1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "heap.h"
18 
19 #include <limits>
20 #include <memory>
21 #include <vector>
22 
23 #include "android-base/stringprintf.h"
24 
25 #include "allocation_listener.h"
26 #include "art_field-inl.h"
27 #include "backtrace_helper.h"
28 #include "base/allocator.h"
29 #include "base/arena_allocator.h"
30 #include "base/dumpable.h"
31 #include "base/file_utils.h"
32 #include "base/histogram-inl.h"
33 #include "base/logging.h"  // For VLOG.
34 #include "base/memory_tool.h"
35 #include "base/os.h"
36 #include "base/stl_util.h"
37 #include "base/systrace.h"
38 #include "base/time_utils.h"
39 #include "common_throws.h"
40 #include "cutils/sched_policy.h"
41 #include "debugger.h"
42 #include "dex/dex_file-inl.h"
43 #include "entrypoints/quick/quick_alloc_entrypoints.h"
44 #include "gc/accounting/card_table-inl.h"
45 #include "gc/accounting/heap_bitmap-inl.h"
46 #include "gc/accounting/mod_union_table-inl.h"
47 #include "gc/accounting/read_barrier_table.h"
48 #include "gc/accounting/remembered_set.h"
49 #include "gc/accounting/space_bitmap-inl.h"
50 #include "gc/collector/concurrent_copying.h"
51 #include "gc/collector/mark_compact.h"
52 #include "gc/collector/mark_sweep.h"
53 #include "gc/collector/partial_mark_sweep.h"
54 #include "gc/collector/semi_space.h"
55 #include "gc/collector/sticky_mark_sweep.h"
56 #include "gc/reference_processor.h"
57 #include "gc/scoped_gc_critical_section.h"
58 #include "gc/space/bump_pointer_space.h"
59 #include "gc/space/dlmalloc_space-inl.h"
60 #include "gc/space/image_space.h"
61 #include "gc/space/large_object_space.h"
62 #include "gc/space/region_space.h"
63 #include "gc/space/rosalloc_space-inl.h"
64 #include "gc/space/space-inl.h"
65 #include "gc/space/zygote_space.h"
66 #include "gc/task_processor.h"
67 #include "gc/verification.h"
68 #include "gc_pause_listener.h"
69 #include "gc_root.h"
70 #include "handle_scope-inl.h"
71 #include "heap-inl.h"
72 #include "heap-visit-objects-inl.h"
73 #include "image.h"
74 #include "intern_table.h"
75 #include "java_vm_ext.h"
76 #include "jit/jit.h"
77 #include "jit/jit_code_cache.h"
78 #include "mirror/class-inl.h"
79 #include "mirror/object-inl.h"
80 #include "mirror/object-refvisitor-inl.h"
81 #include "mirror/object_array-inl.h"
82 #include "mirror/reference-inl.h"
83 #include "nativehelper/scoped_local_ref.h"
84 #include "obj_ptr-inl.h"
85 #include "reflection.h"
86 #include "runtime.h"
87 #include "scoped_thread_state_change-inl.h"
88 #include "thread_list.h"
89 #include "verify_object-inl.h"
90 #include "well_known_classes.h"
91 
92 namespace art {
93 
94 namespace gc {
95 
96 static constexpr size_t kCollectorTransitionStressIterations = 0;
97 static constexpr size_t kCollectorTransitionStressWait = 10 * 1000;  // Microseconds
98 
99 DEFINE_RUNTIME_DEBUG_FLAG(Heap, kStressCollectorTransition);
100 
101 // Minimum amount of remaining bytes before a concurrent GC is triggered.
102 static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
103 static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
104 // Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
105 // relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
106 // threads (lower pauses, use less memory bandwidth).
107 static constexpr double kStickyGcThroughputAdjustment = 1.0;
108 // Whether or not we compact the zygote in PreZygoteFork.
109 static constexpr bool kCompactZygote = kMovingCollector;
110 // How many reserve entries are at the end of the allocation stack, these are only needed if the
111 // allocation stack overflows.
112 static constexpr size_t kAllocationStackReserveSize = 1024;
113 // Default mark stack size in bytes.
114 static const size_t kDefaultMarkStackSize = 64 * KB;
115 // Define space name.
116 static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
117 static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
118 static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
119 static const char* kNonMovingSpaceName = "non moving space";
120 static const char* kZygoteSpaceName = "zygote space";
121 static constexpr size_t kGSSBumpPointerSpaceCapacity = 32 * MB;
122 static constexpr bool kGCALotMode = false;
123 // GC alot mode uses a small allocation stack to stress test a lot of GC.
124 static constexpr size_t kGcAlotAllocationStackSize = 4 * KB /
125     sizeof(mirror::HeapReference<mirror::Object>);
126 // Verify objet has a small allocation stack size since searching the allocation stack is slow.
127 static constexpr size_t kVerifyObjectAllocationStackSize = 16 * KB /
128     sizeof(mirror::HeapReference<mirror::Object>);
129 static constexpr size_t kDefaultAllocationStackSize = 8 * MB /
130     sizeof(mirror::HeapReference<mirror::Object>);
131 
132 // For deterministic compilation, we need the heap to be at a well-known address.
133 static constexpr uint32_t kAllocSpaceBeginForDeterministicAoT = 0x40000000;
134 // Dump the rosalloc stats on SIGQUIT.
135 static constexpr bool kDumpRosAllocStatsOnSigQuit = false;
136 
137 static const char* kRegionSpaceName = "main space (region space)";
138 
139 // If true, we log all GCs in the both the foreground and background. Used for debugging.
140 static constexpr bool kLogAllGCs = false;
141 
142 // How much we grow the TLAB if we can do it.
143 static constexpr size_t kPartialTlabSize = 16 * KB;
144 static constexpr bool kUsePartialTlabs = true;
145 
146 #if defined(__LP64__) || !defined(ADDRESS_SANITIZER)
147 // 300 MB (0x12c00000) - (default non-moving space capacity).
148 uint8_t* const Heap::kPreferredAllocSpaceBegin =
149     reinterpret_cast<uint8_t*>(300 * MB - kDefaultNonMovingSpaceCapacity);
150 #else
151 #ifdef __ANDROID__
152 // For 32-bit Android, use 0x20000000 because asan reserves 0x04000000 - 0x20000000.
153 uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(0x20000000);
154 #else
155 // For 32-bit host, use 0x40000000 because asan uses most of the space below this.
156 uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(0x40000000);
157 #endif
158 #endif
159 
CareAboutPauseTimes()160 static inline bool CareAboutPauseTimes() {
161   return Runtime::Current()->InJankPerceptibleProcessState();
162 }
163 
Heap(size_t initial_size,size_t growth_limit,size_t min_free,size_t max_free,double target_utilization,double foreground_heap_growth_multiplier,size_t capacity,size_t non_moving_space_capacity,const std::string & image_file_name,const InstructionSet image_instruction_set,CollectorType foreground_collector_type,CollectorType background_collector_type,space::LargeObjectSpaceType large_object_space_type,size_t large_object_threshold,size_t parallel_gc_threads,size_t conc_gc_threads,bool low_memory_mode,size_t long_pause_log_threshold,size_t long_gc_log_threshold,bool ignore_max_footprint,bool use_tlab,bool verify_pre_gc_heap,bool verify_pre_sweeping_heap,bool verify_post_gc_heap,bool verify_pre_gc_rosalloc,bool verify_pre_sweeping_rosalloc,bool verify_post_gc_rosalloc,bool gc_stress_mode,bool measure_gc_performance,bool use_homogeneous_space_compaction_for_oom,uint64_t min_interval_homogeneous_space_compaction_by_oom)164 Heap::Heap(size_t initial_size,
165            size_t growth_limit,
166            size_t min_free,
167            size_t max_free,
168            double target_utilization,
169            double foreground_heap_growth_multiplier,
170            size_t capacity,
171            size_t non_moving_space_capacity,
172            const std::string& image_file_name,
173            const InstructionSet image_instruction_set,
174            CollectorType foreground_collector_type,
175            CollectorType background_collector_type,
176            space::LargeObjectSpaceType large_object_space_type,
177            size_t large_object_threshold,
178            size_t parallel_gc_threads,
179            size_t conc_gc_threads,
180            bool low_memory_mode,
181            size_t long_pause_log_threshold,
182            size_t long_gc_log_threshold,
183            bool ignore_max_footprint,
184            bool use_tlab,
185            bool verify_pre_gc_heap,
186            bool verify_pre_sweeping_heap,
187            bool verify_post_gc_heap,
188            bool verify_pre_gc_rosalloc,
189            bool verify_pre_sweeping_rosalloc,
190            bool verify_post_gc_rosalloc,
191            bool gc_stress_mode,
192            bool measure_gc_performance,
193            bool use_homogeneous_space_compaction_for_oom,
194            uint64_t min_interval_homogeneous_space_compaction_by_oom)
195     : non_moving_space_(nullptr),
196       rosalloc_space_(nullptr),
197       dlmalloc_space_(nullptr),
198       main_space_(nullptr),
199       collector_type_(kCollectorTypeNone),
200       foreground_collector_type_(foreground_collector_type),
201       background_collector_type_(background_collector_type),
202       desired_collector_type_(foreground_collector_type_),
203       pending_task_lock_(nullptr),
204       parallel_gc_threads_(parallel_gc_threads),
205       conc_gc_threads_(conc_gc_threads),
206       low_memory_mode_(low_memory_mode),
207       long_pause_log_threshold_(long_pause_log_threshold),
208       long_gc_log_threshold_(long_gc_log_threshold),
209       ignore_max_footprint_(ignore_max_footprint),
210       zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
211       zygote_space_(nullptr),
212       large_object_threshold_(large_object_threshold),
213       disable_thread_flip_count_(0),
214       thread_flip_running_(false),
215       collector_type_running_(kCollectorTypeNone),
216       last_gc_cause_(kGcCauseNone),
217       thread_running_gc_(nullptr),
218       last_gc_type_(collector::kGcTypeNone),
219       next_gc_type_(collector::kGcTypePartial),
220       capacity_(capacity),
221       growth_limit_(growth_limit),
222       max_allowed_footprint_(initial_size),
223       concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
224       total_bytes_freed_ever_(0),
225       total_objects_freed_ever_(0),
226       num_bytes_allocated_(0),
227       new_native_bytes_allocated_(0),
228       old_native_bytes_allocated_(0),
229       num_bytes_freed_revoke_(0),
230       verify_missing_card_marks_(false),
231       verify_system_weaks_(false),
232       verify_pre_gc_heap_(verify_pre_gc_heap),
233       verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
234       verify_post_gc_heap_(verify_post_gc_heap),
235       verify_mod_union_table_(false),
236       verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
237       verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
238       verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
239       gc_stress_mode_(gc_stress_mode),
240       /* For GC a lot mode, we limit the allocation stacks to be kGcAlotInterval allocations. This
241        * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
242        * verification is enabled, we limit the size of allocation stacks to speed up their
243        * searching.
244        */
245       max_allocation_stack_size_(kGCALotMode ? kGcAlotAllocationStackSize
246           : (kVerifyObjectSupport > kVerifyObjectModeFast) ? kVerifyObjectAllocationStackSize :
247           kDefaultAllocationStackSize),
248       current_allocator_(kAllocatorTypeDlMalloc),
249       current_non_moving_allocator_(kAllocatorTypeNonMoving),
250       bump_pointer_space_(nullptr),
251       temp_space_(nullptr),
252       region_space_(nullptr),
253       min_free_(min_free),
254       max_free_(max_free),
255       target_utilization_(target_utilization),
256       foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
257       total_wait_time_(0),
258       verify_object_mode_(kVerifyObjectModeDisabled),
259       disable_moving_gc_count_(0),
260       semi_space_collector_(nullptr),
261       mark_compact_collector_(nullptr),
262       concurrent_copying_collector_(nullptr),
263       is_running_on_memory_tool_(Runtime::Current()->IsRunningOnMemoryTool()),
264       use_tlab_(use_tlab),
265       main_space_backup_(nullptr),
266       min_interval_homogeneous_space_compaction_by_oom_(
267           min_interval_homogeneous_space_compaction_by_oom),
268       last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
269       pending_collector_transition_(nullptr),
270       pending_heap_trim_(nullptr),
271       use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom),
272       running_collection_is_blocking_(false),
273       blocking_gc_count_(0U),
274       blocking_gc_time_(0U),
275       last_update_time_gc_count_rate_histograms_(  // Round down by the window duration.
276           (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration),
277       gc_count_last_window_(0U),
278       blocking_gc_count_last_window_(0U),
279       gc_count_rate_histogram_("gc count rate histogram", 1U, kGcCountRateMaxBucketCount),
280       blocking_gc_count_rate_histogram_("blocking gc count rate histogram", 1U,
281                                         kGcCountRateMaxBucketCount),
282       alloc_tracking_enabled_(false),
283       backtrace_lock_(nullptr),
284       seen_backtrace_count_(0u),
285       unique_backtrace_count_(0u),
286       gc_disabled_for_shutdown_(false) {
287   if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
288     LOG(INFO) << "Heap() entering";
289   }
290   if (kUseReadBarrier) {
291     CHECK_EQ(foreground_collector_type_, kCollectorTypeCC);
292     CHECK_EQ(background_collector_type_, kCollectorTypeCCBackground);
293   }
294   verification_.reset(new Verification(this));
295   CHECK_GE(large_object_threshold, kMinLargeObjectThreshold);
296   ScopedTrace trace(__FUNCTION__);
297   Runtime* const runtime = Runtime::Current();
298   // If we aren't the zygote, switch to the default non zygote allocator. This may update the
299   // entrypoints.
300   const bool is_zygote = runtime->IsZygote();
301   if (!is_zygote) {
302     // Background compaction is currently not supported for command line runs.
303     if (background_collector_type_ != foreground_collector_type_) {
304       VLOG(heap) << "Disabling background compaction for non zygote";
305       background_collector_type_ = foreground_collector_type_;
306     }
307   }
308   ChangeCollector(desired_collector_type_);
309   live_bitmap_.reset(new accounting::HeapBitmap(this));
310   mark_bitmap_.reset(new accounting::HeapBitmap(this));
311   // Requested begin for the alloc space, to follow the mapped image and oat files
312   uint8_t* requested_alloc_space_begin = nullptr;
313   if (foreground_collector_type_ == kCollectorTypeCC) {
314     // Need to use a low address so that we can allocate a contiguous 2 * Xmx space when there's no
315     // image (dex2oat for target).
316     requested_alloc_space_begin = kPreferredAllocSpaceBegin;
317   }
318 
319   // Load image space(s).
320   if (space::ImageSpace::LoadBootImage(image_file_name,
321                                        image_instruction_set,
322                                        &boot_image_spaces_,
323                                        &requested_alloc_space_begin)) {
324     for (auto space : boot_image_spaces_) {
325       AddSpace(space);
326     }
327   }
328 
329   /*
330   requested_alloc_space_begin ->     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
331                                      +-  nonmoving space (non_moving_space_capacity)+-
332                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
333                                      +-????????????????????????????????????????????+-
334                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
335                                      +-main alloc space / bump space 1 (capacity_) +-
336                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
337                                      +-????????????????????????????????????????????+-
338                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
339                                      +-main alloc space2 / bump space 2 (capacity_)+-
340                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
341   */
342   // We don't have hspace compaction enabled with GSS or CC.
343   if (foreground_collector_type_ == kCollectorTypeGSS ||
344       foreground_collector_type_ == kCollectorTypeCC) {
345     use_homogeneous_space_compaction_for_oom_ = false;
346   }
347   bool support_homogeneous_space_compaction =
348       background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact ||
349       use_homogeneous_space_compaction_for_oom_;
350   // We may use the same space the main space for the non moving space if we don't need to compact
351   // from the main space.
352   // This is not the case if we support homogeneous compaction or have a moving background
353   // collector type.
354   bool separate_non_moving_space = is_zygote ||
355       support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
356       IsMovingGc(background_collector_type_);
357   if (foreground_collector_type_ == kCollectorTypeGSS) {
358     separate_non_moving_space = false;
359   }
360   std::unique_ptr<MemMap> main_mem_map_1;
361   std::unique_ptr<MemMap> main_mem_map_2;
362 
363   // Gross hack to make dex2oat deterministic.
364   if (foreground_collector_type_ == kCollectorTypeMS &&
365       requested_alloc_space_begin == nullptr &&
366       Runtime::Current()->IsAotCompiler()) {
367     // Currently only enabled for MS collector since that is what the deterministic dex2oat uses.
368     // b/26849108
369     requested_alloc_space_begin = reinterpret_cast<uint8_t*>(kAllocSpaceBeginForDeterministicAoT);
370   }
371   uint8_t* request_begin = requested_alloc_space_begin;
372   if (request_begin != nullptr && separate_non_moving_space) {
373     request_begin += non_moving_space_capacity;
374   }
375   std::string error_str;
376   std::unique_ptr<MemMap> non_moving_space_mem_map;
377   if (separate_non_moving_space) {
378     ScopedTrace trace2("Create separate non moving space");
379     // If we are the zygote, the non moving space becomes the zygote space when we run
380     // PreZygoteFork the first time. In this case, call the map "zygote space" since we can't
381     // rename the mem map later.
382     const char* space_name = is_zygote ? kZygoteSpaceName : kNonMovingSpaceName;
383     // Reserve the non moving mem map before the other two since it needs to be at a specific
384     // address.
385     non_moving_space_mem_map.reset(MapAnonymousPreferredAddress(space_name,
386                                                                 requested_alloc_space_begin,
387                                                                 non_moving_space_capacity,
388                                                                 &error_str));
389     CHECK(non_moving_space_mem_map != nullptr) << error_str;
390     // Try to reserve virtual memory at a lower address if we have a separate non moving space.
391     request_begin = kPreferredAllocSpaceBegin + non_moving_space_capacity;
392   }
393   // Attempt to create 2 mem maps at or after the requested begin.
394   if (foreground_collector_type_ != kCollectorTypeCC) {
395     ScopedTrace trace2("Create main mem map");
396     if (separate_non_moving_space || !is_zygote) {
397       main_mem_map_1.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[0],
398                                                         request_begin,
399                                                         capacity_,
400                                                         &error_str));
401     } else {
402       // If no separate non-moving space and we are the zygote, the main space must come right
403       // after the image space to avoid a gap. This is required since we want the zygote space to
404       // be adjacent to the image space.
405       main_mem_map_1.reset(MemMap::MapAnonymous(kMemMapSpaceName[0], request_begin, capacity_,
406                                                 PROT_READ | PROT_WRITE, true, false,
407                                                 &error_str));
408     }
409     CHECK(main_mem_map_1.get() != nullptr) << error_str;
410   }
411   if (support_homogeneous_space_compaction ||
412       background_collector_type_ == kCollectorTypeSS ||
413       foreground_collector_type_ == kCollectorTypeSS) {
414     ScopedTrace trace2("Create main mem map 2");
415     main_mem_map_2.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[1], main_mem_map_1->End(),
416                                                       capacity_, &error_str));
417     CHECK(main_mem_map_2.get() != nullptr) << error_str;
418   }
419 
420   // Create the non moving space first so that bitmaps don't take up the address range.
421   if (separate_non_moving_space) {
422     ScopedTrace trace2("Add non moving space");
423     // Non moving space is always dlmalloc since we currently don't have support for multiple
424     // active rosalloc spaces.
425     const size_t size = non_moving_space_mem_map->Size();
426     non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(
427         non_moving_space_mem_map.release(), "zygote / non moving space", kDefaultStartingSize,
428         initial_size, size, size, false);
429     non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
430     CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
431         << requested_alloc_space_begin;
432     AddSpace(non_moving_space_);
433   }
434   // Create other spaces based on whether or not we have a moving GC.
435   if (foreground_collector_type_ == kCollectorTypeCC) {
436     CHECK(separate_non_moving_space);
437     // Reserve twice the capacity, to allow evacuating every region for explicit GCs.
438     MemMap* region_space_mem_map = space::RegionSpace::CreateMemMap(kRegionSpaceName,
439                                                                     capacity_ * 2,
440                                                                     request_begin);
441     CHECK(region_space_mem_map != nullptr) << "No region space mem map";
442     region_space_ = space::RegionSpace::Create(kRegionSpaceName, region_space_mem_map);
443     AddSpace(region_space_);
444   } else if (IsMovingGc(foreground_collector_type_) &&
445       foreground_collector_type_ != kCollectorTypeGSS) {
446     // Create bump pointer spaces.
447     // We only to create the bump pointer if the foreground collector is a compacting GC.
448     // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
449     bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
450                                                                     main_mem_map_1.release());
451     CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
452     AddSpace(bump_pointer_space_);
453     temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
454                                                             main_mem_map_2.release());
455     CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
456     AddSpace(temp_space_);
457     CHECK(separate_non_moving_space);
458   } else {
459     CreateMainMallocSpace(main_mem_map_1.release(), initial_size, growth_limit_, capacity_);
460     CHECK(main_space_ != nullptr);
461     AddSpace(main_space_);
462     if (!separate_non_moving_space) {
463       non_moving_space_ = main_space_;
464       CHECK(!non_moving_space_->CanMoveObjects());
465     }
466     if (foreground_collector_type_ == kCollectorTypeGSS) {
467       CHECK_EQ(foreground_collector_type_, background_collector_type_);
468       // Create bump pointer spaces instead of a backup space.
469       main_mem_map_2.release();
470       bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space 1",
471                                                             kGSSBumpPointerSpaceCapacity, nullptr);
472       CHECK(bump_pointer_space_ != nullptr);
473       AddSpace(bump_pointer_space_);
474       temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2",
475                                                     kGSSBumpPointerSpaceCapacity, nullptr);
476       CHECK(temp_space_ != nullptr);
477       AddSpace(temp_space_);
478     } else if (main_mem_map_2.get() != nullptr) {
479       const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
480       main_space_backup_.reset(CreateMallocSpaceFromMemMap(main_mem_map_2.release(), initial_size,
481                                                            growth_limit_, capacity_, name, true));
482       CHECK(main_space_backup_.get() != nullptr);
483       // Add the space so its accounted for in the heap_begin and heap_end.
484       AddSpace(main_space_backup_.get());
485     }
486   }
487   CHECK(non_moving_space_ != nullptr);
488   CHECK(!non_moving_space_->CanMoveObjects());
489   // Allocate the large object space.
490   if (large_object_space_type == space::LargeObjectSpaceType::kFreeList) {
491     large_object_space_ = space::FreeListSpace::Create("free list large object space", nullptr,
492                                                        capacity_);
493     CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
494   } else if (large_object_space_type == space::LargeObjectSpaceType::kMap) {
495     large_object_space_ = space::LargeObjectMapSpace::Create("mem map large object space");
496     CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
497   } else {
498     // Disable the large object space by making the cutoff excessively large.
499     large_object_threshold_ = std::numeric_limits<size_t>::max();
500     large_object_space_ = nullptr;
501   }
502   if (large_object_space_ != nullptr) {
503     AddSpace(large_object_space_);
504   }
505   // Compute heap capacity. Continuous spaces are sorted in order of Begin().
506   CHECK(!continuous_spaces_.empty());
507   // Relies on the spaces being sorted.
508   uint8_t* heap_begin = continuous_spaces_.front()->Begin();
509   uint8_t* heap_end = continuous_spaces_.back()->Limit();
510   size_t heap_capacity = heap_end - heap_begin;
511   // Remove the main backup space since it slows down the GC to have unused extra spaces.
512   // TODO: Avoid needing to do this.
513   if (main_space_backup_.get() != nullptr) {
514     RemoveSpace(main_space_backup_.get());
515   }
516   // Allocate the card table.
517   // We currently don't support dynamically resizing the card table.
518   // Since we don't know where in the low_4gb the app image will be located, make the card table
519   // cover the whole low_4gb. TODO: Extend the card table in AddSpace.
520   UNUSED(heap_capacity);
521   // Start at 4 KB, we can be sure there are no spaces mapped this low since the address range is
522   // reserved by the kernel.
523   static constexpr size_t kMinHeapAddress = 4 * KB;
524   card_table_.reset(accounting::CardTable::Create(reinterpret_cast<uint8_t*>(kMinHeapAddress),
525                                                   4 * GB - kMinHeapAddress));
526   CHECK(card_table_.get() != nullptr) << "Failed to create card table";
527   if (foreground_collector_type_ == kCollectorTypeCC && kUseTableLookupReadBarrier) {
528     rb_table_.reset(new accounting::ReadBarrierTable());
529     DCHECK(rb_table_->IsAllCleared());
530   }
531   if (HasBootImageSpace()) {
532     // Don't add the image mod union table if we are running without an image, this can crash if
533     // we use the CardCache implementation.
534     for (space::ImageSpace* image_space : GetBootImageSpaces()) {
535       accounting::ModUnionTable* mod_union_table = new accounting::ModUnionTableToZygoteAllocspace(
536           "Image mod-union table", this, image_space);
537       CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
538       AddModUnionTable(mod_union_table);
539     }
540   }
541   if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
542     accounting::RememberedSet* non_moving_space_rem_set =
543         new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
544     CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
545     AddRememberedSet(non_moving_space_rem_set);
546   }
547   // TODO: Count objects in the image space here?
548   num_bytes_allocated_.StoreRelaxed(0);
549   mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
550                                                     kDefaultMarkStackSize));
551   const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
552   allocation_stack_.reset(accounting::ObjectStack::Create(
553       "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
554   live_stack_.reset(accounting::ObjectStack::Create(
555       "live stack", max_allocation_stack_size_, alloc_stack_capacity));
556   // It's still too early to take a lock because there are no threads yet, but we can create locks
557   // now. We don't create it earlier to make it clear that you can't use locks during heap
558   // initialization.
559   gc_complete_lock_ = new Mutex("GC complete lock");
560   gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
561                                                 *gc_complete_lock_));
562 
563   thread_flip_lock_ = new Mutex("GC thread flip lock");
564   thread_flip_cond_.reset(new ConditionVariable("GC thread flip condition variable",
565                                                 *thread_flip_lock_));
566   task_processor_.reset(new TaskProcessor());
567   reference_processor_.reset(new ReferenceProcessor());
568   pending_task_lock_ = new Mutex("Pending task lock");
569   if (ignore_max_footprint_) {
570     SetIdealFootprint(std::numeric_limits<size_t>::max());
571     concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
572   }
573   CHECK_NE(max_allowed_footprint_, 0U);
574   // Create our garbage collectors.
575   for (size_t i = 0; i < 2; ++i) {
576     const bool concurrent = i != 0;
577     if ((MayUseCollector(kCollectorTypeCMS) && concurrent) ||
578         (MayUseCollector(kCollectorTypeMS) && !concurrent)) {
579       garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
580       garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
581       garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
582     }
583   }
584   if (kMovingCollector) {
585     if (MayUseCollector(kCollectorTypeSS) || MayUseCollector(kCollectorTypeGSS) ||
586         MayUseCollector(kCollectorTypeHomogeneousSpaceCompact) ||
587         use_homogeneous_space_compaction_for_oom_) {
588       // TODO: Clean this up.
589       const bool generational = foreground_collector_type_ == kCollectorTypeGSS;
590       semi_space_collector_ = new collector::SemiSpace(this, generational,
591                                                        generational ? "generational" : "");
592       garbage_collectors_.push_back(semi_space_collector_);
593     }
594     if (MayUseCollector(kCollectorTypeCC)) {
595       concurrent_copying_collector_ = new collector::ConcurrentCopying(this,
596                                                                        "",
597                                                                        measure_gc_performance);
598       DCHECK(region_space_ != nullptr);
599       concurrent_copying_collector_->SetRegionSpace(region_space_);
600       garbage_collectors_.push_back(concurrent_copying_collector_);
601     }
602     if (MayUseCollector(kCollectorTypeMC)) {
603       mark_compact_collector_ = new collector::MarkCompact(this);
604       garbage_collectors_.push_back(mark_compact_collector_);
605     }
606   }
607   if (!GetBootImageSpaces().empty() && non_moving_space_ != nullptr &&
608       (is_zygote || separate_non_moving_space || foreground_collector_type_ == kCollectorTypeGSS)) {
609     // Check that there's no gap between the image space and the non moving space so that the
610     // immune region won't break (eg. due to a large object allocated in the gap). This is only
611     // required when we're the zygote or using GSS.
612     // Space with smallest Begin().
613     space::ImageSpace* first_space = nullptr;
614     for (space::ImageSpace* space : boot_image_spaces_) {
615       if (first_space == nullptr || space->Begin() < first_space->Begin()) {
616         first_space = space;
617       }
618     }
619     bool no_gap = MemMap::CheckNoGaps(first_space->GetMemMap(), non_moving_space_->GetMemMap());
620     if (!no_gap) {
621       PrintFileToLog("/proc/self/maps", LogSeverity::ERROR);
622       MemMap::DumpMaps(LOG_STREAM(ERROR), true);
623       LOG(FATAL) << "There's a gap between the image space and the non-moving space";
624     }
625   }
626   instrumentation::Instrumentation* const instrumentation = runtime->GetInstrumentation();
627   if (gc_stress_mode_) {
628     backtrace_lock_ = new Mutex("GC complete lock");
629   }
630   if (is_running_on_memory_tool_ || gc_stress_mode_) {
631     instrumentation->InstrumentQuickAllocEntryPoints();
632   }
633   if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
634     LOG(INFO) << "Heap() exiting";
635   }
636 }
637 
MapAnonymousPreferredAddress(const char * name,uint8_t * request_begin,size_t capacity,std::string * out_error_str)638 MemMap* Heap::MapAnonymousPreferredAddress(const char* name,
639                                            uint8_t* request_begin,
640                                            size_t capacity,
641                                            std::string* out_error_str) {
642   while (true) {
643     MemMap* map = MemMap::MapAnonymous(name, request_begin, capacity,
644                                        PROT_READ | PROT_WRITE, true, false, out_error_str);
645     if (map != nullptr || request_begin == nullptr) {
646       return map;
647     }
648     // Retry a  second time with no specified request begin.
649     request_begin = nullptr;
650   }
651 }
652 
MayUseCollector(CollectorType type) const653 bool Heap::MayUseCollector(CollectorType type) const {
654   return foreground_collector_type_ == type || background_collector_type_ == type;
655 }
656 
CreateMallocSpaceFromMemMap(MemMap * mem_map,size_t initial_size,size_t growth_limit,size_t capacity,const char * name,bool can_move_objects)657 space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap* mem_map,
658                                                       size_t initial_size,
659                                                       size_t growth_limit,
660                                                       size_t capacity,
661                                                       const char* name,
662                                                       bool can_move_objects) {
663   space::MallocSpace* malloc_space = nullptr;
664   if (kUseRosAlloc) {
665     // Create rosalloc space.
666     malloc_space = space::RosAllocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
667                                                           initial_size, growth_limit, capacity,
668                                                           low_memory_mode_, can_move_objects);
669   } else {
670     malloc_space = space::DlMallocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
671                                                           initial_size, growth_limit, capacity,
672                                                           can_move_objects);
673   }
674   if (collector::SemiSpace::kUseRememberedSet) {
675     accounting::RememberedSet* rem_set  =
676         new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
677     CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
678     AddRememberedSet(rem_set);
679   }
680   CHECK(malloc_space != nullptr) << "Failed to create " << name;
681   malloc_space->SetFootprintLimit(malloc_space->Capacity());
682   return malloc_space;
683 }
684 
CreateMainMallocSpace(MemMap * mem_map,size_t initial_size,size_t growth_limit,size_t capacity)685 void Heap::CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
686                                  size_t capacity) {
687   // Is background compaction is enabled?
688   bool can_move_objects = IsMovingGc(background_collector_type_) !=
689       IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
690   // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
691   // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
692   // from the main space to the zygote space. If background compaction is enabled, always pass in
693   // that we can move objets.
694   if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
695     // After the zygote we want this to be false if we don't have background compaction enabled so
696     // that getting primitive array elements is faster.
697     // We never have homogeneous compaction with GSS and don't need a space with movable objects.
698     can_move_objects = !HasZygoteSpace() && foreground_collector_type_ != kCollectorTypeGSS;
699   }
700   if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
701     RemoveRememberedSet(main_space_);
702   }
703   const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
704   main_space_ = CreateMallocSpaceFromMemMap(mem_map, initial_size, growth_limit, capacity, name,
705                                             can_move_objects);
706   SetSpaceAsDefault(main_space_);
707   VLOG(heap) << "Created main space " << main_space_;
708 }
709 
ChangeAllocator(AllocatorType allocator)710 void Heap::ChangeAllocator(AllocatorType allocator) {
711   if (current_allocator_ != allocator) {
712     // These two allocators are only used internally and don't have any entrypoints.
713     CHECK_NE(allocator, kAllocatorTypeLOS);
714     CHECK_NE(allocator, kAllocatorTypeNonMoving);
715     current_allocator_ = allocator;
716     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
717     SetQuickAllocEntryPointsAllocator(current_allocator_);
718     Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
719   }
720 }
721 
DisableMovingGc()722 void Heap::DisableMovingGc() {
723   CHECK(!kUseReadBarrier);
724   if (IsMovingGc(foreground_collector_type_)) {
725     foreground_collector_type_ = kCollectorTypeCMS;
726   }
727   if (IsMovingGc(background_collector_type_)) {
728     background_collector_type_ = foreground_collector_type_;
729   }
730   TransitionCollector(foreground_collector_type_);
731   Thread* const self = Thread::Current();
732   ScopedThreadStateChange tsc(self, kSuspended);
733   ScopedSuspendAll ssa(__FUNCTION__);
734   // Something may have caused the transition to fail.
735   if (!IsMovingGc(collector_type_) && non_moving_space_ != main_space_) {
736     CHECK(main_space_ != nullptr);
737     // The allocation stack may have non movable objects in it. We need to flush it since the GC
738     // can't only handle marking allocation stack objects of one non moving space and one main
739     // space.
740     {
741       WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
742       FlushAllocStack();
743     }
744     main_space_->DisableMovingObjects();
745     non_moving_space_ = main_space_;
746     CHECK(!non_moving_space_->CanMoveObjects());
747   }
748 }
749 
IsCompilingBoot() const750 bool Heap::IsCompilingBoot() const {
751   if (!Runtime::Current()->IsAotCompiler()) {
752     return false;
753   }
754   ScopedObjectAccess soa(Thread::Current());
755   for (const auto& space : continuous_spaces_) {
756     if (space->IsImageSpace() || space->IsZygoteSpace()) {
757       return false;
758     }
759   }
760   return true;
761 }
762 
IncrementDisableMovingGC(Thread * self)763 void Heap::IncrementDisableMovingGC(Thread* self) {
764   // Need to do this holding the lock to prevent races where the GC is about to run / running when
765   // we attempt to disable it.
766   ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
767   MutexLock mu(self, *gc_complete_lock_);
768   ++disable_moving_gc_count_;
769   if (IsMovingGc(collector_type_running_)) {
770     WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
771   }
772 }
773 
DecrementDisableMovingGC(Thread * self)774 void Heap::DecrementDisableMovingGC(Thread* self) {
775   MutexLock mu(self, *gc_complete_lock_);
776   CHECK_GT(disable_moving_gc_count_, 0U);
777   --disable_moving_gc_count_;
778 }
779 
IncrementDisableThreadFlip(Thread * self)780 void Heap::IncrementDisableThreadFlip(Thread* self) {
781   // Supposed to be called by mutators. If thread_flip_running_ is true, block. Otherwise, go ahead.
782   CHECK(kUseReadBarrier);
783   bool is_nested = self->GetDisableThreadFlipCount() > 0;
784   self->IncrementDisableThreadFlipCount();
785   if (is_nested) {
786     // If this is a nested JNI critical section enter, we don't need to wait or increment the global
787     // counter. The global counter is incremented only once for a thread for the outermost enter.
788     return;
789   }
790   ScopedThreadStateChange tsc(self, kWaitingForGcThreadFlip);
791   MutexLock mu(self, *thread_flip_lock_);
792   bool has_waited = false;
793   uint64_t wait_start = NanoTime();
794   if (thread_flip_running_) {
795     ScopedTrace trace("IncrementDisableThreadFlip");
796     while (thread_flip_running_) {
797       has_waited = true;
798       thread_flip_cond_->Wait(self);
799     }
800   }
801   ++disable_thread_flip_count_;
802   if (has_waited) {
803     uint64_t wait_time = NanoTime() - wait_start;
804     total_wait_time_ += wait_time;
805     if (wait_time > long_pause_log_threshold_) {
806       LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
807     }
808   }
809 }
810 
DecrementDisableThreadFlip(Thread * self)811 void Heap::DecrementDisableThreadFlip(Thread* self) {
812   // Supposed to be called by mutators. Decrement disable_thread_flip_count_ and potentially wake up
813   // the GC waiting before doing a thread flip.
814   CHECK(kUseReadBarrier);
815   self->DecrementDisableThreadFlipCount();
816   bool is_outermost = self->GetDisableThreadFlipCount() == 0;
817   if (!is_outermost) {
818     // If this is not an outermost JNI critical exit, we don't need to decrement the global counter.
819     // The global counter is decremented only once for a thread for the outermost exit.
820     return;
821   }
822   MutexLock mu(self, *thread_flip_lock_);
823   CHECK_GT(disable_thread_flip_count_, 0U);
824   --disable_thread_flip_count_;
825   if (disable_thread_flip_count_ == 0) {
826     // Potentially notify the GC thread blocking to begin a thread flip.
827     thread_flip_cond_->Broadcast(self);
828   }
829 }
830 
ThreadFlipBegin(Thread * self)831 void Heap::ThreadFlipBegin(Thread* self) {
832   // Supposed to be called by GC. Set thread_flip_running_ to be true. If disable_thread_flip_count_
833   // > 0, block. Otherwise, go ahead.
834   CHECK(kUseReadBarrier);
835   ScopedThreadStateChange tsc(self, kWaitingForGcThreadFlip);
836   MutexLock mu(self, *thread_flip_lock_);
837   bool has_waited = false;
838   uint64_t wait_start = NanoTime();
839   CHECK(!thread_flip_running_);
840   // Set this to true before waiting so that frequent JNI critical enter/exits won't starve
841   // GC. This like a writer preference of a reader-writer lock.
842   thread_flip_running_ = true;
843   while (disable_thread_flip_count_ > 0) {
844     has_waited = true;
845     thread_flip_cond_->Wait(self);
846   }
847   if (has_waited) {
848     uint64_t wait_time = NanoTime() - wait_start;
849     total_wait_time_ += wait_time;
850     if (wait_time > long_pause_log_threshold_) {
851       LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
852     }
853   }
854 }
855 
ThreadFlipEnd(Thread * self)856 void Heap::ThreadFlipEnd(Thread* self) {
857   // Supposed to be called by GC. Set thread_flip_running_ to false and potentially wake up mutators
858   // waiting before doing a JNI critical.
859   CHECK(kUseReadBarrier);
860   MutexLock mu(self, *thread_flip_lock_);
861   CHECK(thread_flip_running_);
862   thread_flip_running_ = false;
863   // Potentially notify mutator threads blocking to enter a JNI critical section.
864   thread_flip_cond_->Broadcast(self);
865 }
866 
UpdateProcessState(ProcessState old_process_state,ProcessState new_process_state)867 void Heap::UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state) {
868   if (old_process_state != new_process_state) {
869     const bool jank_perceptible = new_process_state == kProcessStateJankPerceptible;
870     for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) {
871       // Start at index 1 to avoid "is always false" warning.
872       // Have iteration 1 always transition the collector.
873       TransitionCollector((((i & 1) == 1) == jank_perceptible)
874           ? foreground_collector_type_
875           : background_collector_type_);
876       usleep(kCollectorTransitionStressWait);
877     }
878     if (jank_perceptible) {
879       // Transition back to foreground right away to prevent jank.
880       RequestCollectorTransition(foreground_collector_type_, 0);
881     } else {
882       // Don't delay for debug builds since we may want to stress test the GC.
883       // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
884       // special handling which does a homogenous space compaction once but then doesn't transition
885       // the collector. Similarly, we invoke a full compaction for kCollectorTypeCC but don't
886       // transition the collector.
887       RequestCollectorTransition(background_collector_type_,
888                                  kStressCollectorTransition
889                                      ? 0
890                                      : kCollectorTransitionWait);
891     }
892   }
893 }
894 
CreateThreadPool()895 void Heap::CreateThreadPool() {
896   const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
897   if (num_threads != 0) {
898     thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
899   }
900 }
901 
MarkAllocStackAsLive(accounting::ObjectStack * stack)902 void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
903   space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
904   space::ContinuousSpace* space2 = non_moving_space_;
905   // TODO: Generalize this to n bitmaps?
906   CHECK(space1 != nullptr);
907   CHECK(space2 != nullptr);
908   MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
909                  (large_object_space_ != nullptr ? large_object_space_->GetLiveBitmap() : nullptr),
910                  stack);
911 }
912 
DeleteThreadPool()913 void Heap::DeleteThreadPool() {
914   thread_pool_.reset(nullptr);
915 }
916 
AddSpace(space::Space * space)917 void Heap::AddSpace(space::Space* space) {
918   CHECK(space != nullptr);
919   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
920   if (space->IsContinuousSpace()) {
921     DCHECK(!space->IsDiscontinuousSpace());
922     space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
923     // Continuous spaces don't necessarily have bitmaps.
924     accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
925     accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
926     // The region space bitmap is not added since VisitObjects visits the region space objects with
927     // special handling.
928     if (live_bitmap != nullptr && !space->IsRegionSpace()) {
929       CHECK(mark_bitmap != nullptr);
930       live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
931       mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
932     }
933     continuous_spaces_.push_back(continuous_space);
934     // Ensure that spaces remain sorted in increasing order of start address.
935     std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
936               [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
937       return a->Begin() < b->Begin();
938     });
939   } else {
940     CHECK(space->IsDiscontinuousSpace());
941     space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
942     live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
943     mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
944     discontinuous_spaces_.push_back(discontinuous_space);
945   }
946   if (space->IsAllocSpace()) {
947     alloc_spaces_.push_back(space->AsAllocSpace());
948   }
949 }
950 
SetSpaceAsDefault(space::ContinuousSpace * continuous_space)951 void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
952   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
953   if (continuous_space->IsDlMallocSpace()) {
954     dlmalloc_space_ = continuous_space->AsDlMallocSpace();
955   } else if (continuous_space->IsRosAllocSpace()) {
956     rosalloc_space_ = continuous_space->AsRosAllocSpace();
957   }
958 }
959 
RemoveSpace(space::Space * space)960 void Heap::RemoveSpace(space::Space* space) {
961   DCHECK(space != nullptr);
962   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
963   if (space->IsContinuousSpace()) {
964     DCHECK(!space->IsDiscontinuousSpace());
965     space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
966     // Continuous spaces don't necessarily have bitmaps.
967     accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
968     accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
969     if (live_bitmap != nullptr && !space->IsRegionSpace()) {
970       DCHECK(mark_bitmap != nullptr);
971       live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
972       mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
973     }
974     auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
975     DCHECK(it != continuous_spaces_.end());
976     continuous_spaces_.erase(it);
977   } else {
978     DCHECK(space->IsDiscontinuousSpace());
979     space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
980     live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
981     mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
982     auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
983                         discontinuous_space);
984     DCHECK(it != discontinuous_spaces_.end());
985     discontinuous_spaces_.erase(it);
986   }
987   if (space->IsAllocSpace()) {
988     auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
989     DCHECK(it != alloc_spaces_.end());
990     alloc_spaces_.erase(it);
991   }
992 }
993 
DumpGcPerformanceInfo(std::ostream & os)994 void Heap::DumpGcPerformanceInfo(std::ostream& os) {
995   // Dump cumulative timings.
996   os << "Dumping cumulative Gc timings\n";
997   uint64_t total_duration = 0;
998   // Dump cumulative loggers for each GC type.
999   uint64_t total_paused_time = 0;
1000   for (auto& collector : garbage_collectors_) {
1001     total_duration += collector->GetCumulativeTimings().GetTotalNs();
1002     total_paused_time += collector->GetTotalPausedTimeNs();
1003     collector->DumpPerformanceInfo(os);
1004   }
1005   if (total_duration != 0) {
1006     const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
1007     os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
1008     os << "Mean GC size throughput: "
1009        << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
1010     os << "Mean GC object throughput: "
1011        << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
1012   }
1013   uint64_t total_objects_allocated = GetObjectsAllocatedEver();
1014   os << "Total number of allocations " << total_objects_allocated << "\n";
1015   os << "Total bytes allocated " << PrettySize(GetBytesAllocatedEver()) << "\n";
1016   os << "Total bytes freed " << PrettySize(GetBytesFreedEver()) << "\n";
1017   os << "Free memory " << PrettySize(GetFreeMemory()) << "\n";
1018   os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n";
1019   os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n";
1020   os << "Total memory " << PrettySize(GetTotalMemory()) << "\n";
1021   os << "Max memory " << PrettySize(GetMaxMemory()) << "\n";
1022   if (HasZygoteSpace()) {
1023     os << "Zygote space size " << PrettySize(zygote_space_->Size()) << "\n";
1024   }
1025   os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
1026   os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
1027   os << "Total GC count: " << GetGcCount() << "\n";
1028   os << "Total GC time: " << PrettyDuration(GetGcTime()) << "\n";
1029   os << "Total blocking GC count: " << GetBlockingGcCount() << "\n";
1030   os << "Total blocking GC time: " << PrettyDuration(GetBlockingGcTime()) << "\n";
1031 
1032   {
1033     MutexLock mu(Thread::Current(), *gc_complete_lock_);
1034     if (gc_count_rate_histogram_.SampleSize() > 0U) {
1035       os << "Histogram of GC count per " << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
1036       gc_count_rate_histogram_.DumpBins(os);
1037       os << "\n";
1038     }
1039     if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
1040       os << "Histogram of blocking GC count per "
1041          << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
1042       blocking_gc_count_rate_histogram_.DumpBins(os);
1043       os << "\n";
1044     }
1045   }
1046 
1047   if (kDumpRosAllocStatsOnSigQuit && rosalloc_space_ != nullptr) {
1048     rosalloc_space_->DumpStats(os);
1049   }
1050 
1051   os << "Registered native bytes allocated: "
1052      << old_native_bytes_allocated_.LoadRelaxed() + new_native_bytes_allocated_.LoadRelaxed()
1053      << "\n";
1054 
1055   BaseMutex::DumpAll(os);
1056 }
1057 
ResetGcPerformanceInfo()1058 void Heap::ResetGcPerformanceInfo() {
1059   for (auto& collector : garbage_collectors_) {
1060     collector->ResetMeasurements();
1061   }
1062   total_bytes_freed_ever_ = 0;
1063   total_objects_freed_ever_ = 0;
1064   total_wait_time_ = 0;
1065   blocking_gc_count_ = 0;
1066   blocking_gc_time_ = 0;
1067   gc_count_last_window_ = 0;
1068   blocking_gc_count_last_window_ = 0;
1069   last_update_time_gc_count_rate_histograms_ =  // Round down by the window duration.
1070       (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
1071   {
1072     MutexLock mu(Thread::Current(), *gc_complete_lock_);
1073     gc_count_rate_histogram_.Reset();
1074     blocking_gc_count_rate_histogram_.Reset();
1075   }
1076 }
1077 
GetGcCount() const1078 uint64_t Heap::GetGcCount() const {
1079   uint64_t gc_count = 0U;
1080   for (auto& collector : garbage_collectors_) {
1081     gc_count += collector->GetCumulativeTimings().GetIterations();
1082   }
1083   return gc_count;
1084 }
1085 
GetGcTime() const1086 uint64_t Heap::GetGcTime() const {
1087   uint64_t gc_time = 0U;
1088   for (auto& collector : garbage_collectors_) {
1089     gc_time += collector->GetCumulativeTimings().GetTotalNs();
1090   }
1091   return gc_time;
1092 }
1093 
GetBlockingGcCount() const1094 uint64_t Heap::GetBlockingGcCount() const {
1095   return blocking_gc_count_;
1096 }
1097 
GetBlockingGcTime() const1098 uint64_t Heap::GetBlockingGcTime() const {
1099   return blocking_gc_time_;
1100 }
1101 
DumpGcCountRateHistogram(std::ostream & os) const1102 void Heap::DumpGcCountRateHistogram(std::ostream& os) const {
1103   MutexLock mu(Thread::Current(), *gc_complete_lock_);
1104   if (gc_count_rate_histogram_.SampleSize() > 0U) {
1105     gc_count_rate_histogram_.DumpBins(os);
1106   }
1107 }
1108 
DumpBlockingGcCountRateHistogram(std::ostream & os) const1109 void Heap::DumpBlockingGcCountRateHistogram(std::ostream& os) const {
1110   MutexLock mu(Thread::Current(), *gc_complete_lock_);
1111   if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
1112     blocking_gc_count_rate_histogram_.DumpBins(os);
1113   }
1114 }
1115 
1116 ALWAYS_INLINE
GetAndOverwriteAllocationListener(Atomic<AllocationListener * > * storage,AllocationListener * new_value)1117 static inline AllocationListener* GetAndOverwriteAllocationListener(
1118     Atomic<AllocationListener*>* storage, AllocationListener* new_value) {
1119   AllocationListener* old;
1120   do {
1121     old = storage->LoadSequentiallyConsistent();
1122   } while (!storage->CompareAndSetStrongSequentiallyConsistent(old, new_value));
1123   return old;
1124 }
1125 
~Heap()1126 Heap::~Heap() {
1127   VLOG(heap) << "Starting ~Heap()";
1128   STLDeleteElements(&garbage_collectors_);
1129   // If we don't reset then the mark stack complains in its destructor.
1130   allocation_stack_->Reset();
1131   allocation_records_.reset();
1132   live_stack_->Reset();
1133   STLDeleteValues(&mod_union_tables_);
1134   STLDeleteValues(&remembered_sets_);
1135   STLDeleteElements(&continuous_spaces_);
1136   STLDeleteElements(&discontinuous_spaces_);
1137   delete gc_complete_lock_;
1138   delete thread_flip_lock_;
1139   delete pending_task_lock_;
1140   delete backtrace_lock_;
1141   if (unique_backtrace_count_.LoadRelaxed() != 0 || seen_backtrace_count_.LoadRelaxed() != 0) {
1142     LOG(INFO) << "gc stress unique=" << unique_backtrace_count_.LoadRelaxed()
1143         << " total=" << seen_backtrace_count_.LoadRelaxed() +
1144             unique_backtrace_count_.LoadRelaxed();
1145   }
1146 
1147   VLOG(heap) << "Finished ~Heap()";
1148 }
1149 
1150 
FindContinuousSpaceFromAddress(const mirror::Object * addr) const1151 space::ContinuousSpace* Heap::FindContinuousSpaceFromAddress(const mirror::Object* addr) const {
1152   for (const auto& space : continuous_spaces_) {
1153     if (space->Contains(addr)) {
1154       return space;
1155     }
1156   }
1157   return nullptr;
1158 }
1159 
FindContinuousSpaceFromObject(ObjPtr<mirror::Object> obj,bool fail_ok) const1160 space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(ObjPtr<mirror::Object> obj,
1161                                                             bool fail_ok) const {
1162   space::ContinuousSpace* space = FindContinuousSpaceFromAddress(obj.Ptr());
1163   if (space != nullptr) {
1164     return space;
1165   }
1166   if (!fail_ok) {
1167     LOG(FATAL) << "object " << obj << " not inside any spaces!";
1168   }
1169   return nullptr;
1170 }
1171 
FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object> obj,bool fail_ok) const1172 space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object> obj,
1173                                                                   bool fail_ok) const {
1174   for (const auto& space : discontinuous_spaces_) {
1175     if (space->Contains(obj.Ptr())) {
1176       return space;
1177     }
1178   }
1179   if (!fail_ok) {
1180     LOG(FATAL) << "object " << obj << " not inside any spaces!";
1181   }
1182   return nullptr;
1183 }
1184 
FindSpaceFromObject(ObjPtr<mirror::Object> obj,bool fail_ok) const1185 space::Space* Heap::FindSpaceFromObject(ObjPtr<mirror::Object> obj, bool fail_ok) const {
1186   space::Space* result = FindContinuousSpaceFromObject(obj, true);
1187   if (result != nullptr) {
1188     return result;
1189   }
1190   return FindDiscontinuousSpaceFromObject(obj, fail_ok);
1191 }
1192 
FindSpaceFromAddress(const void * addr) const1193 space::Space* Heap::FindSpaceFromAddress(const void* addr) const {
1194   for (const auto& space : continuous_spaces_) {
1195     if (space->Contains(reinterpret_cast<const mirror::Object*>(addr))) {
1196       return space;
1197     }
1198   }
1199   for (const auto& space : discontinuous_spaces_) {
1200     if (space->Contains(reinterpret_cast<const mirror::Object*>(addr))) {
1201       return space;
1202     }
1203   }
1204   return nullptr;
1205 }
1206 
1207 
ThrowOutOfMemoryError(Thread * self,size_t byte_count,AllocatorType allocator_type)1208 void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
1209   // If we're in a stack overflow, do not create a new exception. It would require running the
1210   // constructor, which will of course still be in a stack overflow.
1211   if (self->IsHandlingStackOverflow()) {
1212     self->SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1213     return;
1214   }
1215 
1216   std::ostringstream oss;
1217   size_t total_bytes_free = GetFreeMemory();
1218   oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
1219       << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM,"
1220       << " max allowed footprint " << max_allowed_footprint_ << ", growth limit "
1221       << growth_limit_;
1222   // If the allocation failed due to fragmentation, print out the largest continuous allocation.
1223   if (total_bytes_free >= byte_count) {
1224     space::AllocSpace* space = nullptr;
1225     if (allocator_type == kAllocatorTypeNonMoving) {
1226       space = non_moving_space_;
1227     } else if (allocator_type == kAllocatorTypeRosAlloc ||
1228                allocator_type == kAllocatorTypeDlMalloc) {
1229       space = main_space_;
1230     } else if (allocator_type == kAllocatorTypeBumpPointer ||
1231                allocator_type == kAllocatorTypeTLAB) {
1232       space = bump_pointer_space_;
1233     } else if (allocator_type == kAllocatorTypeRegion ||
1234                allocator_type == kAllocatorTypeRegionTLAB) {
1235       space = region_space_;
1236     }
1237     if (space != nullptr) {
1238       space->LogFragmentationAllocFailure(oss, byte_count);
1239     }
1240   }
1241   self->ThrowOutOfMemoryError(oss.str().c_str());
1242 }
1243 
DoPendingCollectorTransition()1244 void Heap::DoPendingCollectorTransition() {
1245   CollectorType desired_collector_type = desired_collector_type_;
1246   // Launch homogeneous space compaction if it is desired.
1247   if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
1248     if (!CareAboutPauseTimes()) {
1249       PerformHomogeneousSpaceCompact();
1250     } else {
1251       VLOG(gc) << "Homogeneous compaction ignored due to jank perceptible process state";
1252     }
1253   } else if (desired_collector_type == kCollectorTypeCCBackground) {
1254     DCHECK(kUseReadBarrier);
1255     if (!CareAboutPauseTimes()) {
1256       // Invoke CC full compaction.
1257       CollectGarbageInternal(collector::kGcTypeFull,
1258                              kGcCauseCollectorTransition,
1259                              /*clear_soft_references*/false);
1260     } else {
1261       VLOG(gc) << "CC background compaction ignored due to jank perceptible process state";
1262     }
1263   } else {
1264     TransitionCollector(desired_collector_type);
1265   }
1266 }
1267 
Trim(Thread * self)1268 void Heap::Trim(Thread* self) {
1269   Runtime* const runtime = Runtime::Current();
1270   if (!CareAboutPauseTimes()) {
1271     // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
1272     // about pauses.
1273     ScopedTrace trace("Deflating monitors");
1274     // Avoid race conditions on the lock word for CC.
1275     ScopedGCCriticalSection gcs(self, kGcCauseTrim, kCollectorTypeHeapTrim);
1276     ScopedSuspendAll ssa(__FUNCTION__);
1277     uint64_t start_time = NanoTime();
1278     size_t count = runtime->GetMonitorList()->DeflateMonitors();
1279     VLOG(heap) << "Deflating " << count << " monitors took "
1280         << PrettyDuration(NanoTime() - start_time);
1281   }
1282   TrimIndirectReferenceTables(self);
1283   TrimSpaces(self);
1284   // Trim arenas that may have been used by JIT or verifier.
1285   runtime->GetArenaPool()->TrimMaps();
1286 }
1287 
1288 class TrimIndirectReferenceTableClosure : public Closure {
1289  public:
TrimIndirectReferenceTableClosure(Barrier * barrier)1290   explicit TrimIndirectReferenceTableClosure(Barrier* barrier) : barrier_(barrier) {
1291   }
Run(Thread * thread)1292   virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
1293     thread->GetJniEnv()->TrimLocals();
1294     // If thread is a running mutator, then act on behalf of the trim thread.
1295     // See the code in ThreadList::RunCheckpoint.
1296     barrier_->Pass(Thread::Current());
1297   }
1298 
1299  private:
1300   Barrier* const barrier_;
1301 };
1302 
TrimIndirectReferenceTables(Thread * self)1303 void Heap::TrimIndirectReferenceTables(Thread* self) {
1304   ScopedObjectAccess soa(self);
1305   ScopedTrace trace(__PRETTY_FUNCTION__);
1306   JavaVMExt* vm = soa.Vm();
1307   // Trim globals indirect reference table.
1308   vm->TrimGlobals();
1309   // Trim locals indirect reference tables.
1310   Barrier barrier(0);
1311   TrimIndirectReferenceTableClosure closure(&barrier);
1312   ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1313   size_t barrier_count = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
1314   if (barrier_count != 0) {
1315     barrier.Increment(self, barrier_count);
1316   }
1317 }
1318 
StartGC(Thread * self,GcCause cause,CollectorType collector_type)1319 void Heap::StartGC(Thread* self, GcCause cause, CollectorType collector_type) {
1320   // Need to do this before acquiring the locks since we don't want to get suspended while
1321   // holding any locks.
1322   ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1323   MutexLock mu(self, *gc_complete_lock_);
1324   // Ensure there is only one GC at a time.
1325   WaitForGcToCompleteLocked(cause, self);
1326   collector_type_running_ = collector_type;
1327   last_gc_cause_ = cause;
1328   thread_running_gc_ = self;
1329 }
1330 
TrimSpaces(Thread * self)1331 void Heap::TrimSpaces(Thread* self) {
1332   // Pretend we are doing a GC to prevent background compaction from deleting the space we are
1333   // trimming.
1334   StartGC(self, kGcCauseTrim, kCollectorTypeHeapTrim);
1335   ScopedTrace trace(__PRETTY_FUNCTION__);
1336   const uint64_t start_ns = NanoTime();
1337   // Trim the managed spaces.
1338   uint64_t total_alloc_space_allocated = 0;
1339   uint64_t total_alloc_space_size = 0;
1340   uint64_t managed_reclaimed = 0;
1341   {
1342     ScopedObjectAccess soa(self);
1343     for (const auto& space : continuous_spaces_) {
1344       if (space->IsMallocSpace()) {
1345         gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
1346         if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
1347           // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
1348           // for a long period of time.
1349           managed_reclaimed += malloc_space->Trim();
1350         }
1351         total_alloc_space_size += malloc_space->Size();
1352       }
1353     }
1354   }
1355   total_alloc_space_allocated = GetBytesAllocated();
1356   if (large_object_space_ != nullptr) {
1357     total_alloc_space_allocated -= large_object_space_->GetBytesAllocated();
1358   }
1359   if (bump_pointer_space_ != nullptr) {
1360     total_alloc_space_allocated -= bump_pointer_space_->Size();
1361   }
1362   if (region_space_ != nullptr) {
1363     total_alloc_space_allocated -= region_space_->GetBytesAllocated();
1364   }
1365   const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
1366       static_cast<float>(total_alloc_space_size);
1367   uint64_t gc_heap_end_ns = NanoTime();
1368   // We never move things in the native heap, so we can finish the GC at this point.
1369   FinishGC(self, collector::kGcTypeNone);
1370 
1371   VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
1372       << ", advised=" << PrettySize(managed_reclaimed) << ") heap. Managed heap utilization of "
1373       << static_cast<int>(100 * managed_utilization) << "%.";
1374 }
1375 
IsValidObjectAddress(const void * addr) const1376 bool Heap::IsValidObjectAddress(const void* addr) const {
1377   if (addr == nullptr) {
1378     return true;
1379   }
1380   return IsAligned<kObjectAlignment>(addr) && FindSpaceFromAddress(addr) != nullptr;
1381 }
1382 
IsNonDiscontinuousSpaceHeapAddress(const void * addr) const1383 bool Heap::IsNonDiscontinuousSpaceHeapAddress(const void* addr) const {
1384   return FindContinuousSpaceFromAddress(reinterpret_cast<const mirror::Object*>(addr)) != nullptr;
1385 }
1386 
IsLiveObjectLocked(ObjPtr<mirror::Object> obj,bool search_allocation_stack,bool search_live_stack,bool sorted)1387 bool Heap::IsLiveObjectLocked(ObjPtr<mirror::Object> obj,
1388                               bool search_allocation_stack,
1389                               bool search_live_stack,
1390                               bool sorted) {
1391   if (UNLIKELY(!IsAligned<kObjectAlignment>(obj.Ptr()))) {
1392     return false;
1393   }
1394   if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj.Ptr())) {
1395     mirror::Class* klass = obj->GetClass<kVerifyNone>();
1396     if (obj == klass) {
1397       // This case happens for java.lang.Class.
1398       return true;
1399     }
1400     return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
1401   } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj.Ptr())) {
1402     // If we are in the allocated region of the temp space, then we are probably live (e.g. during
1403     // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
1404     return temp_space_->Contains(obj.Ptr());
1405   }
1406   if (region_space_ != nullptr && region_space_->HasAddress(obj.Ptr())) {
1407     return true;
1408   }
1409   space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1410   space::DiscontinuousSpace* d_space = nullptr;
1411   if (c_space != nullptr) {
1412     if (c_space->GetLiveBitmap()->Test(obj.Ptr())) {
1413       return true;
1414     }
1415   } else {
1416     d_space = FindDiscontinuousSpaceFromObject(obj, true);
1417     if (d_space != nullptr) {
1418       if (d_space->GetLiveBitmap()->Test(obj.Ptr())) {
1419         return true;
1420       }
1421     }
1422   }
1423   // This is covering the allocation/live stack swapping that is done without mutators suspended.
1424   for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1425     if (i > 0) {
1426       NanoSleep(MsToNs(10));
1427     }
1428     if (search_allocation_stack) {
1429       if (sorted) {
1430         if (allocation_stack_->ContainsSorted(obj.Ptr())) {
1431           return true;
1432         }
1433       } else if (allocation_stack_->Contains(obj.Ptr())) {
1434         return true;
1435       }
1436     }
1437 
1438     if (search_live_stack) {
1439       if (sorted) {
1440         if (live_stack_->ContainsSorted(obj.Ptr())) {
1441           return true;
1442         }
1443       } else if (live_stack_->Contains(obj.Ptr())) {
1444         return true;
1445       }
1446     }
1447   }
1448   // We need to check the bitmaps again since there is a race where we mark something as live and
1449   // then clear the stack containing it.
1450   if (c_space != nullptr) {
1451     if (c_space->GetLiveBitmap()->Test(obj.Ptr())) {
1452       return true;
1453     }
1454   } else {
1455     d_space = FindDiscontinuousSpaceFromObject(obj, true);
1456     if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj.Ptr())) {
1457       return true;
1458     }
1459   }
1460   return false;
1461 }
1462 
DumpSpaces() const1463 std::string Heap::DumpSpaces() const {
1464   std::ostringstream oss;
1465   DumpSpaces(oss);
1466   return oss.str();
1467 }
1468 
DumpSpaces(std::ostream & stream) const1469 void Heap::DumpSpaces(std::ostream& stream) const {
1470   for (const auto& space : continuous_spaces_) {
1471     accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1472     accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1473     stream << space << " " << *space << "\n";
1474     if (live_bitmap != nullptr) {
1475       stream << live_bitmap << " " << *live_bitmap << "\n";
1476     }
1477     if (mark_bitmap != nullptr) {
1478       stream << mark_bitmap << " " << *mark_bitmap << "\n";
1479     }
1480   }
1481   for (const auto& space : discontinuous_spaces_) {
1482     stream << space << " " << *space << "\n";
1483   }
1484 }
1485 
VerifyObjectBody(ObjPtr<mirror::Object> obj)1486 void Heap::VerifyObjectBody(ObjPtr<mirror::Object> obj) {
1487   if (verify_object_mode_ == kVerifyObjectModeDisabled) {
1488     return;
1489   }
1490 
1491   // Ignore early dawn of the universe verifications.
1492   if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.LoadRelaxed()) < 10 * KB)) {
1493     return;
1494   }
1495   CHECK_ALIGNED(obj.Ptr(), kObjectAlignment) << "Object isn't aligned";
1496   mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
1497   CHECK(c != nullptr) << "Null class in object " << obj;
1498   CHECK_ALIGNED(c, kObjectAlignment) << "Class " << c << " not aligned in object " << obj;
1499   CHECK(VerifyClassClass(c));
1500 
1501   if (verify_object_mode_ > kVerifyObjectModeFast) {
1502     // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1503     CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
1504   }
1505 }
1506 
VerifyHeap()1507 void Heap::VerifyHeap() {
1508   ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1509   auto visitor = [&](mirror::Object* obj) {
1510     VerifyObjectBody(obj);
1511   };
1512   // Technically we need the mutator lock here to call Visit. However, VerifyObjectBody is already
1513   // NO_THREAD_SAFETY_ANALYSIS.
1514   auto no_thread_safety_analysis = [&]() NO_THREAD_SAFETY_ANALYSIS {
1515     GetLiveBitmap()->Visit(visitor);
1516   };
1517   no_thread_safety_analysis();
1518 }
1519 
RecordFree(uint64_t freed_objects,int64_t freed_bytes)1520 void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
1521   // Use signed comparison since freed bytes can be negative when background compaction foreground
1522   // transitions occurs. This is caused by the moving objects from a bump pointer space to a
1523   // free list backed space typically increasing memory footprint due to padding and binning.
1524   DCHECK_LE(freed_bytes, static_cast<int64_t>(num_bytes_allocated_.LoadRelaxed()));
1525   // Note: This relies on 2s complement for handling negative freed_bytes.
1526   num_bytes_allocated_.FetchAndSubSequentiallyConsistent(static_cast<ssize_t>(freed_bytes));
1527   if (Runtime::Current()->HasStatsEnabled()) {
1528     RuntimeStats* thread_stats = Thread::Current()->GetStats();
1529     thread_stats->freed_objects += freed_objects;
1530     thread_stats->freed_bytes += freed_bytes;
1531     // TODO: Do this concurrently.
1532     RuntimeStats* global_stats = Runtime::Current()->GetStats();
1533     global_stats->freed_objects += freed_objects;
1534     global_stats->freed_bytes += freed_bytes;
1535   }
1536 }
1537 
RecordFreeRevoke()1538 void Heap::RecordFreeRevoke() {
1539   // Subtract num_bytes_freed_revoke_ from num_bytes_allocated_ to cancel out the
1540   // ahead-of-time, bulk counting of bytes allocated in rosalloc thread-local buffers.
1541   // If there's a concurrent revoke, ok to not necessarily reset num_bytes_freed_revoke_
1542   // all the way to zero exactly as the remainder will be subtracted at the next GC.
1543   size_t bytes_freed = num_bytes_freed_revoke_.LoadSequentiallyConsistent();
1544   CHECK_GE(num_bytes_freed_revoke_.FetchAndSubSequentiallyConsistent(bytes_freed),
1545            bytes_freed) << "num_bytes_freed_revoke_ underflow";
1546   CHECK_GE(num_bytes_allocated_.FetchAndSubSequentiallyConsistent(bytes_freed),
1547            bytes_freed) << "num_bytes_allocated_ underflow";
1548   GetCurrentGcIteration()->SetFreedRevoke(bytes_freed);
1549 }
1550 
GetRosAllocSpace(gc::allocator::RosAlloc * rosalloc) const1551 space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
1552   if (rosalloc_space_ != nullptr && rosalloc_space_->GetRosAlloc() == rosalloc) {
1553     return rosalloc_space_;
1554   }
1555   for (const auto& space : continuous_spaces_) {
1556     if (space->AsContinuousSpace()->IsRosAllocSpace()) {
1557       if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
1558         return space->AsContinuousSpace()->AsRosAllocSpace();
1559       }
1560     }
1561   }
1562   return nullptr;
1563 }
1564 
EntrypointsInstrumented()1565 static inline bool EntrypointsInstrumented() REQUIRES_SHARED(Locks::mutator_lock_) {
1566   instrumentation::Instrumentation* const instrumentation =
1567       Runtime::Current()->GetInstrumentation();
1568   return instrumentation != nullptr && instrumentation->AllocEntrypointsInstrumented();
1569 }
1570 
AllocateInternalWithGc(Thread * self,AllocatorType allocator,bool instrumented,size_t alloc_size,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated,ObjPtr<mirror::Class> * klass)1571 mirror::Object* Heap::AllocateInternalWithGc(Thread* self,
1572                                              AllocatorType allocator,
1573                                              bool instrumented,
1574                                              size_t alloc_size,
1575                                              size_t* bytes_allocated,
1576                                              size_t* usable_size,
1577                                              size_t* bytes_tl_bulk_allocated,
1578                                              ObjPtr<mirror::Class>* klass) {
1579   bool was_default_allocator = allocator == GetCurrentAllocator();
1580   // Make sure there is no pending exception since we may need to throw an OOME.
1581   self->AssertNoPendingException();
1582   DCHECK(klass != nullptr);
1583   StackHandleScope<1> hs(self);
1584   HandleWrapperObjPtr<mirror::Class> h(hs.NewHandleWrapper(klass));
1585   // The allocation failed. If the GC is running, block until it completes, and then retry the
1586   // allocation.
1587   collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self);
1588   // If we were the default allocator but the allocator changed while we were suspended,
1589   // abort the allocation.
1590   if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1591       (!instrumented && EntrypointsInstrumented())) {
1592     return nullptr;
1593   }
1594   if (last_gc != collector::kGcTypeNone) {
1595     // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1596     mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1597                                                      usable_size, bytes_tl_bulk_allocated);
1598     if (ptr != nullptr) {
1599       return ptr;
1600     }
1601   }
1602 
1603   collector::GcType tried_type = next_gc_type_;
1604   const bool gc_ran =
1605       CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1606   if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1607       (!instrumented && EntrypointsInstrumented())) {
1608     return nullptr;
1609   }
1610   if (gc_ran) {
1611     mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1612                                                      usable_size, bytes_tl_bulk_allocated);
1613     if (ptr != nullptr) {
1614       return ptr;
1615     }
1616   }
1617 
1618   // Loop through our different Gc types and try to Gc until we get enough free memory.
1619   for (collector::GcType gc_type : gc_plan_) {
1620     if (gc_type == tried_type) {
1621       continue;
1622     }
1623     // Attempt to run the collector, if we succeed, re-try the allocation.
1624     const bool plan_gc_ran =
1625         CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1626     if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1627         (!instrumented && EntrypointsInstrumented())) {
1628       return nullptr;
1629     }
1630     if (plan_gc_ran) {
1631       // Did we free sufficient memory for the allocation to succeed?
1632       mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1633                                                        usable_size, bytes_tl_bulk_allocated);
1634       if (ptr != nullptr) {
1635         return ptr;
1636       }
1637     }
1638   }
1639   // Allocations have failed after GCs;  this is an exceptional state.
1640   // Try harder, growing the heap if necessary.
1641   mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1642                                                   usable_size, bytes_tl_bulk_allocated);
1643   if (ptr != nullptr) {
1644     return ptr;
1645   }
1646   // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1647   // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1648   // VM spec requires that all SoftReferences have been collected and cleared before throwing
1649   // OOME.
1650   VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1651            << " allocation";
1652   // TODO: Run finalization, but this may cause more allocations to occur.
1653   // We don't need a WaitForGcToComplete here either.
1654   DCHECK(!gc_plan_.empty());
1655   CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
1656   if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1657       (!instrumented && EntrypointsInstrumented())) {
1658     return nullptr;
1659   }
1660   ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size,
1661                                   bytes_tl_bulk_allocated);
1662   if (ptr == nullptr) {
1663     const uint64_t current_time = NanoTime();
1664     switch (allocator) {
1665       case kAllocatorTypeRosAlloc:
1666         // Fall-through.
1667       case kAllocatorTypeDlMalloc: {
1668         if (use_homogeneous_space_compaction_for_oom_ &&
1669             current_time - last_time_homogeneous_space_compaction_by_oom_ >
1670             min_interval_homogeneous_space_compaction_by_oom_) {
1671           last_time_homogeneous_space_compaction_by_oom_ = current_time;
1672           HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact();
1673           // Thread suspension could have occurred.
1674           if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1675               (!instrumented && EntrypointsInstrumented())) {
1676             return nullptr;
1677           }
1678           switch (result) {
1679             case HomogeneousSpaceCompactResult::kSuccess:
1680               // If the allocation succeeded, we delayed an oom.
1681               ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1682                                               usable_size, bytes_tl_bulk_allocated);
1683               if (ptr != nullptr) {
1684                 count_delayed_oom_++;
1685               }
1686               break;
1687             case HomogeneousSpaceCompactResult::kErrorReject:
1688               // Reject due to disabled moving GC.
1689               break;
1690             case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
1691               // Throw OOM by default.
1692               break;
1693             default: {
1694               UNIMPLEMENTED(FATAL) << "homogeneous space compaction result: "
1695                   << static_cast<size_t>(result);
1696               UNREACHABLE();
1697             }
1698           }
1699           // Always print that we ran homogeneous space compation since this can cause jank.
1700           VLOG(heap) << "Ran heap homogeneous space compaction, "
1701                     << " requested defragmentation "
1702                     << count_requested_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1703                     << " performed defragmentation "
1704                     << count_performed_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1705                     << " ignored homogeneous space compaction "
1706                     << count_ignored_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1707                     << " delayed count = "
1708                     << count_delayed_oom_.LoadSequentiallyConsistent();
1709         }
1710         break;
1711       }
1712       case kAllocatorTypeNonMoving: {
1713         if (kUseReadBarrier) {
1714           // DisableMovingGc() isn't compatible with CC.
1715           break;
1716         }
1717         // Try to transition the heap if the allocation failure was due to the space being full.
1718         if (!IsOutOfMemoryOnAllocation(allocator, alloc_size, /*grow*/ false)) {
1719           // If we aren't out of memory then the OOM was probably from the non moving space being
1720           // full. Attempt to disable compaction and turn the main space into a non moving space.
1721           DisableMovingGc();
1722           // Thread suspension could have occurred.
1723           if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1724               (!instrumented && EntrypointsInstrumented())) {
1725             return nullptr;
1726           }
1727           // If we are still a moving GC then something must have caused the transition to fail.
1728           if (IsMovingGc(collector_type_)) {
1729             MutexLock mu(self, *gc_complete_lock_);
1730             // If we couldn't disable moving GC, just throw OOME and return null.
1731             LOG(WARNING) << "Couldn't disable moving GC with disable GC count "
1732                          << disable_moving_gc_count_;
1733           } else {
1734             LOG(WARNING) << "Disabled moving GC due to the non moving space being full";
1735             ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1736                                             usable_size, bytes_tl_bulk_allocated);
1737           }
1738         }
1739         break;
1740       }
1741       default: {
1742         // Do nothing for others allocators.
1743       }
1744     }
1745   }
1746   // If the allocation hasn't succeeded by this point, throw an OOM error.
1747   if (ptr == nullptr) {
1748     ThrowOutOfMemoryError(self, alloc_size, allocator);
1749   }
1750   return ptr;
1751 }
1752 
SetTargetHeapUtilization(float target)1753 void Heap::SetTargetHeapUtilization(float target) {
1754   DCHECK_GT(target, 0.0f);  // asserted in Java code
1755   DCHECK_LT(target, 1.0f);
1756   target_utilization_ = target;
1757 }
1758 
GetObjectsAllocated() const1759 size_t Heap::GetObjectsAllocated() const {
1760   Thread* const self = Thread::Current();
1761   ScopedThreadStateChange tsc(self, kWaitingForGetObjectsAllocated);
1762   // Prevent GC running during GetObjectsAllocated since we may get a checkpoint request that tells
1763   // us to suspend while we are doing SuspendAll. b/35232978
1764   gc::ScopedGCCriticalSection gcs(Thread::Current(),
1765                                   gc::kGcCauseGetObjectsAllocated,
1766                                   gc::kCollectorTypeGetObjectsAllocated);
1767   // Need SuspendAll here to prevent lock violation if RosAlloc does it during InspectAll.
1768   ScopedSuspendAll ssa(__FUNCTION__);
1769   ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1770   size_t total = 0;
1771   for (space::AllocSpace* space : alloc_spaces_) {
1772     total += space->GetObjectsAllocated();
1773   }
1774   return total;
1775 }
1776 
GetObjectsAllocatedEver() const1777 uint64_t Heap::GetObjectsAllocatedEver() const {
1778   uint64_t total = GetObjectsFreedEver();
1779   // If we are detached, we can't use GetObjectsAllocated since we can't change thread states.
1780   if (Thread::Current() != nullptr) {
1781     total += GetObjectsAllocated();
1782   }
1783   return total;
1784 }
1785 
GetBytesAllocatedEver() const1786 uint64_t Heap::GetBytesAllocatedEver() const {
1787   return GetBytesFreedEver() + GetBytesAllocated();
1788 }
1789 
1790 // Check whether the given object is an instance of the given class.
MatchesClass(mirror::Object * obj,Handle<mirror::Class> h_class,bool use_is_assignable_from)1791 static bool MatchesClass(mirror::Object* obj,
1792                          Handle<mirror::Class> h_class,
1793                          bool use_is_assignable_from) REQUIRES_SHARED(Locks::mutator_lock_) {
1794   mirror::Class* instance_class = obj->GetClass();
1795   CHECK(instance_class != nullptr);
1796   ObjPtr<mirror::Class> klass = h_class.Get();
1797   if (use_is_assignable_from) {
1798     return klass != nullptr && klass->IsAssignableFrom(instance_class);
1799   }
1800   return instance_class == klass;
1801 }
1802 
CountInstances(const std::vector<Handle<mirror::Class>> & classes,bool use_is_assignable_from,uint64_t * counts)1803 void Heap::CountInstances(const std::vector<Handle<mirror::Class>>& classes,
1804                           bool use_is_assignable_from,
1805                           uint64_t* counts) {
1806   auto instance_counter = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1807     for (size_t i = 0; i < classes.size(); ++i) {
1808       if (MatchesClass(obj, classes[i], use_is_assignable_from)) {
1809         ++counts[i];
1810       }
1811     }
1812   };
1813   VisitObjects(instance_counter);
1814 }
1815 
GetInstances(VariableSizedHandleScope & scope,Handle<mirror::Class> h_class,bool use_is_assignable_from,int32_t max_count,std::vector<Handle<mirror::Object>> & instances)1816 void Heap::GetInstances(VariableSizedHandleScope& scope,
1817                         Handle<mirror::Class> h_class,
1818                         bool use_is_assignable_from,
1819                         int32_t max_count,
1820                         std::vector<Handle<mirror::Object>>& instances) {
1821   DCHECK_GE(max_count, 0);
1822   auto instance_collector = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1823     if (MatchesClass(obj, h_class, use_is_assignable_from)) {
1824       if (max_count == 0 || instances.size() < static_cast<size_t>(max_count)) {
1825         instances.push_back(scope.NewHandle(obj));
1826       }
1827     }
1828   };
1829   VisitObjects(instance_collector);
1830 }
1831 
GetReferringObjects(VariableSizedHandleScope & scope,Handle<mirror::Object> o,int32_t max_count,std::vector<Handle<mirror::Object>> & referring_objects)1832 void Heap::GetReferringObjects(VariableSizedHandleScope& scope,
1833                                Handle<mirror::Object> o,
1834                                int32_t max_count,
1835                                std::vector<Handle<mirror::Object>>& referring_objects) {
1836   class ReferringObjectsFinder {
1837    public:
1838     ReferringObjectsFinder(VariableSizedHandleScope& scope_in,
1839                            Handle<mirror::Object> object_in,
1840                            int32_t max_count_in,
1841                            std::vector<Handle<mirror::Object>>& referring_objects_in)
1842         REQUIRES_SHARED(Locks::mutator_lock_)
1843         : scope_(scope_in),
1844           object_(object_in),
1845           max_count_(max_count_in),
1846           referring_objects_(referring_objects_in) {}
1847 
1848     // For Object::VisitReferences.
1849     void operator()(ObjPtr<mirror::Object> obj,
1850                     MemberOffset offset,
1851                     bool is_static ATTRIBUTE_UNUSED) const
1852         REQUIRES_SHARED(Locks::mutator_lock_) {
1853       mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
1854       if (ref == object_.Get() && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1855         referring_objects_.push_back(scope_.NewHandle(obj));
1856       }
1857     }
1858 
1859     void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
1860         const {}
1861     void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
1862 
1863    private:
1864     VariableSizedHandleScope& scope_;
1865     Handle<mirror::Object> const object_;
1866     const uint32_t max_count_;
1867     std::vector<Handle<mirror::Object>>& referring_objects_;
1868     DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
1869   };
1870   ReferringObjectsFinder finder(scope, o, max_count, referring_objects);
1871   auto referring_objects_finder = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1872     obj->VisitReferences(finder, VoidFunctor());
1873   };
1874   VisitObjects(referring_objects_finder);
1875 }
1876 
CollectGarbage(bool clear_soft_references,GcCause cause)1877 void Heap::CollectGarbage(bool clear_soft_references, GcCause cause) {
1878   // Even if we waited for a GC we still need to do another GC since weaks allocated during the
1879   // last GC will not have necessarily been cleared.
1880   CollectGarbageInternal(gc_plan_.back(), cause, clear_soft_references);
1881 }
1882 
SupportHomogeneousSpaceCompactAndCollectorTransitions() const1883 bool Heap::SupportHomogeneousSpaceCompactAndCollectorTransitions() const {
1884   return main_space_backup_.get() != nullptr && main_space_ != nullptr &&
1885       foreground_collector_type_ == kCollectorTypeCMS;
1886 }
1887 
PerformHomogeneousSpaceCompact()1888 HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
1889   Thread* self = Thread::Current();
1890   // Inc requested homogeneous space compaction.
1891   count_requested_homogeneous_space_compaction_++;
1892   // Store performed homogeneous space compaction at a new request arrival.
1893   ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1894   // TODO: Clang prebuilt for r316199 produces bogus thread safety analysis warning for holding both
1895   // exclusive and shared lock in the same scope. Remove the assertion as a temporary workaround.
1896   // http://b/71769596
1897   // Locks::mutator_lock_->AssertNotHeld(self);
1898   {
1899     ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
1900     MutexLock mu(self, *gc_complete_lock_);
1901     // Ensure there is only one GC at a time.
1902     WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
1903     // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable
1904     // count is non zero.
1905     // If the collector type changed to something which doesn't benefit from homogeneous space
1906     // compaction, exit.
1907     if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) ||
1908         !main_space_->CanMoveObjects()) {
1909       return kErrorReject;
1910     }
1911     if (!SupportHomogeneousSpaceCompactAndCollectorTransitions()) {
1912       return kErrorUnsupported;
1913     }
1914     collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
1915   }
1916   if (Runtime::Current()->IsShuttingDown(self)) {
1917     // Don't allow heap transitions to happen if the runtime is shutting down since these can
1918     // cause objects to get finalized.
1919     FinishGC(self, collector::kGcTypeNone);
1920     return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
1921   }
1922   collector::GarbageCollector* collector;
1923   {
1924     ScopedSuspendAll ssa(__FUNCTION__);
1925     uint64_t start_time = NanoTime();
1926     // Launch compaction.
1927     space::MallocSpace* to_space = main_space_backup_.release();
1928     space::MallocSpace* from_space = main_space_;
1929     to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1930     const uint64_t space_size_before_compaction = from_space->Size();
1931     AddSpace(to_space);
1932     // Make sure that we will have enough room to copy.
1933     CHECK_GE(to_space->GetFootprintLimit(), from_space->GetFootprintLimit());
1934     collector = Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact);
1935     const uint64_t space_size_after_compaction = to_space->Size();
1936     main_space_ = to_space;
1937     main_space_backup_.reset(from_space);
1938     RemoveSpace(from_space);
1939     SetSpaceAsDefault(main_space_);  // Set as default to reset the proper dlmalloc space.
1940     // Update performed homogeneous space compaction count.
1941     count_performed_homogeneous_space_compaction_++;
1942     // Print statics log and resume all threads.
1943     uint64_t duration = NanoTime() - start_time;
1944     VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
1945                << PrettySize(space_size_before_compaction) << " -> "
1946                << PrettySize(space_size_after_compaction) << " compact-ratio: "
1947                << std::fixed << static_cast<double>(space_size_after_compaction) /
1948                static_cast<double>(space_size_before_compaction);
1949   }
1950   // Finish GC.
1951   reference_processor_->EnqueueClearedReferences(self);
1952   GrowForUtilization(semi_space_collector_);
1953   LogGC(kGcCauseHomogeneousSpaceCompact, collector);
1954   FinishGC(self, collector::kGcTypeFull);
1955   {
1956     ScopedObjectAccess soa(self);
1957     soa.Vm()->UnloadNativeLibraries();
1958   }
1959   return HomogeneousSpaceCompactResult::kSuccess;
1960 }
1961 
TransitionCollector(CollectorType collector_type)1962 void Heap::TransitionCollector(CollectorType collector_type) {
1963   if (collector_type == collector_type_) {
1964     return;
1965   }
1966   // Collector transition must not happen with CC
1967   CHECK(!kUseReadBarrier);
1968   VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
1969              << " -> " << static_cast<int>(collector_type);
1970   uint64_t start_time = NanoTime();
1971   uint32_t before_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1972   Runtime* const runtime = Runtime::Current();
1973   Thread* const self = Thread::Current();
1974   ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1975   // TODO: Clang prebuilt for r316199 produces bogus thread safety analysis warning for holding both
1976   // exclusive and shared lock in the same scope. Remove the assertion as a temporary workaround.
1977   // http://b/71769596
1978   // Locks::mutator_lock_->AssertNotHeld(self);
1979   // Busy wait until we can GC (StartGC can fail if we have a non-zero
1980   // compacting_gc_disable_count_, this should rarely occurs).
1981   for (;;) {
1982     {
1983       ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
1984       MutexLock mu(self, *gc_complete_lock_);
1985       // Ensure there is only one GC at a time.
1986       WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self);
1987       // Currently we only need a heap transition if we switch from a moving collector to a
1988       // non-moving one, or visa versa.
1989       const bool copying_transition = IsMovingGc(collector_type_) != IsMovingGc(collector_type);
1990       // If someone else beat us to it and changed the collector before we could, exit.
1991       // This is safe to do before the suspend all since we set the collector_type_running_ before
1992       // we exit the loop. If another thread attempts to do the heap transition before we exit,
1993       // then it would get blocked on WaitForGcToCompleteLocked.
1994       if (collector_type == collector_type_) {
1995         return;
1996       }
1997       // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
1998       if (!copying_transition || disable_moving_gc_count_ == 0) {
1999         // TODO: Not hard code in semi-space collector?
2000         collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
2001         break;
2002       }
2003     }
2004     usleep(1000);
2005   }
2006   if (runtime->IsShuttingDown(self)) {
2007     // Don't allow heap transitions to happen if the runtime is shutting down since these can
2008     // cause objects to get finalized.
2009     FinishGC(self, collector::kGcTypeNone);
2010     return;
2011   }
2012   collector::GarbageCollector* collector = nullptr;
2013   {
2014     ScopedSuspendAll ssa(__FUNCTION__);
2015     switch (collector_type) {
2016       case kCollectorTypeSS: {
2017         if (!IsMovingGc(collector_type_)) {
2018           // Create the bump pointer space from the backup space.
2019           CHECK(main_space_backup_ != nullptr);
2020           std::unique_ptr<MemMap> mem_map(main_space_backup_->ReleaseMemMap());
2021           // We are transitioning from non moving GC -> moving GC, since we copied from the bump
2022           // pointer space last transition it will be protected.
2023           CHECK(mem_map != nullptr);
2024           mem_map->Protect(PROT_READ | PROT_WRITE);
2025           bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space",
2026                                                                           mem_map.release());
2027           AddSpace(bump_pointer_space_);
2028           collector = Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition);
2029           // Use the now empty main space mem map for the bump pointer temp space.
2030           mem_map.reset(main_space_->ReleaseMemMap());
2031           // Unset the pointers just in case.
2032           if (dlmalloc_space_ == main_space_) {
2033             dlmalloc_space_ = nullptr;
2034           } else if (rosalloc_space_ == main_space_) {
2035             rosalloc_space_ = nullptr;
2036           }
2037           // Remove the main space so that we don't try to trim it, this doens't work for debug
2038           // builds since RosAlloc attempts to read the magic number from a protected page.
2039           RemoveSpace(main_space_);
2040           RemoveRememberedSet(main_space_);
2041           delete main_space_;  // Delete the space since it has been removed.
2042           main_space_ = nullptr;
2043           RemoveRememberedSet(main_space_backup_.get());
2044           main_space_backup_.reset(nullptr);  // Deletes the space.
2045           temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
2046                                                                   mem_map.release());
2047           AddSpace(temp_space_);
2048         }
2049         break;
2050       }
2051       case kCollectorTypeMS:
2052         // Fall through.
2053       case kCollectorTypeCMS: {
2054         if (IsMovingGc(collector_type_)) {
2055           CHECK(temp_space_ != nullptr);
2056           std::unique_ptr<MemMap> mem_map(temp_space_->ReleaseMemMap());
2057           RemoveSpace(temp_space_);
2058           temp_space_ = nullptr;
2059           mem_map->Protect(PROT_READ | PROT_WRITE);
2060           CreateMainMallocSpace(mem_map.get(),
2061                                 kDefaultInitialSize,
2062                                 std::min(mem_map->Size(), growth_limit_),
2063                                 mem_map->Size());
2064           mem_map.release();
2065           // Compact to the main space from the bump pointer space, don't need to swap semispaces.
2066           AddSpace(main_space_);
2067           collector = Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition);
2068           mem_map.reset(bump_pointer_space_->ReleaseMemMap());
2069           RemoveSpace(bump_pointer_space_);
2070           bump_pointer_space_ = nullptr;
2071           const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
2072           // Temporarily unprotect the backup mem map so rosalloc can write the debug magic number.
2073           if (kIsDebugBuild && kUseRosAlloc) {
2074             mem_map->Protect(PROT_READ | PROT_WRITE);
2075           }
2076           main_space_backup_.reset(CreateMallocSpaceFromMemMap(
2077               mem_map.get(),
2078               kDefaultInitialSize,
2079               std::min(mem_map->Size(), growth_limit_),
2080               mem_map->Size(),
2081               name,
2082               true));
2083           if (kIsDebugBuild && kUseRosAlloc) {
2084             mem_map->Protect(PROT_NONE);
2085           }
2086           mem_map.release();
2087         }
2088         break;
2089       }
2090       default: {
2091         LOG(FATAL) << "Attempted to transition to invalid collector type "
2092                    << static_cast<size_t>(collector_type);
2093         break;
2094       }
2095     }
2096     ChangeCollector(collector_type);
2097   }
2098   // Can't call into java code with all threads suspended.
2099   reference_processor_->EnqueueClearedReferences(self);
2100   uint64_t duration = NanoTime() - start_time;
2101   GrowForUtilization(semi_space_collector_);
2102   DCHECK(collector != nullptr);
2103   LogGC(kGcCauseCollectorTransition, collector);
2104   FinishGC(self, collector::kGcTypeFull);
2105   {
2106     ScopedObjectAccess soa(self);
2107     soa.Vm()->UnloadNativeLibraries();
2108   }
2109   int32_t after_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
2110   int32_t delta_allocated = before_allocated - after_allocated;
2111   std::string saved_str;
2112   if (delta_allocated >= 0) {
2113     saved_str = " saved at least " + PrettySize(delta_allocated);
2114   } else {
2115     saved_str = " expanded " + PrettySize(-delta_allocated);
2116   }
2117   VLOG(heap) << "Collector transition to " << collector_type << " took "
2118              << PrettyDuration(duration) << saved_str;
2119 }
2120 
ChangeCollector(CollectorType collector_type)2121 void Heap::ChangeCollector(CollectorType collector_type) {
2122   // TODO: Only do this with all mutators suspended to avoid races.
2123   if (collector_type != collector_type_) {
2124     if (collector_type == kCollectorTypeMC) {
2125       // Don't allow mark compact unless support is compiled in.
2126       CHECK(kMarkCompactSupport);
2127     }
2128     collector_type_ = collector_type;
2129     gc_plan_.clear();
2130     switch (collector_type_) {
2131       case kCollectorTypeCC: {
2132         gc_plan_.push_back(collector::kGcTypeFull);
2133         if (use_tlab_) {
2134           ChangeAllocator(kAllocatorTypeRegionTLAB);
2135         } else {
2136           ChangeAllocator(kAllocatorTypeRegion);
2137         }
2138         break;
2139       }
2140       case kCollectorTypeMC:  // Fall-through.
2141       case kCollectorTypeSS:  // Fall-through.
2142       case kCollectorTypeGSS: {
2143         gc_plan_.push_back(collector::kGcTypeFull);
2144         if (use_tlab_) {
2145           ChangeAllocator(kAllocatorTypeTLAB);
2146         } else {
2147           ChangeAllocator(kAllocatorTypeBumpPointer);
2148         }
2149         break;
2150       }
2151       case kCollectorTypeMS: {
2152         gc_plan_.push_back(collector::kGcTypeSticky);
2153         gc_plan_.push_back(collector::kGcTypePartial);
2154         gc_plan_.push_back(collector::kGcTypeFull);
2155         ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
2156         break;
2157       }
2158       case kCollectorTypeCMS: {
2159         gc_plan_.push_back(collector::kGcTypeSticky);
2160         gc_plan_.push_back(collector::kGcTypePartial);
2161         gc_plan_.push_back(collector::kGcTypeFull);
2162         ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
2163         break;
2164       }
2165       default: {
2166         UNIMPLEMENTED(FATAL);
2167         UNREACHABLE();
2168       }
2169     }
2170     if (IsGcConcurrent()) {
2171       concurrent_start_bytes_ =
2172           std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
2173     } else {
2174       concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2175     }
2176   }
2177 }
2178 
2179 // Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
2180 class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
2181  public:
ZygoteCompactingCollector(gc::Heap * heap,bool is_running_on_memory_tool)2182   ZygoteCompactingCollector(gc::Heap* heap, bool is_running_on_memory_tool)
2183       : SemiSpace(heap, false, "zygote collector"),
2184         bin_live_bitmap_(nullptr),
2185         bin_mark_bitmap_(nullptr),
2186         is_running_on_memory_tool_(is_running_on_memory_tool) {}
2187 
BuildBins(space::ContinuousSpace * space)2188   void BuildBins(space::ContinuousSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) {
2189     bin_live_bitmap_ = space->GetLiveBitmap();
2190     bin_mark_bitmap_ = space->GetMarkBitmap();
2191     uintptr_t prev = reinterpret_cast<uintptr_t>(space->Begin());
2192     WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2193     // Note: This requires traversing the space in increasing order of object addresses.
2194     auto visitor = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2195       uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
2196       size_t bin_size = object_addr - prev;
2197       // Add the bin consisting of the end of the previous object to the start of the current object.
2198       AddBin(bin_size, prev);
2199       prev = object_addr + RoundUp(obj->SizeOf<kDefaultVerifyFlags>(), kObjectAlignment);
2200     };
2201     bin_live_bitmap_->Walk(visitor);
2202     // Add the last bin which spans after the last object to the end of the space.
2203     AddBin(reinterpret_cast<uintptr_t>(space->End()) - prev, prev);
2204   }
2205 
2206  private:
2207   // Maps from bin sizes to locations.
2208   std::multimap<size_t, uintptr_t> bins_;
2209   // Live bitmap of the space which contains the bins.
2210   accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
2211   // Mark bitmap of the space which contains the bins.
2212   accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
2213   const bool is_running_on_memory_tool_;
2214 
AddBin(size_t size,uintptr_t position)2215   void AddBin(size_t size, uintptr_t position) {
2216     if (is_running_on_memory_tool_) {
2217       MEMORY_TOOL_MAKE_DEFINED(reinterpret_cast<void*>(position), size);
2218     }
2219     if (size != 0) {
2220       bins_.insert(std::make_pair(size, position));
2221     }
2222   }
2223 
ShouldSweepSpace(space::ContinuousSpace * space ATTRIBUTE_UNUSED) const2224   virtual bool ShouldSweepSpace(space::ContinuousSpace* space ATTRIBUTE_UNUSED) const {
2225     // Don't sweep any spaces since we probably blasted the internal accounting of the free list
2226     // allocator.
2227     return false;
2228   }
2229 
MarkNonForwardedObject(mirror::Object * obj)2230   virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
2231       REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
2232     size_t obj_size = obj->SizeOf<kDefaultVerifyFlags>();
2233     size_t alloc_size = RoundUp(obj_size, kObjectAlignment);
2234     mirror::Object* forward_address;
2235     // Find the smallest bin which we can move obj in.
2236     auto it = bins_.lower_bound(alloc_size);
2237     if (it == bins_.end()) {
2238       // No available space in the bins, place it in the target space instead (grows the zygote
2239       // space).
2240       size_t bytes_allocated, dummy;
2241       forward_address = to_space_->Alloc(self_, alloc_size, &bytes_allocated, nullptr, &dummy);
2242       if (to_space_live_bitmap_ != nullptr) {
2243         to_space_live_bitmap_->Set(forward_address);
2244       } else {
2245         GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
2246         GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
2247       }
2248     } else {
2249       size_t size = it->first;
2250       uintptr_t pos = it->second;
2251       bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
2252       forward_address = reinterpret_cast<mirror::Object*>(pos);
2253       // Set the live and mark bits so that sweeping system weaks works properly.
2254       bin_live_bitmap_->Set(forward_address);
2255       bin_mark_bitmap_->Set(forward_address);
2256       DCHECK_GE(size, alloc_size);
2257       // Add a new bin with the remaining space.
2258       AddBin(size - alloc_size, pos + alloc_size);
2259     }
2260     // Copy the object over to its new location. Don't use alloc_size to avoid valgrind error.
2261     memcpy(reinterpret_cast<void*>(forward_address), obj, obj_size);
2262     if (kUseBakerReadBarrier) {
2263       obj->AssertReadBarrierState();
2264       forward_address->AssertReadBarrierState();
2265     }
2266     return forward_address;
2267   }
2268 };
2269 
UnBindBitmaps()2270 void Heap::UnBindBitmaps() {
2271   TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
2272   for (const auto& space : GetContinuousSpaces()) {
2273     if (space->IsContinuousMemMapAllocSpace()) {
2274       space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
2275       if (alloc_space->HasBoundBitmaps()) {
2276         alloc_space->UnBindBitmaps();
2277       }
2278     }
2279   }
2280 }
2281 
PreZygoteFork()2282 void Heap::PreZygoteFork() {
2283   if (!HasZygoteSpace()) {
2284     // We still want to GC in case there is some unreachable non moving objects that could cause a
2285     // suboptimal bin packing when we compact the zygote space.
2286     CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
2287     // Trim the pages at the end of the non moving space. Trim while not holding zygote lock since
2288     // the trim process may require locking the mutator lock.
2289     non_moving_space_->Trim();
2290   }
2291   Thread* self = Thread::Current();
2292   MutexLock mu(self, zygote_creation_lock_);
2293   // Try to see if we have any Zygote spaces.
2294   if (HasZygoteSpace()) {
2295     return;
2296   }
2297   Runtime::Current()->GetInternTable()->AddNewTable();
2298   Runtime::Current()->GetClassLinker()->MoveClassTableToPreZygote();
2299   VLOG(heap) << "Starting PreZygoteFork";
2300   // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
2301   // there.
2302   non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2303   const bool same_space = non_moving_space_ == main_space_;
2304   if (kCompactZygote) {
2305     // Temporarily disable rosalloc verification because the zygote
2306     // compaction will mess up the rosalloc internal metadata.
2307     ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
2308     ZygoteCompactingCollector zygote_collector(this, is_running_on_memory_tool_);
2309     zygote_collector.BuildBins(non_moving_space_);
2310     // Create a new bump pointer space which we will compact into.
2311     space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
2312                                          non_moving_space_->Limit());
2313     // Compact the bump pointer space to a new zygote bump pointer space.
2314     bool reset_main_space = false;
2315     if (IsMovingGc(collector_type_)) {
2316       if (collector_type_ == kCollectorTypeCC) {
2317         zygote_collector.SetFromSpace(region_space_);
2318       } else {
2319         zygote_collector.SetFromSpace(bump_pointer_space_);
2320       }
2321     } else {
2322       CHECK(main_space_ != nullptr);
2323       CHECK_NE(main_space_, non_moving_space_)
2324           << "Does not make sense to compact within the same space";
2325       // Copy from the main space.
2326       zygote_collector.SetFromSpace(main_space_);
2327       reset_main_space = true;
2328     }
2329     zygote_collector.SetToSpace(&target_space);
2330     zygote_collector.SetSwapSemiSpaces(false);
2331     zygote_collector.Run(kGcCauseCollectorTransition, false);
2332     if (reset_main_space) {
2333       main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2334       madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
2335       MemMap* mem_map = main_space_->ReleaseMemMap();
2336       RemoveSpace(main_space_);
2337       space::Space* old_main_space = main_space_;
2338       CreateMainMallocSpace(mem_map, kDefaultInitialSize, std::min(mem_map->Size(), growth_limit_),
2339                             mem_map->Size());
2340       delete old_main_space;
2341       AddSpace(main_space_);
2342     } else {
2343       if (collector_type_ == kCollectorTypeCC) {
2344         region_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2345         // Evacuated everything out of the region space, clear the mark bitmap.
2346         region_space_->GetMarkBitmap()->Clear();
2347       } else {
2348         bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2349       }
2350     }
2351     if (temp_space_ != nullptr) {
2352       CHECK(temp_space_->IsEmpty());
2353     }
2354     total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2355     total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2356     // Update the end and write out image.
2357     non_moving_space_->SetEnd(target_space.End());
2358     non_moving_space_->SetLimit(target_space.Limit());
2359     VLOG(heap) << "Create zygote space with size=" << non_moving_space_->Size() << " bytes";
2360   }
2361   // Change the collector to the post zygote one.
2362   ChangeCollector(foreground_collector_type_);
2363   // Save the old space so that we can remove it after we complete creating the zygote space.
2364   space::MallocSpace* old_alloc_space = non_moving_space_;
2365   // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
2366   // the remaining available space.
2367   // Remove the old space before creating the zygote space since creating the zygote space sets
2368   // the old alloc space's bitmaps to null.
2369   RemoveSpace(old_alloc_space);
2370   if (collector::SemiSpace::kUseRememberedSet) {
2371     // Sanity bound check.
2372     FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
2373     // Remove the remembered set for the now zygote space (the old
2374     // non-moving space). Note now that we have compacted objects into
2375     // the zygote space, the data in the remembered set is no longer
2376     // needed. The zygote space will instead have a mod-union table
2377     // from this point on.
2378     RemoveRememberedSet(old_alloc_space);
2379   }
2380   // Remaining space becomes the new non moving space.
2381   zygote_space_ = old_alloc_space->CreateZygoteSpace(kNonMovingSpaceName, low_memory_mode_,
2382                                                      &non_moving_space_);
2383   CHECK(!non_moving_space_->CanMoveObjects());
2384   if (same_space) {
2385     main_space_ = non_moving_space_;
2386     SetSpaceAsDefault(main_space_);
2387   }
2388   delete old_alloc_space;
2389   CHECK(HasZygoteSpace()) << "Failed creating zygote space";
2390   AddSpace(zygote_space_);
2391   non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
2392   AddSpace(non_moving_space_);
2393   if (kUseBakerReadBarrier && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects) {
2394     // Treat all of the objects in the zygote as marked to avoid unnecessary dirty pages. This is
2395     // safe since we mark all of the objects that may reference non immune objects as gray.
2396     zygote_space_->GetLiveBitmap()->VisitMarkedRange(
2397         reinterpret_cast<uintptr_t>(zygote_space_->Begin()),
2398         reinterpret_cast<uintptr_t>(zygote_space_->Limit()),
2399         [](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2400       CHECK(obj->AtomicSetMarkBit(0, 1));
2401     });
2402   }
2403 
2404   // Create the zygote space mod union table.
2405   accounting::ModUnionTable* mod_union_table =
2406       new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space_);
2407   CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
2408 
2409   if (collector_type_ != kCollectorTypeCC) {
2410     // Set all the cards in the mod-union table since we don't know which objects contain references
2411     // to large objects.
2412     mod_union_table->SetCards();
2413   } else {
2414     // Make sure to clear the zygote space cards so that we don't dirty pages in the next GC. There
2415     // may be dirty cards from the zygote compaction or reference processing. These cards are not
2416     // necessary to have marked since the zygote space may not refer to any objects not in the
2417     // zygote or image spaces at this point.
2418     mod_union_table->ProcessCards();
2419     mod_union_table->ClearTable();
2420 
2421     // For CC we never collect zygote large objects. This means we do not need to set the cards for
2422     // the zygote mod-union table and we can also clear all of the existing image mod-union tables.
2423     // The existing mod-union tables are only for image spaces and may only reference zygote and
2424     // image objects.
2425     for (auto& pair : mod_union_tables_) {
2426       CHECK(pair.first->IsImageSpace());
2427       CHECK(!pair.first->AsImageSpace()->GetImageHeader().IsAppImage());
2428       accounting::ModUnionTable* table = pair.second;
2429       table->ClearTable();
2430     }
2431   }
2432   AddModUnionTable(mod_union_table);
2433   large_object_space_->SetAllLargeObjectsAsZygoteObjects(self);
2434   if (collector::SemiSpace::kUseRememberedSet) {
2435     // Add a new remembered set for the post-zygote non-moving space.
2436     accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
2437         new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
2438                                       non_moving_space_);
2439     CHECK(post_zygote_non_moving_space_rem_set != nullptr)
2440         << "Failed to create post-zygote non-moving space remembered set";
2441     AddRememberedSet(post_zygote_non_moving_space_rem_set);
2442   }
2443 }
2444 
FlushAllocStack()2445 void Heap::FlushAllocStack() {
2446   MarkAllocStackAsLive(allocation_stack_.get());
2447   allocation_stack_->Reset();
2448 }
2449 
MarkAllocStack(accounting::ContinuousSpaceBitmap * bitmap1,accounting::ContinuousSpaceBitmap * bitmap2,accounting::LargeObjectBitmap * large_objects,accounting::ObjectStack * stack)2450 void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
2451                           accounting::ContinuousSpaceBitmap* bitmap2,
2452                           accounting::LargeObjectBitmap* large_objects,
2453                           accounting::ObjectStack* stack) {
2454   DCHECK(bitmap1 != nullptr);
2455   DCHECK(bitmap2 != nullptr);
2456   const auto* limit = stack->End();
2457   for (auto* it = stack->Begin(); it != limit; ++it) {
2458     const mirror::Object* obj = it->AsMirrorPtr();
2459     if (!kUseThreadLocalAllocationStack || obj != nullptr) {
2460       if (bitmap1->HasAddress(obj)) {
2461         bitmap1->Set(obj);
2462       } else if (bitmap2->HasAddress(obj)) {
2463         bitmap2->Set(obj);
2464       } else {
2465         DCHECK(large_objects != nullptr);
2466         large_objects->Set(obj);
2467       }
2468     }
2469   }
2470 }
2471 
SwapSemiSpaces()2472 void Heap::SwapSemiSpaces() {
2473   CHECK(bump_pointer_space_ != nullptr);
2474   CHECK(temp_space_ != nullptr);
2475   std::swap(bump_pointer_space_, temp_space_);
2476 }
2477 
Compact(space::ContinuousMemMapAllocSpace * target_space,space::ContinuousMemMapAllocSpace * source_space,GcCause gc_cause)2478 collector::GarbageCollector* Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
2479                                            space::ContinuousMemMapAllocSpace* source_space,
2480                                            GcCause gc_cause) {
2481   CHECK(kMovingCollector);
2482   if (target_space != source_space) {
2483     // Don't swap spaces since this isn't a typical semi space collection.
2484     semi_space_collector_->SetSwapSemiSpaces(false);
2485     semi_space_collector_->SetFromSpace(source_space);
2486     semi_space_collector_->SetToSpace(target_space);
2487     semi_space_collector_->Run(gc_cause, false);
2488     return semi_space_collector_;
2489   } else {
2490     CHECK(target_space->IsBumpPointerSpace())
2491         << "In-place compaction is only supported for bump pointer spaces";
2492     mark_compact_collector_->SetSpace(target_space->AsBumpPointerSpace());
2493     mark_compact_collector_->Run(kGcCauseCollectorTransition, false);
2494     return mark_compact_collector_;
2495   }
2496 }
2497 
TraceHeapSize(size_t heap_size)2498 void Heap::TraceHeapSize(size_t heap_size) {
2499   ATRACE_INT("Heap size (KB)", heap_size / KB);
2500 }
2501 
CollectGarbageInternal(collector::GcType gc_type,GcCause gc_cause,bool clear_soft_references)2502 collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type,
2503                                                GcCause gc_cause,
2504                                                bool clear_soft_references) {
2505   Thread* self = Thread::Current();
2506   Runtime* runtime = Runtime::Current();
2507   // If the heap can't run the GC, silently fail and return that no GC was run.
2508   switch (gc_type) {
2509     case collector::kGcTypePartial: {
2510       if (!HasZygoteSpace()) {
2511         return collector::kGcTypeNone;
2512       }
2513       break;
2514     }
2515     default: {
2516       // Other GC types don't have any special cases which makes them not runnable. The main case
2517       // here is full GC.
2518     }
2519   }
2520   ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
2521   // TODO: Clang prebuilt for r316199 produces bogus thread safety analysis warning for holding both
2522   // exclusive and shared lock in the same scope. Remove the assertion as a temporary workaround.
2523   // http://b/71769596
2524   // Locks::mutator_lock_->AssertNotHeld(self);
2525   if (self->IsHandlingStackOverflow()) {
2526     // If we are throwing a stack overflow error we probably don't have enough remaining stack
2527     // space to run the GC.
2528     return collector::kGcTypeNone;
2529   }
2530   bool compacting_gc;
2531   {
2532     gc_complete_lock_->AssertNotHeld(self);
2533     ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
2534     MutexLock mu(self, *gc_complete_lock_);
2535     // Ensure there is only one GC at a time.
2536     WaitForGcToCompleteLocked(gc_cause, self);
2537     compacting_gc = IsMovingGc(collector_type_);
2538     // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
2539     if (compacting_gc && disable_moving_gc_count_ != 0) {
2540       LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
2541       return collector::kGcTypeNone;
2542     }
2543     if (gc_disabled_for_shutdown_) {
2544       return collector::kGcTypeNone;
2545     }
2546     collector_type_running_ = collector_type_;
2547   }
2548   if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
2549     ++runtime->GetStats()->gc_for_alloc_count;
2550     ++self->GetStats()->gc_for_alloc_count;
2551   }
2552   const uint64_t bytes_allocated_before_gc = GetBytesAllocated();
2553 
2554   if (gc_type == NonStickyGcType()) {
2555     // Move all bytes from new_native_bytes_allocated_ to
2556     // old_native_bytes_allocated_ now that GC has been triggered, resetting
2557     // new_native_bytes_allocated_ to zero in the process.
2558     old_native_bytes_allocated_.FetchAndAddRelaxed(new_native_bytes_allocated_.ExchangeRelaxed(0));
2559   }
2560 
2561   DCHECK_LT(gc_type, collector::kGcTypeMax);
2562   DCHECK_NE(gc_type, collector::kGcTypeNone);
2563 
2564   collector::GarbageCollector* collector = nullptr;
2565   // TODO: Clean this up.
2566   if (compacting_gc) {
2567     DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
2568            current_allocator_ == kAllocatorTypeTLAB ||
2569            current_allocator_ == kAllocatorTypeRegion ||
2570            current_allocator_ == kAllocatorTypeRegionTLAB);
2571     switch (collector_type_) {
2572       case kCollectorTypeSS:
2573         // Fall-through.
2574       case kCollectorTypeGSS:
2575         semi_space_collector_->SetFromSpace(bump_pointer_space_);
2576         semi_space_collector_->SetToSpace(temp_space_);
2577         semi_space_collector_->SetSwapSemiSpaces(true);
2578         collector = semi_space_collector_;
2579         break;
2580       case kCollectorTypeCC:
2581         collector = concurrent_copying_collector_;
2582         break;
2583       case kCollectorTypeMC:
2584         mark_compact_collector_->SetSpace(bump_pointer_space_);
2585         collector = mark_compact_collector_;
2586         break;
2587       default:
2588         LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
2589     }
2590     if (collector != mark_compact_collector_ && collector != concurrent_copying_collector_) {
2591       temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2592       if (kIsDebugBuild) {
2593         // Try to read each page of the memory map in case mprotect didn't work properly b/19894268.
2594         temp_space_->GetMemMap()->TryReadable();
2595       }
2596       CHECK(temp_space_->IsEmpty());
2597     }
2598     gc_type = collector::kGcTypeFull;  // TODO: Not hard code this in.
2599   } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
2600       current_allocator_ == kAllocatorTypeDlMalloc) {
2601     collector = FindCollectorByGcType(gc_type);
2602   } else {
2603     LOG(FATAL) << "Invalid current allocator " << current_allocator_;
2604   }
2605   if (IsGcConcurrent()) {
2606     // Disable concurrent GC check so that we don't have spammy JNI requests.
2607     // This gets recalculated in GrowForUtilization. It is important that it is disabled /
2608     // calculated in the same thread so that there aren't any races that can cause it to become
2609     // permanantly disabled. b/17942071
2610     concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2611   }
2612 
2613   CHECK(collector != nullptr)
2614       << "Could not find garbage collector with collector_type="
2615       << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
2616   collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
2617   total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2618   total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2619   RequestTrim(self);
2620   // Enqueue cleared references.
2621   reference_processor_->EnqueueClearedReferences(self);
2622   // Grow the heap so that we know when to perform the next GC.
2623   GrowForUtilization(collector, bytes_allocated_before_gc);
2624   LogGC(gc_cause, collector);
2625   FinishGC(self, gc_type);
2626   // Inform DDMS that a GC completed.
2627   Dbg::GcDidFinish();
2628   // Unload native libraries for class unloading. We do this after calling FinishGC to prevent
2629   // deadlocks in case the JNI_OnUnload function does allocations.
2630   {
2631     ScopedObjectAccess soa(self);
2632     soa.Vm()->UnloadNativeLibraries();
2633   }
2634   return gc_type;
2635 }
2636 
LogGC(GcCause gc_cause,collector::GarbageCollector * collector)2637 void Heap::LogGC(GcCause gc_cause, collector::GarbageCollector* collector) {
2638   const size_t duration = GetCurrentGcIteration()->GetDurationNs();
2639   const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
2640   // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
2641   // (mutator time blocked >= long_pause_log_threshold_).
2642   bool log_gc = kLogAllGCs || gc_cause == kGcCauseExplicit;
2643   if (!log_gc && CareAboutPauseTimes()) {
2644     // GC for alloc pauses the allocating thread, so consider it as a pause.
2645     log_gc = duration > long_gc_log_threshold_ ||
2646         (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
2647     for (uint64_t pause : pause_times) {
2648       log_gc = log_gc || pause >= long_pause_log_threshold_;
2649     }
2650   }
2651   if (log_gc) {
2652     const size_t percent_free = GetPercentFree();
2653     const size_t current_heap_size = GetBytesAllocated();
2654     const size_t total_memory = GetTotalMemory();
2655     std::ostringstream pause_string;
2656     for (size_t i = 0; i < pause_times.size(); ++i) {
2657       pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
2658                    << ((i != pause_times.size() - 1) ? "," : "");
2659     }
2660     LOG(INFO) << gc_cause << " " << collector->GetName()
2661               << " GC freed "  << current_gc_iteration_.GetFreedObjects() << "("
2662               << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
2663               << current_gc_iteration_.GetFreedLargeObjects() << "("
2664               << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
2665               << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
2666               << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
2667               << " total " << PrettyDuration((duration / 1000) * 1000);
2668     VLOG(heap) << Dumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
2669   }
2670 }
2671 
FinishGC(Thread * self,collector::GcType gc_type)2672 void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
2673   MutexLock mu(self, *gc_complete_lock_);
2674   collector_type_running_ = kCollectorTypeNone;
2675   if (gc_type != collector::kGcTypeNone) {
2676     last_gc_type_ = gc_type;
2677 
2678     // Update stats.
2679     ++gc_count_last_window_;
2680     if (running_collection_is_blocking_) {
2681       // If the currently running collection was a blocking one,
2682       // increment the counters and reset the flag.
2683       ++blocking_gc_count_;
2684       blocking_gc_time_ += GetCurrentGcIteration()->GetDurationNs();
2685       ++blocking_gc_count_last_window_;
2686     }
2687     // Update the gc count rate histograms if due.
2688     UpdateGcCountRateHistograms();
2689   }
2690   // Reset.
2691   running_collection_is_blocking_ = false;
2692   thread_running_gc_ = nullptr;
2693   // Wake anyone who may have been waiting for the GC to complete.
2694   gc_complete_cond_->Broadcast(self);
2695 }
2696 
UpdateGcCountRateHistograms()2697 void Heap::UpdateGcCountRateHistograms() {
2698   // Invariant: if the time since the last update includes more than
2699   // one windows, all the GC runs (if > 0) must have happened in first
2700   // window because otherwise the update must have already taken place
2701   // at an earlier GC run. So, we report the non-first windows with
2702   // zero counts to the histograms.
2703   DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
2704   uint64_t now = NanoTime();
2705   DCHECK_GE(now, last_update_time_gc_count_rate_histograms_);
2706   uint64_t time_since_last_update = now - last_update_time_gc_count_rate_histograms_;
2707   uint64_t num_of_windows = time_since_last_update / kGcCountRateHistogramWindowDuration;
2708   if (time_since_last_update >= kGcCountRateHistogramWindowDuration) {
2709     // Record the first window.
2710     gc_count_rate_histogram_.AddValue(gc_count_last_window_ - 1);  // Exclude the current run.
2711     blocking_gc_count_rate_histogram_.AddValue(running_collection_is_blocking_ ?
2712         blocking_gc_count_last_window_ - 1 : blocking_gc_count_last_window_);
2713     // Record the other windows (with zero counts).
2714     for (uint64_t i = 0; i < num_of_windows - 1; ++i) {
2715       gc_count_rate_histogram_.AddValue(0);
2716       blocking_gc_count_rate_histogram_.AddValue(0);
2717     }
2718     // Update the last update time and reset the counters.
2719     last_update_time_gc_count_rate_histograms_ =
2720         (now / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
2721     gc_count_last_window_ = 1;  // Include the current run.
2722     blocking_gc_count_last_window_ = running_collection_is_blocking_ ? 1 : 0;
2723   }
2724   DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
2725 }
2726 
2727 class RootMatchesObjectVisitor : public SingleRootVisitor {
2728  public:
RootMatchesObjectVisitor(const mirror::Object * obj)2729   explicit RootMatchesObjectVisitor(const mirror::Object* obj) : obj_(obj) { }
2730 
VisitRoot(mirror::Object * root,const RootInfo & info)2731   void VisitRoot(mirror::Object* root, const RootInfo& info)
2732       OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
2733     if (root == obj_) {
2734       LOG(INFO) << "Object " << obj_ << " is a root " << info.ToString();
2735     }
2736   }
2737 
2738  private:
2739   const mirror::Object* const obj_;
2740 };
2741 
2742 
2743 class ScanVisitor {
2744  public:
operator ()(const mirror::Object * obj) const2745   void operator()(const mirror::Object* obj) const {
2746     LOG(ERROR) << "Would have rescanned object " << obj;
2747   }
2748 };
2749 
2750 // Verify a reference from an object.
2751 class VerifyReferenceVisitor : public SingleRootVisitor {
2752  public:
VerifyReferenceVisitor(Heap * heap,Atomic<size_t> * fail_count,bool verify_referent)2753   VerifyReferenceVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2754       REQUIRES_SHARED(Locks::mutator_lock_)
2755       : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
2756 
GetFailureCount() const2757   size_t GetFailureCount() const {
2758     return fail_count_->LoadSequentiallyConsistent();
2759   }
2760 
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const2761   void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED, ObjPtr<mirror::Reference> ref) const
2762       REQUIRES_SHARED(Locks::mutator_lock_) {
2763     if (verify_referent_) {
2764       VerifyReference(ref.Ptr(), ref->GetReferent(), mirror::Reference::ReferentOffset());
2765     }
2766   }
2767 
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const2768   void operator()(ObjPtr<mirror::Object> obj,
2769                   MemberOffset offset,
2770                   bool is_static ATTRIBUTE_UNUSED) const
2771       REQUIRES_SHARED(Locks::mutator_lock_) {
2772     VerifyReference(obj.Ptr(), obj->GetFieldObject<mirror::Object>(offset), offset);
2773   }
2774 
IsLive(ObjPtr<mirror::Object> obj) const2775   bool IsLive(ObjPtr<mirror::Object> obj) const NO_THREAD_SAFETY_ANALYSIS {
2776     return heap_->IsLiveObjectLocked(obj, true, false, true);
2777   }
2778 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const2779   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
2780       REQUIRES_SHARED(Locks::mutator_lock_) {
2781     if (!root->IsNull()) {
2782       VisitRoot(root);
2783     }
2784   }
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const2785   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
2786       REQUIRES_SHARED(Locks::mutator_lock_) {
2787     const_cast<VerifyReferenceVisitor*>(this)->VisitRoot(
2788         root->AsMirrorPtr(), RootInfo(kRootVMInternal));
2789   }
2790 
VisitRoot(mirror::Object * root,const RootInfo & root_info)2791   virtual void VisitRoot(mirror::Object* root, const RootInfo& root_info) OVERRIDE
2792       REQUIRES_SHARED(Locks::mutator_lock_) {
2793     if (root == nullptr) {
2794       LOG(ERROR) << "Root is null with info " << root_info.GetType();
2795     } else if (!VerifyReference(nullptr, root, MemberOffset(0))) {
2796       LOG(ERROR) << "Root " << root << " is dead with type " << mirror::Object::PrettyTypeOf(root)
2797           << " thread_id= " << root_info.GetThreadId() << " root_type= " << root_info.GetType();
2798     }
2799   }
2800 
2801  private:
2802   // TODO: Fix the no thread safety analysis.
2803   // Returns false on failure.
VerifyReference(mirror::Object * obj,mirror::Object * ref,MemberOffset offset) const2804   bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
2805       NO_THREAD_SAFETY_ANALYSIS {
2806     if (ref == nullptr || IsLive(ref)) {
2807       // Verify that the reference is live.
2808       return true;
2809     }
2810     if (fail_count_->FetchAndAddSequentiallyConsistent(1) == 0) {
2811       // Print message on only on first failure to prevent spam.
2812       LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
2813     }
2814     if (obj != nullptr) {
2815       // Only do this part for non roots.
2816       accounting::CardTable* card_table = heap_->GetCardTable();
2817       accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
2818       accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2819       uint8_t* card_addr = card_table->CardFromAddr(obj);
2820       LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
2821                  << offset << "\n card value = " << static_cast<int>(*card_addr);
2822       if (heap_->IsValidObjectAddress(obj->GetClass())) {
2823         LOG(ERROR) << "Obj type " << obj->PrettyTypeOf();
2824       } else {
2825         LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
2826       }
2827 
2828       // Attempt to find the class inside of the recently freed objects.
2829       space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
2830       if (ref_space != nullptr && ref_space->IsMallocSpace()) {
2831         space::MallocSpace* space = ref_space->AsMallocSpace();
2832         mirror::Class* ref_class = space->FindRecentFreedObject(ref);
2833         if (ref_class != nullptr) {
2834           LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
2835                      << ref_class->PrettyClass();
2836         } else {
2837           LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
2838         }
2839       }
2840 
2841       if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
2842           ref->GetClass()->IsClass()) {
2843         LOG(ERROR) << "Ref type " << ref->PrettyTypeOf();
2844       } else {
2845         LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
2846                    << ") is not a valid heap address";
2847       }
2848 
2849       card_table->CheckAddrIsInCardTable(reinterpret_cast<const uint8_t*>(obj));
2850       void* cover_begin = card_table->AddrFromCard(card_addr);
2851       void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
2852           accounting::CardTable::kCardSize);
2853       LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
2854           << "-" << cover_end;
2855       accounting::ContinuousSpaceBitmap* bitmap =
2856           heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
2857 
2858       if (bitmap == nullptr) {
2859         LOG(ERROR) << "Object " << obj << " has no bitmap";
2860         if (!VerifyClassClass(obj->GetClass())) {
2861           LOG(ERROR) << "Object " << obj << " failed class verification!";
2862         }
2863       } else {
2864         // Print out how the object is live.
2865         if (bitmap->Test(obj)) {
2866           LOG(ERROR) << "Object " << obj << " found in live bitmap";
2867         }
2868         if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
2869           LOG(ERROR) << "Object " << obj << " found in allocation stack";
2870         }
2871         if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
2872           LOG(ERROR) << "Object " << obj << " found in live stack";
2873         }
2874         if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
2875           LOG(ERROR) << "Ref " << ref << " found in allocation stack";
2876         }
2877         if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
2878           LOG(ERROR) << "Ref " << ref << " found in live stack";
2879         }
2880         // Attempt to see if the card table missed the reference.
2881         ScanVisitor scan_visitor;
2882         uint8_t* byte_cover_begin = reinterpret_cast<uint8_t*>(card_table->AddrFromCard(card_addr));
2883         card_table->Scan<false>(bitmap, byte_cover_begin,
2884                                 byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
2885       }
2886 
2887       // Search to see if any of the roots reference our object.
2888       RootMatchesObjectVisitor visitor1(obj);
2889       Runtime::Current()->VisitRoots(&visitor1);
2890       // Search to see if any of the roots reference our reference.
2891       RootMatchesObjectVisitor visitor2(ref);
2892       Runtime::Current()->VisitRoots(&visitor2);
2893     }
2894     return false;
2895   }
2896 
2897   Heap* const heap_;
2898   Atomic<size_t>* const fail_count_;
2899   const bool verify_referent_;
2900 };
2901 
2902 // Verify all references within an object, for use with HeapBitmap::Visit.
2903 class VerifyObjectVisitor {
2904  public:
VerifyObjectVisitor(Heap * heap,Atomic<size_t> * fail_count,bool verify_referent)2905   VerifyObjectVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2906       : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
2907 
operator ()(mirror::Object * obj)2908   void operator()(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2909     // Note: we are verifying the references in obj but not obj itself, this is because obj must
2910     // be live or else how did we find it in the live bitmap?
2911     VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
2912     // The class doesn't count as a reference but we should verify it anyways.
2913     obj->VisitReferences(visitor, visitor);
2914   }
2915 
VerifyRoots()2916   void VerifyRoots() REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Locks::heap_bitmap_lock_) {
2917     ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2918     VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
2919     Runtime::Current()->VisitRoots(&visitor);
2920   }
2921 
GetFailureCount() const2922   size_t GetFailureCount() const {
2923     return fail_count_->LoadSequentiallyConsistent();
2924   }
2925 
2926  private:
2927   Heap* const heap_;
2928   Atomic<size_t>* const fail_count_;
2929   const bool verify_referent_;
2930 };
2931 
PushOnAllocationStackWithInternalGC(Thread * self,ObjPtr<mirror::Object> * obj)2932 void Heap::PushOnAllocationStackWithInternalGC(Thread* self, ObjPtr<mirror::Object>* obj) {
2933   // Slow path, the allocation stack push back must have already failed.
2934   DCHECK(!allocation_stack_->AtomicPushBack(obj->Ptr()));
2935   do {
2936     // TODO: Add handle VerifyObject.
2937     StackHandleScope<1> hs(self);
2938     HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2939     // Push our object into the reserve region of the allocation stack. This is only required due
2940     // to heap verification requiring that roots are live (either in the live bitmap or in the
2941     // allocation stack).
2942     CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr()));
2943     CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2944   } while (!allocation_stack_->AtomicPushBack(obj->Ptr()));
2945 }
2946 
PushOnThreadLocalAllocationStackWithInternalGC(Thread * self,ObjPtr<mirror::Object> * obj)2947 void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self,
2948                                                           ObjPtr<mirror::Object>* obj) {
2949   // Slow path, the allocation stack push back must have already failed.
2950   DCHECK(!self->PushOnThreadLocalAllocationStack(obj->Ptr()));
2951   StackReference<mirror::Object>* start_address;
2952   StackReference<mirror::Object>* end_address;
2953   while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
2954                                             &end_address)) {
2955     // TODO: Add handle VerifyObject.
2956     StackHandleScope<1> hs(self);
2957     HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2958     // Push our object into the reserve region of the allocaiton stack. This is only required due
2959     // to heap verification requiring that roots are live (either in the live bitmap or in the
2960     // allocation stack).
2961     CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr()));
2962     // Push into the reserve allocation stack.
2963     CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2964   }
2965   self->SetThreadLocalAllocationStack(start_address, end_address);
2966   // Retry on the new thread-local allocation stack.
2967   CHECK(self->PushOnThreadLocalAllocationStack(obj->Ptr()));  // Must succeed.
2968 }
2969 
2970 // Must do this with mutators suspended since we are directly accessing the allocation stacks.
VerifyHeapReferences(bool verify_referents)2971 size_t Heap::VerifyHeapReferences(bool verify_referents) {
2972   Thread* self = Thread::Current();
2973   Locks::mutator_lock_->AssertExclusiveHeld(self);
2974   // Lets sort our allocation stacks so that we can efficiently binary search them.
2975   allocation_stack_->Sort();
2976   live_stack_->Sort();
2977   // Since we sorted the allocation stack content, need to revoke all
2978   // thread-local allocation stacks.
2979   RevokeAllThreadLocalAllocationStacks(self);
2980   Atomic<size_t> fail_count_(0);
2981   VerifyObjectVisitor visitor(this, &fail_count_, verify_referents);
2982   // Verify objects in the allocation stack since these will be objects which were:
2983   // 1. Allocated prior to the GC (pre GC verification).
2984   // 2. Allocated during the GC (pre sweep GC verification).
2985   // We don't want to verify the objects in the live stack since they themselves may be
2986   // pointing to dead objects if they are not reachable.
2987   VisitObjectsPaused(visitor);
2988   // Verify the roots:
2989   visitor.VerifyRoots();
2990   if (visitor.GetFailureCount() > 0) {
2991     // Dump mod-union tables.
2992     for (const auto& table_pair : mod_union_tables_) {
2993       accounting::ModUnionTable* mod_union_table = table_pair.second;
2994       mod_union_table->Dump(LOG_STREAM(ERROR) << mod_union_table->GetName() << ": ");
2995     }
2996     // Dump remembered sets.
2997     for (const auto& table_pair : remembered_sets_) {
2998       accounting::RememberedSet* remembered_set = table_pair.second;
2999       remembered_set->Dump(LOG_STREAM(ERROR) << remembered_set->GetName() << ": ");
3000     }
3001     DumpSpaces(LOG_STREAM(ERROR));
3002   }
3003   return visitor.GetFailureCount();
3004 }
3005 
3006 class VerifyReferenceCardVisitor {
3007  public:
VerifyReferenceCardVisitor(Heap * heap,bool * failed)3008   VerifyReferenceCardVisitor(Heap* heap, bool* failed)
3009       REQUIRES_SHARED(Locks::mutator_lock_,
3010                             Locks::heap_bitmap_lock_)
3011       : heap_(heap), failed_(failed) {
3012   }
3013 
3014   // There is no card marks for native roots on a class.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const3015   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
3016       const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const3017   void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
3018 
3019   // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
3020   // annotalysis on visitors.
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static) const3021   void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
3022       NO_THREAD_SAFETY_ANALYSIS {
3023     mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
3024     // Filter out class references since changing an object's class does not mark the card as dirty.
3025     // Also handles large objects, since the only reference they hold is a class reference.
3026     if (ref != nullptr && !ref->IsClass()) {
3027       accounting::CardTable* card_table = heap_->GetCardTable();
3028       // If the object is not dirty and it is referencing something in the live stack other than
3029       // class, then it must be on a dirty card.
3030       if (!card_table->AddrIsInCardTable(obj)) {
3031         LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
3032         *failed_ = true;
3033       } else if (!card_table->IsDirty(obj)) {
3034         // TODO: Check mod-union tables.
3035         // Card should be either kCardDirty if it got re-dirtied after we aged it, or
3036         // kCardDirty - 1 if it didnt get touched since we aged it.
3037         accounting::ObjectStack* live_stack = heap_->live_stack_.get();
3038         if (live_stack->ContainsSorted(ref)) {
3039           if (live_stack->ContainsSorted(obj)) {
3040             LOG(ERROR) << "Object " << obj << " found in live stack";
3041           }
3042           if (heap_->GetLiveBitmap()->Test(obj)) {
3043             LOG(ERROR) << "Object " << obj << " found in live bitmap";
3044           }
3045           LOG(ERROR) << "Object " << obj << " " << mirror::Object::PrettyTypeOf(obj)
3046                     << " references " << ref << " " << mirror::Object::PrettyTypeOf(ref)
3047                     << " in live stack";
3048 
3049           // Print which field of the object is dead.
3050           if (!obj->IsObjectArray()) {
3051             mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
3052             CHECK(klass != nullptr);
3053             for (ArtField& field : (is_static ? klass->GetSFields() : klass->GetIFields())) {
3054               if (field.GetOffset().Int32Value() == offset.Int32Value()) {
3055                 LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
3056                            << field.PrettyField();
3057                 break;
3058               }
3059             }
3060           } else {
3061             mirror::ObjectArray<mirror::Object>* object_array =
3062                 obj->AsObjectArray<mirror::Object>();
3063             for (int32_t i = 0; i < object_array->GetLength(); ++i) {
3064               if (object_array->Get(i) == ref) {
3065                 LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
3066               }
3067             }
3068           }
3069 
3070           *failed_ = true;
3071         }
3072       }
3073     }
3074   }
3075 
3076  private:
3077   Heap* const heap_;
3078   bool* const failed_;
3079 };
3080 
3081 class VerifyLiveStackReferences {
3082  public:
VerifyLiveStackReferences(Heap * heap)3083   explicit VerifyLiveStackReferences(Heap* heap)
3084       : heap_(heap),
3085         failed_(false) {}
3086 
operator ()(mirror::Object * obj) const3087   void operator()(mirror::Object* obj) const
3088       REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
3089     VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
3090     obj->VisitReferences(visitor, VoidFunctor());
3091   }
3092 
Failed() const3093   bool Failed() const {
3094     return failed_;
3095   }
3096 
3097  private:
3098   Heap* const heap_;
3099   bool failed_;
3100 };
3101 
VerifyMissingCardMarks()3102 bool Heap::VerifyMissingCardMarks() {
3103   Thread* self = Thread::Current();
3104   Locks::mutator_lock_->AssertExclusiveHeld(self);
3105   // We need to sort the live stack since we binary search it.
3106   live_stack_->Sort();
3107   // Since we sorted the allocation stack content, need to revoke all
3108   // thread-local allocation stacks.
3109   RevokeAllThreadLocalAllocationStacks(self);
3110   VerifyLiveStackReferences visitor(this);
3111   GetLiveBitmap()->Visit(visitor);
3112   // We can verify objects in the live stack since none of these should reference dead objects.
3113   for (auto* it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
3114     if (!kUseThreadLocalAllocationStack || it->AsMirrorPtr() != nullptr) {
3115       visitor(it->AsMirrorPtr());
3116     }
3117   }
3118   return !visitor.Failed();
3119 }
3120 
SwapStacks()3121 void Heap::SwapStacks() {
3122   if (kUseThreadLocalAllocationStack) {
3123     live_stack_->AssertAllZero();
3124   }
3125   allocation_stack_.swap(live_stack_);
3126 }
3127 
RevokeAllThreadLocalAllocationStacks(Thread * self)3128 void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
3129   // This must be called only during the pause.
3130   DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
3131   MutexLock mu(self, *Locks::runtime_shutdown_lock_);
3132   MutexLock mu2(self, *Locks::thread_list_lock_);
3133   std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
3134   for (Thread* t : thread_list) {
3135     t->RevokeThreadLocalAllocationStack();
3136   }
3137 }
3138 
AssertThreadLocalBuffersAreRevoked(Thread * thread)3139 void Heap::AssertThreadLocalBuffersAreRevoked(Thread* thread) {
3140   if (kIsDebugBuild) {
3141     if (rosalloc_space_ != nullptr) {
3142       rosalloc_space_->AssertThreadLocalBuffersAreRevoked(thread);
3143     }
3144     if (bump_pointer_space_ != nullptr) {
3145       bump_pointer_space_->AssertThreadLocalBuffersAreRevoked(thread);
3146     }
3147   }
3148 }
3149 
AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked()3150 void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
3151   if (kIsDebugBuild) {
3152     if (bump_pointer_space_ != nullptr) {
3153       bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
3154     }
3155   }
3156 }
3157 
FindModUnionTableFromSpace(space::Space * space)3158 accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
3159   auto it = mod_union_tables_.find(space);
3160   if (it == mod_union_tables_.end()) {
3161     return nullptr;
3162   }
3163   return it->second;
3164 }
3165 
FindRememberedSetFromSpace(space::Space * space)3166 accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
3167   auto it = remembered_sets_.find(space);
3168   if (it == remembered_sets_.end()) {
3169     return nullptr;
3170   }
3171   return it->second;
3172 }
3173 
ProcessCards(TimingLogger * timings,bool use_rem_sets,bool process_alloc_space_cards,bool clear_alloc_space_cards)3174 void Heap::ProcessCards(TimingLogger* timings,
3175                         bool use_rem_sets,
3176                         bool process_alloc_space_cards,
3177                         bool clear_alloc_space_cards) {
3178   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3179   // Clear cards and keep track of cards cleared in the mod-union table.
3180   for (const auto& space : continuous_spaces_) {
3181     accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
3182     accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
3183     if (table != nullptr) {
3184       const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
3185           "ImageModUnionClearCards";
3186       TimingLogger::ScopedTiming t2(name, timings);
3187       table->ProcessCards();
3188     } else if (use_rem_sets && rem_set != nullptr) {
3189       DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
3190           << static_cast<int>(collector_type_);
3191       TimingLogger::ScopedTiming t2("AllocSpaceRemSetClearCards", timings);
3192       rem_set->ClearCards();
3193     } else if (process_alloc_space_cards) {
3194       TimingLogger::ScopedTiming t2("AllocSpaceClearCards", timings);
3195       if (clear_alloc_space_cards) {
3196         uint8_t* end = space->End();
3197         if (space->IsImageSpace()) {
3198           // Image space end is the end of the mirror objects, it is not necessarily page or card
3199           // aligned. Align up so that the check in ClearCardRange does not fail.
3200           end = AlignUp(end, accounting::CardTable::kCardSize);
3201         }
3202         card_table_->ClearCardRange(space->Begin(), end);
3203       } else {
3204         // No mod union table for the AllocSpace. Age the cards so that the GC knows that these
3205         // cards were dirty before the GC started.
3206         // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
3207         // -> clean(cleaning thread).
3208         // The races are we either end up with: Aged card, unaged card. Since we have the
3209         // checkpoint roots and then we scan / update mod union tables after. We will always
3210         // scan either card. If we end up with the non aged card, we scan it it in the pause.
3211         card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
3212                                        VoidFunctor());
3213       }
3214     }
3215   }
3216 }
3217 
3218 struct IdentityMarkHeapReferenceVisitor : public MarkObjectVisitor {
MarkObjectart::gc::IdentityMarkHeapReferenceVisitor3219   virtual mirror::Object* MarkObject(mirror::Object* obj) OVERRIDE {
3220     return obj;
3221   }
MarkHeapReferenceart::gc::IdentityMarkHeapReferenceVisitor3222   virtual void MarkHeapReference(mirror::HeapReference<mirror::Object>*, bool) OVERRIDE {
3223   }
3224 };
3225 
PreGcVerificationPaused(collector::GarbageCollector * gc)3226 void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
3227   Thread* const self = Thread::Current();
3228   TimingLogger* const timings = current_gc_iteration_.GetTimings();
3229   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3230   if (verify_pre_gc_heap_) {
3231     TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyHeapReferences", timings);
3232     size_t failures = VerifyHeapReferences();
3233     if (failures > 0) {
3234       LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
3235           << " failures";
3236     }
3237   }
3238   // Check that all objects which reference things in the live stack are on dirty cards.
3239   if (verify_missing_card_marks_) {
3240     TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyMissingCardMarks", timings);
3241     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
3242     SwapStacks();
3243     // Sort the live stack so that we can quickly binary search it later.
3244     CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
3245                                     << " missing card mark verification failed\n" << DumpSpaces();
3246     SwapStacks();
3247   }
3248   if (verify_mod_union_table_) {
3249     TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyModUnionTables", timings);
3250     ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
3251     for (const auto& table_pair : mod_union_tables_) {
3252       accounting::ModUnionTable* mod_union_table = table_pair.second;
3253       IdentityMarkHeapReferenceVisitor visitor;
3254       mod_union_table->UpdateAndMarkReferences(&visitor);
3255       mod_union_table->Verify();
3256     }
3257   }
3258 }
3259 
PreGcVerification(collector::GarbageCollector * gc)3260 void Heap::PreGcVerification(collector::GarbageCollector* gc) {
3261   if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
3262     collector::GarbageCollector::ScopedPause pause(gc, false);
3263     PreGcVerificationPaused(gc);
3264   }
3265 }
3266 
PrePauseRosAllocVerification(collector::GarbageCollector * gc ATTRIBUTE_UNUSED)3267 void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc ATTRIBUTE_UNUSED) {
3268   // TODO: Add a new runtime option for this?
3269   if (verify_pre_gc_rosalloc_) {
3270     RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
3271   }
3272 }
3273 
PreSweepingGcVerification(collector::GarbageCollector * gc)3274 void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
3275   Thread* const self = Thread::Current();
3276   TimingLogger* const timings = current_gc_iteration_.GetTimings();
3277   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3278   // Called before sweeping occurs since we want to make sure we are not going so reclaim any
3279   // reachable objects.
3280   if (verify_pre_sweeping_heap_) {
3281     TimingLogger::ScopedTiming t2("(Paused)PostSweepingVerifyHeapReferences", timings);
3282     CHECK_NE(self->GetState(), kRunnable);
3283     {
3284       WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3285       // Swapping bound bitmaps does nothing.
3286       gc->SwapBitmaps();
3287     }
3288     // Pass in false since concurrent reference processing can mean that the reference referents
3289     // may point to dead objects at the point which PreSweepingGcVerification is called.
3290     size_t failures = VerifyHeapReferences(false);
3291     if (failures > 0) {
3292       LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
3293           << " failures";
3294     }
3295     {
3296       WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3297       gc->SwapBitmaps();
3298     }
3299   }
3300   if (verify_pre_sweeping_rosalloc_) {
3301     RosAllocVerification(timings, "PreSweepingRosAllocVerification");
3302   }
3303 }
3304 
PostGcVerificationPaused(collector::GarbageCollector * gc)3305 void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
3306   // Only pause if we have to do some verification.
3307   Thread* const self = Thread::Current();
3308   TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
3309   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3310   if (verify_system_weaks_) {
3311     ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
3312     collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
3313     mark_sweep->VerifySystemWeaks();
3314   }
3315   if (verify_post_gc_rosalloc_) {
3316     RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
3317   }
3318   if (verify_post_gc_heap_) {
3319     TimingLogger::ScopedTiming t2("(Paused)PostGcVerifyHeapReferences", timings);
3320     size_t failures = VerifyHeapReferences();
3321     if (failures > 0) {
3322       LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
3323           << " failures";
3324     }
3325   }
3326 }
3327 
PostGcVerification(collector::GarbageCollector * gc)3328 void Heap::PostGcVerification(collector::GarbageCollector* gc) {
3329   if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
3330     collector::GarbageCollector::ScopedPause pause(gc, false);
3331     PostGcVerificationPaused(gc);
3332   }
3333 }
3334 
RosAllocVerification(TimingLogger * timings,const char * name)3335 void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
3336   TimingLogger::ScopedTiming t(name, timings);
3337   for (const auto& space : continuous_spaces_) {
3338     if (space->IsRosAllocSpace()) {
3339       VLOG(heap) << name << " : " << space->GetName();
3340       space->AsRosAllocSpace()->Verify();
3341     }
3342   }
3343 }
3344 
WaitForGcToComplete(GcCause cause,Thread * self)3345 collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
3346   ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
3347   MutexLock mu(self, *gc_complete_lock_);
3348   return WaitForGcToCompleteLocked(cause, self);
3349 }
3350 
WaitForGcToCompleteLocked(GcCause cause,Thread * self)3351 collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
3352   collector::GcType last_gc_type = collector::kGcTypeNone;
3353   GcCause last_gc_cause = kGcCauseNone;
3354   uint64_t wait_start = NanoTime();
3355   while (collector_type_running_ != kCollectorTypeNone) {
3356     if (self != task_processor_->GetRunningThread()) {
3357       // The current thread is about to wait for a currently running
3358       // collection to finish. If the waiting thread is not the heap
3359       // task daemon thread, the currently running collection is
3360       // considered as a blocking GC.
3361       running_collection_is_blocking_ = true;
3362       VLOG(gc) << "Waiting for a blocking GC " << cause;
3363     }
3364     ScopedTrace trace("GC: Wait For Completion");
3365     // We must wait, change thread state then sleep on gc_complete_cond_;
3366     gc_complete_cond_->Wait(self);
3367     last_gc_type = last_gc_type_;
3368     last_gc_cause = last_gc_cause_;
3369   }
3370   uint64_t wait_time = NanoTime() - wait_start;
3371   total_wait_time_ += wait_time;
3372   if (wait_time > long_pause_log_threshold_) {
3373     LOG(INFO) << "WaitForGcToComplete blocked " << cause << " on " << last_gc_cause << " for "
3374               << PrettyDuration(wait_time);
3375   }
3376   if (self != task_processor_->GetRunningThread()) {
3377     // The current thread is about to run a collection. If the thread
3378     // is not the heap task daemon thread, it's considered as a
3379     // blocking GC (i.e., blocking itself).
3380     running_collection_is_blocking_ = true;
3381     // Don't log fake "GC" types that are only used for debugger or hidden APIs. If we log these,
3382     // it results in log spam. kGcCauseExplicit is already logged in LogGC, so avoid it here too.
3383     if (cause == kGcCauseForAlloc ||
3384         cause == kGcCauseForNativeAlloc ||
3385         cause == kGcCauseDisableMovingGc) {
3386       VLOG(gc) << "Starting a blocking GC " << cause;
3387     }
3388   }
3389   return last_gc_type;
3390 }
3391 
DumpForSigQuit(std::ostream & os)3392 void Heap::DumpForSigQuit(std::ostream& os) {
3393   os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
3394      << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
3395   DumpGcPerformanceInfo(os);
3396 }
3397 
GetPercentFree()3398 size_t Heap::GetPercentFree() {
3399   return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / max_allowed_footprint_);
3400 }
3401 
SetIdealFootprint(size_t max_allowed_footprint)3402 void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
3403   if (max_allowed_footprint > GetMaxMemory()) {
3404     VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
3405              << PrettySize(GetMaxMemory());
3406     max_allowed_footprint = GetMaxMemory();
3407   }
3408   max_allowed_footprint_ = max_allowed_footprint;
3409 }
3410 
IsMovableObject(ObjPtr<mirror::Object> obj) const3411 bool Heap::IsMovableObject(ObjPtr<mirror::Object> obj) const {
3412   if (kMovingCollector) {
3413     space::Space* space = FindContinuousSpaceFromObject(obj.Ptr(), true);
3414     if (space != nullptr) {
3415       // TODO: Check large object?
3416       return space->CanMoveObjects();
3417     }
3418   }
3419   return false;
3420 }
3421 
FindCollectorByGcType(collector::GcType gc_type)3422 collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
3423   for (const auto& collector : garbage_collectors_) {
3424     if (collector->GetCollectorType() == collector_type_ &&
3425         collector->GetGcType() == gc_type) {
3426       return collector;
3427     }
3428   }
3429   return nullptr;
3430 }
3431 
HeapGrowthMultiplier() const3432 double Heap::HeapGrowthMultiplier() const {
3433   // If we don't care about pause times we are background, so return 1.0.
3434   if (!CareAboutPauseTimes()) {
3435     return 1.0;
3436   }
3437   return foreground_heap_growth_multiplier_;
3438 }
3439 
GrowForUtilization(collector::GarbageCollector * collector_ran,uint64_t bytes_allocated_before_gc)3440 void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran,
3441                               uint64_t bytes_allocated_before_gc) {
3442   // We know what our utilization is at this moment.
3443   // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
3444   const uint64_t bytes_allocated = GetBytesAllocated();
3445   // Trace the new heap size after the GC is finished.
3446   TraceHeapSize(bytes_allocated);
3447   uint64_t target_size;
3448   collector::GcType gc_type = collector_ran->GetGcType();
3449   // Use the multiplier to grow more for foreground.
3450   const double multiplier = HeapGrowthMultiplier();
3451   const uint64_t adjusted_min_free = static_cast<uint64_t>(min_free_ * multiplier);
3452   const uint64_t adjusted_max_free = static_cast<uint64_t>(max_free_ * multiplier);
3453   if (gc_type != collector::kGcTypeSticky) {
3454     // Grow the heap for non sticky GC.
3455     ssize_t delta = bytes_allocated / GetTargetHeapUtilization() - bytes_allocated;
3456     CHECK_GE(delta, 0) << "bytes_allocated=" << bytes_allocated
3457                        << " target_utilization_=" << target_utilization_;
3458     target_size = bytes_allocated + delta * multiplier;
3459     target_size = std::min(target_size, bytes_allocated + adjusted_max_free);
3460     target_size = std::max(target_size, bytes_allocated + adjusted_min_free);
3461     next_gc_type_ = collector::kGcTypeSticky;
3462   } else {
3463     collector::GcType non_sticky_gc_type = NonStickyGcType();
3464     // Find what the next non sticky collector will be.
3465     collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
3466     // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
3467     // do another sticky collection next.
3468     // We also check that the bytes allocated aren't over the footprint limit in order to prevent a
3469     // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
3470     // if the sticky GC throughput always remained >= the full/partial throughput.
3471     if (current_gc_iteration_.GetEstimatedThroughput() * kStickyGcThroughputAdjustment >=
3472         non_sticky_collector->GetEstimatedMeanThroughput() &&
3473         non_sticky_collector->NumberOfIterations() > 0 &&
3474         bytes_allocated <= max_allowed_footprint_) {
3475       next_gc_type_ = collector::kGcTypeSticky;
3476     } else {
3477       next_gc_type_ = non_sticky_gc_type;
3478     }
3479     // If we have freed enough memory, shrink the heap back down.
3480     if (bytes_allocated + adjusted_max_free < max_allowed_footprint_) {
3481       target_size = bytes_allocated + adjusted_max_free;
3482     } else {
3483       target_size = std::max(bytes_allocated, static_cast<uint64_t>(max_allowed_footprint_));
3484     }
3485   }
3486   if (!ignore_max_footprint_) {
3487     SetIdealFootprint(target_size);
3488     if (IsGcConcurrent()) {
3489       const uint64_t freed_bytes = current_gc_iteration_.GetFreedBytes() +
3490           current_gc_iteration_.GetFreedLargeObjectBytes() +
3491           current_gc_iteration_.GetFreedRevokeBytes();
3492       // Bytes allocated will shrink by freed_bytes after the GC runs, so if we want to figure out
3493       // how many bytes were allocated during the GC we need to add freed_bytes back on.
3494       CHECK_GE(bytes_allocated + freed_bytes, bytes_allocated_before_gc);
3495       const uint64_t bytes_allocated_during_gc = bytes_allocated + freed_bytes -
3496           bytes_allocated_before_gc;
3497       // Calculate when to perform the next ConcurrentGC.
3498       // Estimate how many remaining bytes we will have when we need to start the next GC.
3499       size_t remaining_bytes = bytes_allocated_during_gc;
3500       remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
3501       remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
3502       if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
3503         // A never going to happen situation that from the estimated allocation rate we will exceed
3504         // the applications entire footprint with the given estimated allocation rate. Schedule
3505         // another GC nearly straight away.
3506         remaining_bytes = kMinConcurrentRemainingBytes;
3507       }
3508       DCHECK_LE(remaining_bytes, max_allowed_footprint_);
3509       DCHECK_LE(max_allowed_footprint_, GetMaxMemory());
3510       // Start a concurrent GC when we get close to the estimated remaining bytes. When the
3511       // allocation rate is very high, remaining_bytes could tell us that we should start a GC
3512       // right away.
3513       concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes,
3514                                          static_cast<size_t>(bytes_allocated));
3515     }
3516   }
3517 }
3518 
ClampGrowthLimit()3519 void Heap::ClampGrowthLimit() {
3520   // Use heap bitmap lock to guard against races with BindLiveToMarkBitmap.
3521   ScopedObjectAccess soa(Thread::Current());
3522   WriterMutexLock mu(soa.Self(), *Locks::heap_bitmap_lock_);
3523   capacity_ = growth_limit_;
3524   for (const auto& space : continuous_spaces_) {
3525     if (space->IsMallocSpace()) {
3526       gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3527       malloc_space->ClampGrowthLimit();
3528     }
3529   }
3530   if (collector_type_ == kCollectorTypeCC) {
3531     DCHECK(region_space_ != nullptr);
3532     // Twice the capacity as CC needs extra space for evacuating objects.
3533     region_space_->ClampGrowthLimit(2 * capacity_);
3534   }
3535   // This space isn't added for performance reasons.
3536   if (main_space_backup_.get() != nullptr) {
3537     main_space_backup_->ClampGrowthLimit();
3538   }
3539 }
3540 
ClearGrowthLimit()3541 void Heap::ClearGrowthLimit() {
3542   growth_limit_ = capacity_;
3543   ScopedObjectAccess soa(Thread::Current());
3544   for (const auto& space : continuous_spaces_) {
3545     if (space->IsMallocSpace()) {
3546       gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3547       malloc_space->ClearGrowthLimit();
3548       malloc_space->SetFootprintLimit(malloc_space->Capacity());
3549     }
3550   }
3551   // This space isn't added for performance reasons.
3552   if (main_space_backup_.get() != nullptr) {
3553     main_space_backup_->ClearGrowthLimit();
3554     main_space_backup_->SetFootprintLimit(main_space_backup_->Capacity());
3555   }
3556 }
3557 
AddFinalizerReference(Thread * self,ObjPtr<mirror::Object> * object)3558 void Heap::AddFinalizerReference(Thread* self, ObjPtr<mirror::Object>* object) {
3559   ScopedObjectAccess soa(self);
3560   ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
3561   jvalue args[1];
3562   args[0].l = arg.get();
3563   InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
3564   // Restore object in case it gets moved.
3565   *object = soa.Decode<mirror::Object>(arg.get());
3566 }
3567 
RequestConcurrentGCAndSaveObject(Thread * self,bool force_full,ObjPtr<mirror::Object> * obj)3568 void Heap::RequestConcurrentGCAndSaveObject(Thread* self,
3569                                             bool force_full,
3570                                             ObjPtr<mirror::Object>* obj) {
3571   StackHandleScope<1> hs(self);
3572   HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3573   RequestConcurrentGC(self, kGcCauseBackground, force_full);
3574 }
3575 
3576 class Heap::ConcurrentGCTask : public HeapTask {
3577  public:
ConcurrentGCTask(uint64_t target_time,GcCause cause,bool force_full)3578   ConcurrentGCTask(uint64_t target_time, GcCause cause, bool force_full)
3579       : HeapTask(target_time), cause_(cause), force_full_(force_full) {}
Run(Thread * self)3580   virtual void Run(Thread* self) OVERRIDE {
3581     gc::Heap* heap = Runtime::Current()->GetHeap();
3582     heap->ConcurrentGC(self, cause_, force_full_);
3583     heap->ClearConcurrentGCRequest();
3584   }
3585 
3586  private:
3587   const GcCause cause_;
3588   const bool force_full_;  // If true, force full (or partial) collection.
3589 };
3590 
CanAddHeapTask(Thread * self)3591 static bool CanAddHeapTask(Thread* self) REQUIRES(!Locks::runtime_shutdown_lock_) {
3592   Runtime* runtime = Runtime::Current();
3593   return runtime != nullptr && runtime->IsFinishedStarting() && !runtime->IsShuttingDown(self) &&
3594       !self->IsHandlingStackOverflow();
3595 }
3596 
ClearConcurrentGCRequest()3597 void Heap::ClearConcurrentGCRequest() {
3598   concurrent_gc_pending_.StoreRelaxed(false);
3599 }
3600 
RequestConcurrentGC(Thread * self,GcCause cause,bool force_full)3601 void Heap::RequestConcurrentGC(Thread* self, GcCause cause, bool force_full) {
3602   if (CanAddHeapTask(self) &&
3603       concurrent_gc_pending_.CompareAndSetStrongSequentiallyConsistent(false, true)) {
3604     task_processor_->AddTask(self, new ConcurrentGCTask(NanoTime(),  // Start straight away.
3605                                                         cause,
3606                                                         force_full));
3607   }
3608 }
3609 
ConcurrentGC(Thread * self,GcCause cause,bool force_full)3610 void Heap::ConcurrentGC(Thread* self, GcCause cause, bool force_full) {
3611   if (!Runtime::Current()->IsShuttingDown(self)) {
3612     // Wait for any GCs currently running to finish.
3613     if (WaitForGcToComplete(cause, self) == collector::kGcTypeNone) {
3614       // If the we can't run the GC type we wanted to run, find the next appropriate one and try
3615       // that instead. E.g. can't do partial, so do full instead.
3616       collector::GcType next_gc_type = next_gc_type_;
3617       // If forcing full and next gc type is sticky, override with a non-sticky type.
3618       if (force_full && next_gc_type == collector::kGcTypeSticky) {
3619         next_gc_type = NonStickyGcType();
3620       }
3621       if (CollectGarbageInternal(next_gc_type, cause, false) == collector::kGcTypeNone) {
3622         for (collector::GcType gc_type : gc_plan_) {
3623           // Attempt to run the collector, if we succeed, we are done.
3624           if (gc_type > next_gc_type &&
3625               CollectGarbageInternal(gc_type, cause, false) != collector::kGcTypeNone) {
3626             break;
3627           }
3628         }
3629       }
3630     }
3631   }
3632 }
3633 
3634 class Heap::CollectorTransitionTask : public HeapTask {
3635  public:
CollectorTransitionTask(uint64_t target_time)3636   explicit CollectorTransitionTask(uint64_t target_time) : HeapTask(target_time) {}
3637 
Run(Thread * self)3638   virtual void Run(Thread* self) OVERRIDE {
3639     gc::Heap* heap = Runtime::Current()->GetHeap();
3640     heap->DoPendingCollectorTransition();
3641     heap->ClearPendingCollectorTransition(self);
3642   }
3643 };
3644 
ClearPendingCollectorTransition(Thread * self)3645 void Heap::ClearPendingCollectorTransition(Thread* self) {
3646   MutexLock mu(self, *pending_task_lock_);
3647   pending_collector_transition_ = nullptr;
3648 }
3649 
RequestCollectorTransition(CollectorType desired_collector_type,uint64_t delta_time)3650 void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
3651   Thread* self = Thread::Current();
3652   desired_collector_type_ = desired_collector_type;
3653   if (desired_collector_type_ == collector_type_ || !CanAddHeapTask(self)) {
3654     return;
3655   }
3656   if (collector_type_ == kCollectorTypeCC) {
3657     // For CC, we invoke a full compaction when going to the background, but the collector type
3658     // doesn't change.
3659     DCHECK_EQ(desired_collector_type_, kCollectorTypeCCBackground);
3660   }
3661   DCHECK_NE(collector_type_, kCollectorTypeCCBackground);
3662   CollectorTransitionTask* added_task = nullptr;
3663   const uint64_t target_time = NanoTime() + delta_time;
3664   {
3665     MutexLock mu(self, *pending_task_lock_);
3666     // If we have an existing collector transition, update the targe time to be the new target.
3667     if (pending_collector_transition_ != nullptr) {
3668       task_processor_->UpdateTargetRunTime(self, pending_collector_transition_, target_time);
3669       return;
3670     }
3671     added_task = new CollectorTransitionTask(target_time);
3672     pending_collector_transition_ = added_task;
3673   }
3674   task_processor_->AddTask(self, added_task);
3675 }
3676 
3677 class Heap::HeapTrimTask : public HeapTask {
3678  public:
HeapTrimTask(uint64_t delta_time)3679   explicit HeapTrimTask(uint64_t delta_time) : HeapTask(NanoTime() + delta_time) { }
Run(Thread * self)3680   virtual void Run(Thread* self) OVERRIDE {
3681     gc::Heap* heap = Runtime::Current()->GetHeap();
3682     heap->Trim(self);
3683     heap->ClearPendingTrim(self);
3684   }
3685 };
3686 
ClearPendingTrim(Thread * self)3687 void Heap::ClearPendingTrim(Thread* self) {
3688   MutexLock mu(self, *pending_task_lock_);
3689   pending_heap_trim_ = nullptr;
3690 }
3691 
RequestTrim(Thread * self)3692 void Heap::RequestTrim(Thread* self) {
3693   if (!CanAddHeapTask(self)) {
3694     return;
3695   }
3696   // GC completed and now we must decide whether to request a heap trim (advising pages back to the
3697   // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
3698   // a space it will hold its lock and can become a cause of jank.
3699   // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
3700   // forking.
3701 
3702   // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
3703   // because that only marks object heads, so a large array looks like lots of empty space. We
3704   // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
3705   // to utilization (which is probably inversely proportional to how much benefit we can expect).
3706   // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
3707   // not how much use we're making of those pages.
3708   HeapTrimTask* added_task = nullptr;
3709   {
3710     MutexLock mu(self, *pending_task_lock_);
3711     if (pending_heap_trim_ != nullptr) {
3712       // Already have a heap trim request in task processor, ignore this request.
3713       return;
3714     }
3715     added_task = new HeapTrimTask(kHeapTrimWait);
3716     pending_heap_trim_ = added_task;
3717   }
3718   task_processor_->AddTask(self, added_task);
3719 }
3720 
RevokeThreadLocalBuffers(Thread * thread)3721 void Heap::RevokeThreadLocalBuffers(Thread* thread) {
3722   if (rosalloc_space_ != nullptr) {
3723     size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
3724     if (freed_bytes_revoke > 0U) {
3725       num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
3726       CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
3727     }
3728   }
3729   if (bump_pointer_space_ != nullptr) {
3730     CHECK_EQ(bump_pointer_space_->RevokeThreadLocalBuffers(thread), 0U);
3731   }
3732   if (region_space_ != nullptr) {
3733     CHECK_EQ(region_space_->RevokeThreadLocalBuffers(thread), 0U);
3734   }
3735 }
3736 
RevokeRosAllocThreadLocalBuffers(Thread * thread)3737 void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
3738   if (rosalloc_space_ != nullptr) {
3739     size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
3740     if (freed_bytes_revoke > 0U) {
3741       num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
3742       CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
3743     }
3744   }
3745 }
3746 
RevokeAllThreadLocalBuffers()3747 void Heap::RevokeAllThreadLocalBuffers() {
3748   if (rosalloc_space_ != nullptr) {
3749     size_t freed_bytes_revoke = rosalloc_space_->RevokeAllThreadLocalBuffers();
3750     if (freed_bytes_revoke > 0U) {
3751       num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
3752       CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
3753     }
3754   }
3755   if (bump_pointer_space_ != nullptr) {
3756     CHECK_EQ(bump_pointer_space_->RevokeAllThreadLocalBuffers(), 0U);
3757   }
3758   if (region_space_ != nullptr) {
3759     CHECK_EQ(region_space_->RevokeAllThreadLocalBuffers(), 0U);
3760   }
3761 }
3762 
IsGCRequestPending() const3763 bool Heap::IsGCRequestPending() const {
3764   return concurrent_gc_pending_.LoadRelaxed();
3765 }
3766 
RunFinalization(JNIEnv * env,uint64_t timeout)3767 void Heap::RunFinalization(JNIEnv* env, uint64_t timeout) {
3768   env->CallStaticVoidMethod(WellKnownClasses::dalvik_system_VMRuntime,
3769                             WellKnownClasses::dalvik_system_VMRuntime_runFinalization,
3770                             static_cast<jlong>(timeout));
3771 }
3772 
RegisterNativeAllocation(JNIEnv * env,size_t bytes)3773 void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) {
3774   size_t old_value = new_native_bytes_allocated_.FetchAndAddRelaxed(bytes);
3775 
3776   if (old_value > NativeAllocationGcWatermark() * HeapGrowthMultiplier() &&
3777              !IsGCRequestPending()) {
3778     // Trigger another GC because there have been enough native bytes
3779     // allocated since the last GC.
3780     if (IsGcConcurrent()) {
3781       RequestConcurrentGC(ThreadForEnv(env), kGcCauseForNativeAlloc, /*force_full*/true);
3782     } else {
3783       CollectGarbageInternal(NonStickyGcType(), kGcCauseForNativeAlloc, false);
3784     }
3785   }
3786 }
3787 
RegisterNativeFree(JNIEnv *,size_t bytes)3788 void Heap::RegisterNativeFree(JNIEnv*, size_t bytes) {
3789   // Take the bytes freed out of new_native_bytes_allocated_ first. If
3790   // new_native_bytes_allocated_ reaches zero, take the remaining bytes freed
3791   // out of old_native_bytes_allocated_ to ensure all freed bytes are
3792   // accounted for.
3793   size_t allocated;
3794   size_t new_freed_bytes;
3795   do {
3796     allocated = new_native_bytes_allocated_.LoadRelaxed();
3797     new_freed_bytes = std::min(allocated, bytes);
3798   } while (!new_native_bytes_allocated_.CompareAndSetWeakRelaxed(allocated,
3799                                                                    allocated - new_freed_bytes));
3800   if (new_freed_bytes < bytes) {
3801     old_native_bytes_allocated_.FetchAndSubRelaxed(bytes - new_freed_bytes);
3802   }
3803 }
3804 
GetTotalMemory() const3805 size_t Heap::GetTotalMemory() const {
3806   return std::max(max_allowed_footprint_, GetBytesAllocated());
3807 }
3808 
AddModUnionTable(accounting::ModUnionTable * mod_union_table)3809 void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
3810   DCHECK(mod_union_table != nullptr);
3811   mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
3812 }
3813 
CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c,size_t byte_count)3814 void Heap::CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c, size_t byte_count) {
3815   // Compare rounded sizes since the allocation may have been retried after rounding the size.
3816   // See b/37885600
3817   CHECK(c == nullptr || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
3818         (c->IsVariableSize() ||
3819             RoundUp(c->GetObjectSize(), kObjectAlignment) ==
3820                 RoundUp(byte_count, kObjectAlignment)))
3821       << "ClassFlags=" << c->GetClassFlags()
3822       << " IsClassClass=" << c->IsClassClass()
3823       << " byte_count=" << byte_count
3824       << " IsVariableSize=" << c->IsVariableSize()
3825       << " ObjectSize=" << c->GetObjectSize()
3826       << " sizeof(Class)=" << sizeof(mirror::Class)
3827       << " " << verification_->DumpObjectInfo(c.Ptr(), /*tag*/ "klass");
3828   CHECK_GE(byte_count, sizeof(mirror::Object));
3829 }
3830 
AddRememberedSet(accounting::RememberedSet * remembered_set)3831 void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
3832   CHECK(remembered_set != nullptr);
3833   space::Space* space = remembered_set->GetSpace();
3834   CHECK(space != nullptr);
3835   CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
3836   remembered_sets_.Put(space, remembered_set);
3837   CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
3838 }
3839 
RemoveRememberedSet(space::Space * space)3840 void Heap::RemoveRememberedSet(space::Space* space) {
3841   CHECK(space != nullptr);
3842   auto it = remembered_sets_.find(space);
3843   CHECK(it != remembered_sets_.end());
3844   delete it->second;
3845   remembered_sets_.erase(it);
3846   CHECK(remembered_sets_.find(space) == remembered_sets_.end());
3847 }
3848 
ClearMarkedObjects()3849 void Heap::ClearMarkedObjects() {
3850   // Clear all of the spaces' mark bitmaps.
3851   for (const auto& space : GetContinuousSpaces()) {
3852     accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
3853     if (space->GetLiveBitmap() != mark_bitmap) {
3854       mark_bitmap->Clear();
3855     }
3856   }
3857   // Clear the marked objects in the discontinous space object sets.
3858   for (const auto& space : GetDiscontinuousSpaces()) {
3859     space->GetMarkBitmap()->Clear();
3860   }
3861 }
3862 
SetAllocationRecords(AllocRecordObjectMap * records)3863 void Heap::SetAllocationRecords(AllocRecordObjectMap* records) {
3864   allocation_records_.reset(records);
3865 }
3866 
VisitAllocationRecords(RootVisitor * visitor) const3867 void Heap::VisitAllocationRecords(RootVisitor* visitor) const {
3868   if (IsAllocTrackingEnabled()) {
3869     MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
3870     if (IsAllocTrackingEnabled()) {
3871       GetAllocationRecords()->VisitRoots(visitor);
3872     }
3873   }
3874 }
3875 
SweepAllocationRecords(IsMarkedVisitor * visitor) const3876 void Heap::SweepAllocationRecords(IsMarkedVisitor* visitor) const {
3877   if (IsAllocTrackingEnabled()) {
3878     MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
3879     if (IsAllocTrackingEnabled()) {
3880       GetAllocationRecords()->SweepAllocationRecords(visitor);
3881     }
3882   }
3883 }
3884 
AllowNewAllocationRecords() const3885 void Heap::AllowNewAllocationRecords() const {
3886   CHECK(!kUseReadBarrier);
3887   MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
3888   AllocRecordObjectMap* allocation_records = GetAllocationRecords();
3889   if (allocation_records != nullptr) {
3890     allocation_records->AllowNewAllocationRecords();
3891   }
3892 }
3893 
DisallowNewAllocationRecords() const3894 void Heap::DisallowNewAllocationRecords() const {
3895   CHECK(!kUseReadBarrier);
3896   MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
3897   AllocRecordObjectMap* allocation_records = GetAllocationRecords();
3898   if (allocation_records != nullptr) {
3899     allocation_records->DisallowNewAllocationRecords();
3900   }
3901 }
3902 
BroadcastForNewAllocationRecords() const3903 void Heap::BroadcastForNewAllocationRecords() const {
3904   // Always broadcast without checking IsAllocTrackingEnabled() because IsAllocTrackingEnabled() may
3905   // be set to false while some threads are waiting for system weak access in
3906   // AllocRecordObjectMap::RecordAllocation() and we may fail to wake them up. b/27467554.
3907   MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
3908   AllocRecordObjectMap* allocation_records = GetAllocationRecords();
3909   if (allocation_records != nullptr) {
3910     allocation_records->BroadcastForNewAllocationRecords();
3911   }
3912 }
3913 
CheckGcStressMode(Thread * self,ObjPtr<mirror::Object> * obj)3914 void Heap::CheckGcStressMode(Thread* self, ObjPtr<mirror::Object>* obj) {
3915   auto* const runtime = Runtime::Current();
3916   if (gc_stress_mode_ && runtime->GetClassLinker()->IsInitialized() &&
3917       !runtime->IsActiveTransaction() && mirror::Class::HasJavaLangClass()) {
3918     // Check if we should GC.
3919     bool new_backtrace = false;
3920     {
3921       static constexpr size_t kMaxFrames = 16u;
3922       FixedSizeBacktrace<kMaxFrames> backtrace;
3923       backtrace.Collect(/* skip_frames */ 2);
3924       uint64_t hash = backtrace.Hash();
3925       MutexLock mu(self, *backtrace_lock_);
3926       new_backtrace = seen_backtraces_.find(hash) == seen_backtraces_.end();
3927       if (new_backtrace) {
3928         seen_backtraces_.insert(hash);
3929       }
3930     }
3931     if (new_backtrace) {
3932       StackHandleScope<1> hs(self);
3933       auto h = hs.NewHandleWrapper(obj);
3934       CollectGarbage(/* clear_soft_references */ false);
3935       unique_backtrace_count_.FetchAndAddSequentiallyConsistent(1);
3936     } else {
3937       seen_backtrace_count_.FetchAndAddSequentiallyConsistent(1);
3938     }
3939   }
3940 }
3941 
DisableGCForShutdown()3942 void Heap::DisableGCForShutdown() {
3943   Thread* const self = Thread::Current();
3944   CHECK(Runtime::Current()->IsShuttingDown(self));
3945   MutexLock mu(self, *gc_complete_lock_);
3946   gc_disabled_for_shutdown_ = true;
3947 }
3948 
ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const3949 bool Heap::ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const {
3950   for (gc::space::ImageSpace* space : boot_image_spaces_) {
3951     if (space->HasAddress(obj.Ptr())) {
3952       return true;
3953     }
3954   }
3955   return false;
3956 }
3957 
IsInBootImageOatFile(const void * p) const3958 bool Heap::IsInBootImageOatFile(const void* p) const {
3959   for (gc::space::ImageSpace* space : boot_image_spaces_) {
3960     if (space->GetOatFile()->Contains(p)) {
3961       return true;
3962     }
3963   }
3964   return false;
3965 }
3966 
GetBootImagesSize(uint32_t * boot_image_begin,uint32_t * boot_image_end,uint32_t * boot_oat_begin,uint32_t * boot_oat_end)3967 void Heap::GetBootImagesSize(uint32_t* boot_image_begin,
3968                              uint32_t* boot_image_end,
3969                              uint32_t* boot_oat_begin,
3970                              uint32_t* boot_oat_end) {
3971   DCHECK(boot_image_begin != nullptr);
3972   DCHECK(boot_image_end != nullptr);
3973   DCHECK(boot_oat_begin != nullptr);
3974   DCHECK(boot_oat_end != nullptr);
3975   *boot_image_begin = 0u;
3976   *boot_image_end = 0u;
3977   *boot_oat_begin = 0u;
3978   *boot_oat_end = 0u;
3979   for (gc::space::ImageSpace* space_ : GetBootImageSpaces()) {
3980     const uint32_t image_begin = PointerToLowMemUInt32(space_->Begin());
3981     const uint32_t image_size = space_->GetImageHeader().GetImageSize();
3982     if (*boot_image_begin == 0 || image_begin < *boot_image_begin) {
3983       *boot_image_begin = image_begin;
3984     }
3985     *boot_image_end = std::max(*boot_image_end, image_begin + image_size);
3986     const OatFile* boot_oat_file = space_->GetOatFile();
3987     const uint32_t oat_begin = PointerToLowMemUInt32(boot_oat_file->Begin());
3988     const uint32_t oat_size = boot_oat_file->Size();
3989     if (*boot_oat_begin == 0 || oat_begin < *boot_oat_begin) {
3990       *boot_oat_begin = oat_begin;
3991     }
3992     *boot_oat_end = std::max(*boot_oat_end, oat_begin + oat_size);
3993   }
3994 }
3995 
SetAllocationListener(AllocationListener * l)3996 void Heap::SetAllocationListener(AllocationListener* l) {
3997   AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, l);
3998 
3999   if (old == nullptr) {
4000     Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
4001   }
4002 }
4003 
RemoveAllocationListener()4004 void Heap::RemoveAllocationListener() {
4005   AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, nullptr);
4006 
4007   if (old != nullptr) {
4008     Runtime::Current()->GetInstrumentation()->UninstrumentQuickAllocEntryPoints();
4009   }
4010 }
4011 
SetGcPauseListener(GcPauseListener * l)4012 void Heap::SetGcPauseListener(GcPauseListener* l) {
4013   gc_pause_listener_.StoreRelaxed(l);
4014 }
4015 
RemoveGcPauseListener()4016 void Heap::RemoveGcPauseListener() {
4017   gc_pause_listener_.StoreRelaxed(nullptr);
4018 }
4019 
AllocWithNewTLAB(Thread * self,size_t alloc_size,bool grow,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)4020 mirror::Object* Heap::AllocWithNewTLAB(Thread* self,
4021                                        size_t alloc_size,
4022                                        bool grow,
4023                                        size_t* bytes_allocated,
4024                                        size_t* usable_size,
4025                                        size_t* bytes_tl_bulk_allocated) {
4026   const AllocatorType allocator_type = GetCurrentAllocator();
4027   if (kUsePartialTlabs && alloc_size <= self->TlabRemainingCapacity()) {
4028     DCHECK_GT(alloc_size, self->TlabSize());
4029     // There is enough space if we grow the TLAB. Lets do that. This increases the
4030     // TLAB bytes.
4031     const size_t min_expand_size = alloc_size - self->TlabSize();
4032     const size_t expand_bytes = std::max(
4033         min_expand_size,
4034         std::min(self->TlabRemainingCapacity() - self->TlabSize(), kPartialTlabSize));
4035     if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, expand_bytes, grow))) {
4036       return nullptr;
4037     }
4038     *bytes_tl_bulk_allocated = expand_bytes;
4039     self->ExpandTlab(expand_bytes);
4040     DCHECK_LE(alloc_size, self->TlabSize());
4041   } else if (allocator_type == kAllocatorTypeTLAB) {
4042     DCHECK(bump_pointer_space_ != nullptr);
4043     const size_t new_tlab_size = alloc_size + kDefaultTLABSize;
4044     if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, new_tlab_size, grow))) {
4045       return nullptr;
4046     }
4047     // Try allocating a new thread local buffer, if the allocation fails the space must be
4048     // full so return null.
4049     if (!bump_pointer_space_->AllocNewTlab(self, new_tlab_size)) {
4050       return nullptr;
4051     }
4052     *bytes_tl_bulk_allocated = new_tlab_size;
4053   } else {
4054     DCHECK(allocator_type == kAllocatorTypeRegionTLAB);
4055     DCHECK(region_space_ != nullptr);
4056     if (space::RegionSpace::kRegionSize >= alloc_size) {
4057       // Non-large. Check OOME for a tlab.
4058       if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type,
4059                                             space::RegionSpace::kRegionSize,
4060                                             grow))) {
4061         const size_t new_tlab_size = kUsePartialTlabs
4062             ? std::max(alloc_size, kPartialTlabSize)
4063             : gc::space::RegionSpace::kRegionSize;
4064         // Try to allocate a tlab.
4065         if (!region_space_->AllocNewTlab(self, new_tlab_size)) {
4066           // Failed to allocate a tlab. Try non-tlab.
4067           return region_space_->AllocNonvirtual<false>(alloc_size,
4068                                                        bytes_allocated,
4069                                                        usable_size,
4070                                                        bytes_tl_bulk_allocated);
4071         }
4072         *bytes_tl_bulk_allocated = new_tlab_size;
4073         // Fall-through to using the TLAB below.
4074       } else {
4075         // Check OOME for a non-tlab allocation.
4076         if (!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow)) {
4077           return region_space_->AllocNonvirtual<false>(alloc_size,
4078                                                        bytes_allocated,
4079                                                        usable_size,
4080                                                        bytes_tl_bulk_allocated);
4081         }
4082         // Neither tlab or non-tlab works. Give up.
4083         return nullptr;
4084       }
4085     } else {
4086       // Large. Check OOME.
4087       if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow))) {
4088         return region_space_->AllocNonvirtual<false>(alloc_size,
4089                                                      bytes_allocated,
4090                                                      usable_size,
4091                                                      bytes_tl_bulk_allocated);
4092       }
4093       return nullptr;
4094     }
4095   }
4096   // Refilled TLAB, return.
4097   mirror::Object* ret = self->AllocTlab(alloc_size);
4098   DCHECK(ret != nullptr);
4099   *bytes_allocated = alloc_size;
4100   *usable_size = alloc_size;
4101   return ret;
4102 }
4103 
GetVerification() const4104 const Verification* Heap::GetVerification() const {
4105   return verification_.get();
4106 }
4107 
VlogHeapGrowth(size_t max_allowed_footprint,size_t new_footprint,size_t alloc_size)4108 void Heap::VlogHeapGrowth(size_t max_allowed_footprint, size_t new_footprint, size_t alloc_size) {
4109   VLOG(heap) << "Growing heap from " << PrettySize(max_allowed_footprint) << " to "
4110              << PrettySize(new_footprint) << " for a " << PrettySize(alloc_size) << " allocation";
4111 }
4112 
4113 }  // namespace gc
4114 }  // namespace art
4115