset = StartClassTag(desc.c_str());
549 info_.WriteFlagPresent(DW_AT_declaration);
550 EndClassTag();
551 // Reference to the class type.
552 offset = info_.StartTag(DW_TAG_reference_type);
553 info_.WriteRef(DW_AT_type, class_offset);
554 info_.EndTag();
555 } else if (desc[0] == '[') {
556 // Array type.
557 size_t element_type = WriteTypeDeclaration(desc.substr(1));
558 CloseNamespacesAboveDepth(0); // Declare in root namespace.
559 size_t array_type = info_.StartTag(DW_TAG_array_type);
560 info_.WriteFlagPresent(DW_AT_declaration);
561 info_.WriteRef(DW_AT_type, element_type);
562 info_.EndTag();
563 offset = info_.StartTag(DW_TAG_reference_type);
564 info_.WriteRef4(DW_AT_type, array_type);
565 info_.EndTag();
566 } else {
567 // Primitive types.
568 DCHECK_EQ(desc.size(), 1u);
569
570 const char* name;
571 uint32_t encoding;
572 uint32_t byte_size;
573 switch (desc[0]) {
574 case 'B':
575 name = "byte";
576 encoding = DW_ATE_signed;
577 byte_size = 1;
578 break;
579 case 'C':
580 name = "char";
581 encoding = DW_ATE_UTF;
582 byte_size = 2;
583 break;
584 case 'D':
585 name = "double";
586 encoding = DW_ATE_float;
587 byte_size = 8;
588 break;
589 case 'F':
590 name = "float";
591 encoding = DW_ATE_float;
592 byte_size = 4;
593 break;
594 case 'I':
595 name = "int";
596 encoding = DW_ATE_signed;
597 byte_size = 4;
598 break;
599 case 'J':
600 name = "long";
601 encoding = DW_ATE_signed;
602 byte_size = 8;
603 break;
604 case 'S':
605 name = "short";
606 encoding = DW_ATE_signed;
607 byte_size = 2;
608 break;
609 case 'Z':
610 name = "boolean";
611 encoding = DW_ATE_boolean;
612 byte_size = 1;
613 break;
614 case 'V':
615 LOG(FATAL) << "Void type should not be encoded";
616 UNREACHABLE();
617 default:
618 LOG(FATAL) << "Unknown dex type descriptor: \"" << desc << "\"";
619 UNREACHABLE();
620 }
621 CloseNamespacesAboveDepth(0); // Declare in root namespace.
622 offset = info_.StartTag(DW_TAG_base_type);
623 WriteName(name);
624 info_.WriteData1(DW_AT_encoding, encoding);
625 info_.WriteData1(DW_AT_byte_size, byte_size);
626 info_.EndTag();
627 }
628
629 type_cache_.emplace(desc, offset);
630 return offset;
631 }
632
633 // Start DW_TAG_class_type tag nested in DW_TAG_namespace tags.
634 // Returns offset of the class tag in the compilation unit.
StartClassTag(const char * desc)635 size_t StartClassTag(const char* desc) {
636 std::string name = SetNamespaceForClass(desc);
637 size_t offset = info_.StartTag(dwarf::DW_TAG_class_type);
638 WriteName(name.c_str());
639 return offset;
640 }
641
EndClassTag()642 void EndClassTag() {
643 info_.EndTag();
644 }
645
646 // Set the current namespace nesting to one required by the given class.
647 // Returns the class name with namespaces, 'L', and ';' stripped.
SetNamespaceForClass(const char * desc)648 std::string SetNamespaceForClass(const char* desc) {
649 DCHECK(desc != nullptr && desc[0] == 'L');
650 desc++; // Skip the initial 'L'.
651 size_t depth = 0;
652 for (const char* end; (end = strchr(desc, '/')) != nullptr; desc = end + 1, ++depth) {
653 // Check whether the name at this depth is already what we need.
654 if (depth < current_namespace_.size()) {
655 const std::string& name = current_namespace_[depth];
656 if (name.compare(0, name.size(), desc, end - desc) == 0) {
657 continue;
658 }
659 }
660 // Otherwise we need to open a new namespace tag at this depth.
661 CloseNamespacesAboveDepth(depth);
662 info_.StartTag(dwarf::DW_TAG_namespace);
663 std::string name(desc, end - desc);
664 WriteName(name.c_str());
665 current_namespace_.push_back(std::move(name));
666 }
667 CloseNamespacesAboveDepth(depth);
668 return std::string(desc, strchr(desc, ';') - desc);
669 }
670
671 // Close namespace tags to reach the given nesting depth.
CloseNamespacesAboveDepth(size_t depth)672 void CloseNamespacesAboveDepth(size_t depth) {
673 DCHECK_LE(depth, current_namespace_.size());
674 while (current_namespace_.size() > depth) {
675 info_.EndTag();
676 current_namespace_.pop_back();
677 }
678 }
679
680 // For access to the ELF sections.
681 ElfDebugInfoWriter<ElfTypes>* owner_;
682 // Temporary buffer to create and store the entries.
683 dwarf::DebugInfoEntryWriter<> info_;
684 // Cache of already translated type descriptors.
685 std::map<std::string, size_t> type_cache_; // type_desc -> definition_offset.
686 // 32-bit references which need to be resolved to a type later.
687 // Given type may be used multiple times. Therefore we need a multimap.
688 std::multimap<std::string, size_t> lazy_types_; // type_desc -> patch_offset.
689 // The current set of open namespace tags which are active and not closed yet.
690 std::vector<std::string> current_namespace_;
691 };
692
693 } // namespace debug
694 } // namespace art
695
696 #endif // ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
697
698