1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #if V8_TARGET_ARCH_ARM64
6 
7 #include "src/base/bits.h"
8 #include "src/base/division-by-constant.h"
9 #include "src/bootstrapper.h"
10 #include "src/codegen.h"
11 #include "src/debug/debug.h"
12 #include "src/register-configuration.h"
13 #include "src/runtime/runtime.h"
14 
15 #include "src/arm64/frames-arm64.h"
16 #include "src/arm64/macro-assembler-arm64.h"
17 
18 namespace v8 {
19 namespace internal {
20 
21 // Define a fake double underscore to use with the ASM_UNIMPLEMENTED macros.
22 #define __
23 
24 
MacroAssembler(Isolate * arg_isolate,byte * buffer,unsigned buffer_size,CodeObjectRequired create_code_object)25 MacroAssembler::MacroAssembler(Isolate* arg_isolate, byte* buffer,
26                                unsigned buffer_size,
27                                CodeObjectRequired create_code_object)
28     : Assembler(arg_isolate, buffer, buffer_size),
29       generating_stub_(false),
30 #if DEBUG
31       allow_macro_instructions_(true),
32 #endif
33       has_frame_(false),
34       use_real_aborts_(true),
35       sp_(jssp),
36       tmp_list_(DefaultTmpList()),
37       fptmp_list_(DefaultFPTmpList()) {
38   if (create_code_object == CodeObjectRequired::kYes) {
39     code_object_ =
40         Handle<Object>::New(isolate()->heap()->undefined_value(), isolate());
41   }
42 }
43 
44 
DefaultTmpList()45 CPURegList MacroAssembler::DefaultTmpList() {
46   return CPURegList(ip0, ip1);
47 }
48 
49 
DefaultFPTmpList()50 CPURegList MacroAssembler::DefaultFPTmpList() {
51   return CPURegList(fp_scratch1, fp_scratch2);
52 }
53 
54 
LogicalMacro(const Register & rd,const Register & rn,const Operand & operand,LogicalOp op)55 void MacroAssembler::LogicalMacro(const Register& rd,
56                                   const Register& rn,
57                                   const Operand& operand,
58                                   LogicalOp op) {
59   UseScratchRegisterScope temps(this);
60 
61   if (operand.NeedsRelocation(this)) {
62     Register temp = temps.AcquireX();
63     Ldr(temp, operand.immediate());
64     Logical(rd, rn, temp, op);
65 
66   } else if (operand.IsImmediate()) {
67     int64_t immediate = operand.ImmediateValue();
68     unsigned reg_size = rd.SizeInBits();
69 
70     // If the operation is NOT, invert the operation and immediate.
71     if ((op & NOT) == NOT) {
72       op = static_cast<LogicalOp>(op & ~NOT);
73       immediate = ~immediate;
74     }
75 
76     // Ignore the top 32 bits of an immediate if we're moving to a W register.
77     if (rd.Is32Bits()) {
78       // Check that the top 32 bits are consistent.
79       DCHECK(((immediate >> kWRegSizeInBits) == 0) ||
80              ((immediate >> kWRegSizeInBits) == -1));
81       immediate &= kWRegMask;
82     }
83 
84     DCHECK(rd.Is64Bits() || is_uint32(immediate));
85 
86     // Special cases for all set or all clear immediates.
87     if (immediate == 0) {
88       switch (op) {
89         case AND:
90           Mov(rd, 0);
91           return;
92         case ORR:  // Fall through.
93         case EOR:
94           Mov(rd, rn);
95           return;
96         case ANDS:  // Fall through.
97         case BICS:
98           break;
99         default:
100           UNREACHABLE();
101       }
102     } else if ((rd.Is64Bits() && (immediate == -1L)) ||
103                (rd.Is32Bits() && (immediate == 0xffffffffL))) {
104       switch (op) {
105         case AND:
106           Mov(rd, rn);
107           return;
108         case ORR:
109           Mov(rd, immediate);
110           return;
111         case EOR:
112           Mvn(rd, rn);
113           return;
114         case ANDS:  // Fall through.
115         case BICS:
116           break;
117         default:
118           UNREACHABLE();
119       }
120     }
121 
122     unsigned n, imm_s, imm_r;
123     if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
124       // Immediate can be encoded in the instruction.
125       LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
126     } else {
127       // Immediate can't be encoded: synthesize using move immediate.
128       Register temp = temps.AcquireSameSizeAs(rn);
129       Operand imm_operand = MoveImmediateForShiftedOp(temp, immediate);
130       if (rd.Is(csp)) {
131         // If rd is the stack pointer we cannot use it as the destination
132         // register so we use the temp register as an intermediate again.
133         Logical(temp, rn, imm_operand, op);
134         Mov(csp, temp);
135         AssertStackConsistency();
136       } else {
137         Logical(rd, rn, imm_operand, op);
138       }
139     }
140 
141   } else if (operand.IsExtendedRegister()) {
142     DCHECK(operand.reg().SizeInBits() <= rd.SizeInBits());
143     // Add/sub extended supports shift <= 4. We want to support exactly the
144     // same modes here.
145     DCHECK(operand.shift_amount() <= 4);
146     DCHECK(operand.reg().Is64Bits() ||
147            ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
148     Register temp = temps.AcquireSameSizeAs(rn);
149     EmitExtendShift(temp, operand.reg(), operand.extend(),
150                     operand.shift_amount());
151     Logical(rd, rn, temp, op);
152 
153   } else {
154     // The operand can be encoded in the instruction.
155     DCHECK(operand.IsShiftedRegister());
156     Logical(rd, rn, operand, op);
157   }
158 }
159 
160 
Mov(const Register & rd,uint64_t imm)161 void MacroAssembler::Mov(const Register& rd, uint64_t imm) {
162   DCHECK(allow_macro_instructions_);
163   DCHECK(is_uint32(imm) || is_int32(imm) || rd.Is64Bits());
164   DCHECK(!rd.IsZero());
165 
166   // TODO(all) extend to support more immediates.
167   //
168   // Immediates on Aarch64 can be produced using an initial value, and zero to
169   // three move keep operations.
170   //
171   // Initial values can be generated with:
172   //  1. 64-bit move zero (movz).
173   //  2. 32-bit move inverted (movn).
174   //  3. 64-bit move inverted.
175   //  4. 32-bit orr immediate.
176   //  5. 64-bit orr immediate.
177   // Move-keep may then be used to modify each of the 16-bit half-words.
178   //
179   // The code below supports all five initial value generators, and
180   // applying move-keep operations to move-zero and move-inverted initial
181   // values.
182 
183   // Try to move the immediate in one instruction, and if that fails, switch to
184   // using multiple instructions.
185   if (!TryOneInstrMoveImmediate(rd, imm)) {
186     unsigned reg_size = rd.SizeInBits();
187 
188     // Generic immediate case. Imm will be represented by
189     //   [imm3, imm2, imm1, imm0], where each imm is 16 bits.
190     // A move-zero or move-inverted is generated for the first non-zero or
191     // non-0xffff immX, and a move-keep for subsequent non-zero immX.
192 
193     uint64_t ignored_halfword = 0;
194     bool invert_move = false;
195     // If the number of 0xffff halfwords is greater than the number of 0x0000
196     // halfwords, it's more efficient to use move-inverted.
197     if (CountClearHalfWords(~imm, reg_size) >
198         CountClearHalfWords(imm, reg_size)) {
199       ignored_halfword = 0xffffL;
200       invert_move = true;
201     }
202 
203     // Mov instructions can't move immediate values into the stack pointer, so
204     // set up a temporary register, if needed.
205     UseScratchRegisterScope temps(this);
206     Register temp = rd.IsSP() ? temps.AcquireSameSizeAs(rd) : rd;
207 
208     // Iterate through the halfwords. Use movn/movz for the first non-ignored
209     // halfword, and movk for subsequent halfwords.
210     DCHECK((reg_size % 16) == 0);
211     bool first_mov_done = false;
212     for (int i = 0; i < (rd.SizeInBits() / 16); i++) {
213       uint64_t imm16 = (imm >> (16 * i)) & 0xffffL;
214       if (imm16 != ignored_halfword) {
215         if (!first_mov_done) {
216           if (invert_move) {
217             movn(temp, (~imm16) & 0xffffL, 16 * i);
218           } else {
219             movz(temp, imm16, 16 * i);
220           }
221           first_mov_done = true;
222         } else {
223           // Construct a wider constant.
224           movk(temp, imm16, 16 * i);
225         }
226       }
227     }
228     DCHECK(first_mov_done);
229 
230     // Move the temporary if the original destination register was the stack
231     // pointer.
232     if (rd.IsSP()) {
233       mov(rd, temp);
234       AssertStackConsistency();
235     }
236   }
237 }
238 
239 
Mov(const Register & rd,const Operand & operand,DiscardMoveMode discard_mode)240 void MacroAssembler::Mov(const Register& rd,
241                          const Operand& operand,
242                          DiscardMoveMode discard_mode) {
243   DCHECK(allow_macro_instructions_);
244   DCHECK(!rd.IsZero());
245 
246   // Provide a swap register for instructions that need to write into the
247   // system stack pointer (and can't do this inherently).
248   UseScratchRegisterScope temps(this);
249   Register dst = (rd.IsSP()) ? temps.AcquireSameSizeAs(rd) : rd;
250 
251   if (operand.NeedsRelocation(this)) {
252     Ldr(dst, operand.immediate());
253 
254   } else if (operand.IsImmediate()) {
255     // Call the macro assembler for generic immediates.
256     Mov(dst, operand.ImmediateValue());
257 
258   } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
259     // Emit a shift instruction if moving a shifted register. This operation
260     // could also be achieved using an orr instruction (like orn used by Mvn),
261     // but using a shift instruction makes the disassembly clearer.
262     EmitShift(dst, operand.reg(), operand.shift(), operand.shift_amount());
263 
264   } else if (operand.IsExtendedRegister()) {
265     // Emit an extend instruction if moving an extended register. This handles
266     // extend with post-shift operations, too.
267     EmitExtendShift(dst, operand.reg(), operand.extend(),
268                     operand.shift_amount());
269 
270   } else {
271     // Otherwise, emit a register move only if the registers are distinct, or
272     // if they are not X registers.
273     //
274     // Note that mov(w0, w0) is not a no-op because it clears the top word of
275     // x0. A flag is provided (kDiscardForSameWReg) if a move between the same W
276     // registers is not required to clear the top word of the X register. In
277     // this case, the instruction is discarded.
278     //
279     // If csp is an operand, add #0 is emitted, otherwise, orr #0.
280     if (!rd.Is(operand.reg()) || (rd.Is32Bits() &&
281                                   (discard_mode == kDontDiscardForSameWReg))) {
282       Assembler::mov(rd, operand.reg());
283     }
284     // This case can handle writes into the system stack pointer directly.
285     dst = rd;
286   }
287 
288   // Copy the result to the system stack pointer.
289   if (!dst.Is(rd)) {
290     DCHECK(rd.IsSP());
291     Assembler::mov(rd, dst);
292   }
293 }
294 
295 
Mvn(const Register & rd,const Operand & operand)296 void MacroAssembler::Mvn(const Register& rd, const Operand& operand) {
297   DCHECK(allow_macro_instructions_);
298 
299   if (operand.NeedsRelocation(this)) {
300     Ldr(rd, operand.immediate());
301     mvn(rd, rd);
302 
303   } else if (operand.IsImmediate()) {
304     // Call the macro assembler for generic immediates.
305     Mov(rd, ~operand.ImmediateValue());
306 
307   } else if (operand.IsExtendedRegister()) {
308     // Emit two instructions for the extend case. This differs from Mov, as
309     // the extend and invert can't be achieved in one instruction.
310     EmitExtendShift(rd, operand.reg(), operand.extend(),
311                     operand.shift_amount());
312     mvn(rd, rd);
313 
314   } else {
315     mvn(rd, operand);
316   }
317 }
318 
319 
CountClearHalfWords(uint64_t imm,unsigned reg_size)320 unsigned MacroAssembler::CountClearHalfWords(uint64_t imm, unsigned reg_size) {
321   DCHECK((reg_size % 8) == 0);
322   int count = 0;
323   for (unsigned i = 0; i < (reg_size / 16); i++) {
324     if ((imm & 0xffff) == 0) {
325       count++;
326     }
327     imm >>= 16;
328   }
329   return count;
330 }
331 
332 
333 // The movz instruction can generate immediates containing an arbitrary 16-bit
334 // half-word, with remaining bits clear, eg. 0x00001234, 0x0000123400000000.
IsImmMovz(uint64_t imm,unsigned reg_size)335 bool MacroAssembler::IsImmMovz(uint64_t imm, unsigned reg_size) {
336   DCHECK((reg_size == kXRegSizeInBits) || (reg_size == kWRegSizeInBits));
337   return CountClearHalfWords(imm, reg_size) >= ((reg_size / 16) - 1);
338 }
339 
340 
341 // The movn instruction can generate immediates containing an arbitrary 16-bit
342 // half-word, with remaining bits set, eg. 0xffff1234, 0xffff1234ffffffff.
IsImmMovn(uint64_t imm,unsigned reg_size)343 bool MacroAssembler::IsImmMovn(uint64_t imm, unsigned reg_size) {
344   return IsImmMovz(~imm, reg_size);
345 }
346 
347 
ConditionalCompareMacro(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond,ConditionalCompareOp op)348 void MacroAssembler::ConditionalCompareMacro(const Register& rn,
349                                              const Operand& operand,
350                                              StatusFlags nzcv,
351                                              Condition cond,
352                                              ConditionalCompareOp op) {
353   DCHECK((cond != al) && (cond != nv));
354   if (operand.NeedsRelocation(this)) {
355     UseScratchRegisterScope temps(this);
356     Register temp = temps.AcquireX();
357     Ldr(temp, operand.immediate());
358     ConditionalCompareMacro(rn, temp, nzcv, cond, op);
359 
360   } else if ((operand.IsShiftedRegister() && (operand.shift_amount() == 0)) ||
361              (operand.IsImmediate() &&
362               IsImmConditionalCompare(operand.ImmediateValue()))) {
363     // The immediate can be encoded in the instruction, or the operand is an
364     // unshifted register: call the assembler.
365     ConditionalCompare(rn, operand, nzcv, cond, op);
366 
367   } else {
368     // The operand isn't directly supported by the instruction: perform the
369     // operation on a temporary register.
370     UseScratchRegisterScope temps(this);
371     Register temp = temps.AcquireSameSizeAs(rn);
372     Mov(temp, operand);
373     ConditionalCompare(rn, temp, nzcv, cond, op);
374   }
375 }
376 
377 
Csel(const Register & rd,const Register & rn,const Operand & operand,Condition cond)378 void MacroAssembler::Csel(const Register& rd,
379                           const Register& rn,
380                           const Operand& operand,
381                           Condition cond) {
382   DCHECK(allow_macro_instructions_);
383   DCHECK(!rd.IsZero());
384   DCHECK((cond != al) && (cond != nv));
385   if (operand.IsImmediate()) {
386     // Immediate argument. Handle special cases of 0, 1 and -1 using zero
387     // register.
388     int64_t imm = operand.ImmediateValue();
389     Register zr = AppropriateZeroRegFor(rn);
390     if (imm == 0) {
391       csel(rd, rn, zr, cond);
392     } else if (imm == 1) {
393       csinc(rd, rn, zr, cond);
394     } else if (imm == -1) {
395       csinv(rd, rn, zr, cond);
396     } else {
397       UseScratchRegisterScope temps(this);
398       Register temp = temps.AcquireSameSizeAs(rn);
399       Mov(temp, imm);
400       csel(rd, rn, temp, cond);
401     }
402   } else if (operand.IsShiftedRegister() && (operand.shift_amount() == 0)) {
403     // Unshifted register argument.
404     csel(rd, rn, operand.reg(), cond);
405   } else {
406     // All other arguments.
407     UseScratchRegisterScope temps(this);
408     Register temp = temps.AcquireSameSizeAs(rn);
409     Mov(temp, operand);
410     csel(rd, rn, temp, cond);
411   }
412 }
413 
414 
TryOneInstrMoveImmediate(const Register & dst,int64_t imm)415 bool MacroAssembler::TryOneInstrMoveImmediate(const Register& dst,
416                                               int64_t imm) {
417   unsigned n, imm_s, imm_r;
418   int reg_size = dst.SizeInBits();
419   if (IsImmMovz(imm, reg_size) && !dst.IsSP()) {
420     // Immediate can be represented in a move zero instruction. Movz can't write
421     // to the stack pointer.
422     movz(dst, imm);
423     return true;
424   } else if (IsImmMovn(imm, reg_size) && !dst.IsSP()) {
425     // Immediate can be represented in a move not instruction. Movn can't write
426     // to the stack pointer.
427     movn(dst, dst.Is64Bits() ? ~imm : (~imm & kWRegMask));
428     return true;
429   } else if (IsImmLogical(imm, reg_size, &n, &imm_s, &imm_r)) {
430     // Immediate can be represented in a logical orr instruction.
431     LogicalImmediate(dst, AppropriateZeroRegFor(dst), n, imm_s, imm_r, ORR);
432     return true;
433   }
434   return false;
435 }
436 
437 
MoveImmediateForShiftedOp(const Register & dst,int64_t imm)438 Operand MacroAssembler::MoveImmediateForShiftedOp(const Register& dst,
439                                                   int64_t imm) {
440   int reg_size = dst.SizeInBits();
441 
442   // Encode the immediate in a single move instruction, if possible.
443   if (TryOneInstrMoveImmediate(dst, imm)) {
444     // The move was successful; nothing to do here.
445   } else {
446     // Pre-shift the immediate to the least-significant bits of the register.
447     int shift_low = CountTrailingZeros(imm, reg_size);
448     int64_t imm_low = imm >> shift_low;
449 
450     // Pre-shift the immediate to the most-significant bits of the register. We
451     // insert set bits in the least-significant bits, as this creates a
452     // different immediate that may be encodable using movn or orr-immediate.
453     // If this new immediate is encodable, the set bits will be eliminated by
454     // the post shift on the following instruction.
455     int shift_high = CountLeadingZeros(imm, reg_size);
456     int64_t imm_high = (imm << shift_high) | ((1 << shift_high) - 1);
457 
458     if (TryOneInstrMoveImmediate(dst, imm_low)) {
459       // The new immediate has been moved into the destination's low bits:
460       // return a new leftward-shifting operand.
461       return Operand(dst, LSL, shift_low);
462     } else if (TryOneInstrMoveImmediate(dst, imm_high)) {
463       // The new immediate has been moved into the destination's high bits:
464       // return a new rightward-shifting operand.
465       return Operand(dst, LSR, shift_high);
466     } else {
467       // Use the generic move operation to set up the immediate.
468       Mov(dst, imm);
469     }
470   }
471   return Operand(dst);
472 }
473 
474 
AddSubMacro(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubOp op)475 void MacroAssembler::AddSubMacro(const Register& rd,
476                                  const Register& rn,
477                                  const Operand& operand,
478                                  FlagsUpdate S,
479                                  AddSubOp op) {
480   if (operand.IsZero() && rd.Is(rn) && rd.Is64Bits() && rn.Is64Bits() &&
481       !operand.NeedsRelocation(this) && (S == LeaveFlags)) {
482     // The instruction would be a nop. Avoid generating useless code.
483     return;
484   }
485 
486   if (operand.NeedsRelocation(this)) {
487     UseScratchRegisterScope temps(this);
488     Register temp = temps.AcquireX();
489     Ldr(temp, operand.immediate());
490     AddSubMacro(rd, rn, temp, S, op);
491   } else if ((operand.IsImmediate() &&
492               !IsImmAddSub(operand.ImmediateValue()))      ||
493              (rn.IsZero() && !operand.IsShiftedRegister()) ||
494              (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
495     UseScratchRegisterScope temps(this);
496     Register temp = temps.AcquireSameSizeAs(rn);
497     if (operand.IsImmediate()) {
498       Operand imm_operand =
499           MoveImmediateForShiftedOp(temp, operand.ImmediateValue());
500       AddSub(rd, rn, imm_operand, S, op);
501     } else {
502       Mov(temp, operand);
503       AddSub(rd, rn, temp, S, op);
504     }
505   } else {
506     AddSub(rd, rn, operand, S, op);
507   }
508 }
509 
510 
AddSubWithCarryMacro(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubWithCarryOp op)511 void MacroAssembler::AddSubWithCarryMacro(const Register& rd,
512                                           const Register& rn,
513                                           const Operand& operand,
514                                           FlagsUpdate S,
515                                           AddSubWithCarryOp op) {
516   DCHECK(rd.SizeInBits() == rn.SizeInBits());
517   UseScratchRegisterScope temps(this);
518 
519   if (operand.NeedsRelocation(this)) {
520     Register temp = temps.AcquireX();
521     Ldr(temp, operand.immediate());
522     AddSubWithCarryMacro(rd, rn, temp, S, op);
523 
524   } else if (operand.IsImmediate() ||
525              (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
526     // Add/sub with carry (immediate or ROR shifted register.)
527     Register temp = temps.AcquireSameSizeAs(rn);
528     Mov(temp, operand);
529     AddSubWithCarry(rd, rn, temp, S, op);
530 
531   } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
532     // Add/sub with carry (shifted register).
533     DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
534     DCHECK(operand.shift() != ROR);
535     DCHECK(is_uintn(operand.shift_amount(),
536           rd.SizeInBits() == kXRegSizeInBits ? kXRegSizeInBitsLog2
537                                              : kWRegSizeInBitsLog2));
538     Register temp = temps.AcquireSameSizeAs(rn);
539     EmitShift(temp, operand.reg(), operand.shift(), operand.shift_amount());
540     AddSubWithCarry(rd, rn, temp, S, op);
541 
542   } else if (operand.IsExtendedRegister()) {
543     // Add/sub with carry (extended register).
544     DCHECK(operand.reg().SizeInBits() <= rd.SizeInBits());
545     // Add/sub extended supports a shift <= 4. We want to support exactly the
546     // same modes.
547     DCHECK(operand.shift_amount() <= 4);
548     DCHECK(operand.reg().Is64Bits() ||
549            ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
550     Register temp = temps.AcquireSameSizeAs(rn);
551     EmitExtendShift(temp, operand.reg(), operand.extend(),
552                     operand.shift_amount());
553     AddSubWithCarry(rd, rn, temp, S, op);
554 
555   } else {
556     // The addressing mode is directly supported by the instruction.
557     AddSubWithCarry(rd, rn, operand, S, op);
558   }
559 }
560 
561 
LoadStoreMacro(const CPURegister & rt,const MemOperand & addr,LoadStoreOp op)562 void MacroAssembler::LoadStoreMacro(const CPURegister& rt,
563                                     const MemOperand& addr,
564                                     LoadStoreOp op) {
565   int64_t offset = addr.offset();
566   LSDataSize size = CalcLSDataSize(op);
567 
568   // Check if an immediate offset fits in the immediate field of the
569   // appropriate instruction. If not, emit two instructions to perform
570   // the operation.
571   if (addr.IsImmediateOffset() && !IsImmLSScaled(offset, size) &&
572       !IsImmLSUnscaled(offset)) {
573     // Immediate offset that can't be encoded using unsigned or unscaled
574     // addressing modes.
575     UseScratchRegisterScope temps(this);
576     Register temp = temps.AcquireSameSizeAs(addr.base());
577     Mov(temp, addr.offset());
578     LoadStore(rt, MemOperand(addr.base(), temp), op);
579   } else if (addr.IsPostIndex() && !IsImmLSUnscaled(offset)) {
580     // Post-index beyond unscaled addressing range.
581     LoadStore(rt, MemOperand(addr.base()), op);
582     add(addr.base(), addr.base(), offset);
583   } else if (addr.IsPreIndex() && !IsImmLSUnscaled(offset)) {
584     // Pre-index beyond unscaled addressing range.
585     add(addr.base(), addr.base(), offset);
586     LoadStore(rt, MemOperand(addr.base()), op);
587   } else {
588     // Encodable in one load/store instruction.
589     LoadStore(rt, addr, op);
590   }
591 }
592 
LoadStorePairMacro(const CPURegister & rt,const CPURegister & rt2,const MemOperand & addr,LoadStorePairOp op)593 void MacroAssembler::LoadStorePairMacro(const CPURegister& rt,
594                                         const CPURegister& rt2,
595                                         const MemOperand& addr,
596                                         LoadStorePairOp op) {
597   // TODO(all): Should we support register offset for load-store-pair?
598   DCHECK(!addr.IsRegisterOffset());
599 
600   int64_t offset = addr.offset();
601   LSDataSize size = CalcLSPairDataSize(op);
602 
603   // Check if the offset fits in the immediate field of the appropriate
604   // instruction. If not, emit two instructions to perform the operation.
605   if (IsImmLSPair(offset, size)) {
606     // Encodable in one load/store pair instruction.
607     LoadStorePair(rt, rt2, addr, op);
608   } else {
609     Register base = addr.base();
610     if (addr.IsImmediateOffset()) {
611       UseScratchRegisterScope temps(this);
612       Register temp = temps.AcquireSameSizeAs(base);
613       Add(temp, base, offset);
614       LoadStorePair(rt, rt2, MemOperand(temp), op);
615     } else if (addr.IsPostIndex()) {
616       LoadStorePair(rt, rt2, MemOperand(base), op);
617       Add(base, base, offset);
618     } else {
619       DCHECK(addr.IsPreIndex());
620       Add(base, base, offset);
621       LoadStorePair(rt, rt2, MemOperand(base), op);
622     }
623   }
624 }
625 
626 
Load(const Register & rt,const MemOperand & addr,Representation r)627 void MacroAssembler::Load(const Register& rt,
628                           const MemOperand& addr,
629                           Representation r) {
630   DCHECK(!r.IsDouble());
631 
632   if (r.IsInteger8()) {
633     Ldrsb(rt, addr);
634   } else if (r.IsUInteger8()) {
635     Ldrb(rt, addr);
636   } else if (r.IsInteger16()) {
637     Ldrsh(rt, addr);
638   } else if (r.IsUInteger16()) {
639     Ldrh(rt, addr);
640   } else if (r.IsInteger32()) {
641     Ldr(rt.W(), addr);
642   } else {
643     DCHECK(rt.Is64Bits());
644     Ldr(rt, addr);
645   }
646 }
647 
648 
Store(const Register & rt,const MemOperand & addr,Representation r)649 void MacroAssembler::Store(const Register& rt,
650                            const MemOperand& addr,
651                            Representation r) {
652   DCHECK(!r.IsDouble());
653 
654   if (r.IsInteger8() || r.IsUInteger8()) {
655     Strb(rt, addr);
656   } else if (r.IsInteger16() || r.IsUInteger16()) {
657     Strh(rt, addr);
658   } else if (r.IsInteger32()) {
659     Str(rt.W(), addr);
660   } else {
661     DCHECK(rt.Is64Bits());
662     if (r.IsHeapObject()) {
663       AssertNotSmi(rt);
664     } else if (r.IsSmi()) {
665       AssertSmi(rt);
666     }
667     Str(rt, addr);
668   }
669 }
670 
671 
NeedExtraInstructionsOrRegisterBranch(Label * label,ImmBranchType b_type)672 bool MacroAssembler::NeedExtraInstructionsOrRegisterBranch(
673     Label *label, ImmBranchType b_type) {
674   bool need_longer_range = false;
675   // There are two situations in which we care about the offset being out of
676   // range:
677   //  - The label is bound but too far away.
678   //  - The label is not bound but linked, and the previous branch
679   //    instruction in the chain is too far away.
680   if (label->is_bound() || label->is_linked()) {
681     need_longer_range =
682       !Instruction::IsValidImmPCOffset(b_type, label->pos() - pc_offset());
683   }
684   if (!need_longer_range && !label->is_bound()) {
685     int max_reachable_pc = pc_offset() + Instruction::ImmBranchRange(b_type);
686     unresolved_branches_.insert(
687         std::pair<int, FarBranchInfo>(max_reachable_pc,
688                                       FarBranchInfo(pc_offset(), label)));
689     // Also maintain the next pool check.
690     next_veneer_pool_check_ =
691       Min(next_veneer_pool_check_,
692           max_reachable_pc - kVeneerDistanceCheckMargin);
693   }
694   return need_longer_range;
695 }
696 
697 
Adr(const Register & rd,Label * label,AdrHint hint)698 void MacroAssembler::Adr(const Register& rd, Label* label, AdrHint hint) {
699   DCHECK(allow_macro_instructions_);
700   DCHECK(!rd.IsZero());
701 
702   if (hint == kAdrNear) {
703     adr(rd, label);
704     return;
705   }
706 
707   DCHECK(hint == kAdrFar);
708   if (label->is_bound()) {
709     int label_offset = label->pos() - pc_offset();
710     if (Instruction::IsValidPCRelOffset(label_offset)) {
711       adr(rd, label);
712     } else {
713       DCHECK(label_offset <= 0);
714       int min_adr_offset = -(1 << (Instruction::ImmPCRelRangeBitwidth - 1));
715       adr(rd, min_adr_offset);
716       Add(rd, rd, label_offset - min_adr_offset);
717     }
718   } else {
719     UseScratchRegisterScope temps(this);
720     Register scratch = temps.AcquireX();
721 
722     InstructionAccurateScope scope(
723         this, PatchingAssembler::kAdrFarPatchableNInstrs);
724     adr(rd, label);
725     for (int i = 0; i < PatchingAssembler::kAdrFarPatchableNNops; ++i) {
726       nop(ADR_FAR_NOP);
727     }
728     movz(scratch, 0);
729   }
730 }
731 
732 
B(Label * label,BranchType type,Register reg,int bit)733 void MacroAssembler::B(Label* label, BranchType type, Register reg, int bit) {
734   DCHECK((reg.Is(NoReg) || type >= kBranchTypeFirstUsingReg) &&
735          (bit == -1 || type >= kBranchTypeFirstUsingBit));
736   if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
737     B(static_cast<Condition>(type), label);
738   } else {
739     switch (type) {
740       case always:        B(label);              break;
741       case never:         break;
742       case reg_zero:      Cbz(reg, label);       break;
743       case reg_not_zero:  Cbnz(reg, label);      break;
744       case reg_bit_clear: Tbz(reg, bit, label);  break;
745       case reg_bit_set:   Tbnz(reg, bit, label); break;
746       default:
747         UNREACHABLE();
748     }
749   }
750 }
751 
752 
B(Label * label,Condition cond)753 void MacroAssembler::B(Label* label, Condition cond) {
754   DCHECK(allow_macro_instructions_);
755   DCHECK((cond != al) && (cond != nv));
756 
757   Label done;
758   bool need_extra_instructions =
759     NeedExtraInstructionsOrRegisterBranch(label, CondBranchType);
760 
761   if (need_extra_instructions) {
762     b(&done, NegateCondition(cond));
763     B(label);
764   } else {
765     b(label, cond);
766   }
767   bind(&done);
768 }
769 
770 
Tbnz(const Register & rt,unsigned bit_pos,Label * label)771 void MacroAssembler::Tbnz(const Register& rt, unsigned bit_pos, Label* label) {
772   DCHECK(allow_macro_instructions_);
773 
774   Label done;
775   bool need_extra_instructions =
776     NeedExtraInstructionsOrRegisterBranch(label, TestBranchType);
777 
778   if (need_extra_instructions) {
779     tbz(rt, bit_pos, &done);
780     B(label);
781   } else {
782     tbnz(rt, bit_pos, label);
783   }
784   bind(&done);
785 }
786 
787 
Tbz(const Register & rt,unsigned bit_pos,Label * label)788 void MacroAssembler::Tbz(const Register& rt, unsigned bit_pos, Label* label) {
789   DCHECK(allow_macro_instructions_);
790 
791   Label done;
792   bool need_extra_instructions =
793     NeedExtraInstructionsOrRegisterBranch(label, TestBranchType);
794 
795   if (need_extra_instructions) {
796     tbnz(rt, bit_pos, &done);
797     B(label);
798   } else {
799     tbz(rt, bit_pos, label);
800   }
801   bind(&done);
802 }
803 
804 
Cbnz(const Register & rt,Label * label)805 void MacroAssembler::Cbnz(const Register& rt, Label* label) {
806   DCHECK(allow_macro_instructions_);
807 
808   Label done;
809   bool need_extra_instructions =
810     NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType);
811 
812   if (need_extra_instructions) {
813     cbz(rt, &done);
814     B(label);
815   } else {
816     cbnz(rt, label);
817   }
818   bind(&done);
819 }
820 
821 
Cbz(const Register & rt,Label * label)822 void MacroAssembler::Cbz(const Register& rt, Label* label) {
823   DCHECK(allow_macro_instructions_);
824 
825   Label done;
826   bool need_extra_instructions =
827     NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType);
828 
829   if (need_extra_instructions) {
830     cbnz(rt, &done);
831     B(label);
832   } else {
833     cbz(rt, label);
834   }
835   bind(&done);
836 }
837 
838 
839 // Pseudo-instructions.
840 
841 
Abs(const Register & rd,const Register & rm,Label * is_not_representable,Label * is_representable)842 void MacroAssembler::Abs(const Register& rd, const Register& rm,
843                          Label* is_not_representable,
844                          Label* is_representable) {
845   DCHECK(allow_macro_instructions_);
846   DCHECK(AreSameSizeAndType(rd, rm));
847 
848   Cmp(rm, 1);
849   Cneg(rd, rm, lt);
850 
851   // If the comparison sets the v flag, the input was the smallest value
852   // representable by rm, and the mathematical result of abs(rm) is not
853   // representable using two's complement.
854   if ((is_not_representable != NULL) && (is_representable != NULL)) {
855     B(is_not_representable, vs);
856     B(is_representable);
857   } else if (is_not_representable != NULL) {
858     B(is_not_representable, vs);
859   } else if (is_representable != NULL) {
860     B(is_representable, vc);
861   }
862 }
863 
864 
865 // Abstracted stack operations.
866 
867 
Push(const CPURegister & src0,const CPURegister & src1,const CPURegister & src2,const CPURegister & src3)868 void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
869                           const CPURegister& src2, const CPURegister& src3) {
870   DCHECK(AreSameSizeAndType(src0, src1, src2, src3));
871 
872   int count = 1 + src1.IsValid() + src2.IsValid() + src3.IsValid();
873   int size = src0.SizeInBytes();
874 
875   PushPreamble(count, size);
876   PushHelper(count, size, src0, src1, src2, src3);
877 }
878 
879 
Push(const CPURegister & src0,const CPURegister & src1,const CPURegister & src2,const CPURegister & src3,const CPURegister & src4,const CPURegister & src5,const CPURegister & src6,const CPURegister & src7)880 void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
881                           const CPURegister& src2, const CPURegister& src3,
882                           const CPURegister& src4, const CPURegister& src5,
883                           const CPURegister& src6, const CPURegister& src7) {
884   DCHECK(AreSameSizeAndType(src0, src1, src2, src3, src4, src5, src6, src7));
885 
886   int count = 5 + src5.IsValid() + src6.IsValid() + src6.IsValid();
887   int size = src0.SizeInBytes();
888 
889   PushPreamble(count, size);
890   PushHelper(4, size, src0, src1, src2, src3);
891   PushHelper(count - 4, size, src4, src5, src6, src7);
892 }
893 
894 
Pop(const CPURegister & dst0,const CPURegister & dst1,const CPURegister & dst2,const CPURegister & dst3)895 void MacroAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1,
896                          const CPURegister& dst2, const CPURegister& dst3) {
897   // It is not valid to pop into the same register more than once in one
898   // instruction, not even into the zero register.
899   DCHECK(!AreAliased(dst0, dst1, dst2, dst3));
900   DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3));
901   DCHECK(dst0.IsValid());
902 
903   int count = 1 + dst1.IsValid() + dst2.IsValid() + dst3.IsValid();
904   int size = dst0.SizeInBytes();
905 
906   PopHelper(count, size, dst0, dst1, dst2, dst3);
907   PopPostamble(count, size);
908 }
909 
910 
Pop(const CPURegister & dst0,const CPURegister & dst1,const CPURegister & dst2,const CPURegister & dst3,const CPURegister & dst4,const CPURegister & dst5,const CPURegister & dst6,const CPURegister & dst7)911 void MacroAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1,
912                          const CPURegister& dst2, const CPURegister& dst3,
913                          const CPURegister& dst4, const CPURegister& dst5,
914                          const CPURegister& dst6, const CPURegister& dst7) {
915   // It is not valid to pop into the same register more than once in one
916   // instruction, not even into the zero register.
917   DCHECK(!AreAliased(dst0, dst1, dst2, dst3, dst4, dst5, dst6, dst7));
918   DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3, dst4, dst5, dst6, dst7));
919   DCHECK(dst0.IsValid());
920 
921   int count = 5 + dst5.IsValid() + dst6.IsValid() + dst7.IsValid();
922   int size = dst0.SizeInBytes();
923 
924   PopHelper(4, size, dst0, dst1, dst2, dst3);
925   PopHelper(count - 4, size, dst4, dst5, dst6, dst7);
926   PopPostamble(count, size);
927 }
928 
929 
Push(const Register & src0,const FPRegister & src1)930 void MacroAssembler::Push(const Register& src0, const FPRegister& src1) {
931   int size = src0.SizeInBytes() + src1.SizeInBytes();
932 
933   PushPreamble(size);
934   // Reserve room for src0 and push src1.
935   str(src1, MemOperand(StackPointer(), -size, PreIndex));
936   // Fill the gap with src0.
937   str(src0, MemOperand(StackPointer(), src1.SizeInBytes()));
938 }
939 
940 
PushQueued(PreambleDirective preamble_directive)941 void MacroAssembler::PushPopQueue::PushQueued(
942     PreambleDirective preamble_directive) {
943   if (queued_.empty()) return;
944 
945   if (preamble_directive == WITH_PREAMBLE) {
946     masm_->PushPreamble(size_);
947   }
948 
949   size_t count = queued_.size();
950   size_t index = 0;
951   while (index < count) {
952     // PushHelper can only handle registers with the same size and type, and it
953     // can handle only four at a time. Batch them up accordingly.
954     CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg};
955     int batch_index = 0;
956     do {
957       batch[batch_index++] = queued_[index++];
958     } while ((batch_index < 4) && (index < count) &&
959              batch[0].IsSameSizeAndType(queued_[index]));
960 
961     masm_->PushHelper(batch_index, batch[0].SizeInBytes(),
962                       batch[0], batch[1], batch[2], batch[3]);
963   }
964 
965   queued_.clear();
966 }
967 
968 
PopQueued()969 void MacroAssembler::PushPopQueue::PopQueued() {
970   if (queued_.empty()) return;
971 
972   size_t count = queued_.size();
973   size_t index = 0;
974   while (index < count) {
975     // PopHelper can only handle registers with the same size and type, and it
976     // can handle only four at a time. Batch them up accordingly.
977     CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg};
978     int batch_index = 0;
979     do {
980       batch[batch_index++] = queued_[index++];
981     } while ((batch_index < 4) && (index < count) &&
982              batch[0].IsSameSizeAndType(queued_[index]));
983 
984     masm_->PopHelper(batch_index, batch[0].SizeInBytes(),
985                      batch[0], batch[1], batch[2], batch[3]);
986   }
987 
988   masm_->PopPostamble(size_);
989   queued_.clear();
990 }
991 
992 
PushCPURegList(CPURegList registers)993 void MacroAssembler::PushCPURegList(CPURegList registers) {
994   int size = registers.RegisterSizeInBytes();
995 
996   PushPreamble(registers.Count(), size);
997   // Push up to four registers at a time because if the current stack pointer is
998   // csp and reg_size is 32, registers must be pushed in blocks of four in order
999   // to maintain the 16-byte alignment for csp.
1000   while (!registers.IsEmpty()) {
1001     int count_before = registers.Count();
1002     const CPURegister& src0 = registers.PopHighestIndex();
1003     const CPURegister& src1 = registers.PopHighestIndex();
1004     const CPURegister& src2 = registers.PopHighestIndex();
1005     const CPURegister& src3 = registers.PopHighestIndex();
1006     int count = count_before - registers.Count();
1007     PushHelper(count, size, src0, src1, src2, src3);
1008   }
1009 }
1010 
1011 
PopCPURegList(CPURegList registers)1012 void MacroAssembler::PopCPURegList(CPURegList registers) {
1013   int size = registers.RegisterSizeInBytes();
1014 
1015   // Pop up to four registers at a time because if the current stack pointer is
1016   // csp and reg_size is 32, registers must be pushed in blocks of four in
1017   // order to maintain the 16-byte alignment for csp.
1018   while (!registers.IsEmpty()) {
1019     int count_before = registers.Count();
1020     const CPURegister& dst0 = registers.PopLowestIndex();
1021     const CPURegister& dst1 = registers.PopLowestIndex();
1022     const CPURegister& dst2 = registers.PopLowestIndex();
1023     const CPURegister& dst3 = registers.PopLowestIndex();
1024     int count = count_before - registers.Count();
1025     PopHelper(count, size, dst0, dst1, dst2, dst3);
1026   }
1027   PopPostamble(registers.Count(), size);
1028 }
1029 
1030 
PushMultipleTimes(CPURegister src,int count)1031 void MacroAssembler::PushMultipleTimes(CPURegister src, int count) {
1032   int size = src.SizeInBytes();
1033 
1034   PushPreamble(count, size);
1035 
1036   if (FLAG_optimize_for_size && count > 8) {
1037     UseScratchRegisterScope temps(this);
1038     Register temp = temps.AcquireX();
1039 
1040     Label loop;
1041     __ Mov(temp, count / 2);
1042     __ Bind(&loop);
1043     PushHelper(2, size, src, src, NoReg, NoReg);
1044     __ Subs(temp, temp, 1);
1045     __ B(ne, &loop);
1046 
1047     count %= 2;
1048   }
1049 
1050   // Push up to four registers at a time if possible because if the current
1051   // stack pointer is csp and the register size is 32, registers must be pushed
1052   // in blocks of four in order to maintain the 16-byte alignment for csp.
1053   while (count >= 4) {
1054     PushHelper(4, size, src, src, src, src);
1055     count -= 4;
1056   }
1057   if (count >= 2) {
1058     PushHelper(2, size, src, src, NoReg, NoReg);
1059     count -= 2;
1060   }
1061   if (count == 1) {
1062     PushHelper(1, size, src, NoReg, NoReg, NoReg);
1063     count -= 1;
1064   }
1065   DCHECK(count == 0);
1066 }
1067 
1068 
PushMultipleTimes(CPURegister src,Register count)1069 void MacroAssembler::PushMultipleTimes(CPURegister src, Register count) {
1070   PushPreamble(Operand(count, UXTW, WhichPowerOf2(src.SizeInBytes())));
1071 
1072   UseScratchRegisterScope temps(this);
1073   Register temp = temps.AcquireSameSizeAs(count);
1074 
1075   if (FLAG_optimize_for_size) {
1076     Label loop, done;
1077 
1078     Subs(temp, count, 1);
1079     B(mi, &done);
1080 
1081     // Push all registers individually, to save code size.
1082     Bind(&loop);
1083     Subs(temp, temp, 1);
1084     PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg);
1085     B(pl, &loop);
1086 
1087     Bind(&done);
1088   } else {
1089     Label loop, leftover2, leftover1, done;
1090 
1091     Subs(temp, count, 4);
1092     B(mi, &leftover2);
1093 
1094     // Push groups of four first.
1095     Bind(&loop);
1096     Subs(temp, temp, 4);
1097     PushHelper(4, src.SizeInBytes(), src, src, src, src);
1098     B(pl, &loop);
1099 
1100     // Push groups of two.
1101     Bind(&leftover2);
1102     Tbz(count, 1, &leftover1);
1103     PushHelper(2, src.SizeInBytes(), src, src, NoReg, NoReg);
1104 
1105     // Push the last one (if required).
1106     Bind(&leftover1);
1107     Tbz(count, 0, &done);
1108     PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg);
1109 
1110     Bind(&done);
1111   }
1112 }
1113 
1114 
PushHelper(int count,int size,const CPURegister & src0,const CPURegister & src1,const CPURegister & src2,const CPURegister & src3)1115 void MacroAssembler::PushHelper(int count, int size,
1116                                 const CPURegister& src0,
1117                                 const CPURegister& src1,
1118                                 const CPURegister& src2,
1119                                 const CPURegister& src3) {
1120   // Ensure that we don't unintentially modify scratch or debug registers.
1121   InstructionAccurateScope scope(this);
1122 
1123   DCHECK(AreSameSizeAndType(src0, src1, src2, src3));
1124   DCHECK(size == src0.SizeInBytes());
1125 
1126   // When pushing multiple registers, the store order is chosen such that
1127   // Push(a, b) is equivalent to Push(a) followed by Push(b).
1128   switch (count) {
1129     case 1:
1130       DCHECK(src1.IsNone() && src2.IsNone() && src3.IsNone());
1131       str(src0, MemOperand(StackPointer(), -1 * size, PreIndex));
1132       break;
1133     case 2:
1134       DCHECK(src2.IsNone() && src3.IsNone());
1135       stp(src1, src0, MemOperand(StackPointer(), -2 * size, PreIndex));
1136       break;
1137     case 3:
1138       DCHECK(src3.IsNone());
1139       stp(src2, src1, MemOperand(StackPointer(), -3 * size, PreIndex));
1140       str(src0, MemOperand(StackPointer(), 2 * size));
1141       break;
1142     case 4:
1143       // Skip over 4 * size, then fill in the gap. This allows four W registers
1144       // to be pushed using csp, whilst maintaining 16-byte alignment for csp
1145       // at all times.
1146       stp(src3, src2, MemOperand(StackPointer(), -4 * size, PreIndex));
1147       stp(src1, src0, MemOperand(StackPointer(), 2 * size));
1148       break;
1149     default:
1150       UNREACHABLE();
1151   }
1152 }
1153 
1154 
PopHelper(int count,int size,const CPURegister & dst0,const CPURegister & dst1,const CPURegister & dst2,const CPURegister & dst3)1155 void MacroAssembler::PopHelper(int count, int size,
1156                                const CPURegister& dst0,
1157                                const CPURegister& dst1,
1158                                const CPURegister& dst2,
1159                                const CPURegister& dst3) {
1160   // Ensure that we don't unintentially modify scratch or debug registers.
1161   InstructionAccurateScope scope(this);
1162 
1163   DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3));
1164   DCHECK(size == dst0.SizeInBytes());
1165 
1166   // When popping multiple registers, the load order is chosen such that
1167   // Pop(a, b) is equivalent to Pop(a) followed by Pop(b).
1168   switch (count) {
1169     case 1:
1170       DCHECK(dst1.IsNone() && dst2.IsNone() && dst3.IsNone());
1171       ldr(dst0, MemOperand(StackPointer(), 1 * size, PostIndex));
1172       break;
1173     case 2:
1174       DCHECK(dst2.IsNone() && dst3.IsNone());
1175       ldp(dst0, dst1, MemOperand(StackPointer(), 2 * size, PostIndex));
1176       break;
1177     case 3:
1178       DCHECK(dst3.IsNone());
1179       ldr(dst2, MemOperand(StackPointer(), 2 * size));
1180       ldp(dst0, dst1, MemOperand(StackPointer(), 3 * size, PostIndex));
1181       break;
1182     case 4:
1183       // Load the higher addresses first, then load the lower addresses and
1184       // skip the whole block in the second instruction. This allows four W
1185       // registers to be popped using csp, whilst maintaining 16-byte alignment
1186       // for csp at all times.
1187       ldp(dst2, dst3, MemOperand(StackPointer(), 2 * size));
1188       ldp(dst0, dst1, MemOperand(StackPointer(), 4 * size, PostIndex));
1189       break;
1190     default:
1191       UNREACHABLE();
1192   }
1193 }
1194 
1195 
PushPreamble(Operand total_size)1196 void MacroAssembler::PushPreamble(Operand total_size) {
1197   if (csp.Is(StackPointer())) {
1198     // If the current stack pointer is csp, then it must be aligned to 16 bytes
1199     // on entry and the total size of the specified registers must also be a
1200     // multiple of 16 bytes.
1201     if (total_size.IsImmediate()) {
1202       DCHECK((total_size.ImmediateValue() % 16) == 0);
1203     }
1204 
1205     // Don't check access size for non-immediate sizes. It's difficult to do
1206     // well, and it will be caught by hardware (or the simulator) anyway.
1207   } else {
1208     // Even if the current stack pointer is not the system stack pointer (csp),
1209     // the system stack pointer will still be modified in order to comply with
1210     // ABI rules about accessing memory below the system stack pointer.
1211     BumpSystemStackPointer(total_size);
1212   }
1213 }
1214 
1215 
PopPostamble(Operand total_size)1216 void MacroAssembler::PopPostamble(Operand total_size) {
1217   if (csp.Is(StackPointer())) {
1218     // If the current stack pointer is csp, then it must be aligned to 16 bytes
1219     // on entry and the total size of the specified registers must also be a
1220     // multiple of 16 bytes.
1221     if (total_size.IsImmediate()) {
1222       DCHECK((total_size.ImmediateValue() % 16) == 0);
1223     }
1224 
1225     // Don't check access size for non-immediate sizes. It's difficult to do
1226     // well, and it will be caught by hardware (or the simulator) anyway.
1227   } else if (emit_debug_code()) {
1228     // It is safe to leave csp where it is when unwinding the JavaScript stack,
1229     // but if we keep it matching StackPointer, the simulator can detect memory
1230     // accesses in the now-free part of the stack.
1231     SyncSystemStackPointer();
1232   }
1233 }
1234 
1235 
Poke(const CPURegister & src,const Operand & offset)1236 void MacroAssembler::Poke(const CPURegister& src, const Operand& offset) {
1237   if (offset.IsImmediate()) {
1238     DCHECK(offset.ImmediateValue() >= 0);
1239   } else if (emit_debug_code()) {
1240     Cmp(xzr, offset);
1241     Check(le, kStackAccessBelowStackPointer);
1242   }
1243 
1244   Str(src, MemOperand(StackPointer(), offset));
1245 }
1246 
1247 
Peek(const CPURegister & dst,const Operand & offset)1248 void MacroAssembler::Peek(const CPURegister& dst, const Operand& offset) {
1249   if (offset.IsImmediate()) {
1250     DCHECK(offset.ImmediateValue() >= 0);
1251   } else if (emit_debug_code()) {
1252     Cmp(xzr, offset);
1253     Check(le, kStackAccessBelowStackPointer);
1254   }
1255 
1256   Ldr(dst, MemOperand(StackPointer(), offset));
1257 }
1258 
1259 
PokePair(const CPURegister & src1,const CPURegister & src2,int offset)1260 void MacroAssembler::PokePair(const CPURegister& src1,
1261                               const CPURegister& src2,
1262                               int offset) {
1263   DCHECK(AreSameSizeAndType(src1, src2));
1264   DCHECK((offset >= 0) && ((offset % src1.SizeInBytes()) == 0));
1265   Stp(src1, src2, MemOperand(StackPointer(), offset));
1266 }
1267 
1268 
PeekPair(const CPURegister & dst1,const CPURegister & dst2,int offset)1269 void MacroAssembler::PeekPair(const CPURegister& dst1,
1270                               const CPURegister& dst2,
1271                               int offset) {
1272   DCHECK(AreSameSizeAndType(dst1, dst2));
1273   DCHECK((offset >= 0) && ((offset % dst1.SizeInBytes()) == 0));
1274   Ldp(dst1, dst2, MemOperand(StackPointer(), offset));
1275 }
1276 
1277 
PushCalleeSavedRegisters()1278 void MacroAssembler::PushCalleeSavedRegisters() {
1279   // Ensure that the macro-assembler doesn't use any scratch registers.
1280   InstructionAccurateScope scope(this);
1281 
1282   // This method must not be called unless the current stack pointer is the
1283   // system stack pointer (csp).
1284   DCHECK(csp.Is(StackPointer()));
1285 
1286   MemOperand tos(csp, -2 * static_cast<int>(kXRegSize), PreIndex);
1287 
1288   stp(d14, d15, tos);
1289   stp(d12, d13, tos);
1290   stp(d10, d11, tos);
1291   stp(d8, d9, tos);
1292 
1293   stp(x29, x30, tos);
1294   stp(x27, x28, tos);    // x28 = jssp
1295   stp(x25, x26, tos);
1296   stp(x23, x24, tos);
1297   stp(x21, x22, tos);
1298   stp(x19, x20, tos);
1299 }
1300 
1301 
PopCalleeSavedRegisters()1302 void MacroAssembler::PopCalleeSavedRegisters() {
1303   // Ensure that the macro-assembler doesn't use any scratch registers.
1304   InstructionAccurateScope scope(this);
1305 
1306   // This method must not be called unless the current stack pointer is the
1307   // system stack pointer (csp).
1308   DCHECK(csp.Is(StackPointer()));
1309 
1310   MemOperand tos(csp, 2 * kXRegSize, PostIndex);
1311 
1312   ldp(x19, x20, tos);
1313   ldp(x21, x22, tos);
1314   ldp(x23, x24, tos);
1315   ldp(x25, x26, tos);
1316   ldp(x27, x28, tos);    // x28 = jssp
1317   ldp(x29, x30, tos);
1318 
1319   ldp(d8, d9, tos);
1320   ldp(d10, d11, tos);
1321   ldp(d12, d13, tos);
1322   ldp(d14, d15, tos);
1323 }
1324 
1325 
AssertStackConsistency()1326 void MacroAssembler::AssertStackConsistency() {
1327   // Avoid emitting code when !use_real_abort() since non-real aborts cause too
1328   // much code to be generated.
1329   if (emit_debug_code() && use_real_aborts()) {
1330     if (csp.Is(StackPointer())) {
1331       // Always check the alignment of csp if ALWAYS_ALIGN_CSP is true.  We
1332       // can't check the alignment of csp without using a scratch register (or
1333       // clobbering the flags), but the processor (or simulator) will abort if
1334       // it is not properly aligned during a load.
1335       ldr(xzr, MemOperand(csp, 0));
1336     }
1337     if (FLAG_enable_slow_asserts && !csp.Is(StackPointer())) {
1338       Label ok;
1339       // Check that csp <= StackPointer(), preserving all registers and NZCV.
1340       sub(StackPointer(), csp, StackPointer());
1341       cbz(StackPointer(), &ok);                 // Ok if csp == StackPointer().
1342       tbnz(StackPointer(), kXSignBit, &ok);     // Ok if csp < StackPointer().
1343 
1344       // Avoid generating AssertStackConsistency checks for the Push in Abort.
1345       { DontEmitDebugCodeScope dont_emit_debug_code_scope(this);
1346         // Restore StackPointer().
1347         sub(StackPointer(), csp, StackPointer());
1348         Abort(kTheCurrentStackPointerIsBelowCsp);
1349       }
1350 
1351       bind(&ok);
1352       // Restore StackPointer().
1353       sub(StackPointer(), csp, StackPointer());
1354     }
1355   }
1356 }
1357 
AssertCspAligned()1358 void MacroAssembler::AssertCspAligned() {
1359   if (emit_debug_code() && use_real_aborts()) {
1360     // TODO(titzer): use a real assert for alignment check?
1361     UseScratchRegisterScope scope(this);
1362     Register temp = scope.AcquireX();
1363     ldr(temp, MemOperand(csp));
1364   }
1365 }
1366 
AssertFPCRState(Register fpcr)1367 void MacroAssembler::AssertFPCRState(Register fpcr) {
1368   if (emit_debug_code()) {
1369     Label unexpected_mode, done;
1370     UseScratchRegisterScope temps(this);
1371     if (fpcr.IsNone()) {
1372       fpcr = temps.AcquireX();
1373       Mrs(fpcr, FPCR);
1374     }
1375 
1376     // Settings left to their default values:
1377     //   - Assert that flush-to-zero is not set.
1378     Tbnz(fpcr, FZ_offset, &unexpected_mode);
1379     //   - Assert that the rounding mode is nearest-with-ties-to-even.
1380     STATIC_ASSERT(FPTieEven == 0);
1381     Tst(fpcr, RMode_mask);
1382     B(eq, &done);
1383 
1384     Bind(&unexpected_mode);
1385     Abort(kUnexpectedFPCRMode);
1386 
1387     Bind(&done);
1388   }
1389 }
1390 
1391 
CanonicalizeNaN(const FPRegister & dst,const FPRegister & src)1392 void MacroAssembler::CanonicalizeNaN(const FPRegister& dst,
1393                                      const FPRegister& src) {
1394   AssertFPCRState();
1395 
1396   // Subtracting 0.0 preserves all inputs except for signalling NaNs, which
1397   // become quiet NaNs. We use fsub rather than fadd because fsub preserves -0.0
1398   // inputs: -0.0 + 0.0 = 0.0, but -0.0 - 0.0 = -0.0.
1399   Fsub(dst, src, fp_zero);
1400 }
1401 
1402 
LoadRoot(CPURegister destination,Heap::RootListIndex index)1403 void MacroAssembler::LoadRoot(CPURegister destination,
1404                               Heap::RootListIndex index) {
1405   // TODO(jbramley): Most root values are constants, and can be synthesized
1406   // without a load. Refer to the ARM back end for details.
1407   Ldr(destination, MemOperand(root, index << kPointerSizeLog2));
1408 }
1409 
1410 
StoreRoot(Register source,Heap::RootListIndex index)1411 void MacroAssembler::StoreRoot(Register source,
1412                                Heap::RootListIndex index) {
1413   DCHECK(Heap::RootCanBeWrittenAfterInitialization(index));
1414   Str(source, MemOperand(root, index << kPointerSizeLog2));
1415 }
1416 
1417 
LoadTrueFalseRoots(Register true_root,Register false_root)1418 void MacroAssembler::LoadTrueFalseRoots(Register true_root,
1419                                         Register false_root) {
1420   STATIC_ASSERT((Heap::kTrueValueRootIndex + 1) == Heap::kFalseValueRootIndex);
1421   Ldp(true_root, false_root,
1422       MemOperand(root, Heap::kTrueValueRootIndex << kPointerSizeLog2));
1423 }
1424 
1425 
LoadHeapObject(Register result,Handle<HeapObject> object)1426 void MacroAssembler::LoadHeapObject(Register result,
1427                                     Handle<HeapObject> object) {
1428   Mov(result, Operand(object));
1429 }
1430 
1431 
LoadInstanceDescriptors(Register map,Register descriptors)1432 void MacroAssembler::LoadInstanceDescriptors(Register map,
1433                                              Register descriptors) {
1434   Ldr(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset));
1435 }
1436 
1437 
NumberOfOwnDescriptors(Register dst,Register map)1438 void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
1439   Ldr(dst, FieldMemOperand(map, Map::kBitField3Offset));
1440   DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
1441 }
1442 
1443 
EnumLengthUntagged(Register dst,Register map)1444 void MacroAssembler::EnumLengthUntagged(Register dst, Register map) {
1445   STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
1446   Ldrsw(dst, FieldMemOperand(map, Map::kBitField3Offset));
1447   And(dst, dst, Map::EnumLengthBits::kMask);
1448 }
1449 
1450 
EnumLengthSmi(Register dst,Register map)1451 void MacroAssembler::EnumLengthSmi(Register dst, Register map) {
1452   EnumLengthUntagged(dst, map);
1453   SmiTag(dst, dst);
1454 }
1455 
1456 
LoadAccessor(Register dst,Register holder,int accessor_index,AccessorComponent accessor)1457 void MacroAssembler::LoadAccessor(Register dst, Register holder,
1458                                   int accessor_index,
1459                                   AccessorComponent accessor) {
1460   Ldr(dst, FieldMemOperand(holder, HeapObject::kMapOffset));
1461   LoadInstanceDescriptors(dst, dst);
1462   Ldr(dst,
1463       FieldMemOperand(dst, DescriptorArray::GetValueOffset(accessor_index)));
1464   int offset = accessor == ACCESSOR_GETTER ? AccessorPair::kGetterOffset
1465                                            : AccessorPair::kSetterOffset;
1466   Ldr(dst, FieldMemOperand(dst, offset));
1467 }
1468 
1469 
CheckEnumCache(Register object,Register scratch0,Register scratch1,Register scratch2,Register scratch3,Register scratch4,Label * call_runtime)1470 void MacroAssembler::CheckEnumCache(Register object, Register scratch0,
1471                                     Register scratch1, Register scratch2,
1472                                     Register scratch3, Register scratch4,
1473                                     Label* call_runtime) {
1474   DCHECK(!AreAliased(object, scratch0, scratch1, scratch2, scratch3, scratch4));
1475 
1476   Register empty_fixed_array_value = scratch0;
1477   Register current_object = scratch1;
1478   Register null_value = scratch4;
1479 
1480   LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
1481   Label next, start;
1482 
1483   Mov(current_object, object);
1484 
1485   // Check if the enum length field is properly initialized, indicating that
1486   // there is an enum cache.
1487   Register map = scratch2;
1488   Register enum_length = scratch3;
1489   Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset));
1490 
1491   EnumLengthUntagged(enum_length, map);
1492   Cmp(enum_length, kInvalidEnumCacheSentinel);
1493   B(eq, call_runtime);
1494 
1495   LoadRoot(null_value, Heap::kNullValueRootIndex);
1496   B(&start);
1497 
1498   Bind(&next);
1499   Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset));
1500 
1501   // For all objects but the receiver, check that the cache is empty.
1502   EnumLengthUntagged(enum_length, map);
1503   Cbnz(enum_length, call_runtime);
1504 
1505   Bind(&start);
1506 
1507   // Check that there are no elements. Register current_object contains the
1508   // current JS object we've reached through the prototype chain.
1509   Label no_elements;
1510   Ldr(current_object, FieldMemOperand(current_object,
1511                                       JSObject::kElementsOffset));
1512   Cmp(current_object, empty_fixed_array_value);
1513   B(eq, &no_elements);
1514 
1515   // Second chance, the object may be using the empty slow element dictionary.
1516   CompareRoot(current_object, Heap::kEmptySlowElementDictionaryRootIndex);
1517   B(ne, call_runtime);
1518 
1519   Bind(&no_elements);
1520   Ldr(current_object, FieldMemOperand(map, Map::kPrototypeOffset));
1521   Cmp(current_object, null_value);
1522   B(ne, &next);
1523 }
1524 
1525 
TestJSArrayForAllocationMemento(Register receiver,Register scratch1,Register scratch2,Label * no_memento_found)1526 void MacroAssembler::TestJSArrayForAllocationMemento(Register receiver,
1527                                                      Register scratch1,
1528                                                      Register scratch2,
1529                                                      Label* no_memento_found) {
1530   Label map_check;
1531   Label top_check;
1532   ExternalReference new_space_allocation_top_adr =
1533       ExternalReference::new_space_allocation_top_address(isolate());
1534   const int kMementoMapOffset = JSArray::kSize - kHeapObjectTag;
1535   const int kMementoLastWordOffset =
1536       kMementoMapOffset + AllocationMemento::kSize - kPointerSize;
1537 
1538   // Bail out if the object is not in new space.
1539   JumpIfNotInNewSpace(receiver, no_memento_found);
1540   Add(scratch1, receiver, kMementoLastWordOffset);
1541   // If the object is in new space, we need to check whether it is on the same
1542   // page as the current top.
1543   Mov(scratch2, new_space_allocation_top_adr);
1544   Ldr(scratch2, MemOperand(scratch2));
1545   Eor(scratch2, scratch1, scratch2);
1546   Tst(scratch2, ~Page::kPageAlignmentMask);
1547   B(eq, &top_check);
1548   // The object is on a different page than allocation top. Bail out if the
1549   // object sits on the page boundary as no memento can follow and we cannot
1550   // touch the memory following it.
1551   Eor(scratch2, scratch1, receiver);
1552   Tst(scratch2, ~Page::kPageAlignmentMask);
1553   B(ne, no_memento_found);
1554   // Continue with the actual map check.
1555   jmp(&map_check);
1556   // If top is on the same page as the current object, we need to check whether
1557   // we are below top.
1558   bind(&top_check);
1559   Mov(scratch2, new_space_allocation_top_adr);
1560   Ldr(scratch2, MemOperand(scratch2));
1561   Cmp(scratch1, scratch2);
1562   B(ge, no_memento_found);
1563   // Memento map check.
1564   bind(&map_check);
1565   Ldr(scratch1, MemOperand(receiver, kMementoMapOffset));
1566   Cmp(scratch1, Operand(isolate()->factory()->allocation_memento_map()));
1567 }
1568 
1569 
InNewSpace(Register object,Condition cond,Label * branch)1570 void MacroAssembler::InNewSpace(Register object,
1571                                 Condition cond,
1572                                 Label* branch) {
1573   DCHECK(cond == eq || cond == ne);
1574   UseScratchRegisterScope temps(this);
1575   CheckPageFlag(object, temps.AcquireSameSizeAs(object),
1576                 MemoryChunk::kIsInNewSpaceMask, cond, branch);
1577 }
1578 
1579 
AssertSmi(Register object,BailoutReason reason)1580 void MacroAssembler::AssertSmi(Register object, BailoutReason reason) {
1581   if (emit_debug_code()) {
1582     STATIC_ASSERT(kSmiTag == 0);
1583     Tst(object, kSmiTagMask);
1584     Check(eq, reason);
1585   }
1586 }
1587 
1588 
AssertNotSmi(Register object,BailoutReason reason)1589 void MacroAssembler::AssertNotSmi(Register object, BailoutReason reason) {
1590   if (emit_debug_code()) {
1591     STATIC_ASSERT(kSmiTag == 0);
1592     Tst(object, kSmiTagMask);
1593     Check(ne, reason);
1594   }
1595 }
1596 
1597 
AssertName(Register object)1598 void MacroAssembler::AssertName(Register object) {
1599   if (emit_debug_code()) {
1600     AssertNotSmi(object, kOperandIsASmiAndNotAName);
1601 
1602     UseScratchRegisterScope temps(this);
1603     Register temp = temps.AcquireX();
1604 
1605     Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
1606     CompareInstanceType(temp, temp, LAST_NAME_TYPE);
1607     Check(ls, kOperandIsNotAName);
1608   }
1609 }
1610 
1611 
AssertFunction(Register object)1612 void MacroAssembler::AssertFunction(Register object) {
1613   if (emit_debug_code()) {
1614     AssertNotSmi(object, kOperandIsASmiAndNotAFunction);
1615 
1616     UseScratchRegisterScope temps(this);
1617     Register temp = temps.AcquireX();
1618 
1619     CompareObjectType(object, temp, temp, JS_FUNCTION_TYPE);
1620     Check(eq, kOperandIsNotAFunction);
1621   }
1622 }
1623 
1624 
AssertBoundFunction(Register object)1625 void MacroAssembler::AssertBoundFunction(Register object) {
1626   if (emit_debug_code()) {
1627     AssertNotSmi(object, kOperandIsASmiAndNotABoundFunction);
1628 
1629     UseScratchRegisterScope temps(this);
1630     Register temp = temps.AcquireX();
1631 
1632     CompareObjectType(object, temp, temp, JS_BOUND_FUNCTION_TYPE);
1633     Check(eq, kOperandIsNotABoundFunction);
1634   }
1635 }
1636 
AssertGeneratorObject(Register object)1637 void MacroAssembler::AssertGeneratorObject(Register object) {
1638   if (emit_debug_code()) {
1639     AssertNotSmi(object, kOperandIsASmiAndNotAGeneratorObject);
1640 
1641     UseScratchRegisterScope temps(this);
1642     Register temp = temps.AcquireX();
1643 
1644     CompareObjectType(object, temp, temp, JS_GENERATOR_OBJECT_TYPE);
1645     Check(eq, kOperandIsNotAGeneratorObject);
1646   }
1647 }
1648 
AssertReceiver(Register object)1649 void MacroAssembler::AssertReceiver(Register object) {
1650   if (emit_debug_code()) {
1651     AssertNotSmi(object, kOperandIsASmiAndNotAReceiver);
1652 
1653     UseScratchRegisterScope temps(this);
1654     Register temp = temps.AcquireX();
1655 
1656     STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
1657     CompareObjectType(object, temp, temp, FIRST_JS_RECEIVER_TYPE);
1658     Check(hs, kOperandIsNotAReceiver);
1659   }
1660 }
1661 
1662 
AssertUndefinedOrAllocationSite(Register object,Register scratch)1663 void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
1664                                                      Register scratch) {
1665   if (emit_debug_code()) {
1666     Label done_checking;
1667     AssertNotSmi(object);
1668     JumpIfRoot(object, Heap::kUndefinedValueRootIndex, &done_checking);
1669     Ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
1670     CompareRoot(scratch, Heap::kAllocationSiteMapRootIndex);
1671     Assert(eq, kExpectedUndefinedOrCell);
1672     Bind(&done_checking);
1673   }
1674 }
1675 
1676 
AssertString(Register object)1677 void MacroAssembler::AssertString(Register object) {
1678   if (emit_debug_code()) {
1679     UseScratchRegisterScope temps(this);
1680     Register temp = temps.AcquireX();
1681     STATIC_ASSERT(kSmiTag == 0);
1682     Tst(object, kSmiTagMask);
1683     Check(ne, kOperandIsASmiAndNotAString);
1684     Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
1685     CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE);
1686     Check(lo, kOperandIsNotAString);
1687   }
1688 }
1689 
1690 
AssertPositiveOrZero(Register value)1691 void MacroAssembler::AssertPositiveOrZero(Register value) {
1692   if (emit_debug_code()) {
1693     Label done;
1694     int sign_bit = value.Is64Bits() ? kXSignBit : kWSignBit;
1695     Tbz(value, sign_bit, &done);
1696     Abort(kUnexpectedNegativeValue);
1697     Bind(&done);
1698   }
1699 }
1700 
AssertNotNumber(Register value)1701 void MacroAssembler::AssertNotNumber(Register value) {
1702   if (emit_debug_code()) {
1703     STATIC_ASSERT(kSmiTag == 0);
1704     Tst(value, kSmiTagMask);
1705     Check(ne, kOperandIsANumber);
1706     Label done;
1707     JumpIfNotHeapNumber(value, &done);
1708     Abort(kOperandIsANumber);
1709     Bind(&done);
1710   }
1711 }
1712 
AssertNumber(Register value)1713 void MacroAssembler::AssertNumber(Register value) {
1714   if (emit_debug_code()) {
1715     Label done;
1716     JumpIfSmi(value, &done);
1717     JumpIfHeapNumber(value, &done);
1718     Abort(kOperandIsNotANumber);
1719     Bind(&done);
1720   }
1721 }
1722 
CallStub(CodeStub * stub,TypeFeedbackId ast_id)1723 void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
1724   DCHECK(AllowThisStubCall(stub));  // Stub calls are not allowed in some stubs.
1725   Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id);
1726 }
1727 
1728 
TailCallStub(CodeStub * stub)1729 void MacroAssembler::TailCallStub(CodeStub* stub) {
1730   Jump(stub->GetCode(), RelocInfo::CODE_TARGET);
1731 }
1732 
1733 
CallRuntime(const Runtime::Function * f,int num_arguments,SaveFPRegsMode save_doubles)1734 void MacroAssembler::CallRuntime(const Runtime::Function* f,
1735                                  int num_arguments,
1736                                  SaveFPRegsMode save_doubles) {
1737   // All arguments must be on the stack before this function is called.
1738   // x0 holds the return value after the call.
1739 
1740   // Check that the number of arguments matches what the function expects.
1741   // If f->nargs is -1, the function can accept a variable number of arguments.
1742   CHECK(f->nargs < 0 || f->nargs == num_arguments);
1743 
1744   // Place the necessary arguments.
1745   Mov(x0, num_arguments);
1746   Mov(x1, ExternalReference(f, isolate()));
1747 
1748   CEntryStub stub(isolate(), 1, save_doubles);
1749   CallStub(&stub);
1750 }
1751 
1752 
CallExternalReference(const ExternalReference & ext,int num_arguments)1753 void MacroAssembler::CallExternalReference(const ExternalReference& ext,
1754                                            int num_arguments) {
1755   Mov(x0, num_arguments);
1756   Mov(x1, ext);
1757 
1758   CEntryStub stub(isolate(), 1);
1759   CallStub(&stub);
1760 }
1761 
JumpToExternalReference(const ExternalReference & builtin,bool builtin_exit_frame)1762 void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin,
1763                                              bool builtin_exit_frame) {
1764   Mov(x1, builtin);
1765   CEntryStub stub(isolate(), 1, kDontSaveFPRegs, kArgvOnStack,
1766                   builtin_exit_frame);
1767   Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
1768 }
1769 
TailCallRuntime(Runtime::FunctionId fid)1770 void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) {
1771   const Runtime::Function* function = Runtime::FunctionForId(fid);
1772   DCHECK_EQ(1, function->result_size);
1773   if (function->nargs >= 0) {
1774     // TODO(1236192): Most runtime routines don't need the number of
1775     // arguments passed in because it is constant. At some point we
1776     // should remove this need and make the runtime routine entry code
1777     // smarter.
1778     Mov(x0, function->nargs);
1779   }
1780   JumpToExternalReference(ExternalReference(fid, isolate()));
1781 }
1782 
ActivationFrameAlignment()1783 int MacroAssembler::ActivationFrameAlignment() {
1784 #if V8_HOST_ARCH_ARM64
1785   // Running on the real platform. Use the alignment as mandated by the local
1786   // environment.
1787   // Note: This will break if we ever start generating snapshots on one ARM
1788   // platform for another ARM platform with a different alignment.
1789   return base::OS::ActivationFrameAlignment();
1790 #else  // V8_HOST_ARCH_ARM64
1791   // If we are using the simulator then we should always align to the expected
1792   // alignment. As the simulator is used to generate snapshots we do not know
1793   // if the target platform will need alignment, so this is controlled from a
1794   // flag.
1795   return FLAG_sim_stack_alignment;
1796 #endif  // V8_HOST_ARCH_ARM64
1797 }
1798 
1799 
CallCFunction(ExternalReference function,int num_of_reg_args)1800 void MacroAssembler::CallCFunction(ExternalReference function,
1801                                    int num_of_reg_args) {
1802   CallCFunction(function, num_of_reg_args, 0);
1803 }
1804 
1805 
CallCFunction(ExternalReference function,int num_of_reg_args,int num_of_double_args)1806 void MacroAssembler::CallCFunction(ExternalReference function,
1807                                    int num_of_reg_args,
1808                                    int num_of_double_args) {
1809   UseScratchRegisterScope temps(this);
1810   Register temp = temps.AcquireX();
1811   Mov(temp, function);
1812   CallCFunction(temp, num_of_reg_args, num_of_double_args);
1813 }
1814 
1815 
CallCFunction(Register function,int num_of_reg_args,int num_of_double_args)1816 void MacroAssembler::CallCFunction(Register function,
1817                                    int num_of_reg_args,
1818                                    int num_of_double_args) {
1819   DCHECK(has_frame());
1820   // We can pass 8 integer arguments in registers. If we need to pass more than
1821   // that, we'll need to implement support for passing them on the stack.
1822   DCHECK(num_of_reg_args <= 8);
1823 
1824   // If we're passing doubles, we're limited to the following prototypes
1825   // (defined by ExternalReference::Type):
1826   //  BUILTIN_COMPARE_CALL:  int f(double, double)
1827   //  BUILTIN_FP_FP_CALL:    double f(double, double)
1828   //  BUILTIN_FP_CALL:       double f(double)
1829   //  BUILTIN_FP_INT_CALL:   double f(double, int)
1830   if (num_of_double_args > 0) {
1831     DCHECK(num_of_reg_args <= 1);
1832     DCHECK((num_of_double_args + num_of_reg_args) <= 2);
1833   }
1834 
1835 
1836   // If the stack pointer is not csp, we need to derive an aligned csp from the
1837   // current stack pointer.
1838   const Register old_stack_pointer = StackPointer();
1839   if (!csp.Is(old_stack_pointer)) {
1840     AssertStackConsistency();
1841 
1842     int sp_alignment = ActivationFrameAlignment();
1843     // The ABI mandates at least 16-byte alignment.
1844     DCHECK(sp_alignment >= 16);
1845     DCHECK(base::bits::IsPowerOfTwo32(sp_alignment));
1846 
1847     // The current stack pointer is a callee saved register, and is preserved
1848     // across the call.
1849     DCHECK(kCalleeSaved.IncludesAliasOf(old_stack_pointer));
1850 
1851     // Align and synchronize the system stack pointer with jssp.
1852     Bic(csp, old_stack_pointer, sp_alignment - 1);
1853     SetStackPointer(csp);
1854   }
1855 
1856   // Call directly. The function called cannot cause a GC, or allow preemption,
1857   // so the return address in the link register stays correct.
1858   Call(function);
1859 
1860   if (!csp.Is(old_stack_pointer)) {
1861     if (emit_debug_code()) {
1862       // Because the stack pointer must be aligned on a 16-byte boundary, the
1863       // aligned csp can be up to 12 bytes below the jssp. This is the case
1864       // where we only pushed one W register on top of an aligned jssp.
1865       UseScratchRegisterScope temps(this);
1866       Register temp = temps.AcquireX();
1867       DCHECK(ActivationFrameAlignment() == 16);
1868       Sub(temp, csp, old_stack_pointer);
1869       // We want temp <= 0 && temp >= -12.
1870       Cmp(temp, 0);
1871       Ccmp(temp, -12, NFlag, le);
1872       Check(ge, kTheStackWasCorruptedByMacroAssemblerCall);
1873     }
1874     SetStackPointer(old_stack_pointer);
1875   }
1876 }
1877 
1878 
Jump(Register target)1879 void MacroAssembler::Jump(Register target) {
1880   Br(target);
1881 }
1882 
1883 
Jump(intptr_t target,RelocInfo::Mode rmode,Condition cond)1884 void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
1885                           Condition cond) {
1886   if (cond == nv) return;
1887   UseScratchRegisterScope temps(this);
1888   Register temp = temps.AcquireX();
1889   Label done;
1890   if (cond != al) B(NegateCondition(cond), &done);
1891   Mov(temp, Operand(target, rmode));
1892   Br(temp);
1893   Bind(&done);
1894 }
1895 
1896 
Jump(Address target,RelocInfo::Mode rmode,Condition cond)1897 void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode,
1898                           Condition cond) {
1899   DCHECK(!RelocInfo::IsCodeTarget(rmode));
1900   Jump(reinterpret_cast<intptr_t>(target), rmode, cond);
1901 }
1902 
1903 
Jump(Handle<Code> code,RelocInfo::Mode rmode,Condition cond)1904 void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
1905                           Condition cond) {
1906   DCHECK(RelocInfo::IsCodeTarget(rmode));
1907   AllowDeferredHandleDereference embedding_raw_address;
1908   Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
1909 }
1910 
1911 
Call(Register target)1912 void MacroAssembler::Call(Register target) {
1913   BlockPoolsScope scope(this);
1914 #ifdef DEBUG
1915   Label start_call;
1916   Bind(&start_call);
1917 #endif
1918 
1919   Blr(target);
1920 
1921 #ifdef DEBUG
1922   AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target));
1923 #endif
1924 }
1925 
1926 
Call(Label * target)1927 void MacroAssembler::Call(Label* target) {
1928   BlockPoolsScope scope(this);
1929 #ifdef DEBUG
1930   Label start_call;
1931   Bind(&start_call);
1932 #endif
1933 
1934   Bl(target);
1935 
1936 #ifdef DEBUG
1937   AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target));
1938 #endif
1939 }
1940 
1941 
1942 // MacroAssembler::CallSize is sensitive to changes in this function, as it
1943 // requires to know how many instructions are used to branch to the target.
Call(Address target,RelocInfo::Mode rmode)1944 void MacroAssembler::Call(Address target, RelocInfo::Mode rmode) {
1945   BlockPoolsScope scope(this);
1946 #ifdef DEBUG
1947   Label start_call;
1948   Bind(&start_call);
1949 #endif
1950 
1951   // Addresses always have 64 bits, so we shouldn't encounter NONE32.
1952   DCHECK(rmode != RelocInfo::NONE32);
1953 
1954   UseScratchRegisterScope temps(this);
1955   Register temp = temps.AcquireX();
1956 
1957   if (rmode == RelocInfo::NONE64) {
1958     // Addresses are 48 bits so we never need to load the upper 16 bits.
1959     uint64_t imm = reinterpret_cast<uint64_t>(target);
1960     // If we don't use ARM tagged addresses, the 16 higher bits must be 0.
1961     DCHECK(((imm >> 48) & 0xffff) == 0);
1962     movz(temp, (imm >> 0) & 0xffff, 0);
1963     movk(temp, (imm >> 16) & 0xffff, 16);
1964     movk(temp, (imm >> 32) & 0xffff, 32);
1965   } else {
1966     Ldr(temp, Immediate(reinterpret_cast<intptr_t>(target), rmode));
1967   }
1968   Blr(temp);
1969 #ifdef DEBUG
1970   AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target, rmode));
1971 #endif
1972 }
1973 
1974 
Call(Handle<Code> code,RelocInfo::Mode rmode,TypeFeedbackId ast_id)1975 void MacroAssembler::Call(Handle<Code> code,
1976                           RelocInfo::Mode rmode,
1977                           TypeFeedbackId ast_id) {
1978 #ifdef DEBUG
1979   Label start_call;
1980   Bind(&start_call);
1981 #endif
1982 
1983   if ((rmode == RelocInfo::CODE_TARGET) && (!ast_id.IsNone())) {
1984     SetRecordedAstId(ast_id);
1985     rmode = RelocInfo::CODE_TARGET_WITH_ID;
1986   }
1987 
1988   AllowDeferredHandleDereference embedding_raw_address;
1989   Call(reinterpret_cast<Address>(code.location()), rmode);
1990 
1991 #ifdef DEBUG
1992   // Check the size of the code generated.
1993   AssertSizeOfCodeGeneratedSince(&start_call, CallSize(code, rmode, ast_id));
1994 #endif
1995 }
1996 
1997 
CallSize(Register target)1998 int MacroAssembler::CallSize(Register target) {
1999   USE(target);
2000   return kInstructionSize;
2001 }
2002 
2003 
CallSize(Label * target)2004 int MacroAssembler::CallSize(Label* target) {
2005   USE(target);
2006   return kInstructionSize;
2007 }
2008 
2009 
CallSize(Address target,RelocInfo::Mode rmode)2010 int MacroAssembler::CallSize(Address target, RelocInfo::Mode rmode) {
2011   USE(target);
2012 
2013   // Addresses always have 64 bits, so we shouldn't encounter NONE32.
2014   DCHECK(rmode != RelocInfo::NONE32);
2015 
2016   if (rmode == RelocInfo::NONE64) {
2017     return kCallSizeWithoutRelocation;
2018   } else {
2019     return kCallSizeWithRelocation;
2020   }
2021 }
2022 
2023 
CallSize(Handle<Code> code,RelocInfo::Mode rmode,TypeFeedbackId ast_id)2024 int MacroAssembler::CallSize(Handle<Code> code,
2025                              RelocInfo::Mode rmode,
2026                              TypeFeedbackId ast_id) {
2027   USE(code);
2028   USE(ast_id);
2029 
2030   // Addresses always have 64 bits, so we shouldn't encounter NONE32.
2031   DCHECK(rmode != RelocInfo::NONE32);
2032 
2033   if (rmode == RelocInfo::NONE64) {
2034     return kCallSizeWithoutRelocation;
2035   } else {
2036     return kCallSizeWithRelocation;
2037   }
2038 }
2039 
2040 
JumpIfHeapNumber(Register object,Label * on_heap_number,SmiCheckType smi_check_type)2041 void MacroAssembler::JumpIfHeapNumber(Register object, Label* on_heap_number,
2042                                       SmiCheckType smi_check_type) {
2043   Label on_not_heap_number;
2044 
2045   if (smi_check_type == DO_SMI_CHECK) {
2046     JumpIfSmi(object, &on_not_heap_number);
2047   }
2048 
2049   AssertNotSmi(object);
2050 
2051   UseScratchRegisterScope temps(this);
2052   Register temp = temps.AcquireX();
2053   Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
2054   JumpIfRoot(temp, Heap::kHeapNumberMapRootIndex, on_heap_number);
2055 
2056   Bind(&on_not_heap_number);
2057 }
2058 
2059 
JumpIfNotHeapNumber(Register object,Label * on_not_heap_number,SmiCheckType smi_check_type)2060 void MacroAssembler::JumpIfNotHeapNumber(Register object,
2061                                          Label* on_not_heap_number,
2062                                          SmiCheckType smi_check_type) {
2063   if (smi_check_type == DO_SMI_CHECK) {
2064     JumpIfSmi(object, on_not_heap_number);
2065   }
2066 
2067   AssertNotSmi(object);
2068 
2069   UseScratchRegisterScope temps(this);
2070   Register temp = temps.AcquireX();
2071   Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
2072   JumpIfNotRoot(temp, Heap::kHeapNumberMapRootIndex, on_not_heap_number);
2073 }
2074 
2075 
TryRepresentDoubleAsInt(Register as_int,FPRegister value,FPRegister scratch_d,Label * on_successful_conversion,Label * on_failed_conversion)2076 void MacroAssembler::TryRepresentDoubleAsInt(Register as_int,
2077                                              FPRegister value,
2078                                              FPRegister scratch_d,
2079                                              Label* on_successful_conversion,
2080                                              Label* on_failed_conversion) {
2081   // Convert to an int and back again, then compare with the original value.
2082   Fcvtzs(as_int, value);
2083   Scvtf(scratch_d, as_int);
2084   Fcmp(value, scratch_d);
2085 
2086   if (on_successful_conversion) {
2087     B(on_successful_conversion, eq);
2088   }
2089   if (on_failed_conversion) {
2090     B(on_failed_conversion, ne);
2091   }
2092 }
2093 
2094 
TestForMinusZero(DoubleRegister input)2095 void MacroAssembler::TestForMinusZero(DoubleRegister input) {
2096   UseScratchRegisterScope temps(this);
2097   Register temp = temps.AcquireX();
2098   // Floating point -0.0 is kMinInt as an integer, so subtracting 1 (cmp) will
2099   // cause overflow.
2100   Fmov(temp, input);
2101   Cmp(temp, 1);
2102 }
2103 
2104 
JumpIfMinusZero(DoubleRegister input,Label * on_negative_zero)2105 void MacroAssembler::JumpIfMinusZero(DoubleRegister input,
2106                                      Label* on_negative_zero) {
2107   TestForMinusZero(input);
2108   B(vs, on_negative_zero);
2109 }
2110 
2111 
JumpIfMinusZero(Register input,Label * on_negative_zero)2112 void MacroAssembler::JumpIfMinusZero(Register input,
2113                                      Label* on_negative_zero) {
2114   DCHECK(input.Is64Bits());
2115   // Floating point value is in an integer register. Detect -0.0 by subtracting
2116   // 1 (cmp), which will cause overflow.
2117   Cmp(input, 1);
2118   B(vs, on_negative_zero);
2119 }
2120 
2121 
ClampInt32ToUint8(Register output,Register input)2122 void MacroAssembler::ClampInt32ToUint8(Register output, Register input) {
2123   // Clamp the value to [0..255].
2124   Cmp(input.W(), Operand(input.W(), UXTB));
2125   // If input < input & 0xff, it must be < 0, so saturate to 0.
2126   Csel(output.W(), wzr, input.W(), lt);
2127   // If input <= input & 0xff, it must be <= 255. Otherwise, saturate to 255.
2128   Csel(output.W(), output.W(), 255, le);
2129 }
2130 
2131 
ClampInt32ToUint8(Register in_out)2132 void MacroAssembler::ClampInt32ToUint8(Register in_out) {
2133   ClampInt32ToUint8(in_out, in_out);
2134 }
2135 
2136 
ClampDoubleToUint8(Register output,DoubleRegister input,DoubleRegister dbl_scratch)2137 void MacroAssembler::ClampDoubleToUint8(Register output,
2138                                         DoubleRegister input,
2139                                         DoubleRegister dbl_scratch) {
2140   // This conversion follows the WebIDL "[Clamp]" rules for PIXEL types:
2141   //   - Inputs lower than 0 (including -infinity) produce 0.
2142   //   - Inputs higher than 255 (including +infinity) produce 255.
2143   // Also, it seems that PIXEL types use round-to-nearest rather than
2144   // round-towards-zero.
2145 
2146   // Squash +infinity before the conversion, since Fcvtnu will normally
2147   // convert it to 0.
2148   Fmov(dbl_scratch, 255);
2149   Fmin(dbl_scratch, dbl_scratch, input);
2150 
2151   // Convert double to unsigned integer. Values less than zero become zero.
2152   // Values greater than 255 have already been clamped to 255.
2153   Fcvtnu(output, dbl_scratch);
2154 }
2155 
InitializeFieldsWithFiller(Register current_address,Register end_address,Register filler)2156 void MacroAssembler::InitializeFieldsWithFiller(Register current_address,
2157                                                 Register end_address,
2158                                                 Register filler) {
2159   DCHECK(!current_address.Is(csp));
2160   UseScratchRegisterScope temps(this);
2161   Register distance_in_words = temps.AcquireX();
2162   Label done;
2163 
2164   // Calculate the distance. If it's <= zero then there's nothing to do.
2165   Subs(distance_in_words, end_address, current_address);
2166   B(le, &done);
2167 
2168   // There's at least one field to fill, so do this unconditionally.
2169   Str(filler, MemOperand(current_address));
2170 
2171   // If the distance_in_words consists of odd number of words we advance
2172   // start_address by one word, otherwise the pairs loop will ovwerite the
2173   // field that was stored above.
2174   And(distance_in_words, distance_in_words, kPointerSize);
2175   Add(current_address, current_address, distance_in_words);
2176 
2177   // Store filler to memory in pairs.
2178   Label loop, entry;
2179   B(&entry);
2180   Bind(&loop);
2181   Stp(filler, filler, MemOperand(current_address, 2 * kPointerSize, PostIndex));
2182   Bind(&entry);
2183   Cmp(current_address, end_address);
2184   B(lo, &loop);
2185 
2186   Bind(&done);
2187 }
2188 
JumpIfBothInstanceTypesAreNotSequentialOneByte(Register first,Register second,Register scratch1,Register scratch2,Label * failure)2189 void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte(
2190     Register first, Register second, Register scratch1, Register scratch2,
2191     Label* failure) {
2192   DCHECK(!AreAliased(first, second, scratch1, scratch2));
2193   const int kFlatOneByteStringMask =
2194       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2195   const int kFlatOneByteStringTag =
2196       kStringTag | kOneByteStringTag | kSeqStringTag;
2197   And(scratch1, first, kFlatOneByteStringMask);
2198   And(scratch2, second, kFlatOneByteStringMask);
2199   Cmp(scratch1, kFlatOneByteStringTag);
2200   Ccmp(scratch2, kFlatOneByteStringTag, NoFlag, eq);
2201   B(ne, failure);
2202 }
2203 
2204 
JumpIfNotUniqueNameInstanceType(Register type,Label * not_unique_name)2205 void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register type,
2206                                                      Label* not_unique_name) {
2207   STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
2208   // if ((type is string && type is internalized) || type == SYMBOL_TYPE) {
2209   //   continue
2210   // } else {
2211   //   goto not_unique_name
2212   // }
2213   Tst(type, kIsNotStringMask | kIsNotInternalizedMask);
2214   Ccmp(type, SYMBOL_TYPE, ZFlag, ne);
2215   B(ne, not_unique_name);
2216 }
2217 
PrepareForTailCall(const ParameterCount & callee_args_count,Register caller_args_count_reg,Register scratch0,Register scratch1)2218 void MacroAssembler::PrepareForTailCall(const ParameterCount& callee_args_count,
2219                                         Register caller_args_count_reg,
2220                                         Register scratch0, Register scratch1) {
2221 #if DEBUG
2222   if (callee_args_count.is_reg()) {
2223     DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0,
2224                        scratch1));
2225   } else {
2226     DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1));
2227   }
2228 #endif
2229 
2230   // Calculate the end of destination area where we will put the arguments
2231   // after we drop current frame. We add kPointerSize to count the receiver
2232   // argument which is not included into formal parameters count.
2233   Register dst_reg = scratch0;
2234   __ add(dst_reg, fp, Operand(caller_args_count_reg, LSL, kPointerSizeLog2));
2235   __ add(dst_reg, dst_reg,
2236          Operand(StandardFrameConstants::kCallerSPOffset + kPointerSize));
2237 
2238   Register src_reg = caller_args_count_reg;
2239   // Calculate the end of source area. +kPointerSize is for the receiver.
2240   if (callee_args_count.is_reg()) {
2241     add(src_reg, jssp, Operand(callee_args_count.reg(), LSL, kPointerSizeLog2));
2242     add(src_reg, src_reg, Operand(kPointerSize));
2243   } else {
2244     add(src_reg, jssp,
2245         Operand((callee_args_count.immediate() + 1) * kPointerSize));
2246   }
2247 
2248   if (FLAG_debug_code) {
2249     __ Cmp(src_reg, dst_reg);
2250     __ Check(lo, kStackAccessBelowStackPointer);
2251   }
2252 
2253   // Restore caller's frame pointer and return address now as they will be
2254   // overwritten by the copying loop.
2255   __ Ldr(lr, MemOperand(fp, StandardFrameConstants::kCallerPCOffset));
2256   __ Ldr(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2257 
2258   // Now copy callee arguments to the caller frame going backwards to avoid
2259   // callee arguments corruption (source and destination areas could overlap).
2260 
2261   // Both src_reg and dst_reg are pointing to the word after the one to copy,
2262   // so they must be pre-decremented in the loop.
2263   Register tmp_reg = scratch1;
2264   Label loop, entry;
2265   __ B(&entry);
2266   __ bind(&loop);
2267   __ Ldr(tmp_reg, MemOperand(src_reg, -kPointerSize, PreIndex));
2268   __ Str(tmp_reg, MemOperand(dst_reg, -kPointerSize, PreIndex));
2269   __ bind(&entry);
2270   __ Cmp(jssp, src_reg);
2271   __ B(ne, &loop);
2272 
2273   // Leave current frame.
2274   __ Mov(jssp, dst_reg);
2275   __ SetStackPointer(jssp);
2276   __ AssertStackConsistency();
2277 }
2278 
InvokePrologue(const ParameterCount & expected,const ParameterCount & actual,Label * done,InvokeFlag flag,bool * definitely_mismatches,const CallWrapper & call_wrapper)2279 void MacroAssembler::InvokePrologue(const ParameterCount& expected,
2280                                     const ParameterCount& actual,
2281                                     Label* done,
2282                                     InvokeFlag flag,
2283                                     bool* definitely_mismatches,
2284                                     const CallWrapper& call_wrapper) {
2285   bool definitely_matches = false;
2286   *definitely_mismatches = false;
2287   Label regular_invoke;
2288 
2289   // Check whether the expected and actual arguments count match. If not,
2290   // setup registers according to contract with ArgumentsAdaptorTrampoline:
2291   //  x0: actual arguments count.
2292   //  x1: function (passed through to callee).
2293   //  x2: expected arguments count.
2294 
2295   // The code below is made a lot easier because the calling code already sets
2296   // up actual and expected registers according to the contract if values are
2297   // passed in registers.
2298   DCHECK(actual.is_immediate() || actual.reg().is(x0));
2299   DCHECK(expected.is_immediate() || expected.reg().is(x2));
2300 
2301   if (expected.is_immediate()) {
2302     DCHECK(actual.is_immediate());
2303     Mov(x0, actual.immediate());
2304     if (expected.immediate() == actual.immediate()) {
2305       definitely_matches = true;
2306 
2307     } else {
2308       if (expected.immediate() ==
2309           SharedFunctionInfo::kDontAdaptArgumentsSentinel) {
2310         // Don't worry about adapting arguments for builtins that
2311         // don't want that done. Skip adaption code by making it look
2312         // like we have a match between expected and actual number of
2313         // arguments.
2314         definitely_matches = true;
2315       } else {
2316         *definitely_mismatches = true;
2317         // Set up x2 for the argument adaptor.
2318         Mov(x2, expected.immediate());
2319       }
2320     }
2321 
2322   } else {  // expected is a register.
2323     Operand actual_op = actual.is_immediate() ? Operand(actual.immediate())
2324                                               : Operand(actual.reg());
2325     Mov(x0, actual_op);
2326     // If actual == expected perform a regular invocation.
2327     Cmp(expected.reg(), actual_op);
2328     B(eq, &regular_invoke);
2329   }
2330 
2331   // If the argument counts may mismatch, generate a call to the argument
2332   // adaptor.
2333   if (!definitely_matches) {
2334     Handle<Code> adaptor =
2335         isolate()->builtins()->ArgumentsAdaptorTrampoline();
2336     if (flag == CALL_FUNCTION) {
2337       call_wrapper.BeforeCall(CallSize(adaptor));
2338       Call(adaptor);
2339       call_wrapper.AfterCall();
2340       if (!*definitely_mismatches) {
2341         // If the arg counts don't match, no extra code is emitted by
2342         // MAsm::InvokeFunctionCode and we can just fall through.
2343         B(done);
2344       }
2345     } else {
2346       Jump(adaptor, RelocInfo::CODE_TARGET);
2347     }
2348   }
2349   Bind(&regular_invoke);
2350 }
2351 
CheckDebugHook(Register fun,Register new_target,const ParameterCount & expected,const ParameterCount & actual)2352 void MacroAssembler::CheckDebugHook(Register fun, Register new_target,
2353                                     const ParameterCount& expected,
2354                                     const ParameterCount& actual) {
2355   Label skip_hook;
2356   ExternalReference debug_hook_active =
2357       ExternalReference::debug_hook_on_function_call_address(isolate());
2358   Mov(x4, Operand(debug_hook_active));
2359   Ldrsb(x4, MemOperand(x4));
2360   CompareAndBranch(x4, Operand(0), eq, &skip_hook);
2361   {
2362     FrameScope frame(this,
2363                      has_frame() ? StackFrame::NONE : StackFrame::INTERNAL);
2364     if (expected.is_reg()) {
2365       SmiTag(expected.reg());
2366       Push(expected.reg());
2367     }
2368     if (actual.is_reg()) {
2369       SmiTag(actual.reg());
2370       Push(actual.reg());
2371     }
2372     if (new_target.is_valid()) {
2373       Push(new_target);
2374     }
2375     Push(fun);
2376     Push(fun);
2377     CallRuntime(Runtime::kDebugOnFunctionCall);
2378     Pop(fun);
2379     if (new_target.is_valid()) {
2380       Pop(new_target);
2381     }
2382     if (actual.is_reg()) {
2383       Pop(actual.reg());
2384       SmiUntag(actual.reg());
2385     }
2386     if (expected.is_reg()) {
2387       Pop(expected.reg());
2388       SmiUntag(expected.reg());
2389     }
2390   }
2391   bind(&skip_hook);
2392 }
2393 
2394 
InvokeFunctionCode(Register function,Register new_target,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper)2395 void MacroAssembler::InvokeFunctionCode(Register function, Register new_target,
2396                                         const ParameterCount& expected,
2397                                         const ParameterCount& actual,
2398                                         InvokeFlag flag,
2399                                         const CallWrapper& call_wrapper) {
2400   // You can't call a function without a valid frame.
2401   DCHECK(flag == JUMP_FUNCTION || has_frame());
2402   DCHECK(function.is(x1));
2403   DCHECK_IMPLIES(new_target.is_valid(), new_target.is(x3));
2404 
2405   if (call_wrapper.NeedsDebugHookCheck()) {
2406     CheckDebugHook(function, new_target, expected, actual);
2407   }
2408 
2409   // Clear the new.target register if not given.
2410   if (!new_target.is_valid()) {
2411     LoadRoot(x3, Heap::kUndefinedValueRootIndex);
2412   }
2413 
2414   Label done;
2415   bool definitely_mismatches = false;
2416   InvokePrologue(expected, actual, &done, flag, &definitely_mismatches,
2417                  call_wrapper);
2418 
2419   // If we are certain that actual != expected, then we know InvokePrologue will
2420   // have handled the call through the argument adaptor mechanism.
2421   // The called function expects the call kind in x5.
2422   if (!definitely_mismatches) {
2423     // We call indirectly through the code field in the function to
2424     // allow recompilation to take effect without changing any of the
2425     // call sites.
2426     Register code = x4;
2427     Ldr(code, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
2428     if (flag == CALL_FUNCTION) {
2429       call_wrapper.BeforeCall(CallSize(code));
2430       Call(code);
2431       call_wrapper.AfterCall();
2432     } else {
2433       DCHECK(flag == JUMP_FUNCTION);
2434       Jump(code);
2435     }
2436   }
2437 
2438   // Continue here if InvokePrologue does handle the invocation due to
2439   // mismatched parameter counts.
2440   Bind(&done);
2441 }
2442 
2443 
InvokeFunction(Register function,Register new_target,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper)2444 void MacroAssembler::InvokeFunction(Register function,
2445                                     Register new_target,
2446                                     const ParameterCount& actual,
2447                                     InvokeFlag flag,
2448                                     const CallWrapper& call_wrapper) {
2449   // You can't call a function without a valid frame.
2450   DCHECK(flag == JUMP_FUNCTION || has_frame());
2451 
2452   // Contract with called JS functions requires that function is passed in x1.
2453   // (See FullCodeGenerator::Generate().)
2454   DCHECK(function.is(x1));
2455 
2456   Register expected_reg = x2;
2457 
2458   Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
2459   // The number of arguments is stored as an int32_t, and -1 is a marker
2460   // (SharedFunctionInfo::kDontAdaptArgumentsSentinel), so we need sign
2461   // extension to correctly handle it.
2462   Ldr(expected_reg, FieldMemOperand(function,
2463                                     JSFunction::kSharedFunctionInfoOffset));
2464   Ldrsw(expected_reg,
2465         FieldMemOperand(expected_reg,
2466                         SharedFunctionInfo::kFormalParameterCountOffset));
2467 
2468   ParameterCount expected(expected_reg);
2469   InvokeFunctionCode(function, new_target, expected, actual, flag,
2470                      call_wrapper);
2471 }
2472 
2473 
InvokeFunction(Register function,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper)2474 void MacroAssembler::InvokeFunction(Register function,
2475                                     const ParameterCount& expected,
2476                                     const ParameterCount& actual,
2477                                     InvokeFlag flag,
2478                                     const CallWrapper& call_wrapper) {
2479   // You can't call a function without a valid frame.
2480   DCHECK(flag == JUMP_FUNCTION || has_frame());
2481 
2482   // Contract with called JS functions requires that function is passed in x1.
2483   // (See FullCodeGenerator::Generate().)
2484   DCHECK(function.Is(x1));
2485 
2486   // Set up the context.
2487   Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
2488 
2489   InvokeFunctionCode(function, no_reg, expected, actual, flag, call_wrapper);
2490 }
2491 
2492 
InvokeFunction(Handle<JSFunction> function,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper)2493 void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
2494                                     const ParameterCount& expected,
2495                                     const ParameterCount& actual,
2496                                     InvokeFlag flag,
2497                                     const CallWrapper& call_wrapper) {
2498   // Contract with called JS functions requires that function is passed in x1.
2499   // (See FullCodeGenerator::Generate().)
2500   __ LoadObject(x1, function);
2501   InvokeFunction(x1, expected, actual, flag, call_wrapper);
2502 }
2503 
2504 
TryConvertDoubleToInt64(Register result,DoubleRegister double_input,Label * done)2505 void MacroAssembler::TryConvertDoubleToInt64(Register result,
2506                                              DoubleRegister double_input,
2507                                              Label* done) {
2508   // Try to convert with an FPU convert instruction. It's trivial to compute
2509   // the modulo operation on an integer register so we convert to a 64-bit
2510   // integer.
2511   //
2512   // Fcvtzs will saturate to INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff)
2513   // when the double is out of range. NaNs and infinities will be converted to 0
2514   // (as ECMA-262 requires).
2515   Fcvtzs(result.X(), double_input);
2516 
2517   // The values INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff) are not
2518   // representable using a double, so if the result is one of those then we know
2519   // that saturation occured, and we need to manually handle the conversion.
2520   //
2521   // It is easy to detect INT64_MIN and INT64_MAX because adding or subtracting
2522   // 1 will cause signed overflow.
2523   Cmp(result.X(), 1);
2524   Ccmp(result.X(), -1, VFlag, vc);
2525 
2526   B(vc, done);
2527 }
2528 
2529 
TruncateDoubleToI(Register result,DoubleRegister double_input)2530 void MacroAssembler::TruncateDoubleToI(Register result,
2531                                        DoubleRegister double_input) {
2532   Label done;
2533 
2534   // Try to convert the double to an int64. If successful, the bottom 32 bits
2535   // contain our truncated int32 result.
2536   TryConvertDoubleToInt64(result, double_input, &done);
2537 
2538   const Register old_stack_pointer = StackPointer();
2539   if (csp.Is(old_stack_pointer)) {
2540     // This currently only happens during compiler-unittest. If it arises
2541     // during regular code generation the DoubleToI stub should be updated to
2542     // cope with csp and have an extra parameter indicating which stack pointer
2543     // it should use.
2544     Push(jssp, xzr);  // Push xzr to maintain csp required 16-bytes alignment.
2545     Mov(jssp, csp);
2546     SetStackPointer(jssp);
2547   }
2548 
2549   // If we fell through then inline version didn't succeed - call stub instead.
2550   Push(lr, double_input);
2551 
2552   DoubleToIStub stub(isolate(),
2553                      jssp,
2554                      result,
2555                      0,
2556                      true,   // is_truncating
2557                      true);  // skip_fastpath
2558   CallStub(&stub);  // DoubleToIStub preserves any registers it needs to clobber
2559 
2560   DCHECK_EQ(xzr.SizeInBytes(), double_input.SizeInBytes());
2561   Pop(xzr, lr);  // xzr to drop the double input on the stack.
2562 
2563   if (csp.Is(old_stack_pointer)) {
2564     Mov(csp, jssp);
2565     SetStackPointer(csp);
2566     AssertStackConsistency();
2567     Pop(xzr, jssp);
2568   }
2569 
2570   Bind(&done);
2571 }
2572 
2573 
TruncateHeapNumberToI(Register result,Register object)2574 void MacroAssembler::TruncateHeapNumberToI(Register result,
2575                                            Register object) {
2576   Label done;
2577   DCHECK(!result.is(object));
2578   DCHECK(jssp.Is(StackPointer()));
2579 
2580   Ldr(fp_scratch, FieldMemOperand(object, HeapNumber::kValueOffset));
2581 
2582   // Try to convert the double to an int64. If successful, the bottom 32 bits
2583   // contain our truncated int32 result.
2584   TryConvertDoubleToInt64(result, fp_scratch, &done);
2585 
2586   // If we fell through then inline version didn't succeed - call stub instead.
2587   Push(lr);
2588   DoubleToIStub stub(isolate(),
2589                      object,
2590                      result,
2591                      HeapNumber::kValueOffset - kHeapObjectTag,
2592                      true,   // is_truncating
2593                      true);  // skip_fastpath
2594   CallStub(&stub);  // DoubleToIStub preserves any registers it needs to clobber
2595   Pop(lr);
2596 
2597   Bind(&done);
2598 }
2599 
StubPrologue(StackFrame::Type type,int frame_slots)2600 void MacroAssembler::StubPrologue(StackFrame::Type type, int frame_slots) {
2601   UseScratchRegisterScope temps(this);
2602   frame_slots -= TypedFrameConstants::kFixedSlotCountAboveFp;
2603   Register temp = temps.AcquireX();
2604   Mov(temp, StackFrame::TypeToMarker(type));
2605   Push(lr, fp);
2606   Mov(fp, StackPointer());
2607   Claim(frame_slots);
2608   str(temp, MemOperand(fp, TypedFrameConstants::kFrameTypeOffset));
2609 }
2610 
Prologue(bool code_pre_aging)2611 void MacroAssembler::Prologue(bool code_pre_aging) {
2612   if (code_pre_aging) {
2613     Code* stub = Code::GetPreAgedCodeAgeStub(isolate());
2614     __ EmitCodeAgeSequence(stub);
2615   } else {
2616     __ EmitFrameSetupForCodeAgePatching();
2617   }
2618 }
2619 
EmitLoadFeedbackVector(Register vector)2620 void MacroAssembler::EmitLoadFeedbackVector(Register vector) {
2621   Ldr(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
2622   Ldr(vector, FieldMemOperand(vector, JSFunction::kFeedbackVectorOffset));
2623   Ldr(vector, FieldMemOperand(vector, Cell::kValueOffset));
2624 }
2625 
2626 
EnterFrame(StackFrame::Type type,bool load_constant_pool_pointer_reg)2627 void MacroAssembler::EnterFrame(StackFrame::Type type,
2628                                 bool load_constant_pool_pointer_reg) {
2629   // Out-of-line constant pool not implemented on arm64.
2630   UNREACHABLE();
2631 }
2632 
2633 
EnterFrame(StackFrame::Type type)2634 void MacroAssembler::EnterFrame(StackFrame::Type type) {
2635   UseScratchRegisterScope temps(this);
2636   Register type_reg = temps.AcquireX();
2637   Register code_reg = temps.AcquireX();
2638 
2639   if (type == StackFrame::INTERNAL) {
2640     DCHECK(jssp.Is(StackPointer()));
2641     Mov(type_reg, StackFrame::TypeToMarker(type));
2642     Push(lr, fp);
2643     Push(type_reg);
2644     Mov(code_reg, Operand(CodeObject()));
2645     Push(code_reg);
2646     Add(fp, jssp, InternalFrameConstants::kFixedFrameSizeFromFp);
2647     // jssp[4] : lr
2648     // jssp[3] : fp
2649     // jssp[1] : type
2650     // jssp[0] : [code object]
2651   } else if (type == StackFrame::WASM_COMPILED) {
2652     DCHECK(csp.Is(StackPointer()));
2653     Mov(type_reg, StackFrame::TypeToMarker(type));
2654     Push(lr, fp);
2655     Mov(fp, csp);
2656     Push(type_reg, xzr);
2657     // csp[3] : lr
2658     // csp[2] : fp
2659     // csp[1] : type
2660     // csp[0] : for alignment
2661   } else {
2662     DCHECK(jssp.Is(StackPointer()));
2663     Mov(type_reg, StackFrame::TypeToMarker(type));
2664     Push(lr, fp);
2665     Push(type_reg);
2666     Add(fp, jssp, TypedFrameConstants::kFixedFrameSizeFromFp);
2667     // jssp[2] : lr
2668     // jssp[1] : fp
2669     // jssp[0] : type
2670   }
2671 }
2672 
2673 
LeaveFrame(StackFrame::Type type)2674 void MacroAssembler::LeaveFrame(StackFrame::Type type) {
2675   if (type == StackFrame::WASM_COMPILED) {
2676     DCHECK(csp.Is(StackPointer()));
2677     Mov(csp, fp);
2678     AssertStackConsistency();
2679     Pop(fp, lr);
2680   } else {
2681     DCHECK(jssp.Is(StackPointer()));
2682     // Drop the execution stack down to the frame pointer and restore
2683     // the caller frame pointer and return address.
2684     Mov(jssp, fp);
2685     AssertStackConsistency();
2686     Pop(fp, lr);
2687   }
2688 }
2689 
2690 
ExitFramePreserveFPRegs()2691 void MacroAssembler::ExitFramePreserveFPRegs() {
2692   PushCPURegList(kCallerSavedFP);
2693 }
2694 
2695 
ExitFrameRestoreFPRegs()2696 void MacroAssembler::ExitFrameRestoreFPRegs() {
2697   // Read the registers from the stack without popping them. The stack pointer
2698   // will be reset as part of the unwinding process.
2699   CPURegList saved_fp_regs = kCallerSavedFP;
2700   DCHECK(saved_fp_regs.Count() % 2 == 0);
2701 
2702   int offset = ExitFrameConstants::kLastExitFrameField;
2703   while (!saved_fp_regs.IsEmpty()) {
2704     const CPURegister& dst0 = saved_fp_regs.PopHighestIndex();
2705     const CPURegister& dst1 = saved_fp_regs.PopHighestIndex();
2706     offset -= 2 * kDRegSize;
2707     Ldp(dst1, dst0, MemOperand(fp, offset));
2708   }
2709 }
2710 
EnterBuiltinFrame(Register context,Register target,Register argc)2711 void MacroAssembler::EnterBuiltinFrame(Register context, Register target,
2712                                        Register argc) {
2713   Push(lr, fp, context, target);
2714   add(fp, jssp, Operand(2 * kPointerSize));
2715   Push(argc);
2716 }
2717 
LeaveBuiltinFrame(Register context,Register target,Register argc)2718 void MacroAssembler::LeaveBuiltinFrame(Register context, Register target,
2719                                        Register argc) {
2720   Pop(argc);
2721   Pop(target, context, fp, lr);
2722 }
2723 
EnterExitFrame(bool save_doubles,const Register & scratch,int extra_space,StackFrame::Type frame_type)2724 void MacroAssembler::EnterExitFrame(bool save_doubles, const Register& scratch,
2725                                     int extra_space,
2726                                     StackFrame::Type frame_type) {
2727   DCHECK(jssp.Is(StackPointer()));
2728   DCHECK(frame_type == StackFrame::EXIT ||
2729          frame_type == StackFrame::BUILTIN_EXIT);
2730 
2731   // Set up the new stack frame.
2732   Push(lr, fp);
2733   Mov(fp, StackPointer());
2734   Mov(scratch, StackFrame::TypeToMarker(frame_type));
2735   Push(scratch);
2736   Push(xzr);
2737   Mov(scratch, Operand(CodeObject()));
2738   Push(scratch);
2739   //          fp[8]: CallerPC (lr)
2740   //    fp -> fp[0]: CallerFP (old fp)
2741   //          fp[-8]: STUB marker
2742   //          fp[-16]: Space reserved for SPOffset.
2743   //  jssp -> fp[-24]: CodeObject()
2744   STATIC_ASSERT((2 * kPointerSize) == ExitFrameConstants::kCallerSPOffset);
2745   STATIC_ASSERT((1 * kPointerSize) == ExitFrameConstants::kCallerPCOffset);
2746   STATIC_ASSERT((0 * kPointerSize) == ExitFrameConstants::kCallerFPOffset);
2747   STATIC_ASSERT((-2 * kPointerSize) == ExitFrameConstants::kSPOffset);
2748   STATIC_ASSERT((-3 * kPointerSize) == ExitFrameConstants::kCodeOffset);
2749 
2750   // Save the frame pointer and context pointer in the top frame.
2751   Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress,
2752                                          isolate())));
2753   Str(fp, MemOperand(scratch));
2754   Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
2755                                          isolate())));
2756   Str(cp, MemOperand(scratch));
2757 
2758   STATIC_ASSERT((-3 * kPointerSize) == ExitFrameConstants::kLastExitFrameField);
2759   if (save_doubles) {
2760     ExitFramePreserveFPRegs();
2761   }
2762 
2763   // Reserve space for the return address and for user requested memory.
2764   // We do this before aligning to make sure that we end up correctly
2765   // aligned with the minimum of wasted space.
2766   Claim(extra_space + 1, kXRegSize);
2767   //         fp[8]: CallerPC (lr)
2768   //   fp -> fp[0]: CallerFP (old fp)
2769   //         fp[-8]: STUB marker
2770   //         fp[-16]: Space reserved for SPOffset.
2771   //         fp[-24]: CodeObject()
2772   //         fp[-24 - fp_size]: Saved doubles (if save_doubles is true).
2773   //         jssp[8]: Extra space reserved for caller (if extra_space != 0).
2774   // jssp -> jssp[0]: Space reserved for the return address.
2775 
2776   // Align and synchronize the system stack pointer with jssp.
2777   AlignAndSetCSPForFrame();
2778   DCHECK(csp.Is(StackPointer()));
2779 
2780   //         fp[8]: CallerPC (lr)
2781   //   fp -> fp[0]: CallerFP (old fp)
2782   //         fp[-8]: STUB marker
2783   //         fp[-16]: Space reserved for SPOffset.
2784   //         fp[-24]: CodeObject()
2785   //         fp[-24 - fp_size]: Saved doubles (if save_doubles is true).
2786   //         csp[8]: Memory reserved for the caller if extra_space != 0.
2787   //                 Alignment padding, if necessary.
2788   //  csp -> csp[0]: Space reserved for the return address.
2789 
2790   // ExitFrame::GetStateForFramePointer expects to find the return address at
2791   // the memory address immediately below the pointer stored in SPOffset.
2792   // It is not safe to derive much else from SPOffset, because the size of the
2793   // padding can vary.
2794   Add(scratch, csp, kXRegSize);
2795   Str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset));
2796 }
2797 
2798 
2799 // Leave the current exit frame.
LeaveExitFrame(bool restore_doubles,const Register & scratch,bool restore_context)2800 void MacroAssembler::LeaveExitFrame(bool restore_doubles,
2801                                     const Register& scratch,
2802                                     bool restore_context) {
2803   DCHECK(csp.Is(StackPointer()));
2804 
2805   if (restore_doubles) {
2806     ExitFrameRestoreFPRegs();
2807   }
2808 
2809   // Restore the context pointer from the top frame.
2810   if (restore_context) {
2811     Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
2812                                            isolate())));
2813     Ldr(cp, MemOperand(scratch));
2814   }
2815 
2816   if (emit_debug_code()) {
2817     // Also emit debug code to clear the cp in the top frame.
2818     Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
2819                                            isolate())));
2820     Str(xzr, MemOperand(scratch));
2821   }
2822   // Clear the frame pointer from the top frame.
2823   Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress,
2824                                          isolate())));
2825   Str(xzr, MemOperand(scratch));
2826 
2827   // Pop the exit frame.
2828   //         fp[8]: CallerPC (lr)
2829   //   fp -> fp[0]: CallerFP (old fp)
2830   //         fp[...]: The rest of the frame.
2831   Mov(jssp, fp);
2832   SetStackPointer(jssp);
2833   AssertStackConsistency();
2834   Pop(fp, lr);
2835 }
2836 
2837 
SetCounter(StatsCounter * counter,int value,Register scratch1,Register scratch2)2838 void MacroAssembler::SetCounter(StatsCounter* counter, int value,
2839                                 Register scratch1, Register scratch2) {
2840   if (FLAG_native_code_counters && counter->Enabled()) {
2841     Mov(scratch1, value);
2842     Mov(scratch2, ExternalReference(counter));
2843     Str(scratch1.W(), MemOperand(scratch2));
2844   }
2845 }
2846 
2847 
IncrementCounter(StatsCounter * counter,int value,Register scratch1,Register scratch2)2848 void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
2849                                       Register scratch1, Register scratch2) {
2850   DCHECK(value != 0);
2851   if (FLAG_native_code_counters && counter->Enabled()) {
2852     Mov(scratch2, ExternalReference(counter));
2853     Ldr(scratch1.W(), MemOperand(scratch2));
2854     Add(scratch1.W(), scratch1.W(), value);
2855     Str(scratch1.W(), MemOperand(scratch2));
2856   }
2857 }
2858 
2859 
DecrementCounter(StatsCounter * counter,int value,Register scratch1,Register scratch2)2860 void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
2861                                       Register scratch1, Register scratch2) {
2862   IncrementCounter(counter, -value, scratch1, scratch2);
2863 }
2864 
2865 
LoadContext(Register dst,int context_chain_length)2866 void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
2867   if (context_chain_length > 0) {
2868     // Move up the chain of contexts to the context containing the slot.
2869     Ldr(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2870     for (int i = 1; i < context_chain_length; i++) {
2871       Ldr(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2872     }
2873   } else {
2874     // Slot is in the current function context.  Move it into the
2875     // destination register in case we store into it (the write barrier
2876     // cannot be allowed to destroy the context in cp).
2877     Mov(dst, cp);
2878   }
2879 }
2880 
MaybeDropFrames()2881 void MacroAssembler::MaybeDropFrames() {
2882   // Check whether we need to drop frames to restart a function on the stack.
2883   ExternalReference restart_fp =
2884       ExternalReference::debug_restart_fp_address(isolate());
2885   Mov(x1, Operand(restart_fp));
2886   Ldr(x1, MemOperand(x1));
2887   Tst(x1, x1);
2888   Jump(isolate()->builtins()->FrameDropperTrampoline(), RelocInfo::CODE_TARGET,
2889        ne);
2890 }
2891 
PushStackHandler()2892 void MacroAssembler::PushStackHandler() {
2893   DCHECK(jssp.Is(StackPointer()));
2894   // Adjust this code if the asserts don't hold.
2895   STATIC_ASSERT(StackHandlerConstants::kSize == 1 * kPointerSize);
2896   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
2897 
2898   // For the JSEntry handler, we must preserve the live registers x0-x4.
2899   // (See JSEntryStub::GenerateBody().)
2900 
2901   // Link the current handler as the next handler.
2902   Mov(x11, ExternalReference(Isolate::kHandlerAddress, isolate()));
2903   Ldr(x10, MemOperand(x11));
2904   Push(x10);
2905 
2906   // Set this new handler as the current one.
2907   Str(jssp, MemOperand(x11));
2908 }
2909 
2910 
PopStackHandler()2911 void MacroAssembler::PopStackHandler() {
2912   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
2913   Pop(x10);
2914   Mov(x11, ExternalReference(Isolate::kHandlerAddress, isolate()));
2915   Drop(StackHandlerConstants::kSize - kXRegSize, kByteSizeInBytes);
2916   Str(x10, MemOperand(x11));
2917 }
2918 
2919 
Allocate(int object_size,Register result,Register scratch1,Register scratch2,Label * gc_required,AllocationFlags flags)2920 void MacroAssembler::Allocate(int object_size,
2921                               Register result,
2922                               Register scratch1,
2923                               Register scratch2,
2924                               Label* gc_required,
2925                               AllocationFlags flags) {
2926   DCHECK(object_size <= kMaxRegularHeapObjectSize);
2927   DCHECK((flags & ALLOCATION_FOLDED) == 0);
2928   if (!FLAG_inline_new) {
2929     if (emit_debug_code()) {
2930       // Trash the registers to simulate an allocation failure.
2931       // We apply salt to the original zap value to easily spot the values.
2932       Mov(result, (kDebugZapValue & ~0xffL) | 0x11L);
2933       Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L);
2934       Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L);
2935     }
2936     B(gc_required);
2937     return;
2938   }
2939 
2940   UseScratchRegisterScope temps(this);
2941   Register scratch3 = temps.AcquireX();
2942 
2943   DCHECK(!AreAliased(result, scratch1, scratch2, scratch3));
2944   DCHECK(result.Is64Bits() && scratch1.Is64Bits() && scratch2.Is64Bits());
2945 
2946   // Make object size into bytes.
2947   if ((flags & SIZE_IN_WORDS) != 0) {
2948     object_size *= kPointerSize;
2949   }
2950   DCHECK(0 == (object_size & kObjectAlignmentMask));
2951 
2952   // Check relative positions of allocation top and limit addresses.
2953   // The values must be adjacent in memory to allow the use of LDP.
2954   ExternalReference heap_allocation_top =
2955       AllocationUtils::GetAllocationTopReference(isolate(), flags);
2956   ExternalReference heap_allocation_limit =
2957       AllocationUtils::GetAllocationLimitReference(isolate(), flags);
2958   intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address());
2959   intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address());
2960   DCHECK((limit - top) == kPointerSize);
2961 
2962   // Set up allocation top address and allocation limit registers.
2963   Register top_address = scratch1;
2964   Register alloc_limit = scratch2;
2965   Register result_end = scratch3;
2966   Mov(top_address, Operand(heap_allocation_top));
2967 
2968   if ((flags & RESULT_CONTAINS_TOP) == 0) {
2969     // Load allocation top into result and allocation limit into alloc_limit.
2970     Ldp(result, alloc_limit, MemOperand(top_address));
2971   } else {
2972     if (emit_debug_code()) {
2973       // Assert that result actually contains top on entry.
2974       Ldr(alloc_limit, MemOperand(top_address));
2975       Cmp(result, alloc_limit);
2976       Check(eq, kUnexpectedAllocationTop);
2977     }
2978     // Load allocation limit. Result already contains allocation top.
2979     Ldr(alloc_limit, MemOperand(top_address, limit - top));
2980   }
2981 
2982   // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
2983   // the same alignment on ARM64.
2984   STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
2985 
2986   // Calculate new top and bail out if new space is exhausted.
2987   Adds(result_end, result, object_size);
2988   Ccmp(result_end, alloc_limit, NoFlag, cc);
2989   B(hi, gc_required);
2990 
2991   if ((flags & ALLOCATION_FOLDING_DOMINATOR) == 0) {
2992     // The top pointer is not updated for allocation folding dominators.
2993     Str(result_end, MemOperand(top_address));
2994   }
2995 
2996   // Tag the object.
2997   ObjectTag(result, result);
2998 }
2999 
3000 
Allocate(Register object_size,Register result,Register result_end,Register scratch,Label * gc_required,AllocationFlags flags)3001 void MacroAssembler::Allocate(Register object_size, Register result,
3002                               Register result_end, Register scratch,
3003                               Label* gc_required, AllocationFlags flags) {
3004   if (!FLAG_inline_new) {
3005     if (emit_debug_code()) {
3006       // Trash the registers to simulate an allocation failure.
3007       // We apply salt to the original zap value to easily spot the values.
3008       Mov(result, (kDebugZapValue & ~0xffL) | 0x11L);
3009       Mov(scratch, (kDebugZapValue & ~0xffL) | 0x21L);
3010       Mov(result_end, (kDebugZapValue & ~0xffL) | 0x21L);
3011     }
3012     B(gc_required);
3013     return;
3014   }
3015 
3016   UseScratchRegisterScope temps(this);
3017   Register scratch2 = temps.AcquireX();
3018 
3019   // |object_size| and |result_end| may overlap, other registers must not.
3020   DCHECK(!AreAliased(object_size, result, scratch, scratch2));
3021   DCHECK(!AreAliased(result_end, result, scratch, scratch2));
3022   DCHECK(object_size.Is64Bits() && result.Is64Bits() && scratch.Is64Bits() &&
3023          result_end.Is64Bits());
3024 
3025   // Check relative positions of allocation top and limit addresses.
3026   // The values must be adjacent in memory to allow the use of LDP.
3027   ExternalReference heap_allocation_top =
3028       AllocationUtils::GetAllocationTopReference(isolate(), flags);
3029   ExternalReference heap_allocation_limit =
3030       AllocationUtils::GetAllocationLimitReference(isolate(), flags);
3031   intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address());
3032   intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address());
3033   DCHECK((limit - top) == kPointerSize);
3034 
3035   // Set up allocation top address and allocation limit registers.
3036   Register top_address = scratch;
3037   Register alloc_limit = scratch2;
3038   Mov(top_address, heap_allocation_top);
3039 
3040   if ((flags & RESULT_CONTAINS_TOP) == 0) {
3041     // Load allocation top into result and allocation limit into alloc_limit.
3042     Ldp(result, alloc_limit, MemOperand(top_address));
3043   } else {
3044     if (emit_debug_code()) {
3045       // Assert that result actually contains top on entry.
3046       Ldr(alloc_limit, MemOperand(top_address));
3047       Cmp(result, alloc_limit);
3048       Check(eq, kUnexpectedAllocationTop);
3049     }
3050     // Load allocation limit. Result already contains allocation top.
3051     Ldr(alloc_limit, MemOperand(top_address, limit - top));
3052   }
3053 
3054   // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
3055   // the same alignment on ARM64.
3056   STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
3057 
3058   // Calculate new top and bail out if new space is exhausted
3059   if ((flags & SIZE_IN_WORDS) != 0) {
3060     Adds(result_end, result, Operand(object_size, LSL, kPointerSizeLog2));
3061   } else {
3062     Adds(result_end, result, object_size);
3063   }
3064 
3065   if (emit_debug_code()) {
3066     Tst(result_end, kObjectAlignmentMask);
3067     Check(eq, kUnalignedAllocationInNewSpace);
3068   }
3069 
3070   Ccmp(result_end, alloc_limit, NoFlag, cc);
3071   B(hi, gc_required);
3072 
3073   if ((flags & ALLOCATION_FOLDING_DOMINATOR) == 0) {
3074     // The top pointer is not updated for allocation folding dominators.
3075     Str(result_end, MemOperand(top_address));
3076   }
3077 
3078   // Tag the object.
3079   ObjectTag(result, result);
3080 }
3081 
FastAllocate(int object_size,Register result,Register scratch1,Register scratch2,AllocationFlags flags)3082 void MacroAssembler::FastAllocate(int object_size, Register result,
3083                                   Register scratch1, Register scratch2,
3084                                   AllocationFlags flags) {
3085   DCHECK(object_size <= kMaxRegularHeapObjectSize);
3086 
3087   DCHECK(!AreAliased(result, scratch1, scratch2));
3088   DCHECK(result.Is64Bits() && scratch1.Is64Bits() && scratch2.Is64Bits());
3089 
3090   // Make object size into bytes.
3091   if ((flags & SIZE_IN_WORDS) != 0) {
3092     object_size *= kPointerSize;
3093   }
3094   DCHECK(0 == (object_size & kObjectAlignmentMask));
3095 
3096   ExternalReference heap_allocation_top =
3097       AllocationUtils::GetAllocationTopReference(isolate(), flags);
3098 
3099   // Set up allocation top address and allocation limit registers.
3100   Register top_address = scratch1;
3101   Register result_end = scratch2;
3102   Mov(top_address, Operand(heap_allocation_top));
3103   Ldr(result, MemOperand(top_address));
3104 
3105   // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
3106   // the same alignment on ARM64.
3107   STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
3108 
3109   // Calculate new top and write it back.
3110   Adds(result_end, result, object_size);
3111   Str(result_end, MemOperand(top_address));
3112 
3113   ObjectTag(result, result);
3114 }
3115 
FastAllocate(Register object_size,Register result,Register result_end,Register scratch,AllocationFlags flags)3116 void MacroAssembler::FastAllocate(Register object_size, Register result,
3117                                   Register result_end, Register scratch,
3118                                   AllocationFlags flags) {
3119   // |object_size| and |result_end| may overlap, other registers must not.
3120   DCHECK(!AreAliased(object_size, result, scratch));
3121   DCHECK(!AreAliased(result_end, result, scratch));
3122   DCHECK(object_size.Is64Bits() && result.Is64Bits() && scratch.Is64Bits() &&
3123          result_end.Is64Bits());
3124 
3125   ExternalReference heap_allocation_top =
3126       AllocationUtils::GetAllocationTopReference(isolate(), flags);
3127 
3128   // Set up allocation top address and allocation limit registers.
3129   Register top_address = scratch;
3130   Mov(top_address, heap_allocation_top);
3131   Ldr(result, MemOperand(top_address));
3132 
3133   // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
3134   // the same alignment on ARM64.
3135   STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
3136 
3137   // Calculate new top and write it back.
3138   if ((flags & SIZE_IN_WORDS) != 0) {
3139     Adds(result_end, result, Operand(object_size, LSL, kPointerSizeLog2));
3140   } else {
3141     Adds(result_end, result, object_size);
3142   }
3143   Str(result_end, MemOperand(top_address));
3144 
3145   if (emit_debug_code()) {
3146     Tst(result_end, kObjectAlignmentMask);
3147     Check(eq, kUnalignedAllocationInNewSpace);
3148   }
3149 
3150   ObjectTag(result, result);
3151 }
3152 
3153 // Allocates a heap number or jumps to the need_gc label if the young space
3154 // is full and a scavenge is needed.
AllocateHeapNumber(Register result,Label * gc_required,Register scratch1,Register scratch2,CPURegister value,CPURegister heap_number_map,MutableMode mode)3155 void MacroAssembler::AllocateHeapNumber(Register result,
3156                                         Label* gc_required,
3157                                         Register scratch1,
3158                                         Register scratch2,
3159                                         CPURegister value,
3160                                         CPURegister heap_number_map,
3161                                         MutableMode mode) {
3162   DCHECK(!value.IsValid() || value.Is64Bits());
3163   UseScratchRegisterScope temps(this);
3164 
3165   // Allocate an object in the heap for the heap number and tag it as a heap
3166   // object.
3167   Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
3168            NO_ALLOCATION_FLAGS);
3169 
3170   Heap::RootListIndex map_index = mode == MUTABLE
3171       ? Heap::kMutableHeapNumberMapRootIndex
3172       : Heap::kHeapNumberMapRootIndex;
3173 
3174   // Prepare the heap number map.
3175   if (!heap_number_map.IsValid()) {
3176     // If we have a valid value register, use the same type of register to store
3177     // the map so we can use STP to store both in one instruction.
3178     if (value.IsValid() && value.IsFPRegister()) {
3179       heap_number_map = temps.AcquireD();
3180     } else {
3181       heap_number_map = scratch1;
3182     }
3183     LoadRoot(heap_number_map, map_index);
3184   }
3185   if (emit_debug_code()) {
3186     Register map;
3187     if (heap_number_map.IsFPRegister()) {
3188       map = scratch1;
3189       Fmov(map, DoubleRegister(heap_number_map));
3190     } else {
3191       map = Register(heap_number_map);
3192     }
3193     AssertRegisterIsRoot(map, map_index);
3194   }
3195 
3196   // Store the heap number map and the value in the allocated object.
3197   if (value.IsSameSizeAndType(heap_number_map)) {
3198     STATIC_ASSERT(HeapObject::kMapOffset + kPointerSize ==
3199                   HeapNumber::kValueOffset);
3200     Stp(heap_number_map, value,
3201         FieldMemOperand(result, HeapObject::kMapOffset));
3202   } else {
3203     Str(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset));
3204     if (value.IsValid()) {
3205       Str(value, FieldMemOperand(result, HeapNumber::kValueOffset));
3206     }
3207   }
3208 }
3209 
3210 
JumpIfObjectType(Register object,Register map,Register type_reg,InstanceType type,Label * if_cond_pass,Condition cond)3211 void MacroAssembler::JumpIfObjectType(Register object,
3212                                       Register map,
3213                                       Register type_reg,
3214                                       InstanceType type,
3215                                       Label* if_cond_pass,
3216                                       Condition cond) {
3217   CompareObjectType(object, map, type_reg, type);
3218   B(cond, if_cond_pass);
3219 }
3220 
3221 
AllocateJSValue(Register result,Register constructor,Register value,Register scratch1,Register scratch2,Label * gc_required)3222 void MacroAssembler::AllocateJSValue(Register result, Register constructor,
3223                                      Register value, Register scratch1,
3224                                      Register scratch2, Label* gc_required) {
3225   DCHECK(!result.is(constructor));
3226   DCHECK(!result.is(scratch1));
3227   DCHECK(!result.is(scratch2));
3228   DCHECK(!result.is(value));
3229 
3230   // Allocate JSValue in new space.
3231   Allocate(JSValue::kSize, result, scratch1, scratch2, gc_required,
3232            NO_ALLOCATION_FLAGS);
3233 
3234   // Initialize the JSValue.
3235   LoadGlobalFunctionInitialMap(constructor, scratch1, scratch2);
3236   Str(scratch1, FieldMemOperand(result, HeapObject::kMapOffset));
3237   LoadRoot(scratch1, Heap::kEmptyFixedArrayRootIndex);
3238   Str(scratch1, FieldMemOperand(result, JSObject::kPropertiesOffset));
3239   Str(scratch1, FieldMemOperand(result, JSObject::kElementsOffset));
3240   Str(value, FieldMemOperand(result, JSValue::kValueOffset));
3241   STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
3242 }
3243 
3244 
JumpIfNotObjectType(Register object,Register map,Register type_reg,InstanceType type,Label * if_not_object)3245 void MacroAssembler::JumpIfNotObjectType(Register object,
3246                                          Register map,
3247                                          Register type_reg,
3248                                          InstanceType type,
3249                                          Label* if_not_object) {
3250   JumpIfObjectType(object, map, type_reg, type, if_not_object, ne);
3251 }
3252 
3253 
3254 // Sets condition flags based on comparison, and returns type in type_reg.
CompareObjectType(Register object,Register map,Register type_reg,InstanceType type)3255 void MacroAssembler::CompareObjectType(Register object,
3256                                        Register map,
3257                                        Register type_reg,
3258                                        InstanceType type) {
3259   Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
3260   CompareInstanceType(map, type_reg, type);
3261 }
3262 
3263 
3264 // Sets condition flags based on comparison, and returns type in type_reg.
CompareInstanceType(Register map,Register type_reg,InstanceType type)3265 void MacroAssembler::CompareInstanceType(Register map,
3266                                          Register type_reg,
3267                                          InstanceType type) {
3268   Ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
3269   Cmp(type_reg, type);
3270 }
3271 
3272 
CompareObjectMap(Register obj,Heap::RootListIndex index)3273 void MacroAssembler::CompareObjectMap(Register obj, Heap::RootListIndex index) {
3274   UseScratchRegisterScope temps(this);
3275   Register obj_map = temps.AcquireX();
3276   Ldr(obj_map, FieldMemOperand(obj, HeapObject::kMapOffset));
3277   CompareRoot(obj_map, index);
3278 }
3279 
3280 
CompareObjectMap(Register obj,Register scratch,Handle<Map> map)3281 void MacroAssembler::CompareObjectMap(Register obj, Register scratch,
3282                                       Handle<Map> map) {
3283   Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
3284   CompareMap(scratch, map);
3285 }
3286 
3287 
CompareMap(Register obj_map,Handle<Map> map)3288 void MacroAssembler::CompareMap(Register obj_map,
3289                                 Handle<Map> map) {
3290   Cmp(obj_map, Operand(map));
3291 }
3292 
3293 
CheckMap(Register obj,Register scratch,Handle<Map> map,Label * fail,SmiCheckType smi_check_type)3294 void MacroAssembler::CheckMap(Register obj,
3295                               Register scratch,
3296                               Handle<Map> map,
3297                               Label* fail,
3298                               SmiCheckType smi_check_type) {
3299   if (smi_check_type == DO_SMI_CHECK) {
3300     JumpIfSmi(obj, fail);
3301   }
3302 
3303   CompareObjectMap(obj, scratch, map);
3304   B(ne, fail);
3305 }
3306 
3307 
CheckMap(Register obj,Register scratch,Heap::RootListIndex index,Label * fail,SmiCheckType smi_check_type)3308 void MacroAssembler::CheckMap(Register obj,
3309                               Register scratch,
3310                               Heap::RootListIndex index,
3311                               Label* fail,
3312                               SmiCheckType smi_check_type) {
3313   if (smi_check_type == DO_SMI_CHECK) {
3314     JumpIfSmi(obj, fail);
3315   }
3316   Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
3317   JumpIfNotRoot(scratch, index, fail);
3318 }
3319 
3320 
CheckMap(Register obj_map,Handle<Map> map,Label * fail,SmiCheckType smi_check_type)3321 void MacroAssembler::CheckMap(Register obj_map,
3322                               Handle<Map> map,
3323                               Label* fail,
3324                               SmiCheckType smi_check_type) {
3325   if (smi_check_type == DO_SMI_CHECK) {
3326     JumpIfSmi(obj_map, fail);
3327   }
3328 
3329   CompareMap(obj_map, map);
3330   B(ne, fail);
3331 }
3332 
3333 
DispatchWeakMap(Register obj,Register scratch1,Register scratch2,Handle<WeakCell> cell,Handle<Code> success,SmiCheckType smi_check_type)3334 void MacroAssembler::DispatchWeakMap(Register obj, Register scratch1,
3335                                      Register scratch2, Handle<WeakCell> cell,
3336                                      Handle<Code> success,
3337                                      SmiCheckType smi_check_type) {
3338   Label fail;
3339   if (smi_check_type == DO_SMI_CHECK) {
3340     JumpIfSmi(obj, &fail);
3341   }
3342   Ldr(scratch1, FieldMemOperand(obj, HeapObject::kMapOffset));
3343   CmpWeakValue(scratch1, cell, scratch2);
3344   B(ne, &fail);
3345   Jump(success, RelocInfo::CODE_TARGET);
3346   Bind(&fail);
3347 }
3348 
3349 
CmpWeakValue(Register value,Handle<WeakCell> cell,Register scratch)3350 void MacroAssembler::CmpWeakValue(Register value, Handle<WeakCell> cell,
3351                                   Register scratch) {
3352   Mov(scratch, Operand(cell));
3353   Ldr(scratch, FieldMemOperand(scratch, WeakCell::kValueOffset));
3354   Cmp(value, scratch);
3355 }
3356 
3357 
GetWeakValue(Register value,Handle<WeakCell> cell)3358 void MacroAssembler::GetWeakValue(Register value, Handle<WeakCell> cell) {
3359   Mov(value, Operand(cell));
3360   Ldr(value, FieldMemOperand(value, WeakCell::kValueOffset));
3361 }
3362 
3363 
LoadWeakValue(Register value,Handle<WeakCell> cell,Label * miss)3364 void MacroAssembler::LoadWeakValue(Register value, Handle<WeakCell> cell,
3365                                    Label* miss) {
3366   GetWeakValue(value, cell);
3367   JumpIfSmi(value, miss);
3368 }
3369 
3370 
TestMapBitfield(Register object,uint64_t mask)3371 void MacroAssembler::TestMapBitfield(Register object, uint64_t mask) {
3372   UseScratchRegisterScope temps(this);
3373   Register temp = temps.AcquireX();
3374   Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
3375   Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
3376   Tst(temp, mask);
3377 }
3378 
3379 
LoadElementsKindFromMap(Register result,Register map)3380 void MacroAssembler::LoadElementsKindFromMap(Register result, Register map) {
3381   // Load the map's "bit field 2".
3382   __ Ldrb(result, FieldMemOperand(map, Map::kBitField2Offset));
3383   // Retrieve elements_kind from bit field 2.
3384   DecodeField<Map::ElementsKindBits>(result);
3385 }
3386 
3387 
GetMapConstructor(Register result,Register map,Register temp,Register temp2)3388 void MacroAssembler::GetMapConstructor(Register result, Register map,
3389                                        Register temp, Register temp2) {
3390   Label done, loop;
3391   Ldr(result, FieldMemOperand(map, Map::kConstructorOrBackPointerOffset));
3392   Bind(&loop);
3393   JumpIfSmi(result, &done);
3394   CompareObjectType(result, temp, temp2, MAP_TYPE);
3395   B(ne, &done);
3396   Ldr(result, FieldMemOperand(result, Map::kConstructorOrBackPointerOffset));
3397   B(&loop);
3398   Bind(&done);
3399 }
3400 
PushRoot(Heap::RootListIndex index)3401 void MacroAssembler::PushRoot(Heap::RootListIndex index) {
3402   UseScratchRegisterScope temps(this);
3403   Register temp = temps.AcquireX();
3404   LoadRoot(temp, index);
3405   Push(temp);
3406 }
3407 
3408 
CompareRoot(const Register & obj,Heap::RootListIndex index)3409 void MacroAssembler::CompareRoot(const Register& obj,
3410                                  Heap::RootListIndex index) {
3411   UseScratchRegisterScope temps(this);
3412   Register temp = temps.AcquireX();
3413   DCHECK(!AreAliased(obj, temp));
3414   LoadRoot(temp, index);
3415   Cmp(obj, temp);
3416 }
3417 
3418 
JumpIfRoot(const Register & obj,Heap::RootListIndex index,Label * if_equal)3419 void MacroAssembler::JumpIfRoot(const Register& obj,
3420                                 Heap::RootListIndex index,
3421                                 Label* if_equal) {
3422   CompareRoot(obj, index);
3423   B(eq, if_equal);
3424 }
3425 
3426 
JumpIfNotRoot(const Register & obj,Heap::RootListIndex index,Label * if_not_equal)3427 void MacroAssembler::JumpIfNotRoot(const Register& obj,
3428                                    Heap::RootListIndex index,
3429                                    Label* if_not_equal) {
3430   CompareRoot(obj, index);
3431   B(ne, if_not_equal);
3432 }
3433 
3434 
CompareAndSplit(const Register & lhs,const Operand & rhs,Condition cond,Label * if_true,Label * if_false,Label * fall_through)3435 void MacroAssembler::CompareAndSplit(const Register& lhs,
3436                                      const Operand& rhs,
3437                                      Condition cond,
3438                                      Label* if_true,
3439                                      Label* if_false,
3440                                      Label* fall_through) {
3441   if ((if_true == if_false) && (if_false == fall_through)) {
3442     // Fall through.
3443   } else if (if_true == if_false) {
3444     B(if_true);
3445   } else if (if_false == fall_through) {
3446     CompareAndBranch(lhs, rhs, cond, if_true);
3447   } else if (if_true == fall_through) {
3448     CompareAndBranch(lhs, rhs, NegateCondition(cond), if_false);
3449   } else {
3450     CompareAndBranch(lhs, rhs, cond, if_true);
3451     B(if_false);
3452   }
3453 }
3454 
3455 
TestAndSplit(const Register & reg,uint64_t bit_pattern,Label * if_all_clear,Label * if_any_set,Label * fall_through)3456 void MacroAssembler::TestAndSplit(const Register& reg,
3457                                   uint64_t bit_pattern,
3458                                   Label* if_all_clear,
3459                                   Label* if_any_set,
3460                                   Label* fall_through) {
3461   if ((if_all_clear == if_any_set) && (if_any_set == fall_through)) {
3462     // Fall through.
3463   } else if (if_all_clear == if_any_set) {
3464     B(if_all_clear);
3465   } else if (if_all_clear == fall_through) {
3466     TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
3467   } else if (if_any_set == fall_through) {
3468     TestAndBranchIfAllClear(reg, bit_pattern, if_all_clear);
3469   } else {
3470     TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
3471     B(if_all_clear);
3472   }
3473 }
3474 
AllowThisStubCall(CodeStub * stub)3475 bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
3476   return has_frame_ || !stub->SometimesSetsUpAFrame();
3477 }
3478 
EmitSeqStringSetCharCheck(Register string,Register index,SeqStringSetCharCheckIndexType index_type,Register scratch,uint32_t encoding_mask)3479 void MacroAssembler::EmitSeqStringSetCharCheck(
3480     Register string,
3481     Register index,
3482     SeqStringSetCharCheckIndexType index_type,
3483     Register scratch,
3484     uint32_t encoding_mask) {
3485   DCHECK(!AreAliased(string, index, scratch));
3486 
3487   if (index_type == kIndexIsSmi) {
3488     AssertSmi(index);
3489   }
3490 
3491   // Check that string is an object.
3492   AssertNotSmi(string, kNonObject);
3493 
3494   // Check that string has an appropriate map.
3495   Ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
3496   Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
3497 
3498   And(scratch, scratch, kStringRepresentationMask | kStringEncodingMask);
3499   Cmp(scratch, encoding_mask);
3500   Check(eq, kUnexpectedStringType);
3501 
3502   Ldr(scratch, FieldMemOperand(string, String::kLengthOffset));
3503   Cmp(index, index_type == kIndexIsSmi ? scratch : Operand::UntagSmi(scratch));
3504   Check(lt, kIndexIsTooLarge);
3505 
3506   DCHECK_EQ(static_cast<Smi*>(0), Smi::kZero);
3507   Cmp(index, 0);
3508   Check(ge, kIndexIsNegative);
3509 }
3510 
3511 
3512 // Compute the hash code from the untagged key. This must be kept in sync with
3513 // ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
3514 // code-stub-hydrogen.cc
GetNumberHash(Register key,Register scratch)3515 void MacroAssembler::GetNumberHash(Register key, Register scratch) {
3516   DCHECK(!AreAliased(key, scratch));
3517 
3518   // Xor original key with a seed.
3519   LoadRoot(scratch, Heap::kHashSeedRootIndex);
3520   Eor(key, key, Operand::UntagSmi(scratch));
3521 
3522   // The algorithm uses 32-bit integer values.
3523   key = key.W();
3524   scratch = scratch.W();
3525 
3526   // Compute the hash code from the untagged key.  This must be kept in sync
3527   // with ComputeIntegerHash in utils.h.
3528   //
3529   // hash = ~hash + (hash <<1 15);
3530   Mvn(scratch, key);
3531   Add(key, scratch, Operand(key, LSL, 15));
3532   // hash = hash ^ (hash >> 12);
3533   Eor(key, key, Operand(key, LSR, 12));
3534   // hash = hash + (hash << 2);
3535   Add(key, key, Operand(key, LSL, 2));
3536   // hash = hash ^ (hash >> 4);
3537   Eor(key, key, Operand(key, LSR, 4));
3538   // hash = hash * 2057;
3539   Mov(scratch, Operand(key, LSL, 11));
3540   Add(key, key, Operand(key, LSL, 3));
3541   Add(key, key, scratch);
3542   // hash = hash ^ (hash >> 16);
3543   Eor(key, key, Operand(key, LSR, 16));
3544   Bic(key, key, Operand(0xc0000000u));
3545 }
3546 
RecordWriteCodeEntryField(Register js_function,Register code_entry,Register scratch)3547 void MacroAssembler::RecordWriteCodeEntryField(Register js_function,
3548                                                Register code_entry,
3549                                                Register scratch) {
3550   const int offset = JSFunction::kCodeEntryOffset;
3551 
3552   // Since a code entry (value) is always in old space, we don't need to update
3553   // remembered set. If incremental marking is off, there is nothing for us to
3554   // do.
3555   if (!FLAG_incremental_marking) return;
3556 
3557   DCHECK(js_function.is(x1));
3558   DCHECK(code_entry.is(x7));
3559   DCHECK(scratch.is(x5));
3560   AssertNotSmi(js_function);
3561 
3562   if (emit_debug_code()) {
3563     UseScratchRegisterScope temps(this);
3564     Register temp = temps.AcquireX();
3565     Add(scratch, js_function, offset - kHeapObjectTag);
3566     Ldr(temp, MemOperand(scratch));
3567     Cmp(temp, code_entry);
3568     Check(eq, kWrongAddressOrValuePassedToRecordWrite);
3569   }
3570 
3571   // First, check if a write barrier is even needed. The tests below
3572   // catch stores of Smis and stores into young gen.
3573   Label done;
3574 
3575   CheckPageFlagClear(code_entry, scratch,
3576                      MemoryChunk::kPointersToHereAreInterestingMask, &done);
3577   CheckPageFlagClear(js_function, scratch,
3578                      MemoryChunk::kPointersFromHereAreInterestingMask, &done);
3579 
3580   const Register dst = scratch;
3581   Add(dst, js_function, offset - kHeapObjectTag);
3582 
3583   // Save caller-saved registers.Both input registers (x1 and x7) are caller
3584   // saved, so there is no need to push them.
3585   PushCPURegList(kCallerSaved);
3586 
3587   int argument_count = 3;
3588 
3589   Mov(x0, js_function);
3590   Mov(x1, dst);
3591   Mov(x2, ExternalReference::isolate_address(isolate()));
3592 
3593   {
3594     AllowExternalCallThatCantCauseGC scope(this);
3595     CallCFunction(
3596         ExternalReference::incremental_marking_record_write_code_entry_function(
3597             isolate()),
3598         argument_count);
3599   }
3600 
3601   // Restore caller-saved registers.
3602   PopCPURegList(kCallerSaved);
3603 
3604   Bind(&done);
3605 }
3606 
RememberedSetHelper(Register object,Register address,Register scratch1,SaveFPRegsMode fp_mode,RememberedSetFinalAction and_then)3607 void MacroAssembler::RememberedSetHelper(Register object,  // For debug tests.
3608                                          Register address,
3609                                          Register scratch1,
3610                                          SaveFPRegsMode fp_mode,
3611                                          RememberedSetFinalAction and_then) {
3612   DCHECK(!AreAliased(object, address, scratch1));
3613   Label done, store_buffer_overflow;
3614   if (emit_debug_code()) {
3615     Label ok;
3616     JumpIfNotInNewSpace(object, &ok);
3617     Abort(kRememberedSetPointerInNewSpace);
3618     bind(&ok);
3619   }
3620   UseScratchRegisterScope temps(this);
3621   Register scratch2 = temps.AcquireX();
3622 
3623   // Load store buffer top.
3624   Mov(scratch2, ExternalReference::store_buffer_top(isolate()));
3625   Ldr(scratch1, MemOperand(scratch2));
3626   // Store pointer to buffer and increment buffer top.
3627   Str(address, MemOperand(scratch1, kPointerSize, PostIndex));
3628   // Write back new top of buffer.
3629   Str(scratch1, MemOperand(scratch2));
3630   // Call stub on end of buffer.
3631   // Check for end of buffer.
3632   Tst(scratch1, StoreBuffer::kStoreBufferMask);
3633   if (and_then == kFallThroughAtEnd) {
3634     B(ne, &done);
3635   } else {
3636     DCHECK(and_then == kReturnAtEnd);
3637     B(eq, &store_buffer_overflow);
3638     Ret();
3639   }
3640 
3641   Bind(&store_buffer_overflow);
3642   Push(lr);
3643   StoreBufferOverflowStub store_buffer_overflow_stub(isolate(), fp_mode);
3644   CallStub(&store_buffer_overflow_stub);
3645   Pop(lr);
3646 
3647   Bind(&done);
3648   if (and_then == kReturnAtEnd) {
3649     Ret();
3650   }
3651 }
3652 
3653 
PopSafepointRegisters()3654 void MacroAssembler::PopSafepointRegisters() {
3655   const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
3656   PopXRegList(kSafepointSavedRegisters);
3657   Drop(num_unsaved);
3658 }
3659 
3660 
PushSafepointRegisters()3661 void MacroAssembler::PushSafepointRegisters() {
3662   // Safepoints expect a block of kNumSafepointRegisters values on the stack, so
3663   // adjust the stack for unsaved registers.
3664   const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
3665   DCHECK(num_unsaved >= 0);
3666   Claim(num_unsaved);
3667   PushXRegList(kSafepointSavedRegisters);
3668 }
3669 
3670 
PushSafepointRegistersAndDoubles()3671 void MacroAssembler::PushSafepointRegistersAndDoubles() {
3672   PushSafepointRegisters();
3673   PushCPURegList(CPURegList(
3674       CPURegister::kFPRegister, kDRegSizeInBits,
3675       RegisterConfiguration::Crankshaft()->allocatable_double_codes_mask()));
3676 }
3677 
3678 
PopSafepointRegistersAndDoubles()3679 void MacroAssembler::PopSafepointRegistersAndDoubles() {
3680   PopCPURegList(CPURegList(
3681       CPURegister::kFPRegister, kDRegSizeInBits,
3682       RegisterConfiguration::Crankshaft()->allocatable_double_codes_mask()));
3683   PopSafepointRegisters();
3684 }
3685 
3686 
SafepointRegisterStackIndex(int reg_code)3687 int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
3688   // Make sure the safepoint registers list is what we expect.
3689   DCHECK(CPURegList::GetSafepointSavedRegisters().list() == 0x6ffcffff);
3690 
3691   // Safepoint registers are stored contiguously on the stack, but not all the
3692   // registers are saved. The following registers are excluded:
3693   //  - x16 and x17 (ip0 and ip1) because they shouldn't be preserved outside of
3694   //    the macro assembler.
3695   //  - x28 (jssp) because JS stack pointer doesn't need to be included in
3696   //    safepoint registers.
3697   //  - x31 (csp) because the system stack pointer doesn't need to be included
3698   //    in safepoint registers.
3699   //
3700   // This function implements the mapping of register code to index into the
3701   // safepoint register slots.
3702   if ((reg_code >= 0) && (reg_code <= 15)) {
3703     return reg_code;
3704   } else if ((reg_code >= 18) && (reg_code <= 27)) {
3705     // Skip ip0 and ip1.
3706     return reg_code - 2;
3707   } else if ((reg_code == 29) || (reg_code == 30)) {
3708     // Also skip jssp.
3709     return reg_code - 3;
3710   } else {
3711     // This register has no safepoint register slot.
3712     UNREACHABLE();
3713     return -1;
3714   }
3715 }
3716 
CheckPageFlag(const Register & object,const Register & scratch,int mask,Condition cc,Label * condition_met)3717 void MacroAssembler::CheckPageFlag(const Register& object,
3718                                    const Register& scratch, int mask,
3719                                    Condition cc, Label* condition_met) {
3720   And(scratch, object, ~Page::kPageAlignmentMask);
3721   Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
3722   if (cc == eq) {
3723     TestAndBranchIfAnySet(scratch, mask, condition_met);
3724   } else {
3725     TestAndBranchIfAllClear(scratch, mask, condition_met);
3726   }
3727 }
3728 
CheckPageFlagSet(const Register & object,const Register & scratch,int mask,Label * if_any_set)3729 void MacroAssembler::CheckPageFlagSet(const Register& object,
3730                                       const Register& scratch,
3731                                       int mask,
3732                                       Label* if_any_set) {
3733   And(scratch, object, ~Page::kPageAlignmentMask);
3734   Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
3735   TestAndBranchIfAnySet(scratch, mask, if_any_set);
3736 }
3737 
3738 
CheckPageFlagClear(const Register & object,const Register & scratch,int mask,Label * if_all_clear)3739 void MacroAssembler::CheckPageFlagClear(const Register& object,
3740                                         const Register& scratch,
3741                                         int mask,
3742                                         Label* if_all_clear) {
3743   And(scratch, object, ~Page::kPageAlignmentMask);
3744   Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
3745   TestAndBranchIfAllClear(scratch, mask, if_all_clear);
3746 }
3747 
3748 
RecordWriteField(Register object,int offset,Register value,Register scratch,LinkRegisterStatus lr_status,SaveFPRegsMode save_fp,RememberedSetAction remembered_set_action,SmiCheck smi_check,PointersToHereCheck pointers_to_here_check_for_value)3749 void MacroAssembler::RecordWriteField(
3750     Register object,
3751     int offset,
3752     Register value,
3753     Register scratch,
3754     LinkRegisterStatus lr_status,
3755     SaveFPRegsMode save_fp,
3756     RememberedSetAction remembered_set_action,
3757     SmiCheck smi_check,
3758     PointersToHereCheck pointers_to_here_check_for_value) {
3759   // First, check if a write barrier is even needed. The tests below
3760   // catch stores of Smis.
3761   Label done;
3762 
3763   // Skip the barrier if writing a smi.
3764   if (smi_check == INLINE_SMI_CHECK) {
3765     JumpIfSmi(value, &done);
3766   }
3767 
3768   // Although the object register is tagged, the offset is relative to the start
3769   // of the object, so offset must be a multiple of kPointerSize.
3770   DCHECK(IsAligned(offset, kPointerSize));
3771 
3772   Add(scratch, object, offset - kHeapObjectTag);
3773   if (emit_debug_code()) {
3774     Label ok;
3775     Tst(scratch, (1 << kPointerSizeLog2) - 1);
3776     B(eq, &ok);
3777     Abort(kUnalignedCellInWriteBarrier);
3778     Bind(&ok);
3779   }
3780 
3781   RecordWrite(object,
3782               scratch,
3783               value,
3784               lr_status,
3785               save_fp,
3786               remembered_set_action,
3787               OMIT_SMI_CHECK,
3788               pointers_to_here_check_for_value);
3789 
3790   Bind(&done);
3791 
3792   // Clobber clobbered input registers when running with the debug-code flag
3793   // turned on to provoke errors.
3794   if (emit_debug_code()) {
3795     Mov(value, Operand(bit_cast<int64_t>(kZapValue + 4)));
3796     Mov(scratch, Operand(bit_cast<int64_t>(kZapValue + 8)));
3797   }
3798 }
3799 
3800 
3801 // Will clobber: object, map, dst.
3802 // If lr_status is kLRHasBeenSaved, lr will also be clobbered.
RecordWriteForMap(Register object,Register map,Register dst,LinkRegisterStatus lr_status,SaveFPRegsMode fp_mode)3803 void MacroAssembler::RecordWriteForMap(Register object,
3804                                        Register map,
3805                                        Register dst,
3806                                        LinkRegisterStatus lr_status,
3807                                        SaveFPRegsMode fp_mode) {
3808   ASM_LOCATION("MacroAssembler::RecordWrite");
3809   DCHECK(!AreAliased(object, map));
3810 
3811   if (emit_debug_code()) {
3812     UseScratchRegisterScope temps(this);
3813     Register temp = temps.AcquireX();
3814 
3815     CompareObjectMap(map, temp, isolate()->factory()->meta_map());
3816     Check(eq, kWrongAddressOrValuePassedToRecordWrite);
3817   }
3818 
3819   if (!FLAG_incremental_marking) {
3820     return;
3821   }
3822 
3823   if (emit_debug_code()) {
3824     UseScratchRegisterScope temps(this);
3825     Register temp = temps.AcquireX();
3826 
3827     Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
3828     Cmp(temp, map);
3829     Check(eq, kWrongAddressOrValuePassedToRecordWrite);
3830   }
3831 
3832   // First, check if a write barrier is even needed. The tests below
3833   // catch stores of smis and stores into the young generation.
3834   Label done;
3835 
3836   // A single check of the map's pages interesting flag suffices, since it is
3837   // only set during incremental collection, and then it's also guaranteed that
3838   // the from object's page's interesting flag is also set.  This optimization
3839   // relies on the fact that maps can never be in new space.
3840   CheckPageFlagClear(map,
3841                      map,  // Used as scratch.
3842                      MemoryChunk::kPointersToHereAreInterestingMask,
3843                      &done);
3844 
3845   // Record the actual write.
3846   if (lr_status == kLRHasNotBeenSaved) {
3847     Push(lr);
3848   }
3849   Add(dst, object, HeapObject::kMapOffset - kHeapObjectTag);
3850   RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET,
3851                        fp_mode);
3852   CallStub(&stub);
3853   if (lr_status == kLRHasNotBeenSaved) {
3854     Pop(lr);
3855   }
3856 
3857   Bind(&done);
3858 
3859   // Count number of write barriers in generated code.
3860   isolate()->counters()->write_barriers_static()->Increment();
3861   IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, map,
3862                    dst);
3863 
3864   // Clobber clobbered registers when running with the debug-code flag
3865   // turned on to provoke errors.
3866   if (emit_debug_code()) {
3867     Mov(dst, Operand(bit_cast<int64_t>(kZapValue + 12)));
3868     Mov(map, Operand(bit_cast<int64_t>(kZapValue + 16)));
3869   }
3870 }
3871 
3872 
3873 // Will clobber: object, address, value.
3874 // If lr_status is kLRHasBeenSaved, lr will also be clobbered.
3875 //
3876 // The register 'object' contains a heap object pointer. The heap object tag is
3877 // shifted away.
RecordWrite(Register object,Register address,Register value,LinkRegisterStatus lr_status,SaveFPRegsMode fp_mode,RememberedSetAction remembered_set_action,SmiCheck smi_check,PointersToHereCheck pointers_to_here_check_for_value)3878 void MacroAssembler::RecordWrite(
3879     Register object,
3880     Register address,
3881     Register value,
3882     LinkRegisterStatus lr_status,
3883     SaveFPRegsMode fp_mode,
3884     RememberedSetAction remembered_set_action,
3885     SmiCheck smi_check,
3886     PointersToHereCheck pointers_to_here_check_for_value) {
3887   ASM_LOCATION("MacroAssembler::RecordWrite");
3888   DCHECK(!AreAliased(object, value));
3889 
3890   if (emit_debug_code()) {
3891     UseScratchRegisterScope temps(this);
3892     Register temp = temps.AcquireX();
3893 
3894     Ldr(temp, MemOperand(address));
3895     Cmp(temp, value);
3896     Check(eq, kWrongAddressOrValuePassedToRecordWrite);
3897   }
3898 
3899   // First, check if a write barrier is even needed. The tests below
3900   // catch stores of smis and stores into the young generation.
3901   Label done;
3902 
3903   if (smi_check == INLINE_SMI_CHECK) {
3904     DCHECK_EQ(0, kSmiTag);
3905     JumpIfSmi(value, &done);
3906   }
3907 
3908   if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
3909     CheckPageFlagClear(value,
3910                        value,  // Used as scratch.
3911                        MemoryChunk::kPointersToHereAreInterestingMask,
3912                        &done);
3913   }
3914   CheckPageFlagClear(object,
3915                      value,  // Used as scratch.
3916                      MemoryChunk::kPointersFromHereAreInterestingMask,
3917                      &done);
3918 
3919   // Record the actual write.
3920   if (lr_status == kLRHasNotBeenSaved) {
3921     Push(lr);
3922   }
3923   RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
3924                        fp_mode);
3925   CallStub(&stub);
3926   if (lr_status == kLRHasNotBeenSaved) {
3927     Pop(lr);
3928   }
3929 
3930   Bind(&done);
3931 
3932   // Count number of write barriers in generated code.
3933   isolate()->counters()->write_barriers_static()->Increment();
3934   IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, address,
3935                    value);
3936 
3937   // Clobber clobbered registers when running with the debug-code flag
3938   // turned on to provoke errors.
3939   if (emit_debug_code()) {
3940     Mov(address, Operand(bit_cast<int64_t>(kZapValue + 12)));
3941     Mov(value, Operand(bit_cast<int64_t>(kZapValue + 16)));
3942   }
3943 }
3944 
3945 
AssertHasValidColor(const Register & reg)3946 void MacroAssembler::AssertHasValidColor(const Register& reg) {
3947   if (emit_debug_code()) {
3948     // The bit sequence is backward. The first character in the string
3949     // represents the least significant bit.
3950     DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
3951 
3952     Label color_is_valid;
3953     Tbnz(reg, 0, &color_is_valid);
3954     Tbz(reg, 1, &color_is_valid);
3955     Abort(kUnexpectedColorFound);
3956     Bind(&color_is_valid);
3957   }
3958 }
3959 
3960 
GetMarkBits(Register addr_reg,Register bitmap_reg,Register shift_reg)3961 void MacroAssembler::GetMarkBits(Register addr_reg,
3962                                  Register bitmap_reg,
3963                                  Register shift_reg) {
3964   DCHECK(!AreAliased(addr_reg, bitmap_reg, shift_reg));
3965   DCHECK(addr_reg.Is64Bits() && bitmap_reg.Is64Bits() && shift_reg.Is64Bits());
3966   // addr_reg is divided into fields:
3967   // |63        page base        20|19    high      8|7   shift   3|2  0|
3968   // 'high' gives the index of the cell holding color bits for the object.
3969   // 'shift' gives the offset in the cell for this object's color.
3970   const int kShiftBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
3971   UseScratchRegisterScope temps(this);
3972   Register temp = temps.AcquireX();
3973   Ubfx(temp, addr_reg, kShiftBits, kPageSizeBits - kShiftBits);
3974   Bic(bitmap_reg, addr_reg, Page::kPageAlignmentMask);
3975   Add(bitmap_reg, bitmap_reg, Operand(temp, LSL, Bitmap::kBytesPerCellLog2));
3976   // bitmap_reg:
3977   // |63        page base        20|19 zeros 15|14      high      3|2  0|
3978   Ubfx(shift_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2);
3979 }
3980 
3981 
HasColor(Register object,Register bitmap_scratch,Register shift_scratch,Label * has_color,int first_bit,int second_bit)3982 void MacroAssembler::HasColor(Register object,
3983                               Register bitmap_scratch,
3984                               Register shift_scratch,
3985                               Label* has_color,
3986                               int first_bit,
3987                               int second_bit) {
3988   // See mark-compact.h for color definitions.
3989   DCHECK(!AreAliased(object, bitmap_scratch, shift_scratch));
3990 
3991   GetMarkBits(object, bitmap_scratch, shift_scratch);
3992   Ldr(bitmap_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
3993   // Shift the bitmap down to get the color of the object in bits [1:0].
3994   Lsr(bitmap_scratch, bitmap_scratch, shift_scratch);
3995 
3996   AssertHasValidColor(bitmap_scratch);
3997 
3998   // These bit sequences are backwards. The first character in the string
3999   // represents the least significant bit.
4000   DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
4001   DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0);
4002   DCHECK(strcmp(Marking::kGreyBitPattern, "10") == 0);
4003 
4004   // Check for the color.
4005   if (first_bit == 0) {
4006     // Checking for white.
4007     DCHECK(second_bit == 0);
4008     // We only need to test the first bit.
4009     Tbz(bitmap_scratch, 0, has_color);
4010   } else {
4011     Label other_color;
4012     // Checking for grey or black.
4013     Tbz(bitmap_scratch, 0, &other_color);
4014     if (second_bit == 0) {
4015       Tbz(bitmap_scratch, 1, has_color);
4016     } else {
4017       Tbnz(bitmap_scratch, 1, has_color);
4018     }
4019     Bind(&other_color);
4020   }
4021 
4022   // Fall through if it does not have the right color.
4023 }
4024 
4025 
JumpIfBlack(Register object,Register scratch0,Register scratch1,Label * on_black)4026 void MacroAssembler::JumpIfBlack(Register object,
4027                                  Register scratch0,
4028                                  Register scratch1,
4029                                  Label* on_black) {
4030   DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0);
4031   HasColor(object, scratch0, scratch1, on_black, 1, 1);  // kBlackBitPattern.
4032 }
4033 
JumpIfWhite(Register value,Register bitmap_scratch,Register shift_scratch,Register load_scratch,Register length_scratch,Label * value_is_white)4034 void MacroAssembler::JumpIfWhite(Register value, Register bitmap_scratch,
4035                                  Register shift_scratch, Register load_scratch,
4036                                  Register length_scratch,
4037                                  Label* value_is_white) {
4038   DCHECK(!AreAliased(
4039       value, bitmap_scratch, shift_scratch, load_scratch, length_scratch));
4040 
4041   // These bit sequences are backwards. The first character in the string
4042   // represents the least significant bit.
4043   DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
4044   DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0);
4045   DCHECK(strcmp(Marking::kGreyBitPattern, "10") == 0);
4046 
4047   GetMarkBits(value, bitmap_scratch, shift_scratch);
4048   Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
4049   Lsr(load_scratch, load_scratch, shift_scratch);
4050 
4051   AssertHasValidColor(load_scratch);
4052 
4053   // If the value is black or grey we don't need to do anything.
4054   // Since both black and grey have a 1 in the first position and white does
4055   // not have a 1 there we only need to check one bit.
4056   Tbz(load_scratch, 0, value_is_white);
4057 }
4058 
4059 
Assert(Condition cond,BailoutReason reason)4060 void MacroAssembler::Assert(Condition cond, BailoutReason reason) {
4061   if (emit_debug_code()) {
4062     Check(cond, reason);
4063   }
4064 }
4065 
4066 
4067 
AssertRegisterIsClear(Register reg,BailoutReason reason)4068 void MacroAssembler::AssertRegisterIsClear(Register reg, BailoutReason reason) {
4069   if (emit_debug_code()) {
4070     CheckRegisterIsClear(reg, reason);
4071   }
4072 }
4073 
4074 
AssertRegisterIsRoot(Register reg,Heap::RootListIndex index,BailoutReason reason)4075 void MacroAssembler::AssertRegisterIsRoot(Register reg,
4076                                           Heap::RootListIndex index,
4077                                           BailoutReason reason) {
4078   if (emit_debug_code()) {
4079     CompareRoot(reg, index);
4080     Check(eq, reason);
4081   }
4082 }
4083 
4084 
AssertFastElements(Register elements)4085 void MacroAssembler::AssertFastElements(Register elements) {
4086   if (emit_debug_code()) {
4087     UseScratchRegisterScope temps(this);
4088     Register temp = temps.AcquireX();
4089     Label ok;
4090     Ldr(temp, FieldMemOperand(elements, HeapObject::kMapOffset));
4091     JumpIfRoot(temp, Heap::kFixedArrayMapRootIndex, &ok);
4092     JumpIfRoot(temp, Heap::kFixedDoubleArrayMapRootIndex, &ok);
4093     JumpIfRoot(temp, Heap::kFixedCOWArrayMapRootIndex, &ok);
4094     Abort(kJSObjectWithFastElementsMapHasSlowElements);
4095     Bind(&ok);
4096   }
4097 }
4098 
4099 
AssertIsString(const Register & object)4100 void MacroAssembler::AssertIsString(const Register& object) {
4101   if (emit_debug_code()) {
4102     UseScratchRegisterScope temps(this);
4103     Register temp = temps.AcquireX();
4104     STATIC_ASSERT(kSmiTag == 0);
4105     Tst(object, kSmiTagMask);
4106     Check(ne, kOperandIsNotAString);
4107     Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
4108     CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE);
4109     Check(lo, kOperandIsNotAString);
4110   }
4111 }
4112 
4113 
Check(Condition cond,BailoutReason reason)4114 void MacroAssembler::Check(Condition cond, BailoutReason reason) {
4115   Label ok;
4116   B(cond, &ok);
4117   Abort(reason);
4118   // Will not return here.
4119   Bind(&ok);
4120 }
4121 
4122 
CheckRegisterIsClear(Register reg,BailoutReason reason)4123 void MacroAssembler::CheckRegisterIsClear(Register reg, BailoutReason reason) {
4124   Label ok;
4125   Cbz(reg, &ok);
4126   Abort(reason);
4127   // Will not return here.
4128   Bind(&ok);
4129 }
4130 
4131 
Abort(BailoutReason reason)4132 void MacroAssembler::Abort(BailoutReason reason) {
4133 #ifdef DEBUG
4134   RecordComment("Abort message: ");
4135   RecordComment(GetBailoutReason(reason));
4136 
4137   if (FLAG_trap_on_abort) {
4138     Brk(0);
4139     return;
4140   }
4141 #endif
4142 
4143   // Abort is used in some contexts where csp is the stack pointer. In order to
4144   // simplify the CallRuntime code, make sure that jssp is the stack pointer.
4145   // There is no risk of register corruption here because Abort doesn't return.
4146   Register old_stack_pointer = StackPointer();
4147   SetStackPointer(jssp);
4148   Mov(jssp, old_stack_pointer);
4149 
4150   // We need some scratch registers for the MacroAssembler, so make sure we have
4151   // some. This is safe here because Abort never returns.
4152   RegList old_tmp_list = TmpList()->list();
4153   TmpList()->Combine(MacroAssembler::DefaultTmpList());
4154 
4155   if (use_real_aborts()) {
4156     // Avoid infinite recursion; Push contains some assertions that use Abort.
4157     NoUseRealAbortsScope no_real_aborts(this);
4158 
4159     // Check if Abort() has already been initialized.
4160     DCHECK(isolate()->builtins()->Abort()->IsHeapObject());
4161 
4162     Move(x1, Smi::FromInt(static_cast<int>(reason)));
4163 
4164     if (!has_frame_) {
4165       // We don't actually want to generate a pile of code for this, so just
4166       // claim there is a stack frame, without generating one.
4167       FrameScope scope(this, StackFrame::NONE);
4168       Call(isolate()->builtins()->Abort(), RelocInfo::CODE_TARGET);
4169     } else {
4170       Call(isolate()->builtins()->Abort(), RelocInfo::CODE_TARGET);
4171     }
4172   } else {
4173     // Load the string to pass to Printf.
4174     Label msg_address;
4175     Adr(x0, &msg_address);
4176 
4177     // Call Printf directly to report the error.
4178     CallPrintf();
4179 
4180     // We need a way to stop execution on both the simulator and real hardware,
4181     // and Unreachable() is the best option.
4182     Unreachable();
4183 
4184     // Emit the message string directly in the instruction stream.
4185     {
4186       BlockPoolsScope scope(this);
4187       Bind(&msg_address);
4188       EmitStringData(GetBailoutReason(reason));
4189     }
4190   }
4191 
4192   SetStackPointer(old_stack_pointer);
4193   TmpList()->set_list(old_tmp_list);
4194 }
4195 
LoadNativeContextSlot(int index,Register dst)4196 void MacroAssembler::LoadNativeContextSlot(int index, Register dst) {
4197   Ldr(dst, NativeContextMemOperand());
4198   Ldr(dst, ContextMemOperand(dst, index));
4199 }
4200 
4201 
LoadGlobalFunctionInitialMap(Register function,Register map,Register scratch)4202 void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
4203                                                   Register map,
4204                                                   Register scratch) {
4205   // Load the initial map. The global functions all have initial maps.
4206   Ldr(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
4207   if (emit_debug_code()) {
4208     Label ok, fail;
4209     CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
4210     B(&ok);
4211     Bind(&fail);
4212     Abort(kGlobalFunctionsMustHaveInitialMap);
4213     Bind(&ok);
4214   }
4215 }
4216 
4217 
4218 // This is the main Printf implementation. All other Printf variants call
4219 // PrintfNoPreserve after setting up one or more PreserveRegisterScopes.
PrintfNoPreserve(const char * format,const CPURegister & arg0,const CPURegister & arg1,const CPURegister & arg2,const CPURegister & arg3)4220 void MacroAssembler::PrintfNoPreserve(const char * format,
4221                                       const CPURegister& arg0,
4222                                       const CPURegister& arg1,
4223                                       const CPURegister& arg2,
4224                                       const CPURegister& arg3) {
4225   // We cannot handle a caller-saved stack pointer. It doesn't make much sense
4226   // in most cases anyway, so this restriction shouldn't be too serious.
4227   DCHECK(!kCallerSaved.IncludesAliasOf(__ StackPointer()));
4228 
4229   // The provided arguments, and their proper procedure-call standard registers.
4230   CPURegister args[kPrintfMaxArgCount] = {arg0, arg1, arg2, arg3};
4231   CPURegister pcs[kPrintfMaxArgCount] = {NoReg, NoReg, NoReg, NoReg};
4232 
4233   int arg_count = kPrintfMaxArgCount;
4234 
4235   // The PCS varargs registers for printf. Note that x0 is used for the printf
4236   // format string.
4237   static const CPURegList kPCSVarargs =
4238       CPURegList(CPURegister::kRegister, kXRegSizeInBits, 1, arg_count);
4239   static const CPURegList kPCSVarargsFP =
4240       CPURegList(CPURegister::kFPRegister, kDRegSizeInBits, 0, arg_count - 1);
4241 
4242   // We can use caller-saved registers as scratch values, except for the
4243   // arguments and the PCS registers where they might need to go.
4244   CPURegList tmp_list = kCallerSaved;
4245   tmp_list.Remove(x0);      // Used to pass the format string.
4246   tmp_list.Remove(kPCSVarargs);
4247   tmp_list.Remove(arg0, arg1, arg2, arg3);
4248 
4249   CPURegList fp_tmp_list = kCallerSavedFP;
4250   fp_tmp_list.Remove(kPCSVarargsFP);
4251   fp_tmp_list.Remove(arg0, arg1, arg2, arg3);
4252 
4253   // Override the MacroAssembler's scratch register list. The lists will be
4254   // reset automatically at the end of the UseScratchRegisterScope.
4255   UseScratchRegisterScope temps(this);
4256   TmpList()->set_list(tmp_list.list());
4257   FPTmpList()->set_list(fp_tmp_list.list());
4258 
4259   // Copies of the printf vararg registers that we can pop from.
4260   CPURegList pcs_varargs = kPCSVarargs;
4261   CPURegList pcs_varargs_fp = kPCSVarargsFP;
4262 
4263   // Place the arguments. There are lots of clever tricks and optimizations we
4264   // could use here, but Printf is a debug tool so instead we just try to keep
4265   // it simple: Move each input that isn't already in the right place to a
4266   // scratch register, then move everything back.
4267   for (unsigned i = 0; i < kPrintfMaxArgCount; i++) {
4268     // Work out the proper PCS register for this argument.
4269     if (args[i].IsRegister()) {
4270       pcs[i] = pcs_varargs.PopLowestIndex().X();
4271       // We might only need a W register here. We need to know the size of the
4272       // argument so we can properly encode it for the simulator call.
4273       if (args[i].Is32Bits()) pcs[i] = pcs[i].W();
4274     } else if (args[i].IsFPRegister()) {
4275       // In C, floats are always cast to doubles for varargs calls.
4276       pcs[i] = pcs_varargs_fp.PopLowestIndex().D();
4277     } else {
4278       DCHECK(args[i].IsNone());
4279       arg_count = i;
4280       break;
4281     }
4282 
4283     // If the argument is already in the right place, leave it where it is.
4284     if (args[i].Aliases(pcs[i])) continue;
4285 
4286     // Otherwise, if the argument is in a PCS argument register, allocate an
4287     // appropriate scratch register and then move it out of the way.
4288     if (kPCSVarargs.IncludesAliasOf(args[i]) ||
4289         kPCSVarargsFP.IncludesAliasOf(args[i])) {
4290       if (args[i].IsRegister()) {
4291         Register old_arg = Register(args[i]);
4292         Register new_arg = temps.AcquireSameSizeAs(old_arg);
4293         Mov(new_arg, old_arg);
4294         args[i] = new_arg;
4295       } else {
4296         FPRegister old_arg = FPRegister(args[i]);
4297         FPRegister new_arg = temps.AcquireSameSizeAs(old_arg);
4298         Fmov(new_arg, old_arg);
4299         args[i] = new_arg;
4300       }
4301     }
4302   }
4303 
4304   // Do a second pass to move values into their final positions and perform any
4305   // conversions that may be required.
4306   for (int i = 0; i < arg_count; i++) {
4307     DCHECK(pcs[i].type() == args[i].type());
4308     if (pcs[i].IsRegister()) {
4309       Mov(Register(pcs[i]), Register(args[i]), kDiscardForSameWReg);
4310     } else {
4311       DCHECK(pcs[i].IsFPRegister());
4312       if (pcs[i].SizeInBytes() == args[i].SizeInBytes()) {
4313         Fmov(FPRegister(pcs[i]), FPRegister(args[i]));
4314       } else {
4315         Fcvt(FPRegister(pcs[i]), FPRegister(args[i]));
4316       }
4317     }
4318   }
4319 
4320   // Load the format string into x0, as per the procedure-call standard.
4321   //
4322   // To make the code as portable as possible, the format string is encoded
4323   // directly in the instruction stream. It might be cleaner to encode it in a
4324   // literal pool, but since Printf is usually used for debugging, it is
4325   // beneficial for it to be minimally dependent on other features.
4326   Label format_address;
4327   Adr(x0, &format_address);
4328 
4329   // Emit the format string directly in the instruction stream.
4330   { BlockPoolsScope scope(this);
4331     Label after_data;
4332     B(&after_data);
4333     Bind(&format_address);
4334     EmitStringData(format);
4335     Unreachable();
4336     Bind(&after_data);
4337   }
4338 
4339   // We don't pass any arguments on the stack, but we still need to align the C
4340   // stack pointer to a 16-byte boundary for PCS compliance.
4341   if (!csp.Is(StackPointer())) {
4342     Bic(csp, StackPointer(), 0xf);
4343   }
4344 
4345   CallPrintf(arg_count, pcs);
4346 }
4347 
4348 
CallPrintf(int arg_count,const CPURegister * args)4349 void MacroAssembler::CallPrintf(int arg_count, const CPURegister * args) {
4350   // A call to printf needs special handling for the simulator, since the system
4351   // printf function will use a different instruction set and the procedure-call
4352   // standard will not be compatible.
4353 #ifdef USE_SIMULATOR
4354   { InstructionAccurateScope scope(this, kPrintfLength / kInstructionSize);
4355     hlt(kImmExceptionIsPrintf);
4356     dc32(arg_count);          // kPrintfArgCountOffset
4357 
4358     // Determine the argument pattern.
4359     uint32_t arg_pattern_list = 0;
4360     for (int i = 0; i < arg_count; i++) {
4361       uint32_t arg_pattern;
4362       if (args[i].IsRegister()) {
4363         arg_pattern = args[i].Is32Bits() ? kPrintfArgW : kPrintfArgX;
4364       } else {
4365         DCHECK(args[i].Is64Bits());
4366         arg_pattern = kPrintfArgD;
4367       }
4368       DCHECK(arg_pattern < (1 << kPrintfArgPatternBits));
4369       arg_pattern_list |= (arg_pattern << (kPrintfArgPatternBits * i));
4370     }
4371     dc32(arg_pattern_list);   // kPrintfArgPatternListOffset
4372   }
4373 #else
4374   Call(FUNCTION_ADDR(printf), RelocInfo::EXTERNAL_REFERENCE);
4375 #endif
4376 }
4377 
4378 
Printf(const char * format,CPURegister arg0,CPURegister arg1,CPURegister arg2,CPURegister arg3)4379 void MacroAssembler::Printf(const char * format,
4380                             CPURegister arg0,
4381                             CPURegister arg1,
4382                             CPURegister arg2,
4383                             CPURegister arg3) {
4384   // We can only print sp if it is the current stack pointer.
4385   if (!csp.Is(StackPointer())) {
4386     DCHECK(!csp.Aliases(arg0));
4387     DCHECK(!csp.Aliases(arg1));
4388     DCHECK(!csp.Aliases(arg2));
4389     DCHECK(!csp.Aliases(arg3));
4390   }
4391 
4392   // Printf is expected to preserve all registers, so make sure that none are
4393   // available as scratch registers until we've preserved them.
4394   RegList old_tmp_list = TmpList()->list();
4395   RegList old_fp_tmp_list = FPTmpList()->list();
4396   TmpList()->set_list(0);
4397   FPTmpList()->set_list(0);
4398 
4399   // Preserve all caller-saved registers as well as NZCV.
4400   // If csp is the stack pointer, PushCPURegList asserts that the size of each
4401   // list is a multiple of 16 bytes.
4402   PushCPURegList(kCallerSaved);
4403   PushCPURegList(kCallerSavedFP);
4404 
4405   // We can use caller-saved registers as scratch values (except for argN).
4406   CPURegList tmp_list = kCallerSaved;
4407   CPURegList fp_tmp_list = kCallerSavedFP;
4408   tmp_list.Remove(arg0, arg1, arg2, arg3);
4409   fp_tmp_list.Remove(arg0, arg1, arg2, arg3);
4410   TmpList()->set_list(tmp_list.list());
4411   FPTmpList()->set_list(fp_tmp_list.list());
4412 
4413   { UseScratchRegisterScope temps(this);
4414     // If any of the arguments are the current stack pointer, allocate a new
4415     // register for them, and adjust the value to compensate for pushing the
4416     // caller-saved registers.
4417     bool arg0_sp = StackPointer().Aliases(arg0);
4418     bool arg1_sp = StackPointer().Aliases(arg1);
4419     bool arg2_sp = StackPointer().Aliases(arg2);
4420     bool arg3_sp = StackPointer().Aliases(arg3);
4421     if (arg0_sp || arg1_sp || arg2_sp || arg3_sp) {
4422       // Allocate a register to hold the original stack pointer value, to pass
4423       // to PrintfNoPreserve as an argument.
4424       Register arg_sp = temps.AcquireX();
4425       Add(arg_sp, StackPointer(),
4426           kCallerSaved.TotalSizeInBytes() + kCallerSavedFP.TotalSizeInBytes());
4427       if (arg0_sp) arg0 = Register::Create(arg_sp.code(), arg0.SizeInBits());
4428       if (arg1_sp) arg1 = Register::Create(arg_sp.code(), arg1.SizeInBits());
4429       if (arg2_sp) arg2 = Register::Create(arg_sp.code(), arg2.SizeInBits());
4430       if (arg3_sp) arg3 = Register::Create(arg_sp.code(), arg3.SizeInBits());
4431     }
4432 
4433     // Preserve NZCV.
4434     { UseScratchRegisterScope temps(this);
4435       Register tmp = temps.AcquireX();
4436       Mrs(tmp, NZCV);
4437       Push(tmp, xzr);
4438     }
4439 
4440     PrintfNoPreserve(format, arg0, arg1, arg2, arg3);
4441 
4442     // Restore NZCV.
4443     { UseScratchRegisterScope temps(this);
4444       Register tmp = temps.AcquireX();
4445       Pop(xzr, tmp);
4446       Msr(NZCV, tmp);
4447     }
4448   }
4449 
4450   PopCPURegList(kCallerSavedFP);
4451   PopCPURegList(kCallerSaved);
4452 
4453   TmpList()->set_list(old_tmp_list);
4454   FPTmpList()->set_list(old_fp_tmp_list);
4455 }
4456 
4457 
EmitFrameSetupForCodeAgePatching()4458 void MacroAssembler::EmitFrameSetupForCodeAgePatching() {
4459   // TODO(jbramley): Other architectures use the internal memcpy to copy the
4460   // sequence. If this is a performance bottleneck, we should consider caching
4461   // the sequence and copying it in the same way.
4462   InstructionAccurateScope scope(this,
4463                                  kNoCodeAgeSequenceLength / kInstructionSize);
4464   DCHECK(jssp.Is(StackPointer()));
4465   EmitFrameSetupForCodeAgePatching(this);
4466 }
4467 
4468 
4469 
EmitCodeAgeSequence(Code * stub)4470 void MacroAssembler::EmitCodeAgeSequence(Code* stub) {
4471   InstructionAccurateScope scope(this,
4472                                  kNoCodeAgeSequenceLength / kInstructionSize);
4473   DCHECK(jssp.Is(StackPointer()));
4474   EmitCodeAgeSequence(this, stub);
4475 }
4476 
4477 
4478 #undef __
4479 #define __ assm->
4480 
4481 
EmitFrameSetupForCodeAgePatching(Assembler * assm)4482 void MacroAssembler::EmitFrameSetupForCodeAgePatching(Assembler * assm) {
4483   Label start;
4484   __ bind(&start);
4485 
4486   // We can do this sequence using four instructions, but the code ageing
4487   // sequence that patches it needs five, so we use the extra space to try to
4488   // simplify some addressing modes and remove some dependencies (compared to
4489   // using two stp instructions with write-back).
4490   __ sub(jssp, jssp, 4 * kXRegSize);
4491   __ sub(csp, csp, 4 * kXRegSize);
4492   __ stp(x1, cp, MemOperand(jssp, 0 * kXRegSize));
4493   __ stp(fp, lr, MemOperand(jssp, 2 * kXRegSize));
4494   __ add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp);
4495 
4496   __ AssertSizeOfCodeGeneratedSince(&start, kNoCodeAgeSequenceLength);
4497 }
4498 
4499 
EmitCodeAgeSequence(Assembler * assm,Code * stub)4500 void MacroAssembler::EmitCodeAgeSequence(Assembler * assm,
4501                                          Code * stub) {
4502   Label start;
4503   __ bind(&start);
4504   // When the stub is called, the sequence is replaced with the young sequence
4505   // (as in EmitFrameSetupForCodeAgePatching). After the code is replaced, the
4506   // stub jumps to &start, stored in x0. The young sequence does not call the
4507   // stub so there is no infinite loop here.
4508   //
4509   // A branch (br) is used rather than a call (blr) because this code replaces
4510   // the frame setup code that would normally preserve lr.
4511   __ ldr_pcrel(ip0, kCodeAgeStubEntryOffset >> kLoadLiteralScaleLog2);
4512   __ adr(x0, &start);
4513   __ br(ip0);
4514   // IsCodeAgeSequence in codegen-arm64.cc assumes that the code generated up
4515   // until now (kCodeAgeStubEntryOffset) is the same for all code age sequences.
4516   __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeStubEntryOffset);
4517   if (stub) {
4518     __ dc64(reinterpret_cast<uint64_t>(stub->instruction_start()));
4519     __ AssertSizeOfCodeGeneratedSince(&start, kNoCodeAgeSequenceLength);
4520   }
4521 }
4522 
4523 
IsYoungSequence(Isolate * isolate,byte * sequence)4524 bool MacroAssembler::IsYoungSequence(Isolate* isolate, byte* sequence) {
4525   bool is_young = isolate->code_aging_helper()->IsYoung(sequence);
4526   DCHECK(is_young ||
4527          isolate->code_aging_helper()->IsOld(sequence));
4528   return is_young;
4529 }
4530 
4531 
TruncatingDiv(Register result,Register dividend,int32_t divisor)4532 void MacroAssembler::TruncatingDiv(Register result,
4533                                    Register dividend,
4534                                    int32_t divisor) {
4535   DCHECK(!AreAliased(result, dividend));
4536   DCHECK(result.Is32Bits() && dividend.Is32Bits());
4537   base::MagicNumbersForDivision<uint32_t> mag =
4538       base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
4539   Mov(result, mag.multiplier);
4540   Smull(result.X(), dividend, result);
4541   Asr(result.X(), result.X(), 32);
4542   bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
4543   if (divisor > 0 && neg) Add(result, result, dividend);
4544   if (divisor < 0 && !neg && mag.multiplier > 0) Sub(result, result, dividend);
4545   if (mag.shift > 0) Asr(result, result, mag.shift);
4546   Add(result, result, Operand(dividend, LSR, 31));
4547 }
4548 
4549 
4550 #undef __
4551 
4552 
~UseScratchRegisterScope()4553 UseScratchRegisterScope::~UseScratchRegisterScope() {
4554   available_->set_list(old_available_);
4555   availablefp_->set_list(old_availablefp_);
4556 }
4557 
4558 
AcquireSameSizeAs(const Register & reg)4559 Register UseScratchRegisterScope::AcquireSameSizeAs(const Register& reg) {
4560   int code = AcquireNextAvailable(available_).code();
4561   return Register::Create(code, reg.SizeInBits());
4562 }
4563 
4564 
AcquireSameSizeAs(const FPRegister & reg)4565 FPRegister UseScratchRegisterScope::AcquireSameSizeAs(const FPRegister& reg) {
4566   int code = AcquireNextAvailable(availablefp_).code();
4567   return FPRegister::Create(code, reg.SizeInBits());
4568 }
4569 
4570 
AcquireNextAvailable(CPURegList * available)4571 CPURegister UseScratchRegisterScope::AcquireNextAvailable(
4572     CPURegList* available) {
4573   CHECK(!available->IsEmpty());
4574   CPURegister result = available->PopLowestIndex();
4575   DCHECK(!AreAliased(result, xzr, csp));
4576   return result;
4577 }
4578 
4579 
UnsafeAcquire(CPURegList * available,const CPURegister & reg)4580 CPURegister UseScratchRegisterScope::UnsafeAcquire(CPURegList* available,
4581                                                    const CPURegister& reg) {
4582   DCHECK(available->IncludesAliasOf(reg));
4583   available->Remove(reg);
4584   return reg;
4585 }
4586 
4587 
4588 #define __ masm->
4589 
4590 
Emit(MacroAssembler * masm,const Register & reg,const Label * smi_check)4591 void InlineSmiCheckInfo::Emit(MacroAssembler* masm, const Register& reg,
4592                               const Label* smi_check) {
4593   Assembler::BlockPoolsScope scope(masm);
4594   if (reg.IsValid()) {
4595     DCHECK(smi_check->is_bound());
4596     DCHECK(reg.Is64Bits());
4597 
4598     // Encode the register (x0-x30) in the lowest 5 bits, then the offset to
4599     // 'check' in the other bits. The possible offset is limited in that we
4600     // use BitField to pack the data, and the underlying data type is a
4601     // uint32_t.
4602     uint32_t delta =
4603         static_cast<uint32_t>(__ InstructionsGeneratedSince(smi_check));
4604     __ InlineData(RegisterBits::encode(reg.code()) | DeltaBits::encode(delta));
4605   } else {
4606     DCHECK(!smi_check->is_bound());
4607 
4608     // An offset of 0 indicates that there is no patch site.
4609     __ InlineData(0);
4610   }
4611 }
4612 
InlineSmiCheckInfo(Address info)4613 InlineSmiCheckInfo::InlineSmiCheckInfo(Address info)
4614     : reg_(NoReg), smi_check_delta_(0), smi_check_(NULL) {
4615   InstructionSequence* inline_data = InstructionSequence::At(info);
4616   DCHECK(inline_data->IsInlineData());
4617   if (inline_data->IsInlineData()) {
4618     uint64_t payload = inline_data->InlineData();
4619     // We use BitField to decode the payload, and BitField can only handle
4620     // 32-bit values.
4621     DCHECK(is_uint32(payload));
4622     if (payload != 0) {
4623       uint32_t payload32 = static_cast<uint32_t>(payload);
4624       int reg_code = RegisterBits::decode(payload32);
4625       reg_ = Register::XRegFromCode(reg_code);
4626       smi_check_delta_ = DeltaBits::decode(payload32);
4627       DCHECK_NE(0, smi_check_delta_);
4628       smi_check_ = inline_data->preceding(smi_check_delta_);
4629     }
4630   }
4631 }
4632 
4633 
4634 #undef __
4635 
4636 
4637 }  // namespace internal
4638 }  // namespace v8
4639 
4640 #endif  // V8_TARGET_ARCH_ARM64
4641