1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "thread.h"
18
19 #if !defined(__APPLE__)
20 #include <sched.h>
21 #endif
22
23 #include <pthread.h>
24 #include <signal.h>
25 #include <sys/resource.h>
26 #include <sys/time.h>
27
28 #include <algorithm>
29 #include <bitset>
30 #include <cerrno>
31 #include <iostream>
32 #include <list>
33 #include <sstream>
34
35 #include "android-base/stringprintf.h"
36
37 #include "arch/context-inl.h"
38 #include "arch/context.h"
39 #include "art_field-inl.h"
40 #include "art_method-inl.h"
41 #include "base/bit_utils.h"
42 #include "base/file_utils.h"
43 #include "base/memory_tool.h"
44 #include "base/mutex.h"
45 #include "base/systrace.h"
46 #include "base/timing_logger.h"
47 #include "base/to_str.h"
48 #include "base/utils.h"
49 #include "class_linker-inl.h"
50 #include "debugger.h"
51 #include "dex/descriptors_names.h"
52 #include "dex/dex_file-inl.h"
53 #include "dex/dex_file_annotations.h"
54 #include "dex/dex_file_types.h"
55 #include "entrypoints/entrypoint_utils.h"
56 #include "entrypoints/quick/quick_alloc_entrypoints.h"
57 #include "gc/accounting/card_table-inl.h"
58 #include "gc/accounting/heap_bitmap-inl.h"
59 #include "gc/allocator/rosalloc.h"
60 #include "gc/heap.h"
61 #include "gc/space/space-inl.h"
62 #include "gc_root.h"
63 #include "handle_scope-inl.h"
64 #include "indirect_reference_table-inl.h"
65 #include "interpreter/interpreter.h"
66 #include "interpreter/shadow_frame.h"
67 #include "java_frame_root_info.h"
68 #include "java_vm_ext.h"
69 #include "jni_internal.h"
70 #include "mirror/class-inl.h"
71 #include "mirror/class_loader.h"
72 #include "mirror/object_array-inl.h"
73 #include "mirror/stack_trace_element.h"
74 #include "monitor.h"
75 #include "monitor_objects_stack_visitor.h"
76 #include "native_stack_dump.h"
77 #include "nativehelper/scoped_local_ref.h"
78 #include "nativehelper/scoped_utf_chars.h"
79 #include "nth_caller_visitor.h"
80 #include "oat_quick_method_header.h"
81 #include "obj_ptr-inl.h"
82 #include "object_lock.h"
83 #include "quick/quick_method_frame_info.h"
84 #include "quick_exception_handler.h"
85 #include "read_barrier-inl.h"
86 #include "reflection.h"
87 #include "runtime.h"
88 #include "runtime_callbacks.h"
89 #include "scoped_thread_state_change-inl.h"
90 #include "stack.h"
91 #include "stack_map.h"
92 #include "thread-inl.h"
93 #include "thread_list.h"
94 #include "verifier/method_verifier.h"
95 #include "verify_object.h"
96 #include "well_known_classes.h"
97
98 #if ART_USE_FUTEXES
99 #include "linux/futex.h"
100 #include "sys/syscall.h"
101 #ifndef SYS_futex
102 #define SYS_futex __NR_futex
103 #endif
104 #endif // ART_USE_FUTEXES
105
106 namespace art {
107
108 using android::base::StringAppendV;
109 using android::base::StringPrintf;
110
111 extern "C" NO_RETURN void artDeoptimize(Thread* self);
112
113 bool Thread::is_started_ = false;
114 pthread_key_t Thread::pthread_key_self_;
115 ConditionVariable* Thread::resume_cond_ = nullptr;
116 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
117 bool (*Thread::is_sensitive_thread_hook_)() = nullptr;
118 Thread* Thread::jit_sensitive_thread_ = nullptr;
119
120 static constexpr bool kVerifyImageObjectsMarked = kIsDebugBuild;
121
122 // For implicit overflow checks we reserve an extra piece of memory at the bottom
123 // of the stack (lowest memory). The higher portion of the memory
124 // is protected against reads and the lower is available for use while
125 // throwing the StackOverflow exception.
126 constexpr size_t kStackOverflowProtectedSize = 4 * kMemoryToolStackGuardSizeScale * KB;
127
128 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
129
InitCardTable()130 void Thread::InitCardTable() {
131 tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
132 }
133
UnimplementedEntryPoint()134 static void UnimplementedEntryPoint() {
135 UNIMPLEMENTED(FATAL);
136 }
137
138 void InitEntryPoints(JniEntryPoints* jpoints, QuickEntryPoints* qpoints);
139 void UpdateReadBarrierEntrypoints(QuickEntryPoints* qpoints, bool is_active);
140
SetIsGcMarkingAndUpdateEntrypoints(bool is_marking)141 void Thread::SetIsGcMarkingAndUpdateEntrypoints(bool is_marking) {
142 CHECK(kUseReadBarrier);
143 tls32_.is_gc_marking = is_marking;
144 UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active */ is_marking);
145 ResetQuickAllocEntryPointsForThread(is_marking);
146 }
147
InitTlsEntryPoints()148 void Thread::InitTlsEntryPoints() {
149 // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
150 uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.jni_entrypoints);
151 uintptr_t* end = reinterpret_cast<uintptr_t*>(
152 reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) + sizeof(tlsPtr_.quick_entrypoints));
153 for (uintptr_t* it = begin; it != end; ++it) {
154 *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
155 }
156 InitEntryPoints(&tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints);
157 }
158
ResetQuickAllocEntryPointsForThread(bool is_marking)159 void Thread::ResetQuickAllocEntryPointsForThread(bool is_marking) {
160 if (kUseReadBarrier && kRuntimeISA != InstructionSet::kX86_64) {
161 // Allocation entrypoint switching is currently only implemented for X86_64.
162 is_marking = true;
163 }
164 ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints, is_marking);
165 }
166
167 class DeoptimizationContextRecord {
168 public:
DeoptimizationContextRecord(const JValue & ret_val,bool is_reference,bool from_code,ObjPtr<mirror::Throwable> pending_exception,DeoptimizationMethodType method_type,DeoptimizationContextRecord * link)169 DeoptimizationContextRecord(const JValue& ret_val,
170 bool is_reference,
171 bool from_code,
172 ObjPtr<mirror::Throwable> pending_exception,
173 DeoptimizationMethodType method_type,
174 DeoptimizationContextRecord* link)
175 : ret_val_(ret_val),
176 is_reference_(is_reference),
177 from_code_(from_code),
178 pending_exception_(pending_exception.Ptr()),
179 deopt_method_type_(method_type),
180 link_(link) {}
181
GetReturnValue() const182 JValue GetReturnValue() const { return ret_val_; }
IsReference() const183 bool IsReference() const { return is_reference_; }
GetFromCode() const184 bool GetFromCode() const { return from_code_; }
GetPendingException() const185 ObjPtr<mirror::Throwable> GetPendingException() const { return pending_exception_; }
GetLink() const186 DeoptimizationContextRecord* GetLink() const { return link_; }
GetReturnValueAsGCRoot()187 mirror::Object** GetReturnValueAsGCRoot() {
188 DCHECK(is_reference_);
189 return ret_val_.GetGCRoot();
190 }
GetPendingExceptionAsGCRoot()191 mirror::Object** GetPendingExceptionAsGCRoot() {
192 return reinterpret_cast<mirror::Object**>(&pending_exception_);
193 }
GetDeoptimizationMethodType() const194 DeoptimizationMethodType GetDeoptimizationMethodType() const {
195 return deopt_method_type_;
196 }
197
198 private:
199 // The value returned by the method at the top of the stack before deoptimization.
200 JValue ret_val_;
201
202 // Indicates whether the returned value is a reference. If so, the GC will visit it.
203 const bool is_reference_;
204
205 // Whether the context was created from an explicit deoptimization in the code.
206 const bool from_code_;
207
208 // The exception that was pending before deoptimization (or null if there was no pending
209 // exception).
210 mirror::Throwable* pending_exception_;
211
212 // Whether the context was created for an (idempotent) runtime method.
213 const DeoptimizationMethodType deopt_method_type_;
214
215 // A link to the previous DeoptimizationContextRecord.
216 DeoptimizationContextRecord* const link_;
217
218 DISALLOW_COPY_AND_ASSIGN(DeoptimizationContextRecord);
219 };
220
221 class StackedShadowFrameRecord {
222 public:
StackedShadowFrameRecord(ShadowFrame * shadow_frame,StackedShadowFrameType type,StackedShadowFrameRecord * link)223 StackedShadowFrameRecord(ShadowFrame* shadow_frame,
224 StackedShadowFrameType type,
225 StackedShadowFrameRecord* link)
226 : shadow_frame_(shadow_frame),
227 type_(type),
228 link_(link) {}
229
GetShadowFrame() const230 ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetType() const231 StackedShadowFrameType GetType() const { return type_; }
GetLink() const232 StackedShadowFrameRecord* GetLink() const { return link_; }
233
234 private:
235 ShadowFrame* const shadow_frame_;
236 const StackedShadowFrameType type_;
237 StackedShadowFrameRecord* const link_;
238
239 DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord);
240 };
241
PushDeoptimizationContext(const JValue & return_value,bool is_reference,ObjPtr<mirror::Throwable> exception,bool from_code,DeoptimizationMethodType method_type)242 void Thread::PushDeoptimizationContext(const JValue& return_value,
243 bool is_reference,
244 ObjPtr<mirror::Throwable> exception,
245 bool from_code,
246 DeoptimizationMethodType method_type) {
247 DeoptimizationContextRecord* record = new DeoptimizationContextRecord(
248 return_value,
249 is_reference,
250 from_code,
251 exception,
252 method_type,
253 tlsPtr_.deoptimization_context_stack);
254 tlsPtr_.deoptimization_context_stack = record;
255 }
256
PopDeoptimizationContext(JValue * result,ObjPtr<mirror::Throwable> * exception,bool * from_code,DeoptimizationMethodType * method_type)257 void Thread::PopDeoptimizationContext(JValue* result,
258 ObjPtr<mirror::Throwable>* exception,
259 bool* from_code,
260 DeoptimizationMethodType* method_type) {
261 AssertHasDeoptimizationContext();
262 DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
263 tlsPtr_.deoptimization_context_stack = record->GetLink();
264 result->SetJ(record->GetReturnValue().GetJ());
265 *exception = record->GetPendingException();
266 *from_code = record->GetFromCode();
267 *method_type = record->GetDeoptimizationMethodType();
268 delete record;
269 }
270
AssertHasDeoptimizationContext()271 void Thread::AssertHasDeoptimizationContext() {
272 CHECK(tlsPtr_.deoptimization_context_stack != nullptr)
273 << "No deoptimization context for thread " << *this;
274 }
275
PushStackedShadowFrame(ShadowFrame * sf,StackedShadowFrameType type)276 void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) {
277 StackedShadowFrameRecord* record = new StackedShadowFrameRecord(
278 sf, type, tlsPtr_.stacked_shadow_frame_record);
279 tlsPtr_.stacked_shadow_frame_record = record;
280 }
281
PopStackedShadowFrame(StackedShadowFrameType type,bool must_be_present)282 ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present) {
283 StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
284 if (must_be_present) {
285 DCHECK(record != nullptr);
286 } else {
287 if (record == nullptr || record->GetType() != type) {
288 return nullptr;
289 }
290 }
291 tlsPtr_.stacked_shadow_frame_record = record->GetLink();
292 ShadowFrame* shadow_frame = record->GetShadowFrame();
293 delete record;
294 return shadow_frame;
295 }
296
297 class FrameIdToShadowFrame {
298 public:
Create(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next,size_t num_vregs)299 static FrameIdToShadowFrame* Create(size_t frame_id,
300 ShadowFrame* shadow_frame,
301 FrameIdToShadowFrame* next,
302 size_t num_vregs) {
303 // Append a bool array at the end to keep track of what vregs are updated by the debugger.
304 uint8_t* memory = new uint8_t[sizeof(FrameIdToShadowFrame) + sizeof(bool) * num_vregs];
305 return new (memory) FrameIdToShadowFrame(frame_id, shadow_frame, next);
306 }
307
Delete(FrameIdToShadowFrame * f)308 static void Delete(FrameIdToShadowFrame* f) {
309 uint8_t* memory = reinterpret_cast<uint8_t*>(f);
310 delete[] memory;
311 }
312
GetFrameId() const313 size_t GetFrameId() const { return frame_id_; }
GetShadowFrame() const314 ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetNext() const315 FrameIdToShadowFrame* GetNext() const { return next_; }
SetNext(FrameIdToShadowFrame * next)316 void SetNext(FrameIdToShadowFrame* next) { next_ = next; }
GetUpdatedVRegFlags()317 bool* GetUpdatedVRegFlags() {
318 return updated_vreg_flags_;
319 }
320
321 private:
FrameIdToShadowFrame(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next)322 FrameIdToShadowFrame(size_t frame_id,
323 ShadowFrame* shadow_frame,
324 FrameIdToShadowFrame* next)
325 : frame_id_(frame_id),
326 shadow_frame_(shadow_frame),
327 next_(next) {}
328
329 const size_t frame_id_;
330 ShadowFrame* const shadow_frame_;
331 FrameIdToShadowFrame* next_;
332 bool updated_vreg_flags_[0];
333
334 DISALLOW_COPY_AND_ASSIGN(FrameIdToShadowFrame);
335 };
336
FindFrameIdToShadowFrame(FrameIdToShadowFrame * head,size_t frame_id)337 static FrameIdToShadowFrame* FindFrameIdToShadowFrame(FrameIdToShadowFrame* head,
338 size_t frame_id) {
339 FrameIdToShadowFrame* found = nullptr;
340 for (FrameIdToShadowFrame* record = head; record != nullptr; record = record->GetNext()) {
341 if (record->GetFrameId() == frame_id) {
342 if (kIsDebugBuild) {
343 // Sanity check we have at most one record for this frame.
344 CHECK(found == nullptr) << "Multiple records for the frame " << frame_id;
345 found = record;
346 } else {
347 return record;
348 }
349 }
350 }
351 return found;
352 }
353
FindDebuggerShadowFrame(size_t frame_id)354 ShadowFrame* Thread::FindDebuggerShadowFrame(size_t frame_id) {
355 FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
356 tlsPtr_.frame_id_to_shadow_frame, frame_id);
357 if (record != nullptr) {
358 return record->GetShadowFrame();
359 }
360 return nullptr;
361 }
362
363 // Must only be called when FindDebuggerShadowFrame(frame_id) returns non-nullptr.
GetUpdatedVRegFlags(size_t frame_id)364 bool* Thread::GetUpdatedVRegFlags(size_t frame_id) {
365 FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
366 tlsPtr_.frame_id_to_shadow_frame, frame_id);
367 CHECK(record != nullptr);
368 return record->GetUpdatedVRegFlags();
369 }
370
FindOrCreateDebuggerShadowFrame(size_t frame_id,uint32_t num_vregs,ArtMethod * method,uint32_t dex_pc)371 ShadowFrame* Thread::FindOrCreateDebuggerShadowFrame(size_t frame_id,
372 uint32_t num_vregs,
373 ArtMethod* method,
374 uint32_t dex_pc) {
375 ShadowFrame* shadow_frame = FindDebuggerShadowFrame(frame_id);
376 if (shadow_frame != nullptr) {
377 return shadow_frame;
378 }
379 VLOG(deopt) << "Create pre-deopted ShadowFrame for " << ArtMethod::PrettyMethod(method);
380 shadow_frame = ShadowFrame::CreateDeoptimizedFrame(num_vregs, nullptr, method, dex_pc);
381 FrameIdToShadowFrame* record = FrameIdToShadowFrame::Create(frame_id,
382 shadow_frame,
383 tlsPtr_.frame_id_to_shadow_frame,
384 num_vregs);
385 for (uint32_t i = 0; i < num_vregs; i++) {
386 // Do this to clear all references for root visitors.
387 shadow_frame->SetVRegReference(i, nullptr);
388 // This flag will be changed to true if the debugger modifies the value.
389 record->GetUpdatedVRegFlags()[i] = false;
390 }
391 tlsPtr_.frame_id_to_shadow_frame = record;
392 return shadow_frame;
393 }
394
RemoveDebuggerShadowFrameMapping(size_t frame_id)395 void Thread::RemoveDebuggerShadowFrameMapping(size_t frame_id) {
396 FrameIdToShadowFrame* head = tlsPtr_.frame_id_to_shadow_frame;
397 if (head->GetFrameId() == frame_id) {
398 tlsPtr_.frame_id_to_shadow_frame = head->GetNext();
399 FrameIdToShadowFrame::Delete(head);
400 return;
401 }
402 FrameIdToShadowFrame* prev = head;
403 for (FrameIdToShadowFrame* record = head->GetNext();
404 record != nullptr;
405 prev = record, record = record->GetNext()) {
406 if (record->GetFrameId() == frame_id) {
407 prev->SetNext(record->GetNext());
408 FrameIdToShadowFrame::Delete(record);
409 return;
410 }
411 }
412 LOG(FATAL) << "No shadow frame for frame " << frame_id;
413 UNREACHABLE();
414 }
415
InitTid()416 void Thread::InitTid() {
417 tls32_.tid = ::art::GetTid();
418 }
419
InitAfterFork()420 void Thread::InitAfterFork() {
421 // One thread (us) survived the fork, but we have a new tid so we need to
422 // update the value stashed in this Thread*.
423 InitTid();
424 }
425
CreateCallback(void * arg)426 void* Thread::CreateCallback(void* arg) {
427 Thread* self = reinterpret_cast<Thread*>(arg);
428 Runtime* runtime = Runtime::Current();
429 if (runtime == nullptr) {
430 LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
431 return nullptr;
432 }
433 {
434 // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
435 // after self->Init().
436 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
437 // Check that if we got here we cannot be shutting down (as shutdown should never have started
438 // while threads are being born).
439 CHECK(!runtime->IsShuttingDownLocked());
440 // Note: given that the JNIEnv is created in the parent thread, the only failure point here is
441 // a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort
442 // the runtime in such a case. In case this ever changes, we need to make sure here to
443 // delete the tmp_jni_env, as we own it at this point.
444 CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env));
445 self->tlsPtr_.tmp_jni_env = nullptr;
446 Runtime::Current()->EndThreadBirth();
447 }
448 {
449 ScopedObjectAccess soa(self);
450 self->InitStringEntryPoints();
451
452 // Copy peer into self, deleting global reference when done.
453 CHECK(self->tlsPtr_.jpeer != nullptr);
454 self->tlsPtr_.opeer = soa.Decode<mirror::Object>(self->tlsPtr_.jpeer).Ptr();
455 self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
456 self->tlsPtr_.jpeer = nullptr;
457 self->SetThreadName(self->GetThreadName()->ToModifiedUtf8().c_str());
458
459 ArtField* priorityField = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority);
460 self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
461
462 runtime->GetRuntimeCallbacks()->ThreadStart(self);
463
464 // Invoke the 'run' method of our java.lang.Thread.
465 ObjPtr<mirror::Object> receiver = self->tlsPtr_.opeer;
466 jmethodID mid = WellKnownClasses::java_lang_Thread_run;
467 ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(receiver));
468 InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr);
469 }
470 // Detach and delete self.
471 Runtime::Current()->GetThreadList()->Unregister(self);
472
473 return nullptr;
474 }
475
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,ObjPtr<mirror::Object> thread_peer)476 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
477 ObjPtr<mirror::Object> thread_peer) {
478 ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer);
479 Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
480 // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
481 // to stop it from going away.
482 if (kIsDebugBuild) {
483 MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
484 if (result != nullptr && !result->IsSuspended()) {
485 Locks::thread_list_lock_->AssertHeld(soa.Self());
486 }
487 }
488 return result;
489 }
490
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,jobject java_thread)491 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
492 jobject java_thread) {
493 return FromManagedThread(soa, soa.Decode<mirror::Object>(java_thread).Ptr());
494 }
495
FixStackSize(size_t stack_size)496 static size_t FixStackSize(size_t stack_size) {
497 // A stack size of zero means "use the default".
498 if (stack_size == 0) {
499 stack_size = Runtime::Current()->GetDefaultStackSize();
500 }
501
502 // Dalvik used the bionic pthread default stack size for native threads,
503 // so include that here to support apps that expect large native stacks.
504 stack_size += 1 * MB;
505
506 // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
507 if (stack_size < PTHREAD_STACK_MIN) {
508 stack_size = PTHREAD_STACK_MIN;
509 }
510
511 if (Runtime::Current()->ExplicitStackOverflowChecks()) {
512 // It's likely that callers are trying to ensure they have at least a certain amount of
513 // stack space, so we should add our reserved space on top of what they requested, rather
514 // than implicitly take it away from them.
515 stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
516 } else {
517 // If we are going to use implicit stack checks, allocate space for the protected
518 // region at the bottom of the stack.
519 stack_size += Thread::kStackOverflowImplicitCheckSize +
520 GetStackOverflowReservedBytes(kRuntimeISA);
521 }
522
523 // Some systems require the stack size to be a multiple of the system page size, so round up.
524 stack_size = RoundUp(stack_size, kPageSize);
525
526 return stack_size;
527 }
528
529 // Return the nearest page-aligned address below the current stack top.
530 NO_INLINE
FindStackTop()531 static uint8_t* FindStackTop() {
532 return reinterpret_cast<uint8_t*>(
533 AlignDown(__builtin_frame_address(0), kPageSize));
534 }
535
536 // Install a protected region in the stack. This is used to trigger a SIGSEGV if a stack
537 // overflow is detected. It is located right below the stack_begin_.
538 ATTRIBUTE_NO_SANITIZE_ADDRESS
InstallImplicitProtection()539 void Thread::InstallImplicitProtection() {
540 uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
541 // Page containing current top of stack.
542 uint8_t* stack_top = FindStackTop();
543
544 // Try to directly protect the stack.
545 VLOG(threads) << "installing stack protected region at " << std::hex <<
546 static_cast<void*>(pregion) << " to " <<
547 static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
548 if (ProtectStack(/* fatal_on_error */ false)) {
549 // Tell the kernel that we won't be needing these pages any more.
550 // NB. madvise will probably write zeroes into the memory (on linux it does).
551 uint32_t unwanted_size = stack_top - pregion - kPageSize;
552 madvise(pregion, unwanted_size, MADV_DONTNEED);
553 return;
554 }
555
556 // There is a little complexity here that deserves a special mention. On some
557 // architectures, the stack is created using a VM_GROWSDOWN flag
558 // to prevent memory being allocated when it's not needed. This flag makes the
559 // kernel only allocate memory for the stack by growing down in memory. Because we
560 // want to put an mprotected region far away from that at the stack top, we need
561 // to make sure the pages for the stack are mapped in before we call mprotect.
562 //
563 // The failed mprotect in UnprotectStack is an indication of a thread with VM_GROWSDOWN
564 // with a non-mapped stack (usually only the main thread).
565 //
566 // We map in the stack by reading every page from the stack bottom (highest address)
567 // to the stack top. (We then madvise this away.) This must be done by reading from the
568 // current stack pointer downwards.
569 //
570 // Accesses too far below the current machine register corresponding to the stack pointer (e.g.,
571 // ESP on x86[-32], SP on ARM) might cause a SIGSEGV (at least on x86 with newer kernels). We
572 // thus have to move the stack pointer. We do this portably by using a recursive function with a
573 // large stack frame size.
574
575 // (Defensively) first remove the protection on the protected region as we'll want to read
576 // and write it. Ignore errors.
577 UnprotectStack();
578
579 VLOG(threads) << "Need to map in stack for thread at " << std::hex <<
580 static_cast<void*>(pregion);
581
582 struct RecurseDownStack {
583 // This function has an intentionally large stack size.
584 #pragma GCC diagnostic push
585 #pragma GCC diagnostic ignored "-Wframe-larger-than="
586 NO_INLINE
587 static void Touch(uintptr_t target) {
588 volatile size_t zero = 0;
589 // Use a large local volatile array to ensure a large frame size. Do not use anything close
590 // to a full page for ASAN. It would be nice to ensure the frame size is at most a page, but
591 // there is no pragma support for this.
592 // Note: for ASAN we need to shrink the array a bit, as there's other overhead.
593 constexpr size_t kAsanMultiplier =
594 #ifdef ADDRESS_SANITIZER
595 2u;
596 #else
597 1u;
598 #endif
599 volatile char space[kPageSize - (kAsanMultiplier * 256)];
600 char sink ATTRIBUTE_UNUSED = space[zero];
601 if (reinterpret_cast<uintptr_t>(space) >= target + kPageSize) {
602 Touch(target);
603 }
604 zero *= 2; // Try to avoid tail recursion.
605 }
606 #pragma GCC diagnostic pop
607 };
608 RecurseDownStack::Touch(reinterpret_cast<uintptr_t>(pregion));
609
610 VLOG(threads) << "(again) installing stack protected region at " << std::hex <<
611 static_cast<void*>(pregion) << " to " <<
612 static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
613
614 // Protect the bottom of the stack to prevent read/write to it.
615 ProtectStack(/* fatal_on_error */ true);
616
617 // Tell the kernel that we won't be needing these pages any more.
618 // NB. madvise will probably write zeroes into the memory (on linux it does).
619 uint32_t unwanted_size = stack_top - pregion - kPageSize;
620 madvise(pregion, unwanted_size, MADV_DONTNEED);
621 }
622
CreateNativeThread(JNIEnv * env,jobject java_peer,size_t stack_size,bool is_daemon)623 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
624 CHECK(java_peer != nullptr);
625 Thread* self = static_cast<JNIEnvExt*>(env)->GetSelf();
626
627 if (VLOG_IS_ON(threads)) {
628 ScopedObjectAccess soa(env);
629
630 ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
631 ObjPtr<mirror::String> java_name =
632 f->GetObject(soa.Decode<mirror::Object>(java_peer))->AsString();
633 std::string thread_name;
634 if (java_name != nullptr) {
635 thread_name = java_name->ToModifiedUtf8();
636 } else {
637 thread_name = "(Unnamed)";
638 }
639
640 VLOG(threads) << "Creating native thread for " << thread_name;
641 self->Dump(LOG_STREAM(INFO));
642 }
643
644 Runtime* runtime = Runtime::Current();
645
646 // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
647 bool thread_start_during_shutdown = false;
648 {
649 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
650 if (runtime->IsShuttingDownLocked()) {
651 thread_start_during_shutdown = true;
652 } else {
653 runtime->StartThreadBirth();
654 }
655 }
656 if (thread_start_during_shutdown) {
657 ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
658 env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
659 return;
660 }
661
662 Thread* child_thread = new Thread(is_daemon);
663 // Use global JNI ref to hold peer live while child thread starts.
664 child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
665 stack_size = FixStackSize(stack_size);
666
667 // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing
668 // to assign it.
669 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
670 reinterpret_cast<jlong>(child_thread));
671
672 // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and
673 // do not have a good way to report this on the child's side.
674 std::string error_msg;
675 std::unique_ptr<JNIEnvExt> child_jni_env_ext(
676 JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM(), &error_msg));
677
678 int pthread_create_result = 0;
679 if (child_jni_env_ext.get() != nullptr) {
680 pthread_t new_pthread;
681 pthread_attr_t attr;
682 child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get();
683 CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
684 CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
685 "PTHREAD_CREATE_DETACHED");
686 CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
687 pthread_create_result = pthread_create(&new_pthread,
688 &attr,
689 Thread::CreateCallback,
690 child_thread);
691 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
692
693 if (pthread_create_result == 0) {
694 // pthread_create started the new thread. The child is now responsible for managing the
695 // JNIEnvExt we created.
696 // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization
697 // between the threads.
698 child_jni_env_ext.release();
699 return;
700 }
701 }
702
703 // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up.
704 {
705 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
706 runtime->EndThreadBirth();
707 }
708 // Manually delete the global reference since Thread::Init will not have been run.
709 env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
710 child_thread->tlsPtr_.jpeer = nullptr;
711 delete child_thread;
712 child_thread = nullptr;
713 // TODO: remove from thread group?
714 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
715 {
716 std::string msg(child_jni_env_ext.get() == nullptr ?
717 StringPrintf("Could not allocate JNI Env: %s", error_msg.c_str()) :
718 StringPrintf("pthread_create (%s stack) failed: %s",
719 PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
720 ScopedObjectAccess soa(env);
721 soa.Self()->ThrowOutOfMemoryError(msg.c_str());
722 }
723 }
724
Init(ThreadList * thread_list,JavaVMExt * java_vm,JNIEnvExt * jni_env_ext)725 bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) {
726 // This function does all the initialization that must be run by the native thread it applies to.
727 // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
728 // we can handshake with the corresponding native thread when it's ready.) Check this native
729 // thread hasn't been through here already...
730 CHECK(Thread::Current() == nullptr);
731
732 // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
733 // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
734 tlsPtr_.pthread_self = pthread_self();
735 CHECK(is_started_);
736
737 SetUpAlternateSignalStack();
738 if (!InitStackHwm()) {
739 return false;
740 }
741 InitCpu();
742 InitTlsEntryPoints();
743 RemoveSuspendTrigger();
744 InitCardTable();
745 InitTid();
746 interpreter::InitInterpreterTls(this);
747
748 #ifdef ART_TARGET_ANDROID
749 __get_tls()[TLS_SLOT_ART_THREAD_SELF] = this;
750 #else
751 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
752 #endif
753 DCHECK_EQ(Thread::Current(), this);
754
755 tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
756
757 if (jni_env_ext != nullptr) {
758 DCHECK_EQ(jni_env_ext->GetVm(), java_vm);
759 DCHECK_EQ(jni_env_ext->GetSelf(), this);
760 tlsPtr_.jni_env = jni_env_ext;
761 } else {
762 std::string error_msg;
763 tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm, &error_msg);
764 if (tlsPtr_.jni_env == nullptr) {
765 LOG(ERROR) << "Failed to create JNIEnvExt: " << error_msg;
766 return false;
767 }
768 }
769
770 thread_list->Register(this);
771 return true;
772 }
773
774 template <typename PeerAction>
Attach(const char * thread_name,bool as_daemon,PeerAction peer_action)775 Thread* Thread::Attach(const char* thread_name, bool as_daemon, PeerAction peer_action) {
776 Runtime* runtime = Runtime::Current();
777 if (runtime == nullptr) {
778 LOG(ERROR) << "Thread attaching to non-existent runtime: " <<
779 ((thread_name != nullptr) ? thread_name : "(Unnamed)");
780 return nullptr;
781 }
782 Thread* self;
783 {
784 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
785 if (runtime->IsShuttingDownLocked()) {
786 LOG(WARNING) << "Thread attaching while runtime is shutting down: " <<
787 ((thread_name != nullptr) ? thread_name : "(Unnamed)");
788 return nullptr;
789 } else {
790 Runtime::Current()->StartThreadBirth();
791 self = new Thread(as_daemon);
792 bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
793 Runtime::Current()->EndThreadBirth();
794 if (!init_success) {
795 delete self;
796 return nullptr;
797 }
798 }
799 }
800
801 self->InitStringEntryPoints();
802
803 CHECK_NE(self->GetState(), kRunnable);
804 self->SetState(kNative);
805
806 // Run the action that is acting on the peer.
807 if (!peer_action(self)) {
808 runtime->GetThreadList()->Unregister(self);
809 // Unregister deletes self, no need to do this here.
810 return nullptr;
811 }
812
813 if (VLOG_IS_ON(threads)) {
814 if (thread_name != nullptr) {
815 VLOG(threads) << "Attaching thread " << thread_name;
816 } else {
817 VLOG(threads) << "Attaching unnamed thread.";
818 }
819 ScopedObjectAccess soa(self);
820 self->Dump(LOG_STREAM(INFO));
821 }
822
823 {
824 ScopedObjectAccess soa(self);
825 runtime->GetRuntimeCallbacks()->ThreadStart(self);
826 }
827
828 return self;
829 }
830
Attach(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer)831 Thread* Thread::Attach(const char* thread_name,
832 bool as_daemon,
833 jobject thread_group,
834 bool create_peer) {
835 auto create_peer_action = [&](Thread* self) {
836 // If we're the main thread, ClassLinker won't be created until after we're attached,
837 // so that thread needs a two-stage attach. Regular threads don't need this hack.
838 // In the compiler, all threads need this hack, because no-one's going to be getting
839 // a native peer!
840 if (create_peer) {
841 self->CreatePeer(thread_name, as_daemon, thread_group);
842 if (self->IsExceptionPending()) {
843 // We cannot keep the exception around, as we're deleting self. Try to be helpful and log
844 // it.
845 {
846 ScopedObjectAccess soa(self);
847 LOG(ERROR) << "Exception creating thread peer:";
848 LOG(ERROR) << self->GetException()->Dump();
849 self->ClearException();
850 }
851 return false;
852 }
853 } else {
854 // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
855 if (thread_name != nullptr) {
856 self->tlsPtr_.name->assign(thread_name);
857 ::art::SetThreadName(thread_name);
858 } else if (self->GetJniEnv()->IsCheckJniEnabled()) {
859 LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
860 }
861 }
862 return true;
863 };
864 return Attach(thread_name, as_daemon, create_peer_action);
865 }
866
Attach(const char * thread_name,bool as_daemon,jobject thread_peer)867 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_peer) {
868 auto set_peer_action = [&](Thread* self) {
869 // Install the given peer.
870 {
871 DCHECK(self == Thread::Current());
872 ScopedObjectAccess soa(self);
873 self->tlsPtr_.opeer = soa.Decode<mirror::Object>(thread_peer).Ptr();
874 }
875 self->GetJniEnv()->SetLongField(thread_peer,
876 WellKnownClasses::java_lang_Thread_nativePeer,
877 reinterpret_cast<jlong>(self));
878 return true;
879 };
880 return Attach(thread_name, as_daemon, set_peer_action);
881 }
882
CreatePeer(const char * name,bool as_daemon,jobject thread_group)883 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
884 Runtime* runtime = Runtime::Current();
885 CHECK(runtime->IsStarted());
886 JNIEnv* env = tlsPtr_.jni_env;
887
888 if (thread_group == nullptr) {
889 thread_group = runtime->GetMainThreadGroup();
890 }
891 ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
892 // Add missing null check in case of OOM b/18297817
893 if (name != nullptr && thread_name.get() == nullptr) {
894 CHECK(IsExceptionPending());
895 return;
896 }
897 jint thread_priority = GetNativePriority();
898 jboolean thread_is_daemon = as_daemon;
899
900 ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
901 if (peer.get() == nullptr) {
902 CHECK(IsExceptionPending());
903 return;
904 }
905 {
906 ScopedObjectAccess soa(this);
907 tlsPtr_.opeer = soa.Decode<mirror::Object>(peer.get()).Ptr();
908 }
909 env->CallNonvirtualVoidMethod(peer.get(),
910 WellKnownClasses::java_lang_Thread,
911 WellKnownClasses::java_lang_Thread_init,
912 thread_group, thread_name.get(), thread_priority, thread_is_daemon);
913 if (IsExceptionPending()) {
914 return;
915 }
916
917 Thread* self = this;
918 DCHECK_EQ(self, Thread::Current());
919 env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
920 reinterpret_cast<jlong>(self));
921
922 ScopedObjectAccess soa(self);
923 StackHandleScope<1> hs(self);
924 MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName()));
925 if (peer_thread_name == nullptr) {
926 // The Thread constructor should have set the Thread.name to a
927 // non-null value. However, because we can run without code
928 // available (in the compiler, in tests), we manually assign the
929 // fields the constructor should have set.
930 if (runtime->IsActiveTransaction()) {
931 InitPeer<true>(soa,
932 tlsPtr_.opeer,
933 thread_is_daemon,
934 thread_group,
935 thread_name.get(),
936 thread_priority);
937 } else {
938 InitPeer<false>(soa,
939 tlsPtr_.opeer,
940 thread_is_daemon,
941 thread_group,
942 thread_name.get(),
943 thread_priority);
944 }
945 peer_thread_name.Assign(GetThreadName());
946 }
947 // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
948 if (peer_thread_name != nullptr) {
949 SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
950 }
951 }
952
CreateCompileTimePeer(JNIEnv * env,const char * name,bool as_daemon,jobject thread_group)953 jobject Thread::CreateCompileTimePeer(JNIEnv* env,
954 const char* name,
955 bool as_daemon,
956 jobject thread_group) {
957 Runtime* runtime = Runtime::Current();
958 CHECK(!runtime->IsStarted());
959
960 if (thread_group == nullptr) {
961 thread_group = runtime->GetMainThreadGroup();
962 }
963 ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
964 // Add missing null check in case of OOM b/18297817
965 if (name != nullptr && thread_name.get() == nullptr) {
966 CHECK(Thread::Current()->IsExceptionPending());
967 return nullptr;
968 }
969 jint thread_priority = GetNativePriority();
970 jboolean thread_is_daemon = as_daemon;
971
972 ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
973 if (peer.get() == nullptr) {
974 CHECK(Thread::Current()->IsExceptionPending());
975 return nullptr;
976 }
977
978 // We cannot call Thread.init, as it will recursively ask for currentThread.
979
980 // The Thread constructor should have set the Thread.name to a
981 // non-null value. However, because we can run without code
982 // available (in the compiler, in tests), we manually assign the
983 // fields the constructor should have set.
984 ScopedObjectAccessUnchecked soa(Thread::Current());
985 if (runtime->IsActiveTransaction()) {
986 InitPeer<true>(soa,
987 soa.Decode<mirror::Object>(peer.get()),
988 thread_is_daemon,
989 thread_group,
990 thread_name.get(),
991 thread_priority);
992 } else {
993 InitPeer<false>(soa,
994 soa.Decode<mirror::Object>(peer.get()),
995 thread_is_daemon,
996 thread_group,
997 thread_name.get(),
998 thread_priority);
999 }
1000
1001 return peer.release();
1002 }
1003
1004 template<bool kTransactionActive>
InitPeer(ScopedObjectAccessAlreadyRunnable & soa,ObjPtr<mirror::Object> peer,jboolean thread_is_daemon,jobject thread_group,jobject thread_name,jint thread_priority)1005 void Thread::InitPeer(ScopedObjectAccessAlreadyRunnable& soa,
1006 ObjPtr<mirror::Object> peer,
1007 jboolean thread_is_daemon,
1008 jobject thread_group,
1009 jobject thread_name,
1010 jint thread_priority) {
1011 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)->
1012 SetBoolean<kTransactionActive>(peer, thread_is_daemon);
1013 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)->
1014 SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_group));
1015 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name)->
1016 SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_name));
1017 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)->
1018 SetInt<kTransactionActive>(peer, thread_priority);
1019 }
1020
SetThreadName(const char * name)1021 void Thread::SetThreadName(const char* name) {
1022 tlsPtr_.name->assign(name);
1023 ::art::SetThreadName(name);
1024 Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
1025 }
1026
GetThreadStack(pthread_t thread,void ** stack_base,size_t * stack_size,size_t * guard_size)1027 static void GetThreadStack(pthread_t thread,
1028 void** stack_base,
1029 size_t* stack_size,
1030 size_t* guard_size) {
1031 #if defined(__APPLE__)
1032 *stack_size = pthread_get_stacksize_np(thread);
1033 void* stack_addr = pthread_get_stackaddr_np(thread);
1034
1035 // Check whether stack_addr is the base or end of the stack.
1036 // (On Mac OS 10.7, it's the end.)
1037 int stack_variable;
1038 if (stack_addr > &stack_variable) {
1039 *stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size;
1040 } else {
1041 *stack_base = stack_addr;
1042 }
1043
1044 // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac.
1045 pthread_attr_t attributes;
1046 CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__);
1047 CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1048 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1049 #else
1050 pthread_attr_t attributes;
1051 CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
1052 CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
1053 CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1054 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1055
1056 #if defined(__GLIBC__)
1057 // If we're the main thread, check whether we were run with an unlimited stack. In that case,
1058 // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
1059 // will be broken because we'll die long before we get close to 2GB.
1060 bool is_main_thread = (::art::GetTid() == getpid());
1061 if (is_main_thread) {
1062 rlimit stack_limit;
1063 if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
1064 PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
1065 }
1066 if (stack_limit.rlim_cur == RLIM_INFINITY) {
1067 size_t old_stack_size = *stack_size;
1068
1069 // Use the kernel default limit as our size, and adjust the base to match.
1070 *stack_size = 8 * MB;
1071 *stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size);
1072
1073 VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
1074 << " to " << PrettySize(*stack_size)
1075 << " with base " << *stack_base;
1076 }
1077 }
1078 #endif
1079
1080 #endif
1081 }
1082
InitStackHwm()1083 bool Thread::InitStackHwm() {
1084 void* read_stack_base;
1085 size_t read_stack_size;
1086 size_t read_guard_size;
1087 GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
1088
1089 tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base);
1090 tlsPtr_.stack_size = read_stack_size;
1091
1092 // The minimum stack size we can cope with is the overflow reserved bytes (typically
1093 // 8K) + the protected region size (4K) + another page (4K). Typically this will
1094 // be 8+4+4 = 16K. The thread won't be able to do much with this stack even the GC takes
1095 // between 8K and 12K.
1096 uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
1097 + 4 * KB;
1098 if (read_stack_size <= min_stack) {
1099 // Note, as we know the stack is small, avoid operations that could use a lot of stack.
1100 LogHelper::LogLineLowStack(__PRETTY_FUNCTION__,
1101 __LINE__,
1102 ::android::base::ERROR,
1103 "Attempt to attach a thread with a too-small stack");
1104 return false;
1105 }
1106
1107 // This is included in the SIGQUIT output, but it's useful here for thread debugging.
1108 VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
1109 read_stack_base,
1110 PrettySize(read_stack_size).c_str(),
1111 PrettySize(read_guard_size).c_str());
1112
1113 // Set stack_end_ to the bottom of the stack saving space of stack overflows
1114
1115 Runtime* runtime = Runtime::Current();
1116 bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler();
1117
1118 // Valgrind on arm doesn't give the right values here. Do not install the guard page, and
1119 // effectively disable stack overflow checks (we'll get segfaults, potentially) by setting
1120 // stack_begin to 0.
1121 const bool valgrind_on_arm =
1122 (kRuntimeISA == InstructionSet::kArm || kRuntimeISA == InstructionSet::kArm64) &&
1123 kMemoryToolIsValgrind &&
1124 RUNNING_ON_MEMORY_TOOL != 0;
1125 if (valgrind_on_arm) {
1126 tlsPtr_.stack_begin = nullptr;
1127 }
1128
1129 ResetDefaultStackEnd();
1130
1131 // Install the protected region if we are doing implicit overflow checks.
1132 if (implicit_stack_check && !valgrind_on_arm) {
1133 // The thread might have protected region at the bottom. We need
1134 // to install our own region so we need to move the limits
1135 // of the stack to make room for it.
1136
1137 tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
1138 tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
1139 tlsPtr_.stack_size -= read_guard_size;
1140
1141 InstallImplicitProtection();
1142 }
1143
1144 // Sanity check.
1145 CHECK_GT(FindStackTop(), reinterpret_cast<void*>(tlsPtr_.stack_end));
1146
1147 return true;
1148 }
1149
ShortDump(std::ostream & os) const1150 void Thread::ShortDump(std::ostream& os) const {
1151 os << "Thread[";
1152 if (GetThreadId() != 0) {
1153 // If we're in kStarting, we won't have a thin lock id or tid yet.
1154 os << GetThreadId()
1155 << ",tid=" << GetTid() << ',';
1156 }
1157 os << GetState()
1158 << ",Thread*=" << this
1159 << ",peer=" << tlsPtr_.opeer
1160 << ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\""
1161 << "]";
1162 }
1163
Dump(std::ostream & os,bool dump_native_stack,BacktraceMap * backtrace_map,bool force_dump_stack) const1164 void Thread::Dump(std::ostream& os, bool dump_native_stack, BacktraceMap* backtrace_map,
1165 bool force_dump_stack) const {
1166 DumpState(os);
1167 DumpStack(os, dump_native_stack, backtrace_map, force_dump_stack);
1168 }
1169
GetThreadName() const1170 mirror::String* Thread::GetThreadName() const {
1171 ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
1172 if (tlsPtr_.opeer == nullptr) {
1173 return nullptr;
1174 }
1175 ObjPtr<mirror::Object> name = f->GetObject(tlsPtr_.opeer);
1176 return name == nullptr ? nullptr : name->AsString();
1177 }
1178
GetThreadName(std::string & name) const1179 void Thread::GetThreadName(std::string& name) const {
1180 name.assign(*tlsPtr_.name);
1181 }
1182
GetCpuMicroTime() const1183 uint64_t Thread::GetCpuMicroTime() const {
1184 #if defined(__linux__)
1185 clockid_t cpu_clock_id;
1186 pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
1187 timespec now;
1188 clock_gettime(cpu_clock_id, &now);
1189 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
1190 #else // __APPLE__
1191 UNIMPLEMENTED(WARNING);
1192 return -1;
1193 #endif
1194 }
1195
1196 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForSuspendCount(Thread * self,Thread * thread)1197 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
1198 LOG(ERROR) << *thread << " suspend count already zero.";
1199 Locks::thread_suspend_count_lock_->Unlock(self);
1200 if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1201 Locks::mutator_lock_->SharedTryLock(self);
1202 if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1203 LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
1204 }
1205 }
1206 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1207 Locks::thread_list_lock_->TryLock(self);
1208 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1209 LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
1210 }
1211 }
1212 std::ostringstream ss;
1213 Runtime::Current()->GetThreadList()->Dump(ss);
1214 LOG(FATAL) << ss.str();
1215 }
1216
ModifySuspendCountInternal(Thread * self,int delta,AtomicInteger * suspend_barrier,SuspendReason reason)1217 bool Thread::ModifySuspendCountInternal(Thread* self,
1218 int delta,
1219 AtomicInteger* suspend_barrier,
1220 SuspendReason reason) {
1221 if (kIsDebugBuild) {
1222 DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
1223 << reason << " " << delta << " " << tls32_.debug_suspend_count << " " << this;
1224 DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
1225 Locks::thread_suspend_count_lock_->AssertHeld(self);
1226 if (this != self && !IsSuspended()) {
1227 Locks::thread_list_lock_->AssertHeld(self);
1228 }
1229 }
1230 // User code suspensions need to be checked more closely since they originate from code outside of
1231 // the runtime's control.
1232 if (UNLIKELY(reason == SuspendReason::kForUserCode)) {
1233 Locks::user_code_suspension_lock_->AssertHeld(self);
1234 if (UNLIKELY(delta + tls32_.user_code_suspend_count < 0)) {
1235 LOG(ERROR) << "attempting to modify suspend count in an illegal way.";
1236 return false;
1237 }
1238 }
1239 if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
1240 UnsafeLogFatalForSuspendCount(self, this);
1241 return false;
1242 }
1243
1244 if (kUseReadBarrier && delta > 0 && this != self && tlsPtr_.flip_function != nullptr) {
1245 // Force retry of a suspend request if it's in the middle of a thread flip to avoid a
1246 // deadlock. b/31683379.
1247 return false;
1248 }
1249
1250 uint16_t flags = kSuspendRequest;
1251 if (delta > 0 && suspend_barrier != nullptr) {
1252 uint32_t available_barrier = kMaxSuspendBarriers;
1253 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1254 if (tlsPtr_.active_suspend_barriers[i] == nullptr) {
1255 available_barrier = i;
1256 break;
1257 }
1258 }
1259 if (available_barrier == kMaxSuspendBarriers) {
1260 // No barrier spaces available, we can't add another.
1261 return false;
1262 }
1263 tlsPtr_.active_suspend_barriers[available_barrier] = suspend_barrier;
1264 flags |= kActiveSuspendBarrier;
1265 }
1266
1267 tls32_.suspend_count += delta;
1268 switch (reason) {
1269 case SuspendReason::kForDebugger:
1270 tls32_.debug_suspend_count += delta;
1271 break;
1272 case SuspendReason::kForUserCode:
1273 tls32_.user_code_suspend_count += delta;
1274 break;
1275 case SuspendReason::kInternal:
1276 break;
1277 }
1278
1279 if (tls32_.suspend_count == 0) {
1280 AtomicClearFlag(kSuspendRequest);
1281 } else {
1282 // Two bits might be set simultaneously.
1283 tls32_.state_and_flags.as_atomic_int.FetchAndBitwiseOrSequentiallyConsistent(flags);
1284 TriggerSuspend();
1285 }
1286 return true;
1287 }
1288
PassActiveSuspendBarriers(Thread * self)1289 bool Thread::PassActiveSuspendBarriers(Thread* self) {
1290 // Grab the suspend_count lock and copy the current set of
1291 // barriers. Then clear the list and the flag. The ModifySuspendCount
1292 // function requires the lock so we prevent a race between setting
1293 // the kActiveSuspendBarrier flag and clearing it.
1294 AtomicInteger* pass_barriers[kMaxSuspendBarriers];
1295 {
1296 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1297 if (!ReadFlag(kActiveSuspendBarrier)) {
1298 // quick exit test: the barriers have already been claimed - this is
1299 // possible as there may be a race to claim and it doesn't matter
1300 // who wins.
1301 // All of the callers of this function (except the SuspendAllInternal)
1302 // will first test the kActiveSuspendBarrier flag without lock. Here
1303 // double-check whether the barrier has been passed with the
1304 // suspend_count lock.
1305 return false;
1306 }
1307
1308 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1309 pass_barriers[i] = tlsPtr_.active_suspend_barriers[i];
1310 tlsPtr_.active_suspend_barriers[i] = nullptr;
1311 }
1312 AtomicClearFlag(kActiveSuspendBarrier);
1313 }
1314
1315 uint32_t barrier_count = 0;
1316 for (uint32_t i = 0; i < kMaxSuspendBarriers; i++) {
1317 AtomicInteger* pending_threads = pass_barriers[i];
1318 if (pending_threads != nullptr) {
1319 bool done = false;
1320 do {
1321 int32_t cur_val = pending_threads->LoadRelaxed();
1322 CHECK_GT(cur_val, 0) << "Unexpected value for PassActiveSuspendBarriers(): " << cur_val;
1323 // Reduce value by 1.
1324 done = pending_threads->CompareAndSetWeakRelaxed(cur_val, cur_val - 1);
1325 #if ART_USE_FUTEXES
1326 if (done && (cur_val - 1) == 0) { // Weak CAS may fail spuriously.
1327 futex(pending_threads->Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
1328 }
1329 #endif
1330 } while (!done);
1331 ++barrier_count;
1332 }
1333 }
1334 CHECK_GT(barrier_count, 0U);
1335 return true;
1336 }
1337
ClearSuspendBarrier(AtomicInteger * target)1338 void Thread::ClearSuspendBarrier(AtomicInteger* target) {
1339 CHECK(ReadFlag(kActiveSuspendBarrier));
1340 bool clear_flag = true;
1341 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1342 AtomicInteger* ptr = tlsPtr_.active_suspend_barriers[i];
1343 if (ptr == target) {
1344 tlsPtr_.active_suspend_barriers[i] = nullptr;
1345 } else if (ptr != nullptr) {
1346 clear_flag = false;
1347 }
1348 }
1349 if (LIKELY(clear_flag)) {
1350 AtomicClearFlag(kActiveSuspendBarrier);
1351 }
1352 }
1353
RunCheckpointFunction()1354 void Thread::RunCheckpointFunction() {
1355 // Grab the suspend_count lock, get the next checkpoint and update all the checkpoint fields. If
1356 // there are no more checkpoints we will also clear the kCheckpointRequest flag.
1357 Closure* checkpoint;
1358 {
1359 MutexLock mu(this, *Locks::thread_suspend_count_lock_);
1360 checkpoint = tlsPtr_.checkpoint_function;
1361 if (!checkpoint_overflow_.empty()) {
1362 // Overflow list not empty, copy the first one out and continue.
1363 tlsPtr_.checkpoint_function = checkpoint_overflow_.front();
1364 checkpoint_overflow_.pop_front();
1365 } else {
1366 // No overflow checkpoints. Clear the kCheckpointRequest flag
1367 tlsPtr_.checkpoint_function = nullptr;
1368 AtomicClearFlag(kCheckpointRequest);
1369 }
1370 }
1371 // Outside the lock, run the checkpoint function.
1372 ScopedTrace trace("Run checkpoint function");
1373 CHECK(checkpoint != nullptr) << "Checkpoint flag set without pending checkpoint";
1374 checkpoint->Run(this);
1375 }
1376
RunEmptyCheckpoint()1377 void Thread::RunEmptyCheckpoint() {
1378 DCHECK_EQ(Thread::Current(), this);
1379 AtomicClearFlag(kEmptyCheckpointRequest);
1380 Runtime::Current()->GetThreadList()->EmptyCheckpointBarrier()->Pass(this);
1381 }
1382
RequestCheckpoint(Closure * function)1383 bool Thread::RequestCheckpoint(Closure* function) {
1384 union StateAndFlags old_state_and_flags;
1385 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
1386 if (old_state_and_flags.as_struct.state != kRunnable) {
1387 return false; // Fail, thread is suspended and so can't run a checkpoint.
1388 }
1389
1390 // We must be runnable to request a checkpoint.
1391 DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
1392 union StateAndFlags new_state_and_flags;
1393 new_state_and_flags.as_int = old_state_and_flags.as_int;
1394 new_state_and_flags.as_struct.flags |= kCheckpointRequest;
1395 bool success = tls32_.state_and_flags.as_atomic_int.CompareAndSetStrongSequentiallyConsistent(
1396 old_state_and_flags.as_int, new_state_and_flags.as_int);
1397 if (success) {
1398 // Succeeded setting checkpoint flag, now insert the actual checkpoint.
1399 if (tlsPtr_.checkpoint_function == nullptr) {
1400 tlsPtr_.checkpoint_function = function;
1401 } else {
1402 checkpoint_overflow_.push_back(function);
1403 }
1404 CHECK_EQ(ReadFlag(kCheckpointRequest), true);
1405 TriggerSuspend();
1406 }
1407 return success;
1408 }
1409
RequestEmptyCheckpoint()1410 bool Thread::RequestEmptyCheckpoint() {
1411 union StateAndFlags old_state_and_flags;
1412 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
1413 if (old_state_and_flags.as_struct.state != kRunnable) {
1414 // If it's not runnable, we don't need to do anything because it won't be in the middle of a
1415 // heap access (eg. the read barrier).
1416 return false;
1417 }
1418
1419 // We must be runnable to request a checkpoint.
1420 DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
1421 union StateAndFlags new_state_and_flags;
1422 new_state_and_flags.as_int = old_state_and_flags.as_int;
1423 new_state_and_flags.as_struct.flags |= kEmptyCheckpointRequest;
1424 bool success = tls32_.state_and_flags.as_atomic_int.CompareAndSetStrongSequentiallyConsistent(
1425 old_state_and_flags.as_int, new_state_and_flags.as_int);
1426 if (success) {
1427 TriggerSuspend();
1428 }
1429 return success;
1430 }
1431
1432 class BarrierClosure : public Closure {
1433 public:
BarrierClosure(Closure * wrapped)1434 explicit BarrierClosure(Closure* wrapped) : wrapped_(wrapped), barrier_(0) {}
1435
Run(Thread * self)1436 void Run(Thread* self) OVERRIDE {
1437 wrapped_->Run(self);
1438 barrier_.Pass(self);
1439 }
1440
Wait(Thread * self,ThreadState suspend_state)1441 void Wait(Thread* self, ThreadState suspend_state) {
1442 if (suspend_state != ThreadState::kRunnable) {
1443 barrier_.Increment<Barrier::kDisallowHoldingLocks>(self, 1);
1444 } else {
1445 barrier_.Increment<Barrier::kAllowHoldingLocks>(self, 1);
1446 }
1447 }
1448
1449 private:
1450 Closure* wrapped_;
1451 Barrier barrier_;
1452 };
1453
1454 // RequestSynchronousCheckpoint releases the thread_list_lock_ as a part of its execution.
RequestSynchronousCheckpoint(Closure * function,ThreadState suspend_state)1455 bool Thread::RequestSynchronousCheckpoint(Closure* function, ThreadState suspend_state) {
1456 Thread* self = Thread::Current();
1457 if (this == Thread::Current()) {
1458 Locks::thread_list_lock_->AssertExclusiveHeld(self);
1459 // Unlock the tll before running so that the state is the same regardless of thread.
1460 Locks::thread_list_lock_->ExclusiveUnlock(self);
1461 // Asked to run on this thread. Just run.
1462 function->Run(this);
1463 return true;
1464 }
1465
1466 // The current thread is not this thread.
1467
1468 if (GetState() == ThreadState::kTerminated) {
1469 Locks::thread_list_lock_->ExclusiveUnlock(self);
1470 return false;
1471 }
1472
1473 struct ScopedThreadListLockUnlock {
1474 explicit ScopedThreadListLockUnlock(Thread* self_in) RELEASE(*Locks::thread_list_lock_)
1475 : self_thread(self_in) {
1476 Locks::thread_list_lock_->AssertHeld(self_thread);
1477 Locks::thread_list_lock_->Unlock(self_thread);
1478 }
1479
1480 ~ScopedThreadListLockUnlock() ACQUIRE(*Locks::thread_list_lock_) {
1481 Locks::thread_list_lock_->AssertNotHeld(self_thread);
1482 Locks::thread_list_lock_->Lock(self_thread);
1483 }
1484
1485 Thread* self_thread;
1486 };
1487
1488 for (;;) {
1489 Locks::thread_list_lock_->AssertExclusiveHeld(self);
1490 // If this thread is runnable, try to schedule a checkpoint. Do some gymnastics to not hold the
1491 // suspend-count lock for too long.
1492 if (GetState() == ThreadState::kRunnable) {
1493 BarrierClosure barrier_closure(function);
1494 bool installed = false;
1495 {
1496 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1497 installed = RequestCheckpoint(&barrier_closure);
1498 }
1499 if (installed) {
1500 // Relinquish the thread-list lock. We should not wait holding any locks. We cannot
1501 // reacquire it since we don't know if 'this' hasn't been deleted yet.
1502 Locks::thread_list_lock_->ExclusiveUnlock(self);
1503 ScopedThreadStateChange sts(self, suspend_state);
1504 barrier_closure.Wait(self, suspend_state);
1505 return true;
1506 }
1507 // Fall-through.
1508 }
1509
1510 // This thread is not runnable, make sure we stay suspended, then run the checkpoint.
1511 // Note: ModifySuspendCountInternal also expects the thread_list_lock to be held in
1512 // certain situations.
1513 {
1514 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1515
1516 if (!ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal)) {
1517 // Just retry the loop.
1518 sched_yield();
1519 continue;
1520 }
1521 }
1522
1523 {
1524 // Release for the wait. The suspension will keep us from being deleted. Reacquire after so
1525 // that we can call ModifySuspendCount without racing against ThreadList::Unregister.
1526 ScopedThreadListLockUnlock stllu(self);
1527 {
1528 ScopedThreadStateChange sts(self, suspend_state);
1529 while (GetState() == ThreadState::kRunnable) {
1530 // We became runnable again. Wait till the suspend triggered in ModifySuspendCount
1531 // moves us to suspended.
1532 sched_yield();
1533 }
1534 }
1535
1536 function->Run(this);
1537 }
1538
1539 {
1540 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1541
1542 DCHECK_NE(GetState(), ThreadState::kRunnable);
1543 bool updated = ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
1544 DCHECK(updated);
1545 }
1546
1547 {
1548 // Imitate ResumeAll, the thread may be waiting on Thread::resume_cond_ since we raised its
1549 // suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
1550 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1551 Thread::resume_cond_->Broadcast(self);
1552 }
1553
1554 // Release the thread_list_lock_ to be consistent with the barrier-closure path.
1555 Locks::thread_list_lock_->ExclusiveUnlock(self);
1556
1557 return true; // We're done, break out of the loop.
1558 }
1559 }
1560
GetFlipFunction()1561 Closure* Thread::GetFlipFunction() {
1562 Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1563 Closure* func;
1564 do {
1565 func = atomic_func->LoadRelaxed();
1566 if (func == nullptr) {
1567 return nullptr;
1568 }
1569 } while (!atomic_func->CompareAndSetWeakSequentiallyConsistent(func, nullptr));
1570 DCHECK(func != nullptr);
1571 return func;
1572 }
1573
SetFlipFunction(Closure * function)1574 void Thread::SetFlipFunction(Closure* function) {
1575 CHECK(function != nullptr);
1576 Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1577 atomic_func->StoreSequentiallyConsistent(function);
1578 }
1579
FullSuspendCheck()1580 void Thread::FullSuspendCheck() {
1581 ScopedTrace trace(__FUNCTION__);
1582 VLOG(threads) << this << " self-suspending";
1583 // Make thread appear suspended to other threads, release mutator_lock_.
1584 // Transition to suspended and back to runnable, re-acquire share on mutator_lock_.
1585 ScopedThreadSuspension(this, kSuspended);
1586 VLOG(threads) << this << " self-reviving";
1587 }
1588
GetSchedulerGroupName(pid_t tid)1589 static std::string GetSchedulerGroupName(pid_t tid) {
1590 // /proc/<pid>/cgroup looks like this:
1591 // 2:devices:/
1592 // 1:cpuacct,cpu:/
1593 // We want the third field from the line whose second field contains the "cpu" token.
1594 std::string cgroup_file;
1595 if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) {
1596 return "";
1597 }
1598 std::vector<std::string> cgroup_lines;
1599 Split(cgroup_file, '\n', &cgroup_lines);
1600 for (size_t i = 0; i < cgroup_lines.size(); ++i) {
1601 std::vector<std::string> cgroup_fields;
1602 Split(cgroup_lines[i], ':', &cgroup_fields);
1603 std::vector<std::string> cgroups;
1604 Split(cgroup_fields[1], ',', &cgroups);
1605 for (size_t j = 0; j < cgroups.size(); ++j) {
1606 if (cgroups[j] == "cpu") {
1607 return cgroup_fields[2].substr(1); // Skip the leading slash.
1608 }
1609 }
1610 }
1611 return "";
1612 }
1613
1614
DumpState(std::ostream & os,const Thread * thread,pid_t tid)1615 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
1616 std::string group_name;
1617 int priority;
1618 bool is_daemon = false;
1619 Thread* self = Thread::Current();
1620
1621 // If flip_function is not null, it means we have run a checkpoint
1622 // before the thread wakes up to execute the flip function and the
1623 // thread roots haven't been forwarded. So the following access to
1624 // the roots (opeer or methods in the frames) would be bad. Run it
1625 // here. TODO: clean up.
1626 if (thread != nullptr) {
1627 ScopedObjectAccessUnchecked soa(self);
1628 Thread* this_thread = const_cast<Thread*>(thread);
1629 Closure* flip_func = this_thread->GetFlipFunction();
1630 if (flip_func != nullptr) {
1631 flip_func->Run(this_thread);
1632 }
1633 }
1634
1635 // Don't do this if we are aborting since the GC may have all the threads suspended. This will
1636 // cause ScopedObjectAccessUnchecked to deadlock.
1637 if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
1638 ScopedObjectAccessUnchecked soa(self);
1639 priority = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)
1640 ->GetInt(thread->tlsPtr_.opeer);
1641 is_daemon = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)
1642 ->GetBoolean(thread->tlsPtr_.opeer);
1643
1644 ObjPtr<mirror::Object> thread_group =
1645 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
1646 ->GetObject(thread->tlsPtr_.opeer);
1647
1648 if (thread_group != nullptr) {
1649 ArtField* group_name_field =
1650 jni::DecodeArtField(WellKnownClasses::java_lang_ThreadGroup_name);
1651 ObjPtr<mirror::String> group_name_string =
1652 group_name_field->GetObject(thread_group)->AsString();
1653 group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
1654 }
1655 } else {
1656 priority = GetNativePriority();
1657 }
1658
1659 std::string scheduler_group_name(GetSchedulerGroupName(tid));
1660 if (scheduler_group_name.empty()) {
1661 scheduler_group_name = "default";
1662 }
1663
1664 if (thread != nullptr) {
1665 os << '"' << *thread->tlsPtr_.name << '"';
1666 if (is_daemon) {
1667 os << " daemon";
1668 }
1669 os << " prio=" << priority
1670 << " tid=" << thread->GetThreadId()
1671 << " " << thread->GetState();
1672 if (thread->IsStillStarting()) {
1673 os << " (still starting up)";
1674 }
1675 os << "\n";
1676 } else {
1677 os << '"' << ::art::GetThreadName(tid) << '"'
1678 << " prio=" << priority
1679 << " (not attached)\n";
1680 }
1681
1682 if (thread != nullptr) {
1683 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1684 os << " | group=\"" << group_name << "\""
1685 << " sCount=" << thread->tls32_.suspend_count
1686 << " dsCount=" << thread->tls32_.debug_suspend_count
1687 << " flags=" << thread->tls32_.state_and_flags.as_struct.flags
1688 << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
1689 << " self=" << reinterpret_cast<const void*>(thread) << "\n";
1690 }
1691
1692 os << " | sysTid=" << tid
1693 << " nice=" << getpriority(PRIO_PROCESS, tid)
1694 << " cgrp=" << scheduler_group_name;
1695 if (thread != nullptr) {
1696 int policy;
1697 sched_param sp;
1698 #if !defined(__APPLE__)
1699 // b/36445592 Don't use pthread_getschedparam since pthread may have exited.
1700 policy = sched_getscheduler(tid);
1701 if (policy == -1) {
1702 PLOG(WARNING) << "sched_getscheduler(" << tid << ")";
1703 }
1704 int sched_getparam_result = sched_getparam(tid, &sp);
1705 if (sched_getparam_result == -1) {
1706 PLOG(WARNING) << "sched_getparam(" << tid << ", &sp)";
1707 sp.sched_priority = -1;
1708 }
1709 #else
1710 CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
1711 __FUNCTION__);
1712 #endif
1713 os << " sched=" << policy << "/" << sp.sched_priority
1714 << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
1715 }
1716 os << "\n";
1717
1718 // Grab the scheduler stats for this thread.
1719 std::string scheduler_stats;
1720 if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
1721 scheduler_stats.resize(scheduler_stats.size() - 1); // Lose the trailing '\n'.
1722 } else {
1723 scheduler_stats = "0 0 0";
1724 }
1725
1726 char native_thread_state = '?';
1727 int utime = 0;
1728 int stime = 0;
1729 int task_cpu = 0;
1730 GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
1731
1732 os << " | state=" << native_thread_state
1733 << " schedstat=( " << scheduler_stats << " )"
1734 << " utm=" << utime
1735 << " stm=" << stime
1736 << " core=" << task_cpu
1737 << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
1738 if (thread != nullptr) {
1739 os << " | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
1740 << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
1741 << PrettySize(thread->tlsPtr_.stack_size) << "\n";
1742 // Dump the held mutexes.
1743 os << " | held mutexes=";
1744 for (size_t i = 0; i < kLockLevelCount; ++i) {
1745 if (i != kMonitorLock) {
1746 BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
1747 if (mutex != nullptr) {
1748 os << " \"" << mutex->GetName() << "\"";
1749 if (mutex->IsReaderWriterMutex()) {
1750 ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
1751 if (rw_mutex->GetExclusiveOwnerTid() == tid) {
1752 os << "(exclusive held)";
1753 } else {
1754 os << "(shared held)";
1755 }
1756 }
1757 }
1758 }
1759 }
1760 os << "\n";
1761 }
1762 }
1763
DumpState(std::ostream & os) const1764 void Thread::DumpState(std::ostream& os) const {
1765 Thread::DumpState(os, this, GetTid());
1766 }
1767
1768 struct StackDumpVisitor : public MonitorObjectsStackVisitor {
StackDumpVisitorart::StackDumpVisitor1769 StackDumpVisitor(std::ostream& os_in,
1770 Thread* thread_in,
1771 Context* context,
1772 bool can_allocate,
1773 bool check_suspended = true,
1774 bool dump_locks = true)
1775 REQUIRES_SHARED(Locks::mutator_lock_)
1776 : MonitorObjectsStackVisitor(thread_in,
1777 context,
1778 check_suspended,
1779 can_allocate && dump_locks),
1780 os(os_in),
1781 last_method(nullptr),
1782 last_line_number(0),
1783 repetition_count(0) {}
1784
~StackDumpVisitorart::StackDumpVisitor1785 virtual ~StackDumpVisitor() {
1786 if (frame_count == 0) {
1787 os << " (no managed stack frames)\n";
1788 }
1789 }
1790
1791 static constexpr size_t kMaxRepetition = 3u;
1792
StartMethodart::StackDumpVisitor1793 VisitMethodResult StartMethod(ArtMethod* m, size_t frame_nr ATTRIBUTE_UNUSED)
1794 OVERRIDE
1795 REQUIRES_SHARED(Locks::mutator_lock_) {
1796 m = m->GetInterfaceMethodIfProxy(kRuntimePointerSize);
1797 ObjPtr<mirror::Class> c = m->GetDeclaringClass();
1798 ObjPtr<mirror::DexCache> dex_cache = c->GetDexCache();
1799 int line_number = -1;
1800 if (dex_cache != nullptr) { // be tolerant of bad input
1801 const DexFile* dex_file = dex_cache->GetDexFile();
1802 line_number = annotations::GetLineNumFromPC(dex_file, m, GetDexPc(false));
1803 }
1804 if (line_number == last_line_number && last_method == m) {
1805 ++repetition_count;
1806 } else {
1807 if (repetition_count >= kMaxRepetition) {
1808 os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
1809 }
1810 repetition_count = 0;
1811 last_line_number = line_number;
1812 last_method = m;
1813 }
1814
1815 if (repetition_count >= kMaxRepetition) {
1816 // Skip visiting=printing anything.
1817 return VisitMethodResult::kSkipMethod;
1818 }
1819
1820 os << " at " << m->PrettyMethod(false);
1821 if (m->IsNative()) {
1822 os << "(Native method)";
1823 } else {
1824 const char* source_file(m->GetDeclaringClassSourceFile());
1825 os << "(" << (source_file != nullptr ? source_file : "unavailable")
1826 << ":" << line_number << ")";
1827 }
1828 os << "\n";
1829 // Go and visit locks.
1830 return VisitMethodResult::kContinueMethod;
1831 }
1832
EndMethodart::StackDumpVisitor1833 VisitMethodResult EndMethod(ArtMethod* m ATTRIBUTE_UNUSED) OVERRIDE {
1834 return VisitMethodResult::kContinueMethod;
1835 }
1836
VisitWaitingObjectart::StackDumpVisitor1837 void VisitWaitingObject(mirror::Object* obj, ThreadState state ATTRIBUTE_UNUSED)
1838 OVERRIDE
1839 REQUIRES_SHARED(Locks::mutator_lock_) {
1840 PrintObject(obj, " - waiting on ", ThreadList::kInvalidThreadId);
1841 }
VisitSleepingObjectart::StackDumpVisitor1842 void VisitSleepingObject(mirror::Object* obj)
1843 OVERRIDE
1844 REQUIRES_SHARED(Locks::mutator_lock_) {
1845 PrintObject(obj, " - sleeping on ", ThreadList::kInvalidThreadId);
1846 }
VisitBlockedOnObjectart::StackDumpVisitor1847 void VisitBlockedOnObject(mirror::Object* obj,
1848 ThreadState state,
1849 uint32_t owner_tid)
1850 OVERRIDE
1851 REQUIRES_SHARED(Locks::mutator_lock_) {
1852 const char* msg;
1853 switch (state) {
1854 case kBlocked:
1855 msg = " - waiting to lock ";
1856 break;
1857
1858 case kWaitingForLockInflation:
1859 msg = " - waiting for lock inflation of ";
1860 break;
1861
1862 default:
1863 LOG(FATAL) << "Unreachable";
1864 UNREACHABLE();
1865 }
1866 PrintObject(obj, msg, owner_tid);
1867 }
VisitLockedObjectart::StackDumpVisitor1868 void VisitLockedObject(mirror::Object* obj)
1869 OVERRIDE
1870 REQUIRES_SHARED(Locks::mutator_lock_) {
1871 PrintObject(obj, " - locked ", ThreadList::kInvalidThreadId);
1872 }
1873
PrintObjectart::StackDumpVisitor1874 void PrintObject(mirror::Object* obj,
1875 const char* msg,
1876 uint32_t owner_tid) REQUIRES_SHARED(Locks::mutator_lock_) {
1877 if (obj == nullptr) {
1878 os << msg << "an unknown object";
1879 } else {
1880 if ((obj->GetLockWord(true).GetState() == LockWord::kThinLocked) &&
1881 Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
1882 // Getting the identity hashcode here would result in lock inflation and suspension of the
1883 // current thread, which isn't safe if this is the only runnable thread.
1884 os << msg << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)",
1885 reinterpret_cast<intptr_t>(obj),
1886 obj->PrettyTypeOf().c_str());
1887 } else {
1888 // - waiting on <0x6008c468> (a java.lang.Class<java.lang.ref.ReferenceQueue>)
1889 // Call PrettyTypeOf before IdentityHashCode since IdentityHashCode can cause thread
1890 // suspension and move pretty_object.
1891 const std::string pretty_type(obj->PrettyTypeOf());
1892 os << msg << StringPrintf("<0x%08x> (a %s)", obj->IdentityHashCode(), pretty_type.c_str());
1893 }
1894 }
1895 if (owner_tid != ThreadList::kInvalidThreadId) {
1896 os << " held by thread " << owner_tid;
1897 }
1898 os << "\n";
1899 }
1900
1901 std::ostream& os;
1902 ArtMethod* last_method;
1903 int last_line_number;
1904 size_t repetition_count;
1905 };
1906
ShouldShowNativeStack(const Thread * thread)1907 static bool ShouldShowNativeStack(const Thread* thread)
1908 REQUIRES_SHARED(Locks::mutator_lock_) {
1909 ThreadState state = thread->GetState();
1910
1911 // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
1912 if (state > kWaiting && state < kStarting) {
1913 return true;
1914 }
1915
1916 // In an Object.wait variant or Thread.sleep? That's not interesting.
1917 if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
1918 return false;
1919 }
1920
1921 // Threads with no managed stack frames should be shown.
1922 if (!thread->HasManagedStack()) {
1923 return true;
1924 }
1925
1926 // In some other native method? That's interesting.
1927 // We don't just check kNative because native methods will be in state kSuspended if they're
1928 // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
1929 // thread-startup states if it's early enough in their life cycle (http://b/7432159).
1930 ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
1931 return current_method != nullptr && current_method->IsNative();
1932 }
1933
DumpJavaStack(std::ostream & os,bool check_suspended,bool dump_locks) const1934 void Thread::DumpJavaStack(std::ostream& os, bool check_suspended, bool dump_locks) const {
1935 // If flip_function is not null, it means we have run a checkpoint
1936 // before the thread wakes up to execute the flip function and the
1937 // thread roots haven't been forwarded. So the following access to
1938 // the roots (locks or methods in the frames) would be bad. Run it
1939 // here. TODO: clean up.
1940 {
1941 Thread* this_thread = const_cast<Thread*>(this);
1942 Closure* flip_func = this_thread->GetFlipFunction();
1943 if (flip_func != nullptr) {
1944 flip_func->Run(this_thread);
1945 }
1946 }
1947
1948 // Dumping the Java stack involves the verifier for locks. The verifier operates under the
1949 // assumption that there is no exception pending on entry. Thus, stash any pending exception.
1950 // Thread::Current() instead of this in case a thread is dumping the stack of another suspended
1951 // thread.
1952 StackHandleScope<1> scope(Thread::Current());
1953 Handle<mirror::Throwable> exc;
1954 bool have_exception = false;
1955 if (IsExceptionPending()) {
1956 exc = scope.NewHandle(GetException());
1957 const_cast<Thread*>(this)->ClearException();
1958 have_exception = true;
1959 }
1960
1961 std::unique_ptr<Context> context(Context::Create());
1962 StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
1963 !tls32_.throwing_OutOfMemoryError, check_suspended, dump_locks);
1964 dumper.WalkStack();
1965
1966 if (have_exception) {
1967 const_cast<Thread*>(this)->SetException(exc.Get());
1968 }
1969 }
1970
DumpStack(std::ostream & os,bool dump_native_stack,BacktraceMap * backtrace_map,bool force_dump_stack) const1971 void Thread::DumpStack(std::ostream& os,
1972 bool dump_native_stack,
1973 BacktraceMap* backtrace_map,
1974 bool force_dump_stack) const {
1975 // TODO: we call this code when dying but may not have suspended the thread ourself. The
1976 // IsSuspended check is therefore racy with the use for dumping (normally we inhibit
1977 // the race with the thread_suspend_count_lock_).
1978 bool dump_for_abort = (gAborting > 0);
1979 bool safe_to_dump = (this == Thread::Current() || IsSuspended());
1980 if (!kIsDebugBuild) {
1981 // We always want to dump the stack for an abort, however, there is no point dumping another
1982 // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
1983 safe_to_dump = (safe_to_dump || dump_for_abort);
1984 }
1985 if (safe_to_dump || force_dump_stack) {
1986 // If we're currently in native code, dump that stack before dumping the managed stack.
1987 if (dump_native_stack && (dump_for_abort || force_dump_stack || ShouldShowNativeStack(this))) {
1988 DumpKernelStack(os, GetTid(), " kernel: ", false);
1989 ArtMethod* method =
1990 GetCurrentMethod(nullptr,
1991 /*check_suspended*/ !force_dump_stack,
1992 /*abort_on_error*/ !(dump_for_abort || force_dump_stack));
1993 DumpNativeStack(os, GetTid(), backtrace_map, " native: ", method);
1994 }
1995 DumpJavaStack(os,
1996 /*check_suspended*/ !force_dump_stack,
1997 /*dump_locks*/ !force_dump_stack);
1998 } else {
1999 os << "Not able to dump stack of thread that isn't suspended";
2000 }
2001 }
2002
ThreadExitCallback(void * arg)2003 void Thread::ThreadExitCallback(void* arg) {
2004 Thread* self = reinterpret_cast<Thread*>(arg);
2005 if (self->tls32_.thread_exit_check_count == 0) {
2006 LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
2007 "going to use a pthread_key_create destructor?): " << *self;
2008 CHECK(is_started_);
2009 #ifdef ART_TARGET_ANDROID
2010 __get_tls()[TLS_SLOT_ART_THREAD_SELF] = self;
2011 #else
2012 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
2013 #endif
2014 self->tls32_.thread_exit_check_count = 1;
2015 } else {
2016 LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
2017 }
2018 }
2019
Startup()2020 void Thread::Startup() {
2021 CHECK(!is_started_);
2022 is_started_ = true;
2023 {
2024 // MutexLock to keep annotalysis happy.
2025 //
2026 // Note we use null for the thread because Thread::Current can
2027 // return garbage since (is_started_ == true) and
2028 // Thread::pthread_key_self_ is not yet initialized.
2029 // This was seen on glibc.
2030 MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
2031 resume_cond_ = new ConditionVariable("Thread resumption condition variable",
2032 *Locks::thread_suspend_count_lock_);
2033 }
2034
2035 // Allocate a TLS slot.
2036 CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback),
2037 "self key");
2038
2039 // Double-check the TLS slot allocation.
2040 if (pthread_getspecific(pthread_key_self_) != nullptr) {
2041 LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
2042 }
2043 }
2044
FinishStartup()2045 void Thread::FinishStartup() {
2046 Runtime* runtime = Runtime::Current();
2047 CHECK(runtime->IsStarted());
2048
2049 // Finish attaching the main thread.
2050 ScopedObjectAccess soa(Thread::Current());
2051 Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
2052 Thread::Current()->AssertNoPendingException();
2053
2054 Runtime::Current()->GetClassLinker()->RunRootClinits();
2055
2056 // The thread counts as started from now on. We need to add it to the ThreadGroup. For regular
2057 // threads, this is done in Thread.start() on the Java side.
2058 Thread::Current()->NotifyThreadGroup(soa, runtime->GetMainThreadGroup());
2059 Thread::Current()->AssertNoPendingException();
2060 }
2061
Shutdown()2062 void Thread::Shutdown() {
2063 CHECK(is_started_);
2064 is_started_ = false;
2065 CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
2066 MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
2067 if (resume_cond_ != nullptr) {
2068 delete resume_cond_;
2069 resume_cond_ = nullptr;
2070 }
2071 }
2072
NotifyThreadGroup(ScopedObjectAccessAlreadyRunnable & soa,jobject thread_group)2073 void Thread::NotifyThreadGroup(ScopedObjectAccessAlreadyRunnable& soa, jobject thread_group) {
2074 ScopedLocalRef<jobject> thread_jobject(
2075 soa.Env(), soa.Env()->AddLocalReference<jobject>(Thread::Current()->GetPeer()));
2076 ScopedLocalRef<jobject> thread_group_jobject_scoped(
2077 soa.Env(), nullptr);
2078 jobject thread_group_jobject = thread_group;
2079 if (thread_group == nullptr || kIsDebugBuild) {
2080 // There is always a group set. Retrieve it.
2081 thread_group_jobject_scoped.reset(
2082 soa.Env()->GetObjectField(thread_jobject.get(),
2083 WellKnownClasses::java_lang_Thread_group));
2084 thread_group_jobject = thread_group_jobject_scoped.get();
2085 if (kIsDebugBuild && thread_group != nullptr) {
2086 CHECK(soa.Env()->IsSameObject(thread_group, thread_group_jobject));
2087 }
2088 }
2089 soa.Env()->CallNonvirtualVoidMethod(thread_group_jobject,
2090 WellKnownClasses::java_lang_ThreadGroup,
2091 WellKnownClasses::java_lang_ThreadGroup_add,
2092 thread_jobject.get());
2093 }
2094
Thread(bool daemon)2095 Thread::Thread(bool daemon)
2096 : tls32_(daemon),
2097 wait_monitor_(nullptr),
2098 custom_tls_(nullptr),
2099 can_call_into_java_(true) {
2100 wait_mutex_ = new Mutex("a thread wait mutex");
2101 wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
2102 tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
2103 tlsPtr_.name = new std::string(kThreadNameDuringStartup);
2104
2105 static_assert((sizeof(Thread) % 4) == 0U,
2106 "art::Thread has a size which is not a multiple of 4.");
2107 tls32_.state_and_flags.as_struct.flags = 0;
2108 tls32_.state_and_flags.as_struct.state = kNative;
2109 tls32_.interrupted.StoreRelaxed(false);
2110 memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
2111 std::fill(tlsPtr_.rosalloc_runs,
2112 tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBracketsInThread,
2113 gc::allocator::RosAlloc::GetDedicatedFullRun());
2114 tlsPtr_.checkpoint_function = nullptr;
2115 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
2116 tlsPtr_.active_suspend_barriers[i] = nullptr;
2117 }
2118 tlsPtr_.flip_function = nullptr;
2119 tlsPtr_.thread_local_mark_stack = nullptr;
2120 tls32_.is_transitioning_to_runnable = false;
2121 }
2122
IsStillStarting() const2123 bool Thread::IsStillStarting() const {
2124 // You might think you can check whether the state is kStarting, but for much of thread startup,
2125 // the thread is in kNative; it might also be in kVmWait.
2126 // You might think you can check whether the peer is null, but the peer is actually created and
2127 // assigned fairly early on, and needs to be.
2128 // It turns out that the last thing to change is the thread name; that's a good proxy for "has
2129 // this thread _ever_ entered kRunnable".
2130 return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
2131 (*tlsPtr_.name == kThreadNameDuringStartup);
2132 }
2133
AssertPendingException() const2134 void Thread::AssertPendingException() const {
2135 CHECK(IsExceptionPending()) << "Pending exception expected.";
2136 }
2137
AssertPendingOOMException() const2138 void Thread::AssertPendingOOMException() const {
2139 AssertPendingException();
2140 auto* e = GetException();
2141 CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass())
2142 << e->Dump();
2143 }
2144
AssertNoPendingException() const2145 void Thread::AssertNoPendingException() const {
2146 if (UNLIKELY(IsExceptionPending())) {
2147 ScopedObjectAccess soa(Thread::Current());
2148 LOG(FATAL) << "No pending exception expected: " << GetException()->Dump();
2149 }
2150 }
2151
AssertNoPendingExceptionForNewException(const char * msg) const2152 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
2153 if (UNLIKELY(IsExceptionPending())) {
2154 ScopedObjectAccess soa(Thread::Current());
2155 LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
2156 << GetException()->Dump();
2157 }
2158 }
2159
2160 class MonitorExitVisitor : public SingleRootVisitor {
2161 public:
MonitorExitVisitor(Thread * self)2162 explicit MonitorExitVisitor(Thread* self) : self_(self) { }
2163
2164 // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit.
VisitRoot(mirror::Object * entered_monitor,const RootInfo & info ATTRIBUTE_UNUSED)2165 void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED)
2166 OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
2167 if (self_->HoldsLock(entered_monitor)) {
2168 LOG(WARNING) << "Calling MonitorExit on object "
2169 << entered_monitor << " (" << entered_monitor->PrettyTypeOf() << ")"
2170 << " left locked by native thread "
2171 << *Thread::Current() << " which is detaching";
2172 entered_monitor->MonitorExit(self_);
2173 }
2174 }
2175
2176 private:
2177 Thread* const self_;
2178 };
2179
Destroy()2180 void Thread::Destroy() {
2181 Thread* self = this;
2182 DCHECK_EQ(self, Thread::Current());
2183
2184 if (tlsPtr_.jni_env != nullptr) {
2185 {
2186 ScopedObjectAccess soa(self);
2187 MonitorExitVisitor visitor(self);
2188 // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
2189 tlsPtr_.jni_env->monitors_.VisitRoots(&visitor, RootInfo(kRootVMInternal));
2190 }
2191 // Release locally held global references which releasing may require the mutator lock.
2192 if (tlsPtr_.jpeer != nullptr) {
2193 // If pthread_create fails we don't have a jni env here.
2194 tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
2195 tlsPtr_.jpeer = nullptr;
2196 }
2197 if (tlsPtr_.class_loader_override != nullptr) {
2198 tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
2199 tlsPtr_.class_loader_override = nullptr;
2200 }
2201 }
2202
2203 if (tlsPtr_.opeer != nullptr) {
2204 ScopedObjectAccess soa(self);
2205 // We may need to call user-supplied managed code, do this before final clean-up.
2206 HandleUncaughtExceptions(soa);
2207 RemoveFromThreadGroup(soa);
2208 Runtime* runtime = Runtime::Current();
2209 if (runtime != nullptr) {
2210 runtime->GetRuntimeCallbacks()->ThreadDeath(self);
2211 }
2212
2213 // this.nativePeer = 0;
2214 if (Runtime::Current()->IsActiveTransaction()) {
2215 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
2216 ->SetLong<true>(tlsPtr_.opeer, 0);
2217 } else {
2218 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
2219 ->SetLong<false>(tlsPtr_.opeer, 0);
2220 }
2221
2222 // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
2223 // who is waiting.
2224 ObjPtr<mirror::Object> lock =
2225 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
2226 // (This conditional is only needed for tests, where Thread.lock won't have been set.)
2227 if (lock != nullptr) {
2228 StackHandleScope<1> hs(self);
2229 Handle<mirror::Object> h_obj(hs.NewHandle(lock));
2230 ObjectLock<mirror::Object> locker(self, h_obj);
2231 locker.NotifyAll();
2232 }
2233 tlsPtr_.opeer = nullptr;
2234 }
2235
2236 {
2237 ScopedObjectAccess soa(self);
2238 Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
2239 if (kUseReadBarrier) {
2240 Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->RevokeThreadLocalMarkStack(this);
2241 }
2242 }
2243 }
2244
~Thread()2245 Thread::~Thread() {
2246 CHECK(tlsPtr_.class_loader_override == nullptr);
2247 CHECK(tlsPtr_.jpeer == nullptr);
2248 CHECK(tlsPtr_.opeer == nullptr);
2249 bool initialized = (tlsPtr_.jni_env != nullptr); // Did Thread::Init run?
2250 if (initialized) {
2251 delete tlsPtr_.jni_env;
2252 tlsPtr_.jni_env = nullptr;
2253 }
2254 CHECK_NE(GetState(), kRunnable);
2255 CHECK(!ReadFlag(kCheckpointRequest));
2256 CHECK(!ReadFlag(kEmptyCheckpointRequest));
2257 CHECK(tlsPtr_.checkpoint_function == nullptr);
2258 CHECK_EQ(checkpoint_overflow_.size(), 0u);
2259 CHECK(tlsPtr_.flip_function == nullptr);
2260 CHECK_EQ(tls32_.is_transitioning_to_runnable, false);
2261
2262 // Make sure we processed all deoptimization requests.
2263 CHECK(tlsPtr_.deoptimization_context_stack == nullptr) << "Missed deoptimization";
2264 CHECK(tlsPtr_.frame_id_to_shadow_frame == nullptr) <<
2265 "Not all deoptimized frames have been consumed by the debugger.";
2266
2267 // We may be deleting a still born thread.
2268 SetStateUnsafe(kTerminated);
2269
2270 delete wait_cond_;
2271 delete wait_mutex_;
2272
2273 if (tlsPtr_.long_jump_context != nullptr) {
2274 delete tlsPtr_.long_jump_context;
2275 }
2276
2277 if (initialized) {
2278 CleanupCpu();
2279 }
2280
2281 if (tlsPtr_.single_step_control != nullptr) {
2282 delete tlsPtr_.single_step_control;
2283 }
2284 delete tlsPtr_.instrumentation_stack;
2285 delete tlsPtr_.name;
2286 delete tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample;
2287
2288 Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);
2289
2290 TearDownAlternateSignalStack();
2291 }
2292
HandleUncaughtExceptions(ScopedObjectAccessAlreadyRunnable & soa)2293 void Thread::HandleUncaughtExceptions(ScopedObjectAccessAlreadyRunnable& soa) {
2294 if (!IsExceptionPending()) {
2295 return;
2296 }
2297 ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
2298 ScopedThreadStateChange tsc(this, kNative);
2299
2300 // Get and clear the exception.
2301 ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
2302 tlsPtr_.jni_env->ExceptionClear();
2303
2304 // Call the Thread instance's dispatchUncaughtException(Throwable)
2305 tlsPtr_.jni_env->CallVoidMethod(peer.get(),
2306 WellKnownClasses::java_lang_Thread_dispatchUncaughtException,
2307 exception.get());
2308
2309 // If the dispatchUncaughtException threw, clear that exception too.
2310 tlsPtr_.jni_env->ExceptionClear();
2311 }
2312
RemoveFromThreadGroup(ScopedObjectAccessAlreadyRunnable & soa)2313 void Thread::RemoveFromThreadGroup(ScopedObjectAccessAlreadyRunnable& soa) {
2314 // this.group.removeThread(this);
2315 // group can be null if we're in the compiler or a test.
2316 ObjPtr<mirror::Object> ogroup = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
2317 ->GetObject(tlsPtr_.opeer);
2318 if (ogroup != nullptr) {
2319 ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
2320 ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
2321 ScopedThreadStateChange tsc(soa.Self(), kNative);
2322 tlsPtr_.jni_env->CallVoidMethod(group.get(),
2323 WellKnownClasses::java_lang_ThreadGroup_removeThread,
2324 peer.get());
2325 }
2326 }
2327
HandleScopeContains(jobject obj) const2328 bool Thread::HandleScopeContains(jobject obj) const {
2329 StackReference<mirror::Object>* hs_entry =
2330 reinterpret_cast<StackReference<mirror::Object>*>(obj);
2331 for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) {
2332 if (cur->Contains(hs_entry)) {
2333 return true;
2334 }
2335 }
2336 // JNI code invoked from portable code uses shadow frames rather than the handle scope.
2337 return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
2338 }
2339
HandleScopeVisitRoots(RootVisitor * visitor,pid_t thread_id)2340 void Thread::HandleScopeVisitRoots(RootVisitor* visitor, pid_t thread_id) {
2341 BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
2342 visitor, RootInfo(kRootNativeStack, thread_id));
2343 for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
2344 cur->VisitRoots(buffered_visitor);
2345 }
2346 }
2347
DecodeJObject(jobject obj) const2348 ObjPtr<mirror::Object> Thread::DecodeJObject(jobject obj) const {
2349 if (obj == nullptr) {
2350 return nullptr;
2351 }
2352 IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2353 IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2354 ObjPtr<mirror::Object> result;
2355 bool expect_null = false;
2356 // The "kinds" below are sorted by the frequency we expect to encounter them.
2357 if (kind == kLocal) {
2358 IndirectReferenceTable& locals = tlsPtr_.jni_env->locals_;
2359 // Local references do not need a read barrier.
2360 result = locals.Get<kWithoutReadBarrier>(ref);
2361 } else if (kind == kHandleScopeOrInvalid) {
2362 // TODO: make stack indirect reference table lookup more efficient.
2363 // Check if this is a local reference in the handle scope.
2364 if (LIKELY(HandleScopeContains(obj))) {
2365 // Read from handle scope.
2366 result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
2367 VerifyObject(result);
2368 } else {
2369 tlsPtr_.jni_env->vm_->JniAbortF(nullptr, "use of invalid jobject %p", obj);
2370 expect_null = true;
2371 result = nullptr;
2372 }
2373 } else if (kind == kGlobal) {
2374 result = tlsPtr_.jni_env->vm_->DecodeGlobal(ref);
2375 } else {
2376 DCHECK_EQ(kind, kWeakGlobal);
2377 result = tlsPtr_.jni_env->vm_->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
2378 if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
2379 // This is a special case where it's okay to return null.
2380 expect_null = true;
2381 result = nullptr;
2382 }
2383 }
2384
2385 if (UNLIKELY(!expect_null && result == nullptr)) {
2386 tlsPtr_.jni_env->vm_->JniAbortF(nullptr, "use of deleted %s %p",
2387 ToStr<IndirectRefKind>(kind).c_str(), obj);
2388 }
2389 return result;
2390 }
2391
IsJWeakCleared(jweak obj) const2392 bool Thread::IsJWeakCleared(jweak obj) const {
2393 CHECK(obj != nullptr);
2394 IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2395 IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2396 CHECK_EQ(kind, kWeakGlobal);
2397 return tlsPtr_.jni_env->vm_->IsWeakGlobalCleared(const_cast<Thread*>(this), ref);
2398 }
2399
2400 // Implements java.lang.Thread.interrupted.
Interrupted()2401 bool Thread::Interrupted() {
2402 DCHECK_EQ(Thread::Current(), this);
2403 // No other thread can concurrently reset the interrupted flag.
2404 bool interrupted = tls32_.interrupted.LoadSequentiallyConsistent();
2405 if (interrupted) {
2406 tls32_.interrupted.StoreSequentiallyConsistent(false);
2407 }
2408 return interrupted;
2409 }
2410
2411 // Implements java.lang.Thread.isInterrupted.
IsInterrupted()2412 bool Thread::IsInterrupted() {
2413 return tls32_.interrupted.LoadSequentiallyConsistent();
2414 }
2415
Interrupt(Thread * self)2416 void Thread::Interrupt(Thread* self) {
2417 MutexLock mu(self, *wait_mutex_);
2418 if (tls32_.interrupted.LoadSequentiallyConsistent()) {
2419 return;
2420 }
2421 tls32_.interrupted.StoreSequentiallyConsistent(true);
2422 NotifyLocked(self);
2423 }
2424
Notify()2425 void Thread::Notify() {
2426 Thread* self = Thread::Current();
2427 MutexLock mu(self, *wait_mutex_);
2428 NotifyLocked(self);
2429 }
2430
NotifyLocked(Thread * self)2431 void Thread::NotifyLocked(Thread* self) {
2432 if (wait_monitor_ != nullptr) {
2433 wait_cond_->Signal(self);
2434 }
2435 }
2436
SetClassLoaderOverride(jobject class_loader_override)2437 void Thread::SetClassLoaderOverride(jobject class_loader_override) {
2438 if (tlsPtr_.class_loader_override != nullptr) {
2439 GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
2440 }
2441 tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
2442 }
2443
2444 using ArtMethodDexPcPair = std::pair<ArtMethod*, uint32_t>;
2445
2446 // Counts the stack trace depth and also fetches the first max_saved_frames frames.
2447 class FetchStackTraceVisitor : public StackVisitor {
2448 public:
FetchStackTraceVisitor(Thread * thread,ArtMethodDexPcPair * saved_frames=nullptr,size_t max_saved_frames=0)2449 explicit FetchStackTraceVisitor(Thread* thread,
2450 ArtMethodDexPcPair* saved_frames = nullptr,
2451 size_t max_saved_frames = 0)
2452 REQUIRES_SHARED(Locks::mutator_lock_)
2453 : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2454 saved_frames_(saved_frames),
2455 max_saved_frames_(max_saved_frames) {}
2456
VisitFrame()2457 bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
2458 // We want to skip frames up to and including the exception's constructor.
2459 // Note we also skip the frame if it doesn't have a method (namely the callee
2460 // save frame)
2461 ArtMethod* m = GetMethod();
2462 if (skipping_ && !m->IsRuntimeMethod() &&
2463 !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
2464 skipping_ = false;
2465 }
2466 if (!skipping_) {
2467 if (!m->IsRuntimeMethod()) { // Ignore runtime frames (in particular callee save).
2468 if (depth_ < max_saved_frames_) {
2469 saved_frames_[depth_].first = m;
2470 saved_frames_[depth_].second = m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc();
2471 }
2472 ++depth_;
2473 }
2474 } else {
2475 ++skip_depth_;
2476 }
2477 return true;
2478 }
2479
GetDepth() const2480 uint32_t GetDepth() const {
2481 return depth_;
2482 }
2483
GetSkipDepth() const2484 uint32_t GetSkipDepth() const {
2485 return skip_depth_;
2486 }
2487
2488 private:
2489 uint32_t depth_ = 0;
2490 uint32_t skip_depth_ = 0;
2491 bool skipping_ = true;
2492 ArtMethodDexPcPair* saved_frames_;
2493 const size_t max_saved_frames_;
2494
2495 DISALLOW_COPY_AND_ASSIGN(FetchStackTraceVisitor);
2496 };
2497
2498 template<bool kTransactionActive>
2499 class BuildInternalStackTraceVisitor : public StackVisitor {
2500 public:
BuildInternalStackTraceVisitor(Thread * self,Thread * thread,int skip_depth)2501 BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
2502 : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2503 self_(self),
2504 skip_depth_(skip_depth),
2505 pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {}
2506
Init(int depth)2507 bool Init(int depth) REQUIRES_SHARED(Locks::mutator_lock_) ACQUIRE(Roles::uninterruptible_) {
2508 // Allocate method trace as an object array where the first element is a pointer array that
2509 // contains the ArtMethod pointers and dex PCs. The rest of the elements are the declaring
2510 // class of the ArtMethod pointers.
2511 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2512 StackHandleScope<1> hs(self_);
2513 ObjPtr<mirror::Class> array_class = class_linker->GetClassRoot(ClassLinker::kObjectArrayClass);
2514 // The first element is the methods and dex pc array, the other elements are declaring classes
2515 // for the methods to ensure classes in the stack trace don't get unloaded.
2516 Handle<mirror::ObjectArray<mirror::Object>> trace(
2517 hs.NewHandle(
2518 mirror::ObjectArray<mirror::Object>::Alloc(hs.Self(), array_class, depth + 1)));
2519 if (trace == nullptr) {
2520 // Acquire uninterruptible_ in all paths.
2521 self_->StartAssertNoThreadSuspension("Building internal stack trace");
2522 self_->AssertPendingOOMException();
2523 return false;
2524 }
2525 ObjPtr<mirror::PointerArray> methods_and_pcs =
2526 class_linker->AllocPointerArray(self_, depth * 2);
2527 const char* last_no_suspend_cause =
2528 self_->StartAssertNoThreadSuspension("Building internal stack trace");
2529 if (methods_and_pcs == nullptr) {
2530 self_->AssertPendingOOMException();
2531 return false;
2532 }
2533 trace->Set(0, methods_and_pcs);
2534 trace_ = trace.Get();
2535 // If We are called from native, use non-transactional mode.
2536 CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
2537 return true;
2538 }
2539
RELEASE(Roles::uninterruptible_)2540 virtual ~BuildInternalStackTraceVisitor() RELEASE(Roles::uninterruptible_) {
2541 self_->EndAssertNoThreadSuspension(nullptr);
2542 }
2543
VisitFrame()2544 bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
2545 if (trace_ == nullptr) {
2546 return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError.
2547 }
2548 if (skip_depth_ > 0) {
2549 skip_depth_--;
2550 return true;
2551 }
2552 ArtMethod* m = GetMethod();
2553 if (m->IsRuntimeMethod()) {
2554 return true; // Ignore runtime frames (in particular callee save).
2555 }
2556 AddFrame(m, m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc());
2557 return true;
2558 }
2559
AddFrame(ArtMethod * method,uint32_t dex_pc)2560 void AddFrame(ArtMethod* method, uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
2561 ObjPtr<mirror::PointerArray> trace_methods_and_pcs = GetTraceMethodsAndPCs();
2562 trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(count_, method, pointer_size_);
2563 trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(
2564 trace_methods_and_pcs->GetLength() / 2 + count_,
2565 dex_pc,
2566 pointer_size_);
2567 // Save the declaring class of the method to ensure that the declaring classes of the methods
2568 // do not get unloaded while the stack trace is live.
2569 trace_->Set(count_ + 1, method->GetDeclaringClass());
2570 ++count_;
2571 }
2572
GetTraceMethodsAndPCs() const2573 ObjPtr<mirror::PointerArray> GetTraceMethodsAndPCs() const REQUIRES_SHARED(Locks::mutator_lock_) {
2574 return ObjPtr<mirror::PointerArray>::DownCast(MakeObjPtr(trace_->Get(0)));
2575 }
2576
GetInternalStackTrace() const2577 mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
2578 return trace_;
2579 }
2580
2581 private:
2582 Thread* const self_;
2583 // How many more frames to skip.
2584 int32_t skip_depth_;
2585 // Current position down stack trace.
2586 uint32_t count_ = 0;
2587 // An object array where the first element is a pointer array that contains the ArtMethod
2588 // pointers on the stack and dex PCs. The rest of the elements are the declaring
2589 // class of the ArtMethod pointers. trace_[i+1] contains the declaring class of the ArtMethod of
2590 // the i'th frame.
2591 mirror::ObjectArray<mirror::Object>* trace_ = nullptr;
2592 // For cross compilation.
2593 const PointerSize pointer_size_;
2594
2595 DISALLOW_COPY_AND_ASSIGN(BuildInternalStackTraceVisitor);
2596 };
2597
2598 template<bool kTransactionActive>
CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const2599 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
2600 // Compute depth of stack, save frames if possible to avoid needing to recompute many.
2601 constexpr size_t kMaxSavedFrames = 256;
2602 std::unique_ptr<ArtMethodDexPcPair[]> saved_frames(new ArtMethodDexPcPair[kMaxSavedFrames]);
2603 FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this),
2604 &saved_frames[0],
2605 kMaxSavedFrames);
2606 count_visitor.WalkStack();
2607 const uint32_t depth = count_visitor.GetDepth();
2608 const uint32_t skip_depth = count_visitor.GetSkipDepth();
2609
2610 // Build internal stack trace.
2611 BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
2612 const_cast<Thread*>(this),
2613 skip_depth);
2614 if (!build_trace_visitor.Init(depth)) {
2615 return nullptr; // Allocation failed.
2616 }
2617 // If we saved all of the frames we don't even need to do the actual stack walk. This is faster
2618 // than doing the stack walk twice.
2619 if (depth < kMaxSavedFrames) {
2620 for (size_t i = 0; i < depth; ++i) {
2621 build_trace_visitor.AddFrame(saved_frames[i].first, saved_frames[i].second);
2622 }
2623 } else {
2624 build_trace_visitor.WalkStack();
2625 }
2626
2627 mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
2628 if (kIsDebugBuild) {
2629 ObjPtr<mirror::PointerArray> trace_methods = build_trace_visitor.GetTraceMethodsAndPCs();
2630 // Second half of trace_methods is dex PCs.
2631 for (uint32_t i = 0; i < static_cast<uint32_t>(trace_methods->GetLength() / 2); ++i) {
2632 auto* method = trace_methods->GetElementPtrSize<ArtMethod*>(
2633 i, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
2634 CHECK(method != nullptr);
2635 }
2636 }
2637 return soa.AddLocalReference<jobject>(trace);
2638 }
2639 template jobject Thread::CreateInternalStackTrace<false>(
2640 const ScopedObjectAccessAlreadyRunnable& soa) const;
2641 template jobject Thread::CreateInternalStackTrace<true>(
2642 const ScopedObjectAccessAlreadyRunnable& soa) const;
2643
IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const2644 bool Thread::IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const {
2645 // Only count the depth since we do not pass a stack frame array as an argument.
2646 FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this));
2647 count_visitor.WalkStack();
2648 return count_visitor.GetDepth() == static_cast<uint32_t>(exception->GetStackDepth());
2649 }
2650
CreateStackTraceElement(const ScopedObjectAccessAlreadyRunnable & soa,ArtMethod * method,uint32_t dex_pc)2651 static ObjPtr<mirror::StackTraceElement> CreateStackTraceElement(
2652 const ScopedObjectAccessAlreadyRunnable& soa,
2653 ArtMethod* method,
2654 uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
2655 int32_t line_number;
2656 StackHandleScope<3> hs(soa.Self());
2657 auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
2658 auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
2659 if (method->IsProxyMethod()) {
2660 line_number = -1;
2661 class_name_object.Assign(method->GetDeclaringClass()->GetName());
2662 // source_name_object intentionally left null for proxy methods
2663 } else {
2664 line_number = method->GetLineNumFromDexPC(dex_pc);
2665 // Allocate element, potentially triggering GC
2666 // TODO: reuse class_name_object via Class::name_?
2667 const char* descriptor = method->GetDeclaringClassDescriptor();
2668 CHECK(descriptor != nullptr);
2669 std::string class_name(PrettyDescriptor(descriptor));
2670 class_name_object.Assign(
2671 mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
2672 if (class_name_object == nullptr) {
2673 soa.Self()->AssertPendingOOMException();
2674 return nullptr;
2675 }
2676 const char* source_file = method->GetDeclaringClassSourceFile();
2677 if (line_number == -1) {
2678 // Make the line_number field of StackTraceElement hold the dex pc.
2679 // source_name_object is intentionally left null if we failed to map the dex pc to
2680 // a line number (most probably because there is no debug info). See b/30183883.
2681 line_number = dex_pc;
2682 } else {
2683 if (source_file != nullptr) {
2684 source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
2685 if (source_name_object == nullptr) {
2686 soa.Self()->AssertPendingOOMException();
2687 return nullptr;
2688 }
2689 }
2690 }
2691 }
2692 const char* method_name = method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetName();
2693 CHECK(method_name != nullptr);
2694 Handle<mirror::String> method_name_object(
2695 hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
2696 if (method_name_object == nullptr) {
2697 return nullptr;
2698 }
2699 return mirror::StackTraceElement::Alloc(soa.Self(),
2700 class_name_object,
2701 method_name_object,
2702 source_name_object,
2703 line_number);
2704 }
2705
InternalStackTraceToStackTraceElementArray(const ScopedObjectAccessAlreadyRunnable & soa,jobject internal,jobjectArray output_array,int * stack_depth)2706 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
2707 const ScopedObjectAccessAlreadyRunnable& soa,
2708 jobject internal,
2709 jobjectArray output_array,
2710 int* stack_depth) {
2711 // Decode the internal stack trace into the depth, method trace and PC trace.
2712 // Subtract one for the methods and PC trace.
2713 int32_t depth = soa.Decode<mirror::Array>(internal)->GetLength() - 1;
2714 DCHECK_GE(depth, 0);
2715
2716 ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
2717
2718 jobjectArray result;
2719
2720 if (output_array != nullptr) {
2721 // Reuse the array we were given.
2722 result = output_array;
2723 // ...adjusting the number of frames we'll write to not exceed the array length.
2724 const int32_t traces_length =
2725 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->GetLength();
2726 depth = std::min(depth, traces_length);
2727 } else {
2728 // Create java_trace array and place in local reference table
2729 mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
2730 class_linker->AllocStackTraceElementArray(soa.Self(), depth);
2731 if (java_traces == nullptr) {
2732 return nullptr;
2733 }
2734 result = soa.AddLocalReference<jobjectArray>(java_traces);
2735 }
2736
2737 if (stack_depth != nullptr) {
2738 *stack_depth = depth;
2739 }
2740
2741 for (int32_t i = 0; i < depth; ++i) {
2742 ObjPtr<mirror::ObjectArray<mirror::Object>> decoded_traces =
2743 soa.Decode<mirror::Object>(internal)->AsObjectArray<mirror::Object>();
2744 // Methods and dex PC trace is element 0.
2745 DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray());
2746 ObjPtr<mirror::PointerArray> const method_trace =
2747 ObjPtr<mirror::PointerArray>::DownCast(MakeObjPtr(decoded_traces->Get(0)));
2748 // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
2749 ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, kRuntimePointerSize);
2750 uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
2751 i + method_trace->GetLength() / 2, kRuntimePointerSize);
2752 ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement(soa, method, dex_pc);
2753 if (obj == nullptr) {
2754 return nullptr;
2755 }
2756 // We are called from native: use non-transactional mode.
2757 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->Set<false>(i, obj);
2758 }
2759 return result;
2760 }
2761
CreateAnnotatedStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const2762 jobjectArray Thread::CreateAnnotatedStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
2763 // This code allocates. Do not allow it to operate with a pending exception.
2764 if (IsExceptionPending()) {
2765 return nullptr;
2766 }
2767
2768 // If flip_function is not null, it means we have run a checkpoint
2769 // before the thread wakes up to execute the flip function and the
2770 // thread roots haven't been forwarded. So the following access to
2771 // the roots (locks or methods in the frames) would be bad. Run it
2772 // here. TODO: clean up.
2773 // Note: copied from DumpJavaStack.
2774 {
2775 Thread* this_thread = const_cast<Thread*>(this);
2776 Closure* flip_func = this_thread->GetFlipFunction();
2777 if (flip_func != nullptr) {
2778 flip_func->Run(this_thread);
2779 }
2780 }
2781
2782 class CollectFramesAndLocksStackVisitor : public MonitorObjectsStackVisitor {
2783 public:
2784 CollectFramesAndLocksStackVisitor(const ScopedObjectAccessAlreadyRunnable& soaa_in,
2785 Thread* self,
2786 Context* context)
2787 : MonitorObjectsStackVisitor(self, context),
2788 wait_jobject_(soaa_in.Env(), nullptr),
2789 block_jobject_(soaa_in.Env(), nullptr),
2790 soaa_(soaa_in) {}
2791
2792 protected:
2793 VisitMethodResult StartMethod(ArtMethod* m, size_t frame_nr ATTRIBUTE_UNUSED)
2794 OVERRIDE
2795 REQUIRES_SHARED(Locks::mutator_lock_) {
2796 ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement(
2797 soaa_, m, GetDexPc(/* abort on error */ false));
2798 if (obj == nullptr) {
2799 return VisitMethodResult::kEndStackWalk;
2800 }
2801 stack_trace_elements_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj.Ptr()));
2802 return VisitMethodResult::kContinueMethod;
2803 }
2804
2805 VisitMethodResult EndMethod(ArtMethod* m ATTRIBUTE_UNUSED) OVERRIDE {
2806 lock_objects_.push_back({});
2807 lock_objects_[lock_objects_.size() - 1].swap(frame_lock_objects_);
2808
2809 DCHECK_EQ(lock_objects_.size(), stack_trace_elements_.size());
2810
2811 return VisitMethodResult::kContinueMethod;
2812 }
2813
2814 void VisitWaitingObject(mirror::Object* obj, ThreadState state ATTRIBUTE_UNUSED)
2815 OVERRIDE
2816 REQUIRES_SHARED(Locks::mutator_lock_) {
2817 wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
2818 }
2819 void VisitSleepingObject(mirror::Object* obj)
2820 OVERRIDE
2821 REQUIRES_SHARED(Locks::mutator_lock_) {
2822 wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
2823 }
2824 void VisitBlockedOnObject(mirror::Object* obj,
2825 ThreadState state ATTRIBUTE_UNUSED,
2826 uint32_t owner_tid ATTRIBUTE_UNUSED)
2827 OVERRIDE
2828 REQUIRES_SHARED(Locks::mutator_lock_) {
2829 block_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
2830 }
2831 void VisitLockedObject(mirror::Object* obj)
2832 OVERRIDE
2833 REQUIRES_SHARED(Locks::mutator_lock_) {
2834 frame_lock_objects_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj));
2835 }
2836
2837 public:
2838 std::vector<ScopedLocalRef<jobject>> stack_trace_elements_;
2839 ScopedLocalRef<jobject> wait_jobject_;
2840 ScopedLocalRef<jobject> block_jobject_;
2841 std::vector<std::vector<ScopedLocalRef<jobject>>> lock_objects_;
2842
2843 private:
2844 const ScopedObjectAccessAlreadyRunnable& soaa_;
2845
2846 std::vector<ScopedLocalRef<jobject>> frame_lock_objects_;
2847 };
2848
2849 std::unique_ptr<Context> context(Context::Create());
2850 CollectFramesAndLocksStackVisitor dumper(soa, const_cast<Thread*>(this), context.get());
2851 dumper.WalkStack();
2852
2853 // There should not be a pending exception. Otherwise, return with it pending.
2854 if (IsExceptionPending()) {
2855 return nullptr;
2856 }
2857
2858 // Now go and create Java arrays.
2859
2860 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2861
2862 StackHandleScope<6> hs(soa.Self());
2863 mirror::Class* aste_array_class = class_linker->FindClass(
2864 soa.Self(),
2865 "[Ldalvik/system/AnnotatedStackTraceElement;",
2866 ScopedNullHandle<mirror::ClassLoader>());
2867 if (aste_array_class == nullptr) {
2868 return nullptr;
2869 }
2870 Handle<mirror::Class> h_aste_array_class(hs.NewHandle<mirror::Class>(aste_array_class));
2871
2872 mirror::Class* o_array_class = class_linker->FindClass(soa.Self(),
2873 "[Ljava/lang/Object;",
2874 ScopedNullHandle<mirror::ClassLoader>());
2875 if (o_array_class == nullptr) {
2876 // This should not fail in a healthy runtime.
2877 soa.Self()->AssertPendingException();
2878 return nullptr;
2879 }
2880 Handle<mirror::Class> h_o_array_class(hs.NewHandle<mirror::Class>(o_array_class));
2881
2882 Handle<mirror::Class> h_aste_class(hs.NewHandle<mirror::Class>(
2883 h_aste_array_class->GetComponentType()));
2884
2885 // Make sure the AnnotatedStackTraceElement.class is initialized, b/76208924 .
2886 class_linker->EnsureInitialized(soa.Self(),
2887 h_aste_class,
2888 /* can_init_fields */ true,
2889 /* can_init_parents */ true);
2890 if (soa.Self()->IsExceptionPending()) {
2891 // This should not fail in a healthy runtime.
2892 return nullptr;
2893 }
2894
2895 ArtField* stack_trace_element_field = h_aste_class->FindField(
2896 soa.Self(), h_aste_class.Get(), "stackTraceElement", "Ljava/lang/StackTraceElement;");
2897 DCHECK(stack_trace_element_field != nullptr);
2898 ArtField* held_locks_field = h_aste_class->FindField(
2899 soa.Self(), h_aste_class.Get(), "heldLocks", "[Ljava/lang/Object;");
2900 DCHECK(held_locks_field != nullptr);
2901 ArtField* blocked_on_field = h_aste_class->FindField(
2902 soa.Self(), h_aste_class.Get(), "blockedOn", "Ljava/lang/Object;");
2903 DCHECK(blocked_on_field != nullptr);
2904
2905 size_t length = dumper.stack_trace_elements_.size();
2906 ObjPtr<mirror::ObjectArray<mirror::Object>> array =
2907 mirror::ObjectArray<mirror::Object>::Alloc(soa.Self(), aste_array_class, length);
2908 if (array == nullptr) {
2909 soa.Self()->AssertPendingOOMException();
2910 return nullptr;
2911 }
2912
2913 ScopedLocalRef<jobjectArray> result(soa.Env(), soa.Env()->AddLocalReference<jobjectArray>(array));
2914
2915 MutableHandle<mirror::Object> handle(hs.NewHandle<mirror::Object>(nullptr));
2916 MutableHandle<mirror::ObjectArray<mirror::Object>> handle2(
2917 hs.NewHandle<mirror::ObjectArray<mirror::Object>>(nullptr));
2918 for (size_t i = 0; i != length; ++i) {
2919 handle.Assign(h_aste_class->AllocObject(soa.Self()));
2920 if (handle == nullptr) {
2921 soa.Self()->AssertPendingOOMException();
2922 return nullptr;
2923 }
2924
2925 // Set stack trace element.
2926 stack_trace_element_field->SetObject<false>(
2927 handle.Get(), soa.Decode<mirror::Object>(dumper.stack_trace_elements_[i].get()));
2928
2929 // Create locked-on array.
2930 if (!dumper.lock_objects_[i].empty()) {
2931 handle2.Assign(mirror::ObjectArray<mirror::Object>::Alloc(soa.Self(),
2932 h_o_array_class.Get(),
2933 dumper.lock_objects_[i].size()));
2934 if (handle2 == nullptr) {
2935 soa.Self()->AssertPendingOOMException();
2936 return nullptr;
2937 }
2938 int32_t j = 0;
2939 for (auto& scoped_local : dumper.lock_objects_[i]) {
2940 if (scoped_local == nullptr) {
2941 continue;
2942 }
2943 handle2->Set(j, soa.Decode<mirror::Object>(scoped_local.get()));
2944 DCHECK(!soa.Self()->IsExceptionPending());
2945 j++;
2946 }
2947 held_locks_field->SetObject<false>(handle.Get(), handle2.Get());
2948 }
2949
2950 // Set blocked-on object.
2951 if (i == 0) {
2952 if (dumper.block_jobject_ != nullptr) {
2953 blocked_on_field->SetObject<false>(
2954 handle.Get(), soa.Decode<mirror::Object>(dumper.block_jobject_.get()));
2955 }
2956 }
2957
2958 ScopedLocalRef<jobject> elem(soa.Env(), soa.AddLocalReference<jobject>(handle.Get()));
2959 soa.Env()->SetObjectArrayElement(result.get(), i, elem.get());
2960 DCHECK(!soa.Self()->IsExceptionPending());
2961 }
2962
2963 return result.release();
2964 }
2965
ThrowNewExceptionF(const char * exception_class_descriptor,const char * fmt,...)2966 void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
2967 va_list args;
2968 va_start(args, fmt);
2969 ThrowNewExceptionV(exception_class_descriptor, fmt, args);
2970 va_end(args);
2971 }
2972
ThrowNewExceptionV(const char * exception_class_descriptor,const char * fmt,va_list ap)2973 void Thread::ThrowNewExceptionV(const char* exception_class_descriptor,
2974 const char* fmt, va_list ap) {
2975 std::string msg;
2976 StringAppendV(&msg, fmt, ap);
2977 ThrowNewException(exception_class_descriptor, msg.c_str());
2978 }
2979
ThrowNewException(const char * exception_class_descriptor,const char * msg)2980 void Thread::ThrowNewException(const char* exception_class_descriptor,
2981 const char* msg) {
2982 // Callers should either clear or call ThrowNewWrappedException.
2983 AssertNoPendingExceptionForNewException(msg);
2984 ThrowNewWrappedException(exception_class_descriptor, msg);
2985 }
2986
GetCurrentClassLoader(Thread * self)2987 static ObjPtr<mirror::ClassLoader> GetCurrentClassLoader(Thread* self)
2988 REQUIRES_SHARED(Locks::mutator_lock_) {
2989 ArtMethod* method = self->GetCurrentMethod(nullptr);
2990 return method != nullptr
2991 ? method->GetDeclaringClass()->GetClassLoader()
2992 : nullptr;
2993 }
2994
ThrowNewWrappedException(const char * exception_class_descriptor,const char * msg)2995 void Thread::ThrowNewWrappedException(const char* exception_class_descriptor,
2996 const char* msg) {
2997 DCHECK_EQ(this, Thread::Current());
2998 ScopedObjectAccessUnchecked soa(this);
2999 StackHandleScope<3> hs(soa.Self());
3000 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self())));
3001 ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException()));
3002 ClearException();
3003 Runtime* runtime = Runtime::Current();
3004 auto* cl = runtime->GetClassLinker();
3005 Handle<mirror::Class> exception_class(
3006 hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader)));
3007 if (UNLIKELY(exception_class == nullptr)) {
3008 CHECK(IsExceptionPending());
3009 LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
3010 return;
3011 }
3012
3013 if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
3014 true))) {
3015 DCHECK(IsExceptionPending());
3016 return;
3017 }
3018 DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
3019 Handle<mirror::Throwable> exception(
3020 hs.NewHandle(ObjPtr<mirror::Throwable>::DownCast(exception_class->AllocObject(this))));
3021
3022 // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
3023 if (exception == nullptr) {
3024 SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
3025 return;
3026 }
3027
3028 // Choose an appropriate constructor and set up the arguments.
3029 const char* signature;
3030 ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
3031 if (msg != nullptr) {
3032 // Ensure we remember this and the method over the String allocation.
3033 msg_string.reset(
3034 soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
3035 if (UNLIKELY(msg_string.get() == nullptr)) {
3036 CHECK(IsExceptionPending()); // OOME.
3037 return;
3038 }
3039 if (cause.get() == nullptr) {
3040 signature = "(Ljava/lang/String;)V";
3041 } else {
3042 signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
3043 }
3044 } else {
3045 if (cause.get() == nullptr) {
3046 signature = "()V";
3047 } else {
3048 signature = "(Ljava/lang/Throwable;)V";
3049 }
3050 }
3051 ArtMethod* exception_init_method =
3052 exception_class->FindConstructor(signature, cl->GetImagePointerSize());
3053
3054 CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
3055 << PrettyDescriptor(exception_class_descriptor);
3056
3057 if (UNLIKELY(!runtime->IsStarted())) {
3058 // Something is trying to throw an exception without a started runtime, which is the common
3059 // case in the compiler. We won't be able to invoke the constructor of the exception, so set
3060 // the exception fields directly.
3061 if (msg != nullptr) {
3062 exception->SetDetailMessage(DecodeJObject(msg_string.get())->AsString());
3063 }
3064 if (cause.get() != nullptr) {
3065 exception->SetCause(DecodeJObject(cause.get())->AsThrowable());
3066 }
3067 ScopedLocalRef<jobject> trace(GetJniEnv(),
3068 Runtime::Current()->IsActiveTransaction()
3069 ? CreateInternalStackTrace<true>(soa)
3070 : CreateInternalStackTrace<false>(soa));
3071 if (trace.get() != nullptr) {
3072 exception->SetStackState(DecodeJObject(trace.get()).Ptr());
3073 }
3074 SetException(exception.Get());
3075 } else {
3076 jvalue jv_args[2];
3077 size_t i = 0;
3078
3079 if (msg != nullptr) {
3080 jv_args[i].l = msg_string.get();
3081 ++i;
3082 }
3083 if (cause.get() != nullptr) {
3084 jv_args[i].l = cause.get();
3085 ++i;
3086 }
3087 ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get()));
3088 InvokeWithJValues(soa, ref.get(), jni::EncodeArtMethod(exception_init_method), jv_args);
3089 if (LIKELY(!IsExceptionPending())) {
3090 SetException(exception.Get());
3091 }
3092 }
3093 }
3094
ThrowOutOfMemoryError(const char * msg)3095 void Thread::ThrowOutOfMemoryError(const char* msg) {
3096 LOG(WARNING) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
3097 msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
3098 if (!tls32_.throwing_OutOfMemoryError) {
3099 tls32_.throwing_OutOfMemoryError = true;
3100 ThrowNewException("Ljava/lang/OutOfMemoryError;", msg);
3101 tls32_.throwing_OutOfMemoryError = false;
3102 } else {
3103 Dump(LOG_STREAM(WARNING)); // The pre-allocated OOME has no stack, so help out and log one.
3104 SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
3105 }
3106 }
3107
CurrentFromGdb()3108 Thread* Thread::CurrentFromGdb() {
3109 return Thread::Current();
3110 }
3111
DumpFromGdb() const3112 void Thread::DumpFromGdb() const {
3113 std::ostringstream ss;
3114 Dump(ss);
3115 std::string str(ss.str());
3116 // log to stderr for debugging command line processes
3117 std::cerr << str;
3118 #ifdef ART_TARGET_ANDROID
3119 // log to logcat for debugging frameworks processes
3120 LOG(INFO) << str;
3121 #endif
3122 }
3123
3124 // Explicitly instantiate 32 and 64bit thread offset dumping support.
3125 template
3126 void Thread::DumpThreadOffset<PointerSize::k32>(std::ostream& os, uint32_t offset);
3127 template
3128 void Thread::DumpThreadOffset<PointerSize::k64>(std::ostream& os, uint32_t offset);
3129
3130 template<PointerSize ptr_size>
DumpThreadOffset(std::ostream & os,uint32_t offset)3131 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
3132 #define DO_THREAD_OFFSET(x, y) \
3133 if (offset == (x).Uint32Value()) { \
3134 os << (y); \
3135 return; \
3136 }
3137 DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
3138 DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
3139 DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
3140 DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
3141 DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
3142 DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
3143 DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
3144 DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
3145 DO_THREAD_OFFSET(IsGcMarkingOffset<ptr_size>(), "is_gc_marking")
3146 DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
3147 DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
3148 DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
3149 DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
3150 #undef DO_THREAD_OFFSET
3151
3152 #define JNI_ENTRY_POINT_INFO(x) \
3153 if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
3154 os << #x; \
3155 return; \
3156 }
3157 JNI_ENTRY_POINT_INFO(pDlsymLookup)
3158 #undef JNI_ENTRY_POINT_INFO
3159
3160 #define QUICK_ENTRY_POINT_INFO(x) \
3161 if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
3162 os << #x; \
3163 return; \
3164 }
3165 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
3166 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved8)
3167 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved16)
3168 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved32)
3169 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved64)
3170 QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
3171 QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
3172 QUICK_ENTRY_POINT_INFO(pAllocObjectWithChecks)
3173 QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes)
3174 QUICK_ENTRY_POINT_INFO(pAllocStringFromChars)
3175 QUICK_ENTRY_POINT_INFO(pAllocStringFromString)
3176 QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
3177 QUICK_ENTRY_POINT_INFO(pCheckInstanceOf)
3178 QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
3179 QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
3180 QUICK_ENTRY_POINT_INFO(pInitializeType)
3181 QUICK_ENTRY_POINT_INFO(pResolveString)
3182 QUICK_ENTRY_POINT_INFO(pSet8Instance)
3183 QUICK_ENTRY_POINT_INFO(pSet8Static)
3184 QUICK_ENTRY_POINT_INFO(pSet16Instance)
3185 QUICK_ENTRY_POINT_INFO(pSet16Static)
3186 QUICK_ENTRY_POINT_INFO(pSet32Instance)
3187 QUICK_ENTRY_POINT_INFO(pSet32Static)
3188 QUICK_ENTRY_POINT_INFO(pSet64Instance)
3189 QUICK_ENTRY_POINT_INFO(pSet64Static)
3190 QUICK_ENTRY_POINT_INFO(pSetObjInstance)
3191 QUICK_ENTRY_POINT_INFO(pSetObjStatic)
3192 QUICK_ENTRY_POINT_INFO(pGetByteInstance)
3193 QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
3194 QUICK_ENTRY_POINT_INFO(pGetByteStatic)
3195 QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
3196 QUICK_ENTRY_POINT_INFO(pGetShortInstance)
3197 QUICK_ENTRY_POINT_INFO(pGetCharInstance)
3198 QUICK_ENTRY_POINT_INFO(pGetShortStatic)
3199 QUICK_ENTRY_POINT_INFO(pGetCharStatic)
3200 QUICK_ENTRY_POINT_INFO(pGet32Instance)
3201 QUICK_ENTRY_POINT_INFO(pGet32Static)
3202 QUICK_ENTRY_POINT_INFO(pGet64Instance)
3203 QUICK_ENTRY_POINT_INFO(pGet64Static)
3204 QUICK_ENTRY_POINT_INFO(pGetObjInstance)
3205 QUICK_ENTRY_POINT_INFO(pGetObjStatic)
3206 QUICK_ENTRY_POINT_INFO(pAputObject)
3207 QUICK_ENTRY_POINT_INFO(pJniMethodStart)
3208 QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
3209 QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
3210 QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
3211 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
3212 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
3213 QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
3214 QUICK_ENTRY_POINT_INFO(pLockObject)
3215 QUICK_ENTRY_POINT_INFO(pUnlockObject)
3216 QUICK_ENTRY_POINT_INFO(pCmpgDouble)
3217 QUICK_ENTRY_POINT_INFO(pCmpgFloat)
3218 QUICK_ENTRY_POINT_INFO(pCmplDouble)
3219 QUICK_ENTRY_POINT_INFO(pCmplFloat)
3220 QUICK_ENTRY_POINT_INFO(pCos)
3221 QUICK_ENTRY_POINT_INFO(pSin)
3222 QUICK_ENTRY_POINT_INFO(pAcos)
3223 QUICK_ENTRY_POINT_INFO(pAsin)
3224 QUICK_ENTRY_POINT_INFO(pAtan)
3225 QUICK_ENTRY_POINT_INFO(pAtan2)
3226 QUICK_ENTRY_POINT_INFO(pCbrt)
3227 QUICK_ENTRY_POINT_INFO(pCosh)
3228 QUICK_ENTRY_POINT_INFO(pExp)
3229 QUICK_ENTRY_POINT_INFO(pExpm1)
3230 QUICK_ENTRY_POINT_INFO(pHypot)
3231 QUICK_ENTRY_POINT_INFO(pLog)
3232 QUICK_ENTRY_POINT_INFO(pLog10)
3233 QUICK_ENTRY_POINT_INFO(pNextAfter)
3234 QUICK_ENTRY_POINT_INFO(pSinh)
3235 QUICK_ENTRY_POINT_INFO(pTan)
3236 QUICK_ENTRY_POINT_INFO(pTanh)
3237 QUICK_ENTRY_POINT_INFO(pFmod)
3238 QUICK_ENTRY_POINT_INFO(pL2d)
3239 QUICK_ENTRY_POINT_INFO(pFmodf)
3240 QUICK_ENTRY_POINT_INFO(pL2f)
3241 QUICK_ENTRY_POINT_INFO(pD2iz)
3242 QUICK_ENTRY_POINT_INFO(pF2iz)
3243 QUICK_ENTRY_POINT_INFO(pIdivmod)
3244 QUICK_ENTRY_POINT_INFO(pD2l)
3245 QUICK_ENTRY_POINT_INFO(pF2l)
3246 QUICK_ENTRY_POINT_INFO(pLdiv)
3247 QUICK_ENTRY_POINT_INFO(pLmod)
3248 QUICK_ENTRY_POINT_INFO(pLmul)
3249 QUICK_ENTRY_POINT_INFO(pShlLong)
3250 QUICK_ENTRY_POINT_INFO(pShrLong)
3251 QUICK_ENTRY_POINT_INFO(pUshrLong)
3252 QUICK_ENTRY_POINT_INFO(pIndexOf)
3253 QUICK_ENTRY_POINT_INFO(pStringCompareTo)
3254 QUICK_ENTRY_POINT_INFO(pMemcpy)
3255 QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
3256 QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
3257 QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
3258 QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
3259 QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
3260 QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
3261 QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
3262 QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
3263 QUICK_ENTRY_POINT_INFO(pInvokePolymorphic)
3264 QUICK_ENTRY_POINT_INFO(pTestSuspend)
3265 QUICK_ENTRY_POINT_INFO(pDeliverException)
3266 QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
3267 QUICK_ENTRY_POINT_INFO(pThrowDivZero)
3268 QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
3269 QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
3270 QUICK_ENTRY_POINT_INFO(pDeoptimize)
3271 QUICK_ENTRY_POINT_INFO(pA64Load)
3272 QUICK_ENTRY_POINT_INFO(pA64Store)
3273 QUICK_ENTRY_POINT_INFO(pNewEmptyString)
3274 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B)
3275 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI)
3276 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII)
3277 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII)
3278 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString)
3279 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString)
3280 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset)
3281 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset)
3282 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C)
3283 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII)
3284 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC)
3285 QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints)
3286 QUICK_ENTRY_POINT_INFO(pNewStringFromString)
3287 QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer)
3288 QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder)
3289 QUICK_ENTRY_POINT_INFO(pReadBarrierJni)
3290 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg00)
3291 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg01)
3292 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg02)
3293 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg03)
3294 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg04)
3295 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg05)
3296 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg06)
3297 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg07)
3298 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg08)
3299 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg09)
3300 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg10)
3301 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg11)
3302 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg12)
3303 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg13)
3304 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg14)
3305 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg15)
3306 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg16)
3307 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg17)
3308 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg18)
3309 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg19)
3310 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg20)
3311 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg21)
3312 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg22)
3313 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg23)
3314 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg24)
3315 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg25)
3316 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg26)
3317 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg27)
3318 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg28)
3319 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg29)
3320 QUICK_ENTRY_POINT_INFO(pReadBarrierSlow)
3321 QUICK_ENTRY_POINT_INFO(pReadBarrierForRootSlow)
3322
3323 QUICK_ENTRY_POINT_INFO(pJniMethodFastStart)
3324 QUICK_ENTRY_POINT_INFO(pJniMethodFastEnd)
3325 #undef QUICK_ENTRY_POINT_INFO
3326
3327 os << offset;
3328 }
3329
QuickDeliverException()3330 void Thread::QuickDeliverException() {
3331 // Get exception from thread.
3332 ObjPtr<mirror::Throwable> exception = GetException();
3333 CHECK(exception != nullptr);
3334 if (exception == GetDeoptimizationException()) {
3335 artDeoptimize(this);
3336 UNREACHABLE();
3337 }
3338
3339 ReadBarrier::MaybeAssertToSpaceInvariant(exception.Ptr());
3340
3341 // This is a real exception: let the instrumentation know about it.
3342 instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
3343 if (instrumentation->HasExceptionThrownListeners() &&
3344 IsExceptionThrownByCurrentMethod(exception)) {
3345 // Instrumentation may cause GC so keep the exception object safe.
3346 StackHandleScope<1> hs(this);
3347 HandleWrapperObjPtr<mirror::Throwable> h_exception(hs.NewHandleWrapper(&exception));
3348 instrumentation->ExceptionThrownEvent(this, exception.Ptr());
3349 }
3350 // Does instrumentation need to deoptimize the stack?
3351 // Note: we do this *after* reporting the exception to instrumentation in case it
3352 // now requires deoptimization. It may happen if a debugger is attached and requests
3353 // new events (single-step, breakpoint, ...) when the exception is reported.
3354 if (Dbg::IsForcedInterpreterNeededForException(this)) {
3355 NthCallerVisitor visitor(this, 0, false);
3356 visitor.WalkStack();
3357 if (Runtime::Current()->IsAsyncDeoptimizeable(visitor.caller_pc)) {
3358 // method_type shouldn't matter due to exception handling.
3359 const DeoptimizationMethodType method_type = DeoptimizationMethodType::kDefault;
3360 // Save the exception into the deoptimization context so it can be restored
3361 // before entering the interpreter.
3362 PushDeoptimizationContext(
3363 JValue(),
3364 false /* is_reference */,
3365 exception,
3366 false /* from_code */,
3367 method_type);
3368 artDeoptimize(this);
3369 UNREACHABLE();
3370 } else {
3371 LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
3372 << visitor.caller->PrettyMethod();
3373 }
3374 }
3375
3376 // Don't leave exception visible while we try to find the handler, which may cause class
3377 // resolution.
3378 ClearException();
3379 QuickExceptionHandler exception_handler(this, false);
3380 exception_handler.FindCatch(exception);
3381 exception_handler.UpdateInstrumentationStack();
3382 if (exception_handler.GetClearException()) {
3383 // Exception was cleared as part of delivery.
3384 DCHECK(!IsExceptionPending());
3385 } else {
3386 // Exception was put back with a throw location.
3387 DCHECK(IsExceptionPending());
3388 // Check the to-space invariant on the re-installed exception (if applicable).
3389 ReadBarrier::MaybeAssertToSpaceInvariant(GetException());
3390 }
3391 exception_handler.DoLongJump();
3392 }
3393
GetLongJumpContext()3394 Context* Thread::GetLongJumpContext() {
3395 Context* result = tlsPtr_.long_jump_context;
3396 if (result == nullptr) {
3397 result = Context::Create();
3398 } else {
3399 tlsPtr_.long_jump_context = nullptr; // Avoid context being shared.
3400 result->Reset();
3401 }
3402 return result;
3403 }
3404
3405 // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
3406 // so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
3407 struct CurrentMethodVisitor FINAL : public StackVisitor {
CurrentMethodVisitorart::FINAL3408 CurrentMethodVisitor(Thread* thread, Context* context, bool check_suspended, bool abort_on_error)
3409 REQUIRES_SHARED(Locks::mutator_lock_)
3410 : StackVisitor(thread,
3411 context,
3412 StackVisitor::StackWalkKind::kIncludeInlinedFrames,
3413 check_suspended),
3414 this_object_(nullptr),
3415 method_(nullptr),
3416 dex_pc_(0),
3417 abort_on_error_(abort_on_error) {}
VisitFrameart::FINAL3418 bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
3419 ArtMethod* m = GetMethod();
3420 if (m->IsRuntimeMethod()) {
3421 // Continue if this is a runtime method.
3422 return true;
3423 }
3424 if (context_ != nullptr) {
3425 this_object_ = GetThisObject();
3426 }
3427 method_ = m;
3428 dex_pc_ = GetDexPc(abort_on_error_);
3429 return false;
3430 }
3431 ObjPtr<mirror::Object> this_object_;
3432 ArtMethod* method_;
3433 uint32_t dex_pc_;
3434 const bool abort_on_error_;
3435 };
3436
GetCurrentMethod(uint32_t * dex_pc,bool check_suspended,bool abort_on_error) const3437 ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc,
3438 bool check_suspended,
3439 bool abort_on_error) const {
3440 CurrentMethodVisitor visitor(const_cast<Thread*>(this),
3441 nullptr,
3442 check_suspended,
3443 abort_on_error);
3444 visitor.WalkStack(false);
3445 if (dex_pc != nullptr) {
3446 *dex_pc = visitor.dex_pc_;
3447 }
3448 return visitor.method_;
3449 }
3450
HoldsLock(ObjPtr<mirror::Object> object) const3451 bool Thread::HoldsLock(ObjPtr<mirror::Object> object) const {
3452 return object != nullptr && object->GetLockOwnerThreadId() == GetThreadId();
3453 }
3454
3455 extern std::vector<StackReference<mirror::Object>*> GetProxyReferenceArguments(ArtMethod** sp)
3456 REQUIRES_SHARED(Locks::mutator_lock_);
3457
3458 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
3459 template <typename RootVisitor, bool kPrecise = false>
3460 class ReferenceMapVisitor : public StackVisitor {
3461 public:
ReferenceMapVisitor(Thread * thread,Context * context,RootVisitor & visitor)3462 ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor)
3463 REQUIRES_SHARED(Locks::mutator_lock_)
3464 // We are visiting the references in compiled frames, so we do not need
3465 // to know the inlined frames.
3466 : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
3467 visitor_(visitor) {}
3468
VisitFrame()3469 bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
3470 if (false) {
3471 LOG(INFO) << "Visiting stack roots in " << ArtMethod::PrettyMethod(GetMethod())
3472 << StringPrintf("@ PC:%04x", GetDexPc());
3473 }
3474 ShadowFrame* shadow_frame = GetCurrentShadowFrame();
3475 if (shadow_frame != nullptr) {
3476 VisitShadowFrame(shadow_frame);
3477 } else {
3478 VisitQuickFrame();
3479 }
3480 return true;
3481 }
3482
VisitShadowFrame(ShadowFrame * shadow_frame)3483 void VisitShadowFrame(ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) {
3484 ArtMethod* m = shadow_frame->GetMethod();
3485 VisitDeclaringClass(m);
3486 DCHECK(m != nullptr);
3487 size_t num_regs = shadow_frame->NumberOfVRegs();
3488 DCHECK(m->IsNative() || shadow_frame->HasReferenceArray());
3489 // handle scope for JNI or References for interpreter.
3490 for (size_t reg = 0; reg < num_regs; ++reg) {
3491 mirror::Object* ref = shadow_frame->GetVRegReference(reg);
3492 if (ref != nullptr) {
3493 mirror::Object* new_ref = ref;
3494 visitor_(&new_ref, reg, this);
3495 if (new_ref != ref) {
3496 shadow_frame->SetVRegReference(reg, new_ref);
3497 }
3498 }
3499 }
3500 // Mark lock count map required for structured locking checks.
3501 shadow_frame->GetLockCountData().VisitMonitors(visitor_, /* vreg */ -1, this);
3502 }
3503
3504 private:
3505 // Visiting the declaring class is necessary so that we don't unload the class of a method that
3506 // is executing. We need to ensure that the code stays mapped. NO_THREAD_SAFETY_ANALYSIS since
3507 // the threads do not all hold the heap bitmap lock for parallel GC.
VisitDeclaringClass(ArtMethod * method)3508 void VisitDeclaringClass(ArtMethod* method)
3509 REQUIRES_SHARED(Locks::mutator_lock_)
3510 NO_THREAD_SAFETY_ANALYSIS {
3511 ObjPtr<mirror::Class> klass = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
3512 // klass can be null for runtime methods.
3513 if (klass != nullptr) {
3514 if (kVerifyImageObjectsMarked) {
3515 gc::Heap* const heap = Runtime::Current()->GetHeap();
3516 gc::space::ContinuousSpace* space = heap->FindContinuousSpaceFromObject(klass,
3517 /*fail_ok*/true);
3518 if (space != nullptr && space->IsImageSpace()) {
3519 bool failed = false;
3520 if (!space->GetLiveBitmap()->Test(klass.Ptr())) {
3521 failed = true;
3522 LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image " << *space;
3523 } else if (!heap->GetLiveBitmap()->Test(klass.Ptr())) {
3524 failed = true;
3525 LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image through live bitmap " << *space;
3526 }
3527 if (failed) {
3528 GetThread()->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
3529 space->AsImageSpace()->DumpSections(LOG_STREAM(FATAL_WITHOUT_ABORT));
3530 LOG(FATAL_WITHOUT_ABORT) << "Method@" << method->GetDexMethodIndex() << ":" << method
3531 << " klass@" << klass.Ptr();
3532 // Pretty info last in case it crashes.
3533 LOG(FATAL) << "Method " << method->PrettyMethod() << " klass "
3534 << klass->PrettyClass();
3535 }
3536 }
3537 }
3538 mirror::Object* new_ref = klass.Ptr();
3539 visitor_(&new_ref, /* vreg */ -1, this);
3540 if (new_ref != klass) {
3541 method->CASDeclaringClass(klass.Ptr(), new_ref->AsClass());
3542 }
3543 }
3544 }
3545
3546 template <typename T>
3547 ALWAYS_INLINE
VisitQuickFrameWithVregCallback()3548 inline void VisitQuickFrameWithVregCallback() REQUIRES_SHARED(Locks::mutator_lock_) {
3549 ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
3550 DCHECK(cur_quick_frame != nullptr);
3551 ArtMethod* m = *cur_quick_frame;
3552 VisitDeclaringClass(m);
3553
3554 // Process register map (which native and runtime methods don't have)
3555 if (!m->IsNative() && !m->IsRuntimeMethod() && (!m->IsProxyMethod() || m->IsConstructor())) {
3556 const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader();
3557 DCHECK(method_header->IsOptimized());
3558 StackReference<mirror::Object>* vreg_base = reinterpret_cast<StackReference<mirror::Object>*>(
3559 reinterpret_cast<uintptr_t>(cur_quick_frame));
3560 uintptr_t native_pc_offset = method_header->NativeQuickPcOffset(GetCurrentQuickFramePc());
3561 CodeInfo code_info = method_header->GetOptimizedCodeInfo();
3562 CodeInfoEncoding encoding = code_info.ExtractEncoding();
3563 StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset, encoding);
3564 DCHECK(map.IsValid());
3565
3566 T vreg_info(m, code_info, encoding, map, visitor_);
3567
3568 // Visit stack entries that hold pointers.
3569 const size_t number_of_bits = code_info.GetNumberOfStackMaskBits(encoding);
3570 BitMemoryRegion stack_mask = code_info.GetStackMaskOf(encoding, map);
3571 for (size_t i = 0; i < number_of_bits; ++i) {
3572 if (stack_mask.LoadBit(i)) {
3573 StackReference<mirror::Object>* ref_addr = vreg_base + i;
3574 mirror::Object* ref = ref_addr->AsMirrorPtr();
3575 if (ref != nullptr) {
3576 mirror::Object* new_ref = ref;
3577 vreg_info.VisitStack(&new_ref, i, this);
3578 if (ref != new_ref) {
3579 ref_addr->Assign(new_ref);
3580 }
3581 }
3582 }
3583 }
3584 // Visit callee-save registers that hold pointers.
3585 uint32_t register_mask = code_info.GetRegisterMaskOf(encoding, map);
3586 for (size_t i = 0; i < BitSizeOf<uint32_t>(); ++i) {
3587 if (register_mask & (1 << i)) {
3588 mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i));
3589 if (kIsDebugBuild && ref_addr == nullptr) {
3590 std::string thread_name;
3591 GetThread()->GetThreadName(thread_name);
3592 LOG(FATAL_WITHOUT_ABORT) << "On thread " << thread_name;
3593 DescribeStack(GetThread());
3594 LOG(FATAL) << "Found an unsaved callee-save register " << i << " (null GPRAddress) "
3595 << "set in register_mask=" << register_mask << " at " << DescribeLocation();
3596 }
3597 if (*ref_addr != nullptr) {
3598 vreg_info.VisitRegister(ref_addr, i, this);
3599 }
3600 }
3601 }
3602 } else if (!m->IsRuntimeMethod() && m->IsProxyMethod()) {
3603 // If this is a proxy method, visit its reference arguments.
3604 DCHECK(!m->IsStatic());
3605 DCHECK(!m->IsNative());
3606 std::vector<StackReference<mirror::Object>*> ref_addrs =
3607 GetProxyReferenceArguments(cur_quick_frame);
3608 for (StackReference<mirror::Object>* ref_addr : ref_addrs) {
3609 mirror::Object* ref = ref_addr->AsMirrorPtr();
3610 if (ref != nullptr) {
3611 mirror::Object* new_ref = ref;
3612 visitor_(&new_ref, /* vreg */ -1, this);
3613 if (ref != new_ref) {
3614 ref_addr->Assign(new_ref);
3615 }
3616 }
3617 }
3618 }
3619 }
3620
VisitQuickFrame()3621 void VisitQuickFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
3622 if (kPrecise) {
3623 VisitQuickFramePrecise();
3624 } else {
3625 VisitQuickFrameNonPrecise();
3626 }
3627 }
3628
VisitQuickFrameNonPrecise()3629 void VisitQuickFrameNonPrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
3630 struct UndefinedVRegInfo {
3631 UndefinedVRegInfo(ArtMethod* method ATTRIBUTE_UNUSED,
3632 const CodeInfo& code_info ATTRIBUTE_UNUSED,
3633 const CodeInfoEncoding& encoding ATTRIBUTE_UNUSED,
3634 const StackMap& map ATTRIBUTE_UNUSED,
3635 RootVisitor& _visitor)
3636 : visitor(_visitor) {
3637 }
3638
3639 ALWAYS_INLINE
3640 void VisitStack(mirror::Object** ref,
3641 size_t stack_index ATTRIBUTE_UNUSED,
3642 const StackVisitor* stack_visitor)
3643 REQUIRES_SHARED(Locks::mutator_lock_) {
3644 visitor(ref, -1, stack_visitor);
3645 }
3646
3647 ALWAYS_INLINE
3648 void VisitRegister(mirror::Object** ref,
3649 size_t register_index ATTRIBUTE_UNUSED,
3650 const StackVisitor* stack_visitor)
3651 REQUIRES_SHARED(Locks::mutator_lock_) {
3652 visitor(ref, -1, stack_visitor);
3653 }
3654
3655 RootVisitor& visitor;
3656 };
3657 VisitQuickFrameWithVregCallback<UndefinedVRegInfo>();
3658 }
3659
VisitQuickFramePrecise()3660 void VisitQuickFramePrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
3661 struct StackMapVRegInfo {
3662 StackMapVRegInfo(ArtMethod* method,
3663 const CodeInfo& _code_info,
3664 const CodeInfoEncoding& _encoding,
3665 const StackMap& map,
3666 RootVisitor& _visitor)
3667 : number_of_dex_registers(method->DexInstructionData().RegistersSize()),
3668 code_info(_code_info),
3669 encoding(_encoding),
3670 dex_register_map(code_info.GetDexRegisterMapOf(map,
3671 encoding,
3672 number_of_dex_registers)),
3673 visitor(_visitor) {
3674 }
3675
3676 // TODO: If necessary, we should consider caching a reverse map instead of the linear
3677 // lookups for each location.
3678 void FindWithType(const size_t index,
3679 const DexRegisterLocation::Kind kind,
3680 mirror::Object** ref,
3681 const StackVisitor* stack_visitor)
3682 REQUIRES_SHARED(Locks::mutator_lock_) {
3683 bool found = false;
3684 for (size_t dex_reg = 0; dex_reg != number_of_dex_registers; ++dex_reg) {
3685 DexRegisterLocation location = dex_register_map.GetDexRegisterLocation(
3686 dex_reg, number_of_dex_registers, code_info, encoding);
3687 if (location.GetKind() == kind && static_cast<size_t>(location.GetValue()) == index) {
3688 visitor(ref, dex_reg, stack_visitor);
3689 found = true;
3690 }
3691 }
3692
3693 if (!found) {
3694 // If nothing found, report with -1.
3695 visitor(ref, -1, stack_visitor);
3696 }
3697 }
3698
3699 void VisitStack(mirror::Object** ref, size_t stack_index, const StackVisitor* stack_visitor)
3700 REQUIRES_SHARED(Locks::mutator_lock_) {
3701 const size_t stack_offset = stack_index * kFrameSlotSize;
3702 FindWithType(stack_offset,
3703 DexRegisterLocation::Kind::kInStack,
3704 ref,
3705 stack_visitor);
3706 }
3707
3708 void VisitRegister(mirror::Object** ref,
3709 size_t register_index,
3710 const StackVisitor* stack_visitor)
3711 REQUIRES_SHARED(Locks::mutator_lock_) {
3712 FindWithType(register_index,
3713 DexRegisterLocation::Kind::kInRegister,
3714 ref,
3715 stack_visitor);
3716 }
3717
3718 size_t number_of_dex_registers;
3719 const CodeInfo& code_info;
3720 const CodeInfoEncoding& encoding;
3721 DexRegisterMap dex_register_map;
3722 RootVisitor& visitor;
3723 };
3724 VisitQuickFrameWithVregCallback<StackMapVRegInfo>();
3725 }
3726
3727 // Visitor for when we visit a root.
3728 RootVisitor& visitor_;
3729 };
3730
3731 class RootCallbackVisitor {
3732 public:
RootCallbackVisitor(RootVisitor * visitor,uint32_t tid)3733 RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {}
3734
operator ()(mirror::Object ** obj,size_t vreg,const StackVisitor * stack_visitor) const3735 void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const
3736 REQUIRES_SHARED(Locks::mutator_lock_) {
3737 visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg));
3738 }
3739
3740 private:
3741 RootVisitor* const visitor_;
3742 const uint32_t tid_;
3743 };
3744
3745 template <bool kPrecise>
VisitRoots(RootVisitor * visitor)3746 void Thread::VisitRoots(RootVisitor* visitor) {
3747 const pid_t thread_id = GetThreadId();
3748 visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id));
3749 if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
3750 visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception),
3751 RootInfo(kRootNativeStack, thread_id));
3752 }
3753 if (tlsPtr_.async_exception != nullptr) {
3754 visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.async_exception),
3755 RootInfo(kRootNativeStack, thread_id));
3756 }
3757 visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id));
3758 tlsPtr_.jni_env->VisitJniLocalRoots(visitor, RootInfo(kRootJNILocal, thread_id));
3759 tlsPtr_.jni_env->VisitMonitorRoots(visitor, RootInfo(kRootJNIMonitor, thread_id));
3760 HandleScopeVisitRoots(visitor, thread_id);
3761 if (tlsPtr_.debug_invoke_req != nullptr) {
3762 tlsPtr_.debug_invoke_req->VisitRoots(visitor, RootInfo(kRootDebugger, thread_id));
3763 }
3764 // Visit roots for deoptimization.
3765 if (tlsPtr_.stacked_shadow_frame_record != nullptr) {
3766 RootCallbackVisitor visitor_to_callback(visitor, thread_id);
3767 ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
3768 for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
3769 record != nullptr;
3770 record = record->GetLink()) {
3771 for (ShadowFrame* shadow_frame = record->GetShadowFrame();
3772 shadow_frame != nullptr;
3773 shadow_frame = shadow_frame->GetLink()) {
3774 mapper.VisitShadowFrame(shadow_frame);
3775 }
3776 }
3777 }
3778 for (DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
3779 record != nullptr;
3780 record = record->GetLink()) {
3781 if (record->IsReference()) {
3782 visitor->VisitRootIfNonNull(record->GetReturnValueAsGCRoot(),
3783 RootInfo(kRootThreadObject, thread_id));
3784 }
3785 visitor->VisitRootIfNonNull(record->GetPendingExceptionAsGCRoot(),
3786 RootInfo(kRootThreadObject, thread_id));
3787 }
3788 if (tlsPtr_.frame_id_to_shadow_frame != nullptr) {
3789 RootCallbackVisitor visitor_to_callback(visitor, thread_id);
3790 ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
3791 for (FrameIdToShadowFrame* record = tlsPtr_.frame_id_to_shadow_frame;
3792 record != nullptr;
3793 record = record->GetNext()) {
3794 mapper.VisitShadowFrame(record->GetShadowFrame());
3795 }
3796 }
3797 for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) {
3798 verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id));
3799 }
3800 // Visit roots on this thread's stack
3801 RuntimeContextType context;
3802 RootCallbackVisitor visitor_to_callback(visitor, thread_id);
3803 ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, &context, visitor_to_callback);
3804 mapper.template WalkStack<StackVisitor::CountTransitions::kNo>(false);
3805 for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
3806 visitor->VisitRootIfNonNull(&frame.this_object_, RootInfo(kRootVMInternal, thread_id));
3807 }
3808 }
3809
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)3810 void Thread::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
3811 if ((flags & VisitRootFlags::kVisitRootFlagPrecise) != 0) {
3812 VisitRoots</* kPrecise */ true>(visitor);
3813 } else {
3814 VisitRoots</* kPrecise */ false>(visitor);
3815 }
3816 }
3817
3818 class VerifyRootVisitor : public SingleRootVisitor {
3819 public:
VisitRoot(mirror::Object * root,const RootInfo & info ATTRIBUTE_UNUSED)3820 void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
3821 OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
3822 VerifyObject(root);
3823 }
3824 };
3825
VerifyStackImpl()3826 void Thread::VerifyStackImpl() {
3827 if (Runtime::Current()->GetHeap()->IsObjectValidationEnabled()) {
3828 VerifyRootVisitor visitor;
3829 std::unique_ptr<Context> context(Context::Create());
3830 RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId());
3831 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback);
3832 mapper.WalkStack();
3833 }
3834 }
3835
3836 // Set the stack end to that to be used during a stack overflow
SetStackEndForStackOverflow()3837 void Thread::SetStackEndForStackOverflow() {
3838 // During stack overflow we allow use of the full stack.
3839 if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
3840 // However, we seem to have already extended to use the full stack.
3841 LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
3842 << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
3843 DumpStack(LOG_STREAM(ERROR));
3844 LOG(FATAL) << "Recursive stack overflow.";
3845 }
3846
3847 tlsPtr_.stack_end = tlsPtr_.stack_begin;
3848
3849 // Remove the stack overflow protection if is it set up.
3850 bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
3851 if (implicit_stack_check) {
3852 if (!UnprotectStack()) {
3853 LOG(ERROR) << "Unable to remove stack protection for stack overflow";
3854 }
3855 }
3856 }
3857
SetTlab(uint8_t * start,uint8_t * end,uint8_t * limit)3858 void Thread::SetTlab(uint8_t* start, uint8_t* end, uint8_t* limit) {
3859 DCHECK_LE(start, end);
3860 DCHECK_LE(end, limit);
3861 tlsPtr_.thread_local_start = start;
3862 tlsPtr_.thread_local_pos = tlsPtr_.thread_local_start;
3863 tlsPtr_.thread_local_end = end;
3864 tlsPtr_.thread_local_limit = limit;
3865 tlsPtr_.thread_local_objects = 0;
3866 }
3867
HasTlab() const3868 bool Thread::HasTlab() const {
3869 bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
3870 if (has_tlab) {
3871 DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
3872 } else {
3873 DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
3874 }
3875 return has_tlab;
3876 }
3877
operator <<(std::ostream & os,const Thread & thread)3878 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
3879 thread.ShortDump(os);
3880 return os;
3881 }
3882
ProtectStack(bool fatal_on_error)3883 bool Thread::ProtectStack(bool fatal_on_error) {
3884 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
3885 VLOG(threads) << "Protecting stack at " << pregion;
3886 if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
3887 if (fatal_on_error) {
3888 LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
3889 "Reason: "
3890 << strerror(errno) << " size: " << kStackOverflowProtectedSize;
3891 }
3892 return false;
3893 }
3894 return true;
3895 }
3896
UnprotectStack()3897 bool Thread::UnprotectStack() {
3898 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
3899 VLOG(threads) << "Unprotecting stack at " << pregion;
3900 return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
3901 }
3902
ActivateSingleStepControl(SingleStepControl * ssc)3903 void Thread::ActivateSingleStepControl(SingleStepControl* ssc) {
3904 CHECK(Dbg::IsDebuggerActive());
3905 CHECK(GetSingleStepControl() == nullptr) << "Single step already active in thread " << *this;
3906 CHECK(ssc != nullptr);
3907 tlsPtr_.single_step_control = ssc;
3908 }
3909
DeactivateSingleStepControl()3910 void Thread::DeactivateSingleStepControl() {
3911 CHECK(Dbg::IsDebuggerActive());
3912 CHECK(GetSingleStepControl() != nullptr) << "Single step not active in thread " << *this;
3913 SingleStepControl* ssc = GetSingleStepControl();
3914 tlsPtr_.single_step_control = nullptr;
3915 delete ssc;
3916 }
3917
SetDebugInvokeReq(DebugInvokeReq * req)3918 void Thread::SetDebugInvokeReq(DebugInvokeReq* req) {
3919 CHECK(Dbg::IsDebuggerActive());
3920 CHECK(GetInvokeReq() == nullptr) << "Debug invoke req already active in thread " << *this;
3921 CHECK(Thread::Current() != this) << "Debug invoke can't be dispatched by the thread itself";
3922 CHECK(req != nullptr);
3923 tlsPtr_.debug_invoke_req = req;
3924 }
3925
ClearDebugInvokeReq()3926 void Thread::ClearDebugInvokeReq() {
3927 CHECK(GetInvokeReq() != nullptr) << "Debug invoke req not active in thread " << *this;
3928 CHECK(Thread::Current() == this) << "Debug invoke must be finished by the thread itself";
3929 DebugInvokeReq* req = tlsPtr_.debug_invoke_req;
3930 tlsPtr_.debug_invoke_req = nullptr;
3931 delete req;
3932 }
3933
PushVerifier(verifier::MethodVerifier * verifier)3934 void Thread::PushVerifier(verifier::MethodVerifier* verifier) {
3935 verifier->link_ = tlsPtr_.method_verifier;
3936 tlsPtr_.method_verifier = verifier;
3937 }
3938
PopVerifier(verifier::MethodVerifier * verifier)3939 void Thread::PopVerifier(verifier::MethodVerifier* verifier) {
3940 CHECK_EQ(tlsPtr_.method_verifier, verifier);
3941 tlsPtr_.method_verifier = verifier->link_;
3942 }
3943
NumberOfHeldMutexes() const3944 size_t Thread::NumberOfHeldMutexes() const {
3945 size_t count = 0;
3946 for (BaseMutex* mu : tlsPtr_.held_mutexes) {
3947 count += mu != nullptr ? 1 : 0;
3948 }
3949 return count;
3950 }
3951
DeoptimizeWithDeoptimizationException(JValue * result)3952 void Thread::DeoptimizeWithDeoptimizationException(JValue* result) {
3953 DCHECK_EQ(GetException(), Thread::GetDeoptimizationException());
3954 ClearException();
3955 ShadowFrame* shadow_frame =
3956 PopStackedShadowFrame(StackedShadowFrameType::kDeoptimizationShadowFrame);
3957 ObjPtr<mirror::Throwable> pending_exception;
3958 bool from_code = false;
3959 DeoptimizationMethodType method_type;
3960 PopDeoptimizationContext(result, &pending_exception, &from_code, &method_type);
3961 SetTopOfStack(nullptr);
3962 SetTopOfShadowStack(shadow_frame);
3963
3964 // Restore the exception that was pending before deoptimization then interpret the
3965 // deoptimized frames.
3966 if (pending_exception != nullptr) {
3967 SetException(pending_exception);
3968 }
3969 interpreter::EnterInterpreterFromDeoptimize(this,
3970 shadow_frame,
3971 result,
3972 from_code,
3973 method_type);
3974 }
3975
SetAsyncException(ObjPtr<mirror::Throwable> new_exception)3976 void Thread::SetAsyncException(ObjPtr<mirror::Throwable> new_exception) {
3977 CHECK(new_exception != nullptr);
3978 Runtime::Current()->SetAsyncExceptionsThrown();
3979 if (kIsDebugBuild) {
3980 // Make sure we are in a checkpoint.
3981 MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
3982 CHECK(this == Thread::Current() || GetSuspendCount() >= 1)
3983 << "It doesn't look like this was called in a checkpoint! this: "
3984 << this << " count: " << GetSuspendCount();
3985 }
3986 tlsPtr_.async_exception = new_exception.Ptr();
3987 }
3988
ObserveAsyncException()3989 bool Thread::ObserveAsyncException() {
3990 DCHECK(this == Thread::Current());
3991 if (tlsPtr_.async_exception != nullptr) {
3992 if (tlsPtr_.exception != nullptr) {
3993 LOG(WARNING) << "Overwriting pending exception with async exception. Pending exception is: "
3994 << tlsPtr_.exception->Dump();
3995 LOG(WARNING) << "Async exception is " << tlsPtr_.async_exception->Dump();
3996 }
3997 tlsPtr_.exception = tlsPtr_.async_exception;
3998 tlsPtr_.async_exception = nullptr;
3999 return true;
4000 } else {
4001 return IsExceptionPending();
4002 }
4003 }
4004
SetException(ObjPtr<mirror::Throwable> new_exception)4005 void Thread::SetException(ObjPtr<mirror::Throwable> new_exception) {
4006 CHECK(new_exception != nullptr);
4007 // TODO: DCHECK(!IsExceptionPending());
4008 tlsPtr_.exception = new_exception.Ptr();
4009 }
4010
IsAotCompiler()4011 bool Thread::IsAotCompiler() {
4012 return Runtime::Current()->IsAotCompiler();
4013 }
4014
GetPeerFromOtherThread() const4015 mirror::Object* Thread::GetPeerFromOtherThread() const {
4016 DCHECK(tlsPtr_.jpeer == nullptr);
4017 mirror::Object* peer = tlsPtr_.opeer;
4018 if (kUseReadBarrier && Current()->GetIsGcMarking()) {
4019 // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
4020 // may have not been flipped yet and peer may be a from-space (stale) ref. So explicitly
4021 // mark/forward it here.
4022 peer = art::ReadBarrier::Mark(peer);
4023 }
4024 return peer;
4025 }
4026
SetReadBarrierEntrypoints()4027 void Thread::SetReadBarrierEntrypoints() {
4028 // Make sure entrypoints aren't null.
4029 UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active*/ true);
4030 }
4031
4032 } // namespace art
4033