1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "descriptors_names.h"
18
19 #include "android-base/stringprintf.h"
20 #include "android-base/strings.h"
21
22 #include "dex/utf-inl.h"
23
24 namespace art {
25
26 using android::base::StringAppendF;
27 using android::base::StringPrintf;
28
AppendPrettyDescriptor(const char * descriptor,std::string * result)29 void AppendPrettyDescriptor(const char* descriptor, std::string* result) {
30 // Count the number of '['s to get the dimensionality.
31 const char* c = descriptor;
32 size_t dim = 0;
33 while (*c == '[') {
34 dim++;
35 c++;
36 }
37
38 // Reference or primitive?
39 if (*c == 'L') {
40 // "[[La/b/C;" -> "a.b.C[][]".
41 c++; // Skip the 'L'.
42 } else {
43 // "[[B" -> "byte[][]".
44 // To make life easier, we make primitives look like unqualified
45 // reference types.
46 switch (*c) {
47 case 'B': c = "byte;"; break;
48 case 'C': c = "char;"; break;
49 case 'D': c = "double;"; break;
50 case 'F': c = "float;"; break;
51 case 'I': c = "int;"; break;
52 case 'J': c = "long;"; break;
53 case 'S': c = "short;"; break;
54 case 'Z': c = "boolean;"; break;
55 case 'V': c = "void;"; break; // Used when decoding return types.
56 default: result->append(descriptor); return;
57 }
58 }
59
60 // At this point, 'c' is a string of the form "fully/qualified/Type;"
61 // or "primitive;". Rewrite the type with '.' instead of '/':
62 const char* p = c;
63 while (*p != ';') {
64 char ch = *p++;
65 if (ch == '/') {
66 ch = '.';
67 }
68 result->push_back(ch);
69 }
70 // ...and replace the semicolon with 'dim' "[]" pairs:
71 for (size_t i = 0; i < dim; ++i) {
72 result->append("[]");
73 }
74 }
75
PrettyDescriptor(const char * descriptor)76 std::string PrettyDescriptor(const char* descriptor) {
77 std::string result;
78 AppendPrettyDescriptor(descriptor, &result);
79 return result;
80 }
81
GetJniShortName(const std::string & class_descriptor,const std::string & method)82 std::string GetJniShortName(const std::string& class_descriptor, const std::string& method) {
83 // Remove the leading 'L' and trailing ';'...
84 std::string class_name(class_descriptor);
85 CHECK_EQ(class_name[0], 'L') << class_name;
86 CHECK_EQ(class_name[class_name.size() - 1], ';') << class_name;
87 class_name.erase(0, 1);
88 class_name.erase(class_name.size() - 1, 1);
89
90 std::string short_name;
91 short_name += "Java_";
92 short_name += MangleForJni(class_name);
93 short_name += "_";
94 short_name += MangleForJni(method);
95 return short_name;
96 }
97
98 // See http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/design.html#wp615 for the full rules.
MangleForJni(const std::string & s)99 std::string MangleForJni(const std::string& s) {
100 std::string result;
101 size_t char_count = CountModifiedUtf8Chars(s.c_str());
102 const char* cp = &s[0];
103 for (size_t i = 0; i < char_count; ++i) {
104 uint32_t ch = GetUtf16FromUtf8(&cp);
105 if ((ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z') || (ch >= '0' && ch <= '9')) {
106 result.push_back(ch);
107 } else if (ch == '.' || ch == '/') {
108 result += "_";
109 } else if (ch == '_') {
110 result += "_1";
111 } else if (ch == ';') {
112 result += "_2";
113 } else if (ch == '[') {
114 result += "_3";
115 } else {
116 const uint16_t leading = GetLeadingUtf16Char(ch);
117 const uint32_t trailing = GetTrailingUtf16Char(ch);
118
119 StringAppendF(&result, "_0%04x", leading);
120 if (trailing != 0) {
121 StringAppendF(&result, "_0%04x", trailing);
122 }
123 }
124 }
125 return result;
126 }
127
DotToDescriptor(const char * class_name)128 std::string DotToDescriptor(const char* class_name) {
129 std::string descriptor(class_name);
130 std::replace(descriptor.begin(), descriptor.end(), '.', '/');
131 if (descriptor.length() > 0 && descriptor[0] != '[') {
132 descriptor = "L" + descriptor + ";";
133 }
134 return descriptor;
135 }
136
DescriptorToDot(const char * descriptor)137 std::string DescriptorToDot(const char* descriptor) {
138 size_t length = strlen(descriptor);
139 if (length > 1) {
140 if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
141 // Descriptors have the leading 'L' and trailing ';' stripped.
142 std::string result(descriptor + 1, length - 2);
143 std::replace(result.begin(), result.end(), '/', '.');
144 return result;
145 } else {
146 // For arrays the 'L' and ';' remain intact.
147 std::string result(descriptor);
148 std::replace(result.begin(), result.end(), '/', '.');
149 return result;
150 }
151 }
152 // Do nothing for non-class/array descriptors.
153 return descriptor;
154 }
155
DescriptorToName(const char * descriptor)156 std::string DescriptorToName(const char* descriptor) {
157 size_t length = strlen(descriptor);
158 if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
159 std::string result(descriptor + 1, length - 2);
160 return result;
161 }
162 return descriptor;
163 }
164
165 // Helper for IsValidPartOfMemberNameUtf8(), a bit vector indicating valid low ascii.
166 static uint32_t DEX_MEMBER_VALID_LOW_ASCII[4] = {
167 0x00000000, // 00..1f low control characters; nothing valid
168 0x03ff2010, // 20..3f digits and symbols; valid: '0'..'9', '$', '-'
169 0x87fffffe, // 40..5f uppercase etc.; valid: 'A'..'Z', '_'
170 0x07fffffe // 60..7f lowercase etc.; valid: 'a'..'z'
171 };
172
173 // Helper for IsValidPartOfMemberNameUtf8(); do not call directly.
IsValidPartOfMemberNameUtf8Slow(const char ** pUtf8Ptr)174 static bool IsValidPartOfMemberNameUtf8Slow(const char** pUtf8Ptr) {
175 /*
176 * It's a multibyte encoded character. Decode it and analyze. We
177 * accept anything that isn't (a) an improperly encoded low value,
178 * (b) an improper surrogate pair, (c) an encoded '\0', (d) a high
179 * control character, or (e) a high space, layout, or special
180 * character (U+00a0, U+2000..U+200f, U+2028..U+202f,
181 * U+fff0..U+ffff). This is all specified in the dex format
182 * document.
183 */
184
185 const uint32_t pair = GetUtf16FromUtf8(pUtf8Ptr);
186 const uint16_t leading = GetLeadingUtf16Char(pair);
187
188 // We have a surrogate pair resulting from a valid 4 byte UTF sequence.
189 // No further checks are necessary because 4 byte sequences span code
190 // points [U+10000, U+1FFFFF], which are valid codepoints in a dex
191 // identifier. Furthermore, GetUtf16FromUtf8 guarantees that each of
192 // the surrogate halves are valid and well formed in this instance.
193 if (GetTrailingUtf16Char(pair) != 0) {
194 return true;
195 }
196
197
198 // We've encountered a one, two or three byte UTF-8 sequence. The
199 // three byte UTF-8 sequence could be one half of a surrogate pair.
200 switch (leading >> 8) {
201 case 0x00:
202 // It's only valid if it's above the ISO-8859-1 high space (0xa0).
203 return (leading > 0x00a0);
204 case 0xd8:
205 case 0xd9:
206 case 0xda:
207 case 0xdb:
208 {
209 // We found a three byte sequence encoding one half of a surrogate.
210 // Look for the other half.
211 const uint32_t pair2 = GetUtf16FromUtf8(pUtf8Ptr);
212 const uint16_t trailing = GetLeadingUtf16Char(pair2);
213
214 return (GetTrailingUtf16Char(pair2) == 0) && (0xdc00 <= trailing && trailing <= 0xdfff);
215 }
216 case 0xdc:
217 case 0xdd:
218 case 0xde:
219 case 0xdf:
220 // It's a trailing surrogate, which is not valid at this point.
221 return false;
222 case 0x20:
223 case 0xff:
224 // It's in the range that has spaces, controls, and specials.
225 switch (leading & 0xfff8) {
226 case 0x2000:
227 case 0x2008:
228 case 0x2028:
229 case 0xfff0:
230 case 0xfff8:
231 return false;
232 }
233 return true;
234 default:
235 return true;
236 }
237
238 UNREACHABLE();
239 }
240
241 /* Return whether the pointed-at modified-UTF-8 encoded character is
242 * valid as part of a member name, updating the pointer to point past
243 * the consumed character. This will consume two encoded UTF-16 code
244 * points if the character is encoded as a surrogate pair. Also, if
245 * this function returns false, then the given pointer may only have
246 * been partially advanced.
247 */
IsValidPartOfMemberNameUtf8(const char ** pUtf8Ptr)248 static bool IsValidPartOfMemberNameUtf8(const char** pUtf8Ptr) {
249 uint8_t c = (uint8_t) **pUtf8Ptr;
250 if (LIKELY(c <= 0x7f)) {
251 // It's low-ascii, so check the table.
252 uint32_t wordIdx = c >> 5;
253 uint32_t bitIdx = c & 0x1f;
254 (*pUtf8Ptr)++;
255 return (DEX_MEMBER_VALID_LOW_ASCII[wordIdx] & (1 << bitIdx)) != 0;
256 }
257
258 // It's a multibyte encoded character. Call a non-inline function
259 // for the heavy lifting.
260 return IsValidPartOfMemberNameUtf8Slow(pUtf8Ptr);
261 }
262
IsValidMemberName(const char * s)263 bool IsValidMemberName(const char* s) {
264 bool angle_name = false;
265
266 switch (*s) {
267 case '\0':
268 // The empty string is not a valid name.
269 return false;
270 case '<':
271 angle_name = true;
272 s++;
273 break;
274 }
275
276 while (true) {
277 switch (*s) {
278 case '\0':
279 return !angle_name;
280 case '>':
281 return angle_name && s[1] == '\0';
282 }
283
284 if (!IsValidPartOfMemberNameUtf8(&s)) {
285 return false;
286 }
287 }
288 }
289
290 enum ClassNameType { kName, kDescriptor };
291 template<ClassNameType kType, char kSeparator>
IsValidClassName(const char * s)292 static bool IsValidClassName(const char* s) {
293 int arrayCount = 0;
294 while (*s == '[') {
295 arrayCount++;
296 s++;
297 }
298
299 if (arrayCount > 255) {
300 // Arrays may have no more than 255 dimensions.
301 return false;
302 }
303
304 ClassNameType type = kType;
305 if (type != kDescriptor && arrayCount != 0) {
306 /*
307 * If we're looking at an array of some sort, then it doesn't
308 * matter if what is being asked for is a class name; the
309 * format looks the same as a type descriptor in that case, so
310 * treat it as such.
311 */
312 type = kDescriptor;
313 }
314
315 if (type == kDescriptor) {
316 /*
317 * We are looking for a descriptor. Either validate it as a
318 * single-character primitive type, or continue on to check the
319 * embedded class name (bracketed by "L" and ";").
320 */
321 switch (*(s++)) {
322 case 'B':
323 case 'C':
324 case 'D':
325 case 'F':
326 case 'I':
327 case 'J':
328 case 'S':
329 case 'Z':
330 // These are all single-character descriptors for primitive types.
331 return (*s == '\0');
332 case 'V':
333 // Non-array void is valid, but you can't have an array of void.
334 return (arrayCount == 0) && (*s == '\0');
335 case 'L':
336 // Class name: Break out and continue below.
337 break;
338 default:
339 // Oddball descriptor character.
340 return false;
341 }
342 }
343
344 /*
345 * We just consumed the 'L' that introduces a class name as part
346 * of a type descriptor, or we are looking for an unadorned class
347 * name.
348 */
349
350 bool sepOrFirst = true; // first character or just encountered a separator.
351 for (;;) {
352 uint8_t c = (uint8_t) *s;
353 switch (c) {
354 case '\0':
355 /*
356 * Premature end for a type descriptor, but valid for
357 * a class name as long as we haven't encountered an
358 * empty component (including the degenerate case of
359 * the empty string "").
360 */
361 return (type == kName) && !sepOrFirst;
362 case ';':
363 /*
364 * Invalid character for a class name, but the
365 * legitimate end of a type descriptor. In the latter
366 * case, make sure that this is the end of the string
367 * and that it doesn't end with an empty component
368 * (including the degenerate case of "L;").
369 */
370 return (type == kDescriptor) && !sepOrFirst && (s[1] == '\0');
371 case '/':
372 case '.':
373 if (c != kSeparator) {
374 // The wrong separator character.
375 return false;
376 }
377 if (sepOrFirst) {
378 // Separator at start or two separators in a row.
379 return false;
380 }
381 sepOrFirst = true;
382 s++;
383 break;
384 default:
385 if (!IsValidPartOfMemberNameUtf8(&s)) {
386 return false;
387 }
388 sepOrFirst = false;
389 break;
390 }
391 }
392 }
393
IsValidBinaryClassName(const char * s)394 bool IsValidBinaryClassName(const char* s) {
395 return IsValidClassName<kName, '.'>(s);
396 }
397
IsValidJniClassName(const char * s)398 bool IsValidJniClassName(const char* s) {
399 return IsValidClassName<kName, '/'>(s);
400 }
401
IsValidDescriptor(const char * s)402 bool IsValidDescriptor(const char* s) {
403 return IsValidClassName<kDescriptor, '/'>(s);
404 }
405
Split(const std::string & s,char separator,std::vector<std::string> * result)406 void Split(const std::string& s, char separator, std::vector<std::string>* result) {
407 const char* p = s.data();
408 const char* end = p + s.size();
409 while (p != end) {
410 if (*p == separator) {
411 ++p;
412 } else {
413 const char* start = p;
414 while (++p != end && *p != separator) {
415 // Skip to the next occurrence of the separator.
416 }
417 result->push_back(std::string(start, p - start));
418 }
419 }
420 }
421
PrettyDescriptor(Primitive::Type type)422 std::string PrettyDescriptor(Primitive::Type type) {
423 return PrettyDescriptor(Primitive::Descriptor(type));
424 }
425
426 } // namespace art
427