• Home
  • History
  • Annotate
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /* tc-xtensa.h -- Header file for tc-xtensa.c.
2     Copyright (C) 2003-2016 Free Software Foundation, Inc.
3  
4     This file is part of GAS, the GNU Assembler.
5  
6     GAS is free software; you can redistribute it and/or modify
7     it under the terms of the GNU General Public License as published by
8     the Free Software Foundation; either version 3, or (at your option)
9     any later version.
10  
11     GAS is distributed in the hope that it will be useful,
12     but WITHOUT ANY WARRANTY; without even the implied warranty of
13     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14     GNU General Public License for more details.
15  
16     You should have received a copy of the GNU General Public License
17     along with GAS; see the file COPYING.  If not, write to the Free
18     Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19     02110-1301, USA.  */
20  
21  #ifndef TC_XTENSA
22  #define TC_XTENSA 1
23  
24  struct fix;
25  
26  #ifndef OBJ_ELF
27  #error Xtensa support requires ELF object format
28  #endif
29  
30  #include "xtensa-isa.h"
31  #include "xtensa-config.h"
32  
33  #define TARGET_BYTES_BIG_ENDIAN XCHAL_HAVE_BE
34  
35  
36  /* Maximum number of opcode slots in a VLIW instruction.  */
37  #define MAX_SLOTS 15
38  
39  
40  /* For all xtensa relax states except RELAX_DESIRE_ALIGN and
41     RELAX_DESIRE_ALIGN_IF_TARGET, the amount a frag might grow is stored
42     in the fr_var field.  For the two exceptions, fr_var is a float value
43     that records the frequency with which the following instruction is
44     executed as a branch target.  The aligner uses this information to
45     tell which targets are most important to be aligned.  */
46  
47  enum xtensa_relax_statesE
48  {
49    RELAX_XTENSA_NONE,
50  
51    RELAX_ALIGN_NEXT_OPCODE,
52    /* Use the first opcode of the next fragment to determine the
53       alignment requirements.  This is ONLY used for LOOPs currently.  */
54  
55    RELAX_CHECK_ALIGN_NEXT_OPCODE,
56    /* The next non-empty frag contains a loop instruction.  Check to see
57       if it is correctly aligned, but do not align it.  */
58  
59    RELAX_DESIRE_ALIGN_IF_TARGET,
60    /* These are placed in front of labels and converted to either
61       RELAX_DESIRE_ALIGN / RELAX_LOOP_END or rs_fill of 0 before
62       relaxation begins.  */
63  
64    RELAX_ADD_NOP_IF_A0_B_RETW,
65    /* These are placed in front of conditional branches.  Before
66       relaxation begins, they are turned into either NOPs for branches
67       immediately followed by RETW or RETW.N or rs_fills of 0.  This is
68       used to avoid a hardware bug in some early versions of the
69       processor.  */
70  
71    RELAX_ADD_NOP_IF_PRE_LOOP_END,
72    /* These are placed after JX instructions.  Before relaxation begins,
73       they are turned into either NOPs, if the JX is one instruction
74       before a loop end label, or rs_fills of 0.  This is used to avoid a
75       hardware interlock issue prior to Xtensa version T1040.  */
76  
77    RELAX_ADD_NOP_IF_SHORT_LOOP,
78    /* These are placed after LOOP instructions and turned into NOPs when:
79       (1) there are less than 3 instructions in the loop; we place 2 of
80       these in a row to add up to 2 NOPS in short loops; or (2) the
81       instructions in the loop do not include a branch or jump.
82       Otherwise they are turned into rs_fills of 0 before relaxation
83       begins.  This is used to avoid hardware bug PR3830.  */
84  
85    RELAX_ADD_NOP_IF_CLOSE_LOOP_END,
86    /* These are placed after LOOP instructions and turned into NOPs if
87       there are less than 12 bytes to the end of some other loop's end.
88       Otherwise they are turned into rs_fills of 0 before relaxation
89       begins.  This is used to avoid hardware bug PR3830.  */
90  
91    RELAX_DESIRE_ALIGN,
92    /* The next fragment would like its first instruction to NOT cross an
93       instruction fetch boundary.  */
94  
95    RELAX_MAYBE_DESIRE_ALIGN,
96    /* The next fragment might like its first instruction to NOT cross an
97       instruction fetch boundary.  These are placed after a branch that
98       might be relaxed.  If the branch is relaxed, then this frag will be
99       a branch target and this frag will be changed to RELAX_DESIRE_ALIGN
100       frag.  */
101  
102    RELAX_LOOP_END,
103    /* This will be turned into a NOP or NOP.N if the previous instruction
104       is expanded to negate a loop.  */
105  
106    RELAX_LOOP_END_ADD_NOP,
107    /* When the code density option is available, this will generate a
108       NOP.N marked RELAX_NARROW.  Otherwise, it will create an rs_fill
109       fragment with a NOP in it.  Once a frag has been converted to
110       RELAX_LOOP_END_ADD_NOP, it should never be changed back to
111       RELAX_LOOP_END.  */
112  
113    RELAX_LITERAL,
114    /* Another fragment could generate an expansion here but has not yet.  */
115  
116    RELAX_LITERAL_NR,
117    /* Expansion has been generated by an instruction that generates a
118       literal.  However, the stretch has NOT been reported yet in this
119       fragment.  */
120  
121    RELAX_LITERAL_FINAL,
122    /* Expansion has been generated by an instruction that generates a
123       literal.  */
124  
125    RELAX_LITERAL_POOL_BEGIN,
126    RELAX_LITERAL_POOL_END,
127    RELAX_LITERAL_POOL_CANDIDATE_BEGIN,
128    /* Technically these are not relaxations at all but mark a location
129       to store literals later.  Note that fr_var stores the frchain for
130       BEGIN frags and fr_var stores now_seg for END frags.  */
131  
132    RELAX_NARROW,
133    /* The last instruction in this fragment (at->fr_opcode) can be
134       freely replaced with a single wider instruction if a future
135       alignment desires or needs it.  */
136  
137    RELAX_IMMED,
138    /* The last instruction in this fragment (at->fr_opcode) contains
139       an immediate or symbol.  If the value does not fit, relax the
140       opcode using expansions from the relax table.  */
141  
142    RELAX_IMMED_STEP1,
143    /* The last instruction in this fragment (at->fr_opcode) contains a
144       literal.  It has already been expanded 1 step.  */
145  
146    RELAX_IMMED_STEP2,
147    /* The last instruction in this fragment (at->fr_opcode) contains a
148       literal.  It has already been expanded 2 steps.  */
149  
150    RELAX_IMMED_STEP3,
151    /* The last instruction in this fragment (at->fr_opcode) contains a
152       literal.  It has already been expanded 3 steps.  */
153  
154    RELAX_SLOTS,
155    /* There are instructions within the last VLIW instruction that need
156       relaxation.  Find the relaxation based on the slot info in
157       xtensa_frag_type.  Relaxations that deal with particular opcodes
158       are slot-based (e.g., converting a MOVI to an L32R).  Relaxations
159       that deal with entire instructions, such as alignment, are not
160       slot-based.  */
161  
162    RELAX_FILL_NOP,
163    /* This marks the location of a pipeline stall.  We can fill these guys
164       in for alignment of any size.  */
165  
166    RELAX_UNREACHABLE,
167    /* This marks the location as unreachable.  The assembler may widen or
168       narrow this area to meet alignment requirements of nearby
169       instructions.  */
170  
171    RELAX_MAYBE_UNREACHABLE,
172    /* This marks the location as possibly unreachable.  These are placed
173       after a branch that may be relaxed into a branch and jump. If the
174       branch is relaxed, then this frag will be converted to a
175       RELAX_UNREACHABLE frag.  */
176  
177    RELAX_ORG,
178    /* This marks the location as having previously been an rs_org frag.
179       rs_org frags are converted to fill-zero frags immediately after
180       relaxation.  However, we need to remember where they were so we can
181       prevent the linker from changing the size of any frag between the
182       section start and the org frag.  */
183  
184    RELAX_TRAMPOLINE,
185    /* Every few thousand frags, we insert one of these, just in case we may
186       need some space for a trampoline (jump to a jump) because the function
187       has gotten too big. If not needed, it disappears. */
188  
189    RELAX_NONE
190  };
191  
192  /* This is used as a stopper to bound the number of steps that
193     can be taken.  */
194  #define RELAX_IMMED_MAXSTEPS (RELAX_IMMED_STEP3 - RELAX_IMMED)
195  
196  struct xtensa_frag_type
197  {
198    /* Info about the current state of assembly, e.g., transform,
199       absolute_literals, etc.  These need to be passed to the backend and
200       then to the object file.
201  
202       When is_assembly_state_set is false, the frag inherits some of the
203       state settings from the previous frag in this segment.  Because it
204       is not possible to intercept all fragment closures (frag_more and
205       frag_append_1_char can close a frag), we use a pass after initial
206       assembly to fill in the assembly states.  */
207  
208    unsigned int is_assembly_state_set : 1;
209    unsigned int is_no_density : 1;
210    unsigned int is_no_transform : 1;
211    unsigned int use_longcalls : 1;
212    unsigned int use_absolute_literals : 1;
213  
214    /* Inhibits relaxation of machine-dependent alignment frags the
215       first time through a relaxation....  */
216    unsigned int relax_seen : 1;
217  
218    /* Information that is needed in the object file and set when known.  */
219    unsigned int is_literal : 1;
220    unsigned int is_loop_target : 1;
221    unsigned int is_branch_target : 1;
222    unsigned int is_insn : 1;
223    unsigned int is_unreachable : 1;
224  
225    unsigned int is_specific_opcode : 1; /* also implies no_transform */
226  
227    unsigned int is_align : 1;
228    unsigned int is_text_align : 1;
229    unsigned int alignment : 5;
230  
231    /* A frag with this bit set is the first in a loop that actually
232       contains an instruction.  */
233    unsigned int is_first_loop_insn : 1;
234  
235    /* A frag with this bit set is a branch that we are using to
236       align branch targets as if it were a normal narrow instruction.  */
237    unsigned int is_aligning_branch : 1;
238  
239    /* For text fragments that can generate literals at relax time, this
240       variable points to the frag where the literal will be stored.  For
241       literal frags, this variable points to the nearest literal pool
242       location frag.  This literal frag will be moved to after this
243       location.  For RELAX_LITERAL_POOL_BEGIN frags, this field points
244       to the frag immediately before the corresponding RELAX_LITERAL_POOL_END
245       frag, to make moving frags for this literal pool efficient.  */
246    fragS *literal_frag;
247  
248    /* The destination segment for literal frags.  (Note that this is only
249       valid after xtensa_move_literals.)  This field is also used for
250       LITERAL_POOL_END frags.  */
251    segT lit_seg;
252  
253    /* Frag chain for LITERAL_POOL_BEGIN frags.  */
254    struct frchain *lit_frchain;
255  
256    /* For the relaxation scheme, some literal fragments can have their
257       expansions modified by an instruction that relaxes.  */
258    int text_expansion[MAX_SLOTS];
259    int literal_expansion[MAX_SLOTS];
260    int unreported_expansion;
261  
262    /* For slots that have a free register for relaxation, record that
263       register.  */
264    expressionS free_reg[MAX_SLOTS];
265  
266    /* For text fragments that can generate literals at relax time:  */
267    fragS *literal_frags[MAX_SLOTS];
268    enum xtensa_relax_statesE slot_subtypes[MAX_SLOTS];
269    symbolS *slot_symbols[MAX_SLOTS];
270    offsetT slot_offsets[MAX_SLOTS];
271  
272    /* When marking frags after this one in the chain as no transform,
273       cache the last one in the chain, so that we can skip to the
274       end of the chain.  */
275    fragS *no_transform_end;
276  };
277  
278  
279  /* For VLIW support, we need to know what slot a fixup applies to.  */
280  typedef struct xtensa_fix_data_struct
281  {
282    int slot;
283    symbolS *X_add_symbol;
284    offsetT X_add_number;
285  } xtensa_fix_data;
286  
287  
288  /* Structure to record xtensa-specific symbol information.  */
289  typedef struct xtensa_symfield_type
290  {
291    unsigned int is_loop_target : 1;
292    unsigned int is_branch_target : 1;
293    symbolS *next_expr_symbol;
294  } xtensa_symfield_type;
295  
296  
297  /* Structure for saving information about a block of property data
298     for frags that have the same flags.   The forward reference is
299     in this header file.  The actual definition is in tc-xtensa.c.  */
300  struct xtensa_block_info_struct;
301  typedef struct xtensa_block_info_struct xtensa_block_info;
302  
303  
304  /* Property section types.  */
305  typedef enum
306  {
307    xt_literal_sec,
308    xt_prop_sec,
309    max_xt_sec
310  } xt_section_type;
311  
312  typedef struct xtensa_segment_info_struct
313  {
314    fragS *literal_pool_loc;
315    xtensa_block_info *blocks[max_xt_sec];
316  } xtensa_segment_info;
317  
318  
319  extern const char *xtensa_target_format (void);
320  extern void xtensa_init_fix_data (struct fix *);
321  extern void xtensa_frag_init (fragS *);
322  extern int xtensa_force_relocation (struct fix *);
323  extern int xtensa_validate_fix_sub (struct fix *);
324  extern void xtensa_frob_label (struct symbol *);
325  extern void xtensa_end (void);
326  extern void xtensa_post_relax_hook (void);
327  extern void xtensa_file_arch_init (bfd *);
328  extern void xtensa_flush_pending_output (void);
329  extern bfd_boolean xtensa_fix_adjustable (struct fix *);
330  extern void xtensa_symbol_new_hook (symbolS *);
331  extern long xtensa_relax_frag (fragS *, long, int *);
332  extern void xtensa_elf_section_change_hook (void);
333  extern int xtensa_unrecognized_line (int);
334  extern bfd_boolean xtensa_check_inside_bundle (void);
335  extern void xtensa_handle_align (fragS *);
336  extern char *xtensa_section_rename (const char *);
337  
338  #define TARGET_FORMAT			xtensa_target_format ()
339  #define TARGET_ARCH			bfd_arch_xtensa
340  #define TC_SEGMENT_INFO_TYPE		xtensa_segment_info
341  #define TC_SYMFIELD_TYPE                struct xtensa_symfield_type
342  #define TC_FIX_TYPE			xtensa_fix_data
343  #define TC_INIT_FIX_DATA(x)		xtensa_init_fix_data (x)
344  #define TC_FRAG_TYPE			struct xtensa_frag_type
345  #define TC_FRAG_INIT(frag)		xtensa_frag_init (frag)
346  #define TC_FORCE_RELOCATION(fix)	xtensa_force_relocation (fix)
347  #define TC_FORCE_RELOCATION_SUB_SAME(fix, seg) \
348    (! SEG_NORMAL (seg) || xtensa_force_relocation (fix))
349  #define	TC_VALIDATE_FIX_SUB(fix, seg)	xtensa_validate_fix_sub (fix)
350  #define NO_PSEUDO_DOT			xtensa_check_inside_bundle ()
351  #define tc_canonicalize_symbol_name(s)	xtensa_section_rename (s)
352  #define tc_canonicalize_section_name(s)	xtensa_section_rename (s)
353  #define tc_init_after_args()		xtensa_file_arch_init (stdoutput)
354  #define tc_fix_adjustable(fix)		xtensa_fix_adjustable (fix)
355  #define tc_frob_label(sym)		xtensa_frob_label (sym)
356  #define tc_unrecognized_line(ch)	xtensa_unrecognized_line (ch)
357  #define tc_symbol_new_hook(sym)		xtensa_symbol_new_hook (sym)
358  #define md_do_align(a,b,c,d,e)		xtensa_flush_pending_output ()
359  #define md_elf_section_change_hook	xtensa_elf_section_change_hook
360  #define md_end				xtensa_end
361  #define md_flush_pending_output()	xtensa_flush_pending_output ()
362  #define md_operand(x)
363  #define TEXT_SECTION_NAME		xtensa_section_rename (".text")
364  #define DATA_SECTION_NAME		xtensa_section_rename (".data")
365  #define BSS_SECTION_NAME		xtensa_section_rename (".bss")
366  #define HANDLE_ALIGN(fragP)		xtensa_handle_align (fragP)
367  #define MAX_MEM_FOR_RS_ALIGN_CODE	1
368  
369  
370  /* The renumber_section function must be mapped over all the sections
371     after calling xtensa_post_relax_hook.  That function is static in
372     write.c so it cannot be called from xtensa_post_relax_hook itself.  */
373  
374  #define md_post_relax_hook \
375    do \
376      { \
377        int i = 0; \
378        xtensa_post_relax_hook (); \
379        bfd_map_over_sections (stdoutput, renumber_sections, &i); \
380      } \
381    while (0)
382  
383  
384  /* Because xtensa relaxation can insert a new literal into the middle of
385     fragment and thus require re-running the relaxation pass on the
386     section, we need an explicit flag here.  We explicitly use the name
387     "stretched" here to avoid changing the source code in write.c.  */
388  
389  #define md_relax_frag(segment, fragP, stretch) \
390    xtensa_relax_frag (fragP, stretch, &stretched)
391  
392  /* Only allow call frame debug info optimization when linker relaxation is
393     not enabled as otherwise we could generate the DWARF directives without
394     the relocs necessary to patch them up.  */
395  #define md_allow_eh_opt (linkrelax == 0)
396  
397  #define LOCAL_LABELS_FB 1
398  #define WORKING_DOT_WORD 1
399  #define DOUBLESLASH_LINE_COMMENTS
400  #define TC_HANDLES_FX_DONE
401  #define TC_FINALIZE_SYMS_BEFORE_SIZE_SEG 0
402  #define TC_LINKRELAX_FIXUP(SEG) 0
403  #define MD_APPLY_SYM_VALUE(FIX) 0
404  #define SUB_SEGMENT_ALIGN(SEG, FRCHAIN) 0
405  
406  /* Use line number format that is amenable to linker relaxation.  */
407  #define DWARF2_USE_FIXED_ADVANCE_PC (linkrelax != 0)
408  
409  
410  /* Resource reservation info functions.  */
411  
412  /* Returns the number of copies of a particular unit.  */
413  typedef int (*unit_num_copies_func) (void *, xtensa_funcUnit);
414  
415  /* Returns the number of units the opcode uses.  */
416  typedef int (*opcode_num_units_func) (void *, xtensa_opcode);
417  
418  /* Given an opcode and an index into the opcode's funcUnit list,
419     returns the unit used for the index.  */
420  typedef int (*opcode_funcUnit_use_unit_func) (void *, xtensa_opcode, int);
421  
422  /* Given an opcode and an index into the opcode's funcUnit list,
423     returns the cycle during which the unit is used.  */
424  typedef int (*opcode_funcUnit_use_stage_func) (void *, xtensa_opcode, int);
425  
426  /* The above typedefs parameterize the resource_table so that the
427     optional scheduler doesn't need its own resource reservation system.
428  
429     For simple resource checking, which is all that happens normally,
430     the functions will be as follows (with some wrapping to make the
431     interface more convenient):
432  
433     unit_num_copies_func = xtensa_funcUnit_num_copies
434     opcode_num_units_func = xtensa_opcode_num_funcUnit_uses
435     opcode_funcUnit_use_unit_func = xtensa_opcode_funcUnit_use->unit
436     opcode_funcUnit_use_stage_func = xtensa_opcode_funcUnit_use->stage
437  
438     Of course the optional scheduler has its own reservation table
439     and functions.  */
440  
441  int opcode_funcUnit_use_unit (void *, xtensa_opcode, int);
442  int opcode_funcUnit_use_stage (void *, xtensa_opcode, int);
443  
444  typedef struct
445  {
446    void *data;
447    int cycles;
448    int allocated_cycles;
449    int num_units;
450    unit_num_copies_func unit_num_copies;
451    opcode_num_units_func opcode_num_units;
452    opcode_funcUnit_use_unit_func opcode_unit_use;
453    opcode_funcUnit_use_stage_func opcode_unit_stage;
454    unsigned char **units;
455  } resource_table;
456  
457  resource_table *new_resource_table
458    (void *, int, int, unit_num_copies_func, opcode_num_units_func,
459     opcode_funcUnit_use_unit_func, opcode_funcUnit_use_stage_func);
460  void resize_resource_table (resource_table *, int);
461  void clear_resource_table (resource_table *);
462  bfd_boolean resources_available (resource_table *, xtensa_opcode, int);
463  void reserve_resources (resource_table *, xtensa_opcode, int);
464  void release_resources (resource_table *, xtensa_opcode, int);
465  
466  #endif /* TC_XTENSA */
467