1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_LIBARTBASE_BASE_BIT_UTILS_H_
18 #define ART_LIBARTBASE_BASE_BIT_UTILS_H_
19 
20 #include <limits>
21 #include <type_traits>
22 
23 #include <android-base/logging.h>
24 
25 #include "base/stl_util_identity.h"
26 
27 namespace art {
28 
29 // Like sizeof, but count how many bits a type takes. Pass type explicitly.
30 template <typename T>
BitSizeOf()31 constexpr size_t BitSizeOf() {
32   static_assert(std::is_integral<T>::value, "T must be integral");
33   using unsigned_type = typename std::make_unsigned<T>::type;
34   static_assert(sizeof(T) == sizeof(unsigned_type), "Unexpected type size mismatch!");
35   static_assert(std::numeric_limits<unsigned_type>::radix == 2, "Unexpected radix!");
36   return std::numeric_limits<unsigned_type>::digits;
37 }
38 
39 // Like sizeof, but count how many bits a type takes. Infers type from parameter.
40 template <typename T>
BitSizeOf(T)41 constexpr size_t BitSizeOf(T /*x*/) {
42   return BitSizeOf<T>();
43 }
44 
45 template<typename T>
CLZ(T x)46 constexpr int CLZ(T x) {
47   static_assert(std::is_integral<T>::value, "T must be integral");
48   static_assert(std::is_unsigned<T>::value, "T must be unsigned");
49   static_assert(std::numeric_limits<T>::radix == 2, "Unexpected radix!");
50   static_assert(sizeof(T) == sizeof(uint64_t) || sizeof(T) <= sizeof(uint32_t),
51                 "Unsupported sizeof(T)");
52   DCHECK_NE(x, 0u);
53   constexpr bool is_64_bit = (sizeof(T) == sizeof(uint64_t));
54   constexpr size_t adjustment =
55       is_64_bit ? 0u : std::numeric_limits<uint32_t>::digits - std::numeric_limits<T>::digits;
56   return is_64_bit ? __builtin_clzll(x) : __builtin_clz(x) - adjustment;
57 }
58 
59 // Similar to CLZ except that on zero input it returns bitwidth and supports signed integers.
60 template<typename T>
JAVASTYLE_CLZ(T x)61 constexpr int JAVASTYLE_CLZ(T x) {
62   static_assert(std::is_integral<T>::value, "T must be integral");
63   using unsigned_type = typename std::make_unsigned<T>::type;
64   return (x == 0) ? BitSizeOf<T>() : CLZ(static_cast<unsigned_type>(x));
65 }
66 
67 template<typename T>
CTZ(T x)68 constexpr int CTZ(T x) {
69   static_assert(std::is_integral<T>::value, "T must be integral");
70   // It is not unreasonable to ask for trailing zeros in a negative number. As such, do not check
71   // that T is an unsigned type.
72   static_assert(sizeof(T) == sizeof(uint64_t) || sizeof(T) <= sizeof(uint32_t),
73                 "Unsupported sizeof(T)");
74   DCHECK_NE(x, static_cast<T>(0));
75   return (sizeof(T) == sizeof(uint64_t)) ? __builtin_ctzll(x) : __builtin_ctz(x);
76 }
77 
78 // Similar to CTZ except that on zero input it returns bitwidth and supports signed integers.
79 template<typename T>
JAVASTYLE_CTZ(T x)80 constexpr int JAVASTYLE_CTZ(T x) {
81   static_assert(std::is_integral<T>::value, "T must be integral");
82   using unsigned_type = typename std::make_unsigned<T>::type;
83   return (x == 0) ? BitSizeOf<T>() : CTZ(static_cast<unsigned_type>(x));
84 }
85 
86 // Return the number of 1-bits in `x`.
87 template<typename T>
POPCOUNT(T x)88 constexpr int POPCOUNT(T x) {
89   return (sizeof(T) == sizeof(uint32_t)) ? __builtin_popcount(x) : __builtin_popcountll(x);
90 }
91 
92 // Swap bytes.
93 template<typename T>
BSWAP(T x)94 constexpr T BSWAP(T x) {
95   if (sizeof(T) == sizeof(uint16_t)) {
96     return __builtin_bswap16(x);
97   } else if (sizeof(T) == sizeof(uint32_t)) {
98     return __builtin_bswap32(x);
99   } else {
100     return __builtin_bswap64(x);
101   }
102 }
103 
104 // Find the bit position of the most significant bit (0-based), or -1 if there were no bits set.
105 template <typename T>
MostSignificantBit(T value)106 constexpr ssize_t MostSignificantBit(T value) {
107   static_assert(std::is_integral<T>::value, "T must be integral");
108   static_assert(std::is_unsigned<T>::value, "T must be unsigned");
109   static_assert(std::numeric_limits<T>::radix == 2, "Unexpected radix!");
110   return (value == 0) ? -1 : std::numeric_limits<T>::digits - 1 - CLZ(value);
111 }
112 
113 // Find the bit position of the least significant bit (0-based), or -1 if there were no bits set.
114 template <typename T>
LeastSignificantBit(T value)115 constexpr ssize_t LeastSignificantBit(T value) {
116   static_assert(std::is_integral<T>::value, "T must be integral");
117   static_assert(std::is_unsigned<T>::value, "T must be unsigned");
118   return (value == 0) ? -1 : CTZ(value);
119 }
120 
121 // How many bits (minimally) does it take to store the constant 'value'? i.e. 1 for 1, 3 for 5, etc.
122 template <typename T>
MinimumBitsToStore(T value)123 constexpr size_t MinimumBitsToStore(T value) {
124   return static_cast<size_t>(MostSignificantBit(value) + 1);
125 }
126 
127 template <typename T>
RoundUpToPowerOfTwo(T x)128 constexpr T RoundUpToPowerOfTwo(T x) {
129   static_assert(std::is_integral<T>::value, "T must be integral");
130   static_assert(std::is_unsigned<T>::value, "T must be unsigned");
131   // NOTE: Undefined if x > (1 << (std::numeric_limits<T>::digits - 1)).
132   return (x < 2u) ? x : static_cast<T>(1u) << (std::numeric_limits<T>::digits - CLZ(x - 1u));
133 }
134 
135 // Return highest possible N - a power of two - such that val >= N.
136 template <typename T>
TruncToPowerOfTwo(T val)137 constexpr T TruncToPowerOfTwo(T val) {
138   static_assert(std::is_integral<T>::value, "T must be integral");
139   static_assert(std::is_unsigned<T>::value, "T must be unsigned");
140   return (val != 0) ? static_cast<T>(1u) << (BitSizeOf<T>() - CLZ(val) - 1u) : 0;
141 }
142 
143 template<typename T>
IsPowerOfTwo(T x)144 constexpr bool IsPowerOfTwo(T x) {
145   static_assert(std::is_integral<T>::value, "T must be integral");
146   // TODO: assert unsigned. There is currently many uses with signed values.
147   return (x & (x - 1)) == 0;
148 }
149 
150 template<typename T>
WhichPowerOf2(T x)151 constexpr int WhichPowerOf2(T x) {
152   static_assert(std::is_integral<T>::value, "T must be integral");
153   // TODO: assert unsigned. There is currently many uses with signed values.
154   DCHECK((x != 0) && IsPowerOfTwo(x));
155   return CTZ(x);
156 }
157 
158 // For rounding integers.
159 // Note: Omit the `n` from T type deduction, deduce only from the `x` argument.
160 template<typename T>
161 constexpr T RoundDown(T x, typename Identity<T>::type n) WARN_UNUSED;
162 
163 template<typename T>
RoundDown(T x,typename Identity<T>::type n)164 constexpr T RoundDown(T x, typename Identity<T>::type n) {
165   DCHECK(IsPowerOfTwo(n));
166   return (x & -n);
167 }
168 
169 template<typename T>
170 constexpr T RoundUp(T x, typename std::remove_reference<T>::type n) WARN_UNUSED;
171 
172 template<typename T>
RoundUp(T x,typename std::remove_reference<T>::type n)173 constexpr T RoundUp(T x, typename std::remove_reference<T>::type n) {
174   return RoundDown(x + n - 1, n);
175 }
176 
177 // For aligning pointers.
178 template<typename T>
179 inline T* AlignDown(T* x, uintptr_t n) WARN_UNUSED;
180 
181 template<typename T>
AlignDown(T * x,uintptr_t n)182 inline T* AlignDown(T* x, uintptr_t n) {
183   return reinterpret_cast<T*>(RoundDown(reinterpret_cast<uintptr_t>(x), n));
184 }
185 
186 template<typename T>
187 inline T* AlignUp(T* x, uintptr_t n) WARN_UNUSED;
188 
189 template<typename T>
AlignUp(T * x,uintptr_t n)190 inline T* AlignUp(T* x, uintptr_t n) {
191   return reinterpret_cast<T*>(RoundUp(reinterpret_cast<uintptr_t>(x), n));
192 }
193 
194 template<int n, typename T>
IsAligned(T x)195 constexpr bool IsAligned(T x) {
196   static_assert((n & (n - 1)) == 0, "n is not a power of two");
197   return (x & (n - 1)) == 0;
198 }
199 
200 template<int n, typename T>
IsAligned(T * x)201 inline bool IsAligned(T* x) {
202   return IsAligned<n>(reinterpret_cast<const uintptr_t>(x));
203 }
204 
205 template<typename T>
IsAlignedParam(T x,int n)206 inline bool IsAlignedParam(T x, int n) {
207   return (x & (n - 1)) == 0;
208 }
209 
210 template<typename T>
IsAlignedParam(T * x,int n)211 inline bool IsAlignedParam(T* x, int n) {
212   return IsAlignedParam(reinterpret_cast<const uintptr_t>(x), n);
213 }
214 
215 #define CHECK_ALIGNED(value, alignment) \
216   CHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)
217 
218 #define DCHECK_ALIGNED(value, alignment) \
219   DCHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)
220 
221 #define CHECK_ALIGNED_PARAM(value, alignment) \
222   CHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value)
223 
224 #define DCHECK_ALIGNED_PARAM(value, alignment) \
225   DCHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value)
226 
Low16Bits(uint32_t value)227 inline uint16_t Low16Bits(uint32_t value) {
228   return static_cast<uint16_t>(value);
229 }
230 
High16Bits(uint32_t value)231 inline uint16_t High16Bits(uint32_t value) {
232   return static_cast<uint16_t>(value >> 16);
233 }
234 
Low32Bits(uint64_t value)235 inline uint32_t Low32Bits(uint64_t value) {
236   return static_cast<uint32_t>(value);
237 }
238 
High32Bits(uint64_t value)239 inline uint32_t High32Bits(uint64_t value) {
240   return static_cast<uint32_t>(value >> 32);
241 }
242 
243 // Check whether an N-bit two's-complement representation can hold value.
244 template <typename T>
IsInt(size_t N,T value)245 inline bool IsInt(size_t N, T value) {
246   if (N == BitSizeOf<T>()) {
247     return true;
248   } else {
249     CHECK_LT(0u, N);
250     CHECK_LT(N, BitSizeOf<T>());
251     T limit = static_cast<T>(1) << (N - 1u);
252     return (-limit <= value) && (value < limit);
253   }
254 }
255 
256 template <typename T>
GetIntLimit(size_t bits)257 constexpr T GetIntLimit(size_t bits) {
258   DCHECK_NE(bits, 0u);
259   DCHECK_LT(bits, BitSizeOf<T>());
260   return static_cast<T>(1) << (bits - 1);
261 }
262 
263 template <size_t kBits, typename T>
IsInt(T value)264 constexpr bool IsInt(T value) {
265   static_assert(kBits > 0, "kBits cannot be zero.");
266   static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max.");
267   static_assert(std::is_signed<T>::value, "Needs a signed type.");
268   // Corner case for "use all bits." Can't use the limits, as they would overflow, but it is
269   // trivially true.
270   return (kBits == BitSizeOf<T>()) ?
271       true :
272       (-GetIntLimit<T>(kBits) <= value) && (value < GetIntLimit<T>(kBits));
273 }
274 
275 template <size_t kBits, typename T>
IsUint(T value)276 constexpr bool IsUint(T value) {
277   static_assert(kBits > 0, "kBits cannot be zero.");
278   static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max.");
279   static_assert(std::is_integral<T>::value, "Needs an integral type.");
280   // Corner case for "use all bits." Can't use the limits, as they would overflow, but it is
281   // trivially true.
282   // NOTE: To avoid triggering assertion in GetIntLimit(kBits+1) if kBits+1==BitSizeOf<T>(),
283   // use GetIntLimit(kBits)*2u. The unsigned arithmetic works well for us if it overflows.
284   using unsigned_type = typename std::make_unsigned<T>::type;
285   return (0 <= value) &&
286       (kBits == BitSizeOf<T>() ||
287           (static_cast<unsigned_type>(value) <= GetIntLimit<unsigned_type>(kBits) * 2u - 1u));
288 }
289 
290 template <size_t kBits, typename T>
IsAbsoluteUint(T value)291 constexpr bool IsAbsoluteUint(T value) {
292   static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max.");
293   static_assert(std::is_integral<T>::value, "Needs an integral type.");
294   using unsigned_type = typename std::make_unsigned<T>::type;
295   return (kBits == BitSizeOf<T>())
296       ? true
297       : IsUint<kBits>(value < 0
298                       ? static_cast<unsigned_type>(-1 - value) + 1u  // Avoid overflow.
299                       : static_cast<unsigned_type>(value));
300 }
301 
302 // Generate maximum/minimum values for signed/unsigned n-bit integers
303 template <typename T>
MaxInt(size_t bits)304 constexpr T MaxInt(size_t bits) {
305   DCHECK(std::is_unsigned<T>::value || bits > 0u) << "bits cannot be zero for signed.";
306   DCHECK_LE(bits, BitSizeOf<T>());
307   using unsigned_type = typename std::make_unsigned<T>::type;
308   return bits == BitSizeOf<T>()
309       ? std::numeric_limits<T>::max()
310       : std::is_signed<T>::value
311           ? ((bits == 1u) ? 0 : static_cast<T>(MaxInt<unsigned_type>(bits - 1)))
312           : static_cast<T>(UINT64_C(1) << bits) - static_cast<T>(1);
313 }
314 
315 template <typename T>
MinInt(size_t bits)316 constexpr T MinInt(size_t bits) {
317   DCHECK(std::is_unsigned<T>::value || bits > 0) << "bits cannot be zero for signed.";
318   DCHECK_LE(bits, BitSizeOf<T>());
319   return bits == BitSizeOf<T>()
320       ? std::numeric_limits<T>::min()
321       : std::is_signed<T>::value
322           ? ((bits == 1u) ? -1 : static_cast<T>(-1) - MaxInt<T>(bits))
323           : static_cast<T>(0);
324 }
325 
326 // Returns value with bit set in lowest one-bit position or 0 if 0.  (java.lang.X.lowestOneBit).
327 template <typename kind>
LowestOneBitValue(kind opnd)328 inline static kind LowestOneBitValue(kind opnd) {
329   // Hacker's Delight, Section 2-1
330   return opnd & -opnd;
331 }
332 
333 // Returns value with bit set in hightest one-bit position or 0 if 0.  (java.lang.X.highestOneBit).
334 template <typename T>
HighestOneBitValue(T opnd)335 inline static T HighestOneBitValue(T opnd) {
336   using unsigned_type = typename std::make_unsigned<T>::type;
337   T res;
338   if (opnd == 0) {
339     res = 0;
340   } else {
341     int bit_position = BitSizeOf<T>() - (CLZ(static_cast<unsigned_type>(opnd)) + 1);
342     res = static_cast<T>(UINT64_C(1) << bit_position);
343   }
344   return res;
345 }
346 
347 // Rotate bits.
348 template <typename T, bool left>
Rot(T opnd,int distance)349 inline static T Rot(T opnd, int distance) {
350   int mask = BitSizeOf<T>() - 1;
351   int unsigned_right_shift = left ? (-distance & mask) : (distance & mask);
352   int signed_left_shift = left ? (distance & mask) : (-distance & mask);
353   using unsigned_type = typename std::make_unsigned<T>::type;
354   return (static_cast<unsigned_type>(opnd) >> unsigned_right_shift) | (opnd << signed_left_shift);
355 }
356 
357 // TUNING: use rbit for arm/arm64
ReverseBits32(uint32_t opnd)358 inline static uint32_t ReverseBits32(uint32_t opnd) {
359   // Hacker's Delight 7-1
360   opnd = ((opnd >>  1) & 0x55555555) | ((opnd & 0x55555555) <<  1);
361   opnd = ((opnd >>  2) & 0x33333333) | ((opnd & 0x33333333) <<  2);
362   opnd = ((opnd >>  4) & 0x0F0F0F0F) | ((opnd & 0x0F0F0F0F) <<  4);
363   opnd = ((opnd >>  8) & 0x00FF00FF) | ((opnd & 0x00FF00FF) <<  8);
364   opnd = ((opnd >> 16)) | ((opnd) << 16);
365   return opnd;
366 }
367 
368 // TUNING: use rbit for arm/arm64
ReverseBits64(uint64_t opnd)369 inline static uint64_t ReverseBits64(uint64_t opnd) {
370   // Hacker's Delight 7-1
371   opnd = (opnd & 0x5555555555555555L) << 1 | ((opnd >> 1) & 0x5555555555555555L);
372   opnd = (opnd & 0x3333333333333333L) << 2 | ((opnd >> 2) & 0x3333333333333333L);
373   opnd = (opnd & 0x0f0f0f0f0f0f0f0fL) << 4 | ((opnd >> 4) & 0x0f0f0f0f0f0f0f0fL);
374   opnd = (opnd & 0x00ff00ff00ff00ffL) << 8 | ((opnd >> 8) & 0x00ff00ff00ff00ffL);
375   opnd = (opnd << 48) | ((opnd & 0xffff0000L) << 16) | ((opnd >> 16) & 0xffff0000L) | (opnd >> 48);
376   return opnd;
377 }
378 
379 // Create a mask for the least significant "bits"
380 // The returned value is always unsigned to prevent undefined behavior for bitwise ops.
381 //
382 // Given 'bits',
383 // Returns:
384 //                   <--- bits --->
385 // +-----------------+------------+
386 // | 0 ............0 |   1.....1  |
387 // +-----------------+------------+
388 // msb                           lsb
389 template <typename T = size_t>
MaskLeastSignificant(size_t bits)390 inline static constexpr std::make_unsigned_t<T> MaskLeastSignificant(size_t bits) {
391   DCHECK_GE(BitSizeOf<T>(), bits) << "Bits out of range for type T";
392   using unsigned_T = std::make_unsigned_t<T>;
393   if (bits >= BitSizeOf<T>()) {
394     return std::numeric_limits<unsigned_T>::max();
395   } else {
396     auto kOne = static_cast<unsigned_T>(1);  // Do not truncate for T>size_t.
397     return static_cast<unsigned_T>((kOne << bits) - kOne);
398   }
399 }
400 
401 // Clears the bitfield starting at the least significant bit "lsb" with a bitwidth of 'width'.
402 // (Equivalent of ARM BFC instruction).
403 //
404 // Given:
405 //           <-- width  -->
406 // +--------+------------+--------+
407 // | ABC... |  bitfield  | XYZ... +
408 // +--------+------------+--------+
409 //                       lsb      0
410 // Returns:
411 //           <-- width  -->
412 // +--------+------------+--------+
413 // | ABC... | 0........0 | XYZ... +
414 // +--------+------------+--------+
415 //                       lsb      0
416 template <typename T>
BitFieldClear(T value,size_t lsb,size_t width)417 inline static constexpr T BitFieldClear(T value, size_t lsb, size_t width) {
418   DCHECK_GE(BitSizeOf(value), lsb + width) << "Bit field out of range for value";
419   const auto val = static_cast<std::make_unsigned_t<T>>(value);
420   const auto mask = MaskLeastSignificant<T>(width);
421 
422   return static_cast<T>(val & ~(mask << lsb));
423 }
424 
425 // Inserts the contents of 'data' into bitfield of 'value'  starting
426 // at the least significant bit "lsb" with a bitwidth of 'width'.
427 // Note: data must be within range of [MinInt(width), MaxInt(width)].
428 // (Equivalent of ARM BFI instruction).
429 //
430 // Given (data):
431 //           <-- width  -->
432 // +--------+------------+--------+
433 // | ABC... |  bitfield  | XYZ... +
434 // +--------+------------+--------+
435 //                       lsb      0
436 // Returns:
437 //           <-- width  -->
438 // +--------+------------+--------+
439 // | ABC... | 0...data   | XYZ... +
440 // +--------+------------+--------+
441 //                       lsb      0
442 
443 template <typename T, typename T2>
BitFieldInsert(T value,T2 data,size_t lsb,size_t width)444 inline static constexpr T BitFieldInsert(T value, T2 data, size_t lsb, size_t width) {
445   DCHECK_GE(BitSizeOf(value), lsb + width) << "Bit field out of range for value";
446   if (width != 0u) {
447     DCHECK_GE(MaxInt<T2>(width), data) << "Data out of range [too large] for bitwidth";
448     DCHECK_LE(MinInt<T2>(width), data) << "Data out of range [too small] for bitwidth";
449   } else {
450     DCHECK_EQ(static_cast<T2>(0), data) << "Data out of range [nonzero] for bitwidth 0";
451   }
452   const auto data_mask = MaskLeastSignificant<T2>(width);
453   const auto value_cleared = BitFieldClear(value, lsb, width);
454 
455   return static_cast<T>(value_cleared | ((data & data_mask) << lsb));
456 }
457 
458 // Extracts the bitfield starting at the least significant bit "lsb" with a bitwidth of 'width'.
459 // Signed types are sign-extended during extraction. (Equivalent of ARM UBFX/SBFX instruction).
460 //
461 // Given:
462 //           <-- width   -->
463 // +--------+-------------+-------+
464 // |        |   bitfield  |       +
465 // +--------+-------------+-------+
466 //                       lsb      0
467 // (Unsigned) Returns:
468 //                  <-- width   -->
469 // +----------------+-------------+
470 // | 0...        0  |   bitfield  |
471 // +----------------+-------------+
472 //                                0
473 // (Signed) Returns:
474 //                  <-- width   -->
475 // +----------------+-------------+
476 // | S...        S  |   bitfield  |
477 // +----------------+-------------+
478 //                                0
479 // where S is the highest bit in 'bitfield'.
480 template <typename T>
BitFieldExtract(T value,size_t lsb,size_t width)481 inline static constexpr T BitFieldExtract(T value, size_t lsb, size_t width) {
482   DCHECK_GE(BitSizeOf(value), lsb + width) << "Bit field out of range for value";
483   const auto val = static_cast<std::make_unsigned_t<T>>(value);
484 
485   const T bitfield_unsigned =
486       static_cast<T>((val >> lsb) & MaskLeastSignificant<T>(width));
487   if (std::is_signed<T>::value) {
488     // Perform sign extension
489     if (width == 0) {  // Avoid underflow.
490       return static_cast<T>(0);
491     } else if (bitfield_unsigned & (1 << (width - 1))) {  // Detect if sign bit was set.
492       // MSB        <width> LSB
493       // 0b11111...100...000000
494       const auto ones_negmask = ~MaskLeastSignificant<T>(width);
495       return static_cast<T>(bitfield_unsigned | ones_negmask);
496     }
497   }
498   // Skip sign extension.
499   return bitfield_unsigned;
500 }
501 
502 }  // namespace art
503 
504 #endif  // ART_LIBARTBASE_BASE_BIT_UTILS_H_
505