1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "loop_optimization.h"
18
19 #include "arch/arm/instruction_set_features_arm.h"
20 #include "arch/arm64/instruction_set_features_arm64.h"
21 #include "arch/instruction_set.h"
22 #include "arch/mips/instruction_set_features_mips.h"
23 #include "arch/mips64/instruction_set_features_mips64.h"
24 #include "arch/x86/instruction_set_features_x86.h"
25 #include "arch/x86_64/instruction_set_features_x86_64.h"
26 #include "driver/compiler_driver.h"
27 #include "linear_order.h"
28 #include "mirror/array-inl.h"
29 #include "mirror/string.h"
30
31 namespace art {
32
33 // Enables vectorization (SIMDization) in the loop optimizer.
34 static constexpr bool kEnableVectorization = true;
35
36 // No loop unrolling factor (just one copy of the loop-body).
37 static constexpr uint32_t kNoUnrollingFactor = 1;
38
39 //
40 // Static helpers.
41 //
42
43 // Base alignment for arrays/strings guaranteed by the Android runtime.
BaseAlignment()44 static uint32_t BaseAlignment() {
45 return kObjectAlignment;
46 }
47
48 // Hidden offset for arrays/strings guaranteed by the Android runtime.
HiddenOffset(DataType::Type type,bool is_string_char_at)49 static uint32_t HiddenOffset(DataType::Type type, bool is_string_char_at) {
50 return is_string_char_at
51 ? mirror::String::ValueOffset().Uint32Value()
52 : mirror::Array::DataOffset(DataType::Size(type)).Uint32Value();
53 }
54
55 // Remove the instruction from the graph. A bit more elaborate than the usual
56 // instruction removal, since there may be a cycle in the use structure.
RemoveFromCycle(HInstruction * instruction)57 static void RemoveFromCycle(HInstruction* instruction) {
58 instruction->RemoveAsUserOfAllInputs();
59 instruction->RemoveEnvironmentUsers();
60 instruction->GetBlock()->RemoveInstructionOrPhi(instruction, /*ensure_safety=*/ false);
61 RemoveEnvironmentUses(instruction);
62 ResetEnvironmentInputRecords(instruction);
63 }
64
65 // Detect a goto block and sets succ to the single successor.
IsGotoBlock(HBasicBlock * block,HBasicBlock ** succ)66 static bool IsGotoBlock(HBasicBlock* block, /*out*/ HBasicBlock** succ) {
67 if (block->GetPredecessors().size() == 1 &&
68 block->GetSuccessors().size() == 1 &&
69 block->IsSingleGoto()) {
70 *succ = block->GetSingleSuccessor();
71 return true;
72 }
73 return false;
74 }
75
76 // Detect an early exit loop.
IsEarlyExit(HLoopInformation * loop_info)77 static bool IsEarlyExit(HLoopInformation* loop_info) {
78 HBlocksInLoopReversePostOrderIterator it_loop(*loop_info);
79 for (it_loop.Advance(); !it_loop.Done(); it_loop.Advance()) {
80 for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) {
81 if (!loop_info->Contains(*successor)) {
82 return true;
83 }
84 }
85 }
86 return false;
87 }
88
89 // Forward declaration.
90 static bool IsZeroExtensionAndGet(HInstruction* instruction,
91 DataType::Type type,
92 /*out*/ HInstruction** operand);
93
94 // Detect a sign extension in instruction from the given type.
95 // Returns the promoted operand on success.
IsSignExtensionAndGet(HInstruction * instruction,DataType::Type type,HInstruction ** operand)96 static bool IsSignExtensionAndGet(HInstruction* instruction,
97 DataType::Type type,
98 /*out*/ HInstruction** operand) {
99 // Accept any already wider constant that would be handled properly by sign
100 // extension when represented in the *width* of the given narrower data type
101 // (the fact that Uint8/Uint16 normally zero extend does not matter here).
102 int64_t value = 0;
103 if (IsInt64AndGet(instruction, /*out*/ &value)) {
104 switch (type) {
105 case DataType::Type::kUint8:
106 case DataType::Type::kInt8:
107 if (IsInt<8>(value)) {
108 *operand = instruction;
109 return true;
110 }
111 return false;
112 case DataType::Type::kUint16:
113 case DataType::Type::kInt16:
114 if (IsInt<16>(value)) {
115 *operand = instruction;
116 return true;
117 }
118 return false;
119 default:
120 return false;
121 }
122 }
123 // An implicit widening conversion of any signed expression sign-extends.
124 if (instruction->GetType() == type) {
125 switch (type) {
126 case DataType::Type::kInt8:
127 case DataType::Type::kInt16:
128 *operand = instruction;
129 return true;
130 default:
131 return false;
132 }
133 }
134 // An explicit widening conversion of a signed expression sign-extends.
135 if (instruction->IsTypeConversion()) {
136 HInstruction* conv = instruction->InputAt(0);
137 DataType::Type from = conv->GetType();
138 switch (instruction->GetType()) {
139 case DataType::Type::kInt32:
140 case DataType::Type::kInt64:
141 if (type == from && (from == DataType::Type::kInt8 ||
142 from == DataType::Type::kInt16 ||
143 from == DataType::Type::kInt32)) {
144 *operand = conv;
145 return true;
146 }
147 return false;
148 case DataType::Type::kInt16:
149 return type == DataType::Type::kUint16 &&
150 from == DataType::Type::kUint16 &&
151 IsZeroExtensionAndGet(instruction->InputAt(0), type, /*out*/ operand);
152 default:
153 return false;
154 }
155 }
156 return false;
157 }
158
159 // Detect a zero extension in instruction from the given type.
160 // Returns the promoted operand on success.
IsZeroExtensionAndGet(HInstruction * instruction,DataType::Type type,HInstruction ** operand)161 static bool IsZeroExtensionAndGet(HInstruction* instruction,
162 DataType::Type type,
163 /*out*/ HInstruction** operand) {
164 // Accept any already wider constant that would be handled properly by zero
165 // extension when represented in the *width* of the given narrower data type
166 // (the fact that Int8/Int16 normally sign extend does not matter here).
167 int64_t value = 0;
168 if (IsInt64AndGet(instruction, /*out*/ &value)) {
169 switch (type) {
170 case DataType::Type::kUint8:
171 case DataType::Type::kInt8:
172 if (IsUint<8>(value)) {
173 *operand = instruction;
174 return true;
175 }
176 return false;
177 case DataType::Type::kUint16:
178 case DataType::Type::kInt16:
179 if (IsUint<16>(value)) {
180 *operand = instruction;
181 return true;
182 }
183 return false;
184 default:
185 return false;
186 }
187 }
188 // An implicit widening conversion of any unsigned expression zero-extends.
189 if (instruction->GetType() == type) {
190 switch (type) {
191 case DataType::Type::kUint8:
192 case DataType::Type::kUint16:
193 *operand = instruction;
194 return true;
195 default:
196 return false;
197 }
198 }
199 // An explicit widening conversion of an unsigned expression zero-extends.
200 if (instruction->IsTypeConversion()) {
201 HInstruction* conv = instruction->InputAt(0);
202 DataType::Type from = conv->GetType();
203 switch (instruction->GetType()) {
204 case DataType::Type::kInt32:
205 case DataType::Type::kInt64:
206 if (type == from && from == DataType::Type::kUint16) {
207 *operand = conv;
208 return true;
209 }
210 return false;
211 case DataType::Type::kUint16:
212 return type == DataType::Type::kInt16 &&
213 from == DataType::Type::kInt16 &&
214 IsSignExtensionAndGet(instruction->InputAt(0), type, /*out*/ operand);
215 default:
216 return false;
217 }
218 }
219 return false;
220 }
221
222 // Detect situations with same-extension narrower operands.
223 // Returns true on success and sets is_unsigned accordingly.
IsNarrowerOperands(HInstruction * a,HInstruction * b,DataType::Type type,HInstruction ** r,HInstruction ** s,bool * is_unsigned)224 static bool IsNarrowerOperands(HInstruction* a,
225 HInstruction* b,
226 DataType::Type type,
227 /*out*/ HInstruction** r,
228 /*out*/ HInstruction** s,
229 /*out*/ bool* is_unsigned) {
230 // Look for a matching sign extension.
231 DataType::Type stype = HVecOperation::ToSignedType(type);
232 if (IsSignExtensionAndGet(a, stype, r) && IsSignExtensionAndGet(b, stype, s)) {
233 *is_unsigned = false;
234 return true;
235 }
236 // Look for a matching zero extension.
237 DataType::Type utype = HVecOperation::ToUnsignedType(type);
238 if (IsZeroExtensionAndGet(a, utype, r) && IsZeroExtensionAndGet(b, utype, s)) {
239 *is_unsigned = true;
240 return true;
241 }
242 return false;
243 }
244
245 // As above, single operand.
IsNarrowerOperand(HInstruction * a,DataType::Type type,HInstruction ** r,bool * is_unsigned)246 static bool IsNarrowerOperand(HInstruction* a,
247 DataType::Type type,
248 /*out*/ HInstruction** r,
249 /*out*/ bool* is_unsigned) {
250 // Look for a matching sign extension.
251 DataType::Type stype = HVecOperation::ToSignedType(type);
252 if (IsSignExtensionAndGet(a, stype, r)) {
253 *is_unsigned = false;
254 return true;
255 }
256 // Look for a matching zero extension.
257 DataType::Type utype = HVecOperation::ToUnsignedType(type);
258 if (IsZeroExtensionAndGet(a, utype, r)) {
259 *is_unsigned = true;
260 return true;
261 }
262 return false;
263 }
264
265 // Compute relative vector length based on type difference.
GetOtherVL(DataType::Type other_type,DataType::Type vector_type,uint32_t vl)266 static uint32_t GetOtherVL(DataType::Type other_type, DataType::Type vector_type, uint32_t vl) {
267 DCHECK(DataType::IsIntegralType(other_type));
268 DCHECK(DataType::IsIntegralType(vector_type));
269 DCHECK_GE(DataType::SizeShift(other_type), DataType::SizeShift(vector_type));
270 return vl >> (DataType::SizeShift(other_type) - DataType::SizeShift(vector_type));
271 }
272
273 // Detect up to two instructions a and b, and an acccumulated constant c.
IsAddConstHelper(HInstruction * instruction,HInstruction ** a,HInstruction ** b,int64_t * c,int32_t depth)274 static bool IsAddConstHelper(HInstruction* instruction,
275 /*out*/ HInstruction** a,
276 /*out*/ HInstruction** b,
277 /*out*/ int64_t* c,
278 int32_t depth) {
279 static constexpr int32_t kMaxDepth = 8; // don't search too deep
280 int64_t value = 0;
281 if (IsInt64AndGet(instruction, &value)) {
282 *c += value;
283 return true;
284 } else if (instruction->IsAdd() && depth <= kMaxDepth) {
285 return IsAddConstHelper(instruction->InputAt(0), a, b, c, depth + 1) &&
286 IsAddConstHelper(instruction->InputAt(1), a, b, c, depth + 1);
287 } else if (*a == nullptr) {
288 *a = instruction;
289 return true;
290 } else if (*b == nullptr) {
291 *b = instruction;
292 return true;
293 }
294 return false; // too many non-const operands
295 }
296
297 // Detect a + b + c for an optional constant c.
IsAddConst(HInstruction * instruction,HInstruction ** a,HInstruction ** b,int64_t * c)298 static bool IsAddConst(HInstruction* instruction,
299 /*out*/ HInstruction** a,
300 /*out*/ HInstruction** b,
301 /*out*/ int64_t* c) {
302 if (instruction->IsAdd()) {
303 // Try to find a + b and accumulated c.
304 if (IsAddConstHelper(instruction->InputAt(0), a, b, c, /*depth*/ 0) &&
305 IsAddConstHelper(instruction->InputAt(1), a, b, c, /*depth*/ 0) &&
306 *b != nullptr) {
307 return true;
308 }
309 // Found a + b.
310 *a = instruction->InputAt(0);
311 *b = instruction->InputAt(1);
312 *c = 0;
313 return true;
314 }
315 return false;
316 }
317
318 // Detect a + c for constant c.
IsAddConst(HInstruction * instruction,HInstruction ** a,int64_t * c)319 static bool IsAddConst(HInstruction* instruction,
320 /*out*/ HInstruction** a,
321 /*out*/ int64_t* c) {
322 if (instruction->IsAdd()) {
323 if (IsInt64AndGet(instruction->InputAt(0), c)) {
324 *a = instruction->InputAt(1);
325 return true;
326 } else if (IsInt64AndGet(instruction->InputAt(1), c)) {
327 *a = instruction->InputAt(0);
328 return true;
329 }
330 }
331 return false;
332 }
333
334 // Detect reductions of the following forms,
335 // x = x_phi + ..
336 // x = x_phi - ..
337 // x = max(x_phi, ..)
338 // x = min(x_phi, ..)
HasReductionFormat(HInstruction * reduction,HInstruction * phi)339 static bool HasReductionFormat(HInstruction* reduction, HInstruction* phi) {
340 if (reduction->IsAdd()) {
341 return (reduction->InputAt(0) == phi && reduction->InputAt(1) != phi) ||
342 (reduction->InputAt(0) != phi && reduction->InputAt(1) == phi);
343 } else if (reduction->IsSub()) {
344 return (reduction->InputAt(0) == phi && reduction->InputAt(1) != phi);
345 } else if (reduction->IsInvokeStaticOrDirect()) {
346 switch (reduction->AsInvokeStaticOrDirect()->GetIntrinsic()) {
347 case Intrinsics::kMathMinIntInt:
348 case Intrinsics::kMathMinLongLong:
349 case Intrinsics::kMathMinFloatFloat:
350 case Intrinsics::kMathMinDoubleDouble:
351 case Intrinsics::kMathMaxIntInt:
352 case Intrinsics::kMathMaxLongLong:
353 case Intrinsics::kMathMaxFloatFloat:
354 case Intrinsics::kMathMaxDoubleDouble:
355 return (reduction->InputAt(0) == phi && reduction->InputAt(1) != phi) ||
356 (reduction->InputAt(0) != phi && reduction->InputAt(1) == phi);
357 default:
358 return false;
359 }
360 }
361 return false;
362 }
363
364 // Translates vector operation to reduction kind.
GetReductionKind(HVecOperation * reduction)365 static HVecReduce::ReductionKind GetReductionKind(HVecOperation* reduction) {
366 if (reduction->IsVecAdd() || reduction->IsVecSub() || reduction->IsVecSADAccumulate()) {
367 return HVecReduce::kSum;
368 } else if (reduction->IsVecMin()) {
369 return HVecReduce::kMin;
370 } else if (reduction->IsVecMax()) {
371 return HVecReduce::kMax;
372 }
373 LOG(FATAL) << "Unsupported SIMD reduction " << reduction->GetId();
374 UNREACHABLE();
375 }
376
377 // Test vector restrictions.
HasVectorRestrictions(uint64_t restrictions,uint64_t tested)378 static bool HasVectorRestrictions(uint64_t restrictions, uint64_t tested) {
379 return (restrictions & tested) != 0;
380 }
381
382 // Insert an instruction.
Insert(HBasicBlock * block,HInstruction * instruction)383 static HInstruction* Insert(HBasicBlock* block, HInstruction* instruction) {
384 DCHECK(block != nullptr);
385 DCHECK(instruction != nullptr);
386 block->InsertInstructionBefore(instruction, block->GetLastInstruction());
387 return instruction;
388 }
389
390 // Check that instructions from the induction sets are fully removed: have no uses
391 // and no other instructions use them.
CheckInductionSetFullyRemoved(ScopedArenaSet<HInstruction * > * iset)392 static bool CheckInductionSetFullyRemoved(ScopedArenaSet<HInstruction*>* iset) {
393 for (HInstruction* instr : *iset) {
394 if (instr->GetBlock() != nullptr ||
395 !instr->GetUses().empty() ||
396 !instr->GetEnvUses().empty() ||
397 HasEnvironmentUsedByOthers(instr)) {
398 return false;
399 }
400 }
401 return true;
402 }
403
404 //
405 // Public methods.
406 //
407
HLoopOptimization(HGraph * graph,CompilerDriver * compiler_driver,HInductionVarAnalysis * induction_analysis,OptimizingCompilerStats * stats,const char * name)408 HLoopOptimization::HLoopOptimization(HGraph* graph,
409 CompilerDriver* compiler_driver,
410 HInductionVarAnalysis* induction_analysis,
411 OptimizingCompilerStats* stats,
412 const char* name)
413 : HOptimization(graph, name, stats),
414 compiler_driver_(compiler_driver),
415 induction_range_(induction_analysis),
416 loop_allocator_(nullptr),
417 global_allocator_(graph_->GetAllocator()),
418 top_loop_(nullptr),
419 last_loop_(nullptr),
420 iset_(nullptr),
421 reductions_(nullptr),
422 simplified_(false),
423 vector_length_(0),
424 vector_refs_(nullptr),
425 vector_static_peeling_factor_(0),
426 vector_dynamic_peeling_candidate_(nullptr),
427 vector_runtime_test_a_(nullptr),
428 vector_runtime_test_b_(nullptr),
429 vector_map_(nullptr),
430 vector_permanent_map_(nullptr),
431 vector_mode_(kSequential),
432 vector_preheader_(nullptr),
433 vector_header_(nullptr),
434 vector_body_(nullptr),
435 vector_index_(nullptr) {
436 }
437
Run()438 void HLoopOptimization::Run() {
439 // Skip if there is no loop or the graph has try-catch/irreducible loops.
440 // TODO: make this less of a sledgehammer.
441 if (!graph_->HasLoops() || graph_->HasTryCatch() || graph_->HasIrreducibleLoops()) {
442 return;
443 }
444
445 // Phase-local allocator.
446 ScopedArenaAllocator allocator(graph_->GetArenaStack());
447 loop_allocator_ = &allocator;
448
449 // Perform loop optimizations.
450 LocalRun();
451 if (top_loop_ == nullptr) {
452 graph_->SetHasLoops(false); // no more loops
453 }
454
455 // Detach.
456 loop_allocator_ = nullptr;
457 last_loop_ = top_loop_ = nullptr;
458 }
459
460 //
461 // Loop setup and traversal.
462 //
463
LocalRun()464 void HLoopOptimization::LocalRun() {
465 // Build the linear order using the phase-local allocator. This step enables building
466 // a loop hierarchy that properly reflects the outer-inner and previous-next relation.
467 ScopedArenaVector<HBasicBlock*> linear_order(loop_allocator_->Adapter(kArenaAllocLinearOrder));
468 LinearizeGraph(graph_, &linear_order);
469
470 // Build the loop hierarchy.
471 for (HBasicBlock* block : linear_order) {
472 if (block->IsLoopHeader()) {
473 AddLoop(block->GetLoopInformation());
474 }
475 }
476
477 // Traverse the loop hierarchy inner-to-outer and optimize. Traversal can use
478 // temporary data structures using the phase-local allocator. All new HIR
479 // should use the global allocator.
480 if (top_loop_ != nullptr) {
481 ScopedArenaSet<HInstruction*> iset(loop_allocator_->Adapter(kArenaAllocLoopOptimization));
482 ScopedArenaSafeMap<HInstruction*, HInstruction*> reds(
483 std::less<HInstruction*>(), loop_allocator_->Adapter(kArenaAllocLoopOptimization));
484 ScopedArenaSet<ArrayReference> refs(loop_allocator_->Adapter(kArenaAllocLoopOptimization));
485 ScopedArenaSafeMap<HInstruction*, HInstruction*> map(
486 std::less<HInstruction*>(), loop_allocator_->Adapter(kArenaAllocLoopOptimization));
487 ScopedArenaSafeMap<HInstruction*, HInstruction*> perm(
488 std::less<HInstruction*>(), loop_allocator_->Adapter(kArenaAllocLoopOptimization));
489 // Attach.
490 iset_ = &iset;
491 reductions_ = &reds;
492 vector_refs_ = &refs;
493 vector_map_ = ↦
494 vector_permanent_map_ = &perm;
495 // Traverse.
496 TraverseLoopsInnerToOuter(top_loop_);
497 // Detach.
498 iset_ = nullptr;
499 reductions_ = nullptr;
500 vector_refs_ = nullptr;
501 vector_map_ = nullptr;
502 vector_permanent_map_ = nullptr;
503 }
504 }
505
AddLoop(HLoopInformation * loop_info)506 void HLoopOptimization::AddLoop(HLoopInformation* loop_info) {
507 DCHECK(loop_info != nullptr);
508 LoopNode* node = new (loop_allocator_) LoopNode(loop_info);
509 if (last_loop_ == nullptr) {
510 // First loop.
511 DCHECK(top_loop_ == nullptr);
512 last_loop_ = top_loop_ = node;
513 } else if (loop_info->IsIn(*last_loop_->loop_info)) {
514 // Inner loop.
515 node->outer = last_loop_;
516 DCHECK(last_loop_->inner == nullptr);
517 last_loop_ = last_loop_->inner = node;
518 } else {
519 // Subsequent loop.
520 while (last_loop_->outer != nullptr && !loop_info->IsIn(*last_loop_->outer->loop_info)) {
521 last_loop_ = last_loop_->outer;
522 }
523 node->outer = last_loop_->outer;
524 node->previous = last_loop_;
525 DCHECK(last_loop_->next == nullptr);
526 last_loop_ = last_loop_->next = node;
527 }
528 }
529
RemoveLoop(LoopNode * node)530 void HLoopOptimization::RemoveLoop(LoopNode* node) {
531 DCHECK(node != nullptr);
532 DCHECK(node->inner == nullptr);
533 if (node->previous != nullptr) {
534 // Within sequence.
535 node->previous->next = node->next;
536 if (node->next != nullptr) {
537 node->next->previous = node->previous;
538 }
539 } else {
540 // First of sequence.
541 if (node->outer != nullptr) {
542 node->outer->inner = node->next;
543 } else {
544 top_loop_ = node->next;
545 }
546 if (node->next != nullptr) {
547 node->next->outer = node->outer;
548 node->next->previous = nullptr;
549 }
550 }
551 }
552
TraverseLoopsInnerToOuter(LoopNode * node)553 bool HLoopOptimization::TraverseLoopsInnerToOuter(LoopNode* node) {
554 bool changed = false;
555 for ( ; node != nullptr; node = node->next) {
556 // Visit inner loops first. Recompute induction information for this
557 // loop if the induction of any inner loop has changed.
558 if (TraverseLoopsInnerToOuter(node->inner)) {
559 induction_range_.ReVisit(node->loop_info);
560 }
561 // Repeat simplifications in the loop-body until no more changes occur.
562 // Note that since each simplification consists of eliminating code (without
563 // introducing new code), this process is always finite.
564 do {
565 simplified_ = false;
566 SimplifyInduction(node);
567 SimplifyBlocks(node);
568 changed = simplified_ || changed;
569 } while (simplified_);
570 // Optimize inner loop.
571 if (node->inner == nullptr) {
572 changed = OptimizeInnerLoop(node) || changed;
573 }
574 }
575 return changed;
576 }
577
578 //
579 // Optimization.
580 //
581
SimplifyInduction(LoopNode * node)582 void HLoopOptimization::SimplifyInduction(LoopNode* node) {
583 HBasicBlock* header = node->loop_info->GetHeader();
584 HBasicBlock* preheader = node->loop_info->GetPreHeader();
585 // Scan the phis in the header to find opportunities to simplify an induction
586 // cycle that is only used outside the loop. Replace these uses, if any, with
587 // the last value and remove the induction cycle.
588 // Examples: for (int i = 0; x != null; i++) { .... no i .... }
589 // for (int i = 0; i < 10; i++, k++) { .... no k .... } return k;
590 for (HInstructionIterator it(header->GetPhis()); !it.Done(); it.Advance()) {
591 HPhi* phi = it.Current()->AsPhi();
592 if (TrySetPhiInduction(phi, /*restrict_uses*/ true) &&
593 TryAssignLastValue(node->loop_info, phi, preheader, /*collect_loop_uses*/ false)) {
594 // Note that it's ok to have replaced uses after the loop with the last value, without
595 // being able to remove the cycle. Environment uses (which are the reason we may not be
596 // able to remove the cycle) within the loop will still hold the right value. We must
597 // have tried first, however, to replace outside uses.
598 if (CanRemoveCycle()) {
599 simplified_ = true;
600 for (HInstruction* i : *iset_) {
601 RemoveFromCycle(i);
602 }
603 DCHECK(CheckInductionSetFullyRemoved(iset_));
604 }
605 }
606 }
607 }
608
SimplifyBlocks(LoopNode * node)609 void HLoopOptimization::SimplifyBlocks(LoopNode* node) {
610 // Iterate over all basic blocks in the loop-body.
611 for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) {
612 HBasicBlock* block = it.Current();
613 // Remove dead instructions from the loop-body.
614 RemoveDeadInstructions(block->GetPhis());
615 RemoveDeadInstructions(block->GetInstructions());
616 // Remove trivial control flow blocks from the loop-body.
617 if (block->GetPredecessors().size() == 1 &&
618 block->GetSuccessors().size() == 1 &&
619 block->GetSingleSuccessor()->GetPredecessors().size() == 1) {
620 simplified_ = true;
621 block->MergeWith(block->GetSingleSuccessor());
622 } else if (block->GetSuccessors().size() == 2) {
623 // Trivial if block can be bypassed to either branch.
624 HBasicBlock* succ0 = block->GetSuccessors()[0];
625 HBasicBlock* succ1 = block->GetSuccessors()[1];
626 HBasicBlock* meet0 = nullptr;
627 HBasicBlock* meet1 = nullptr;
628 if (succ0 != succ1 &&
629 IsGotoBlock(succ0, &meet0) &&
630 IsGotoBlock(succ1, &meet1) &&
631 meet0 == meet1 && // meets again
632 meet0 != block && // no self-loop
633 meet0->GetPhis().IsEmpty()) { // not used for merging
634 simplified_ = true;
635 succ0->DisconnectAndDelete();
636 if (block->Dominates(meet0)) {
637 block->RemoveDominatedBlock(meet0);
638 succ1->AddDominatedBlock(meet0);
639 meet0->SetDominator(succ1);
640 }
641 }
642 }
643 }
644 }
645
OptimizeInnerLoop(LoopNode * node)646 bool HLoopOptimization::OptimizeInnerLoop(LoopNode* node) {
647 HBasicBlock* header = node->loop_info->GetHeader();
648 HBasicBlock* preheader = node->loop_info->GetPreHeader();
649 // Ensure loop header logic is finite.
650 int64_t trip_count = 0;
651 if (!induction_range_.IsFinite(node->loop_info, &trip_count)) {
652 return false;
653 }
654 // Ensure there is only a single loop-body (besides the header).
655 HBasicBlock* body = nullptr;
656 for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) {
657 if (it.Current() != header) {
658 if (body != nullptr) {
659 return false;
660 }
661 body = it.Current();
662 }
663 }
664 CHECK(body != nullptr);
665 // Ensure there is only a single exit point.
666 if (header->GetSuccessors().size() != 2) {
667 return false;
668 }
669 HBasicBlock* exit = (header->GetSuccessors()[0] == body)
670 ? header->GetSuccessors()[1]
671 : header->GetSuccessors()[0];
672 // Ensure exit can only be reached by exiting loop.
673 if (exit->GetPredecessors().size() != 1) {
674 return false;
675 }
676 // Detect either an empty loop (no side effects other than plain iteration) or
677 // a trivial loop (just iterating once). Replace subsequent index uses, if any,
678 // with the last value and remove the loop, possibly after unrolling its body.
679 HPhi* main_phi = nullptr;
680 if (TrySetSimpleLoopHeader(header, &main_phi)) {
681 bool is_empty = IsEmptyBody(body);
682 if (reductions_->empty() && // TODO: possible with some effort
683 (is_empty || trip_count == 1) &&
684 TryAssignLastValue(node->loop_info, main_phi, preheader, /*collect_loop_uses*/ true)) {
685 if (!is_empty) {
686 // Unroll the loop-body, which sees initial value of the index.
687 main_phi->ReplaceWith(main_phi->InputAt(0));
688 preheader->MergeInstructionsWith(body);
689 }
690 body->DisconnectAndDelete();
691 exit->RemovePredecessor(header);
692 header->RemoveSuccessor(exit);
693 header->RemoveDominatedBlock(exit);
694 header->DisconnectAndDelete();
695 preheader->AddSuccessor(exit);
696 preheader->AddInstruction(new (global_allocator_) HGoto());
697 preheader->AddDominatedBlock(exit);
698 exit->SetDominator(preheader);
699 RemoveLoop(node); // update hierarchy
700 return true;
701 }
702 }
703 // Vectorize loop, if possible and valid.
704 if (kEnableVectorization &&
705 TrySetSimpleLoopHeader(header, &main_phi) &&
706 ShouldVectorize(node, body, trip_count) &&
707 TryAssignLastValue(node->loop_info, main_phi, preheader, /*collect_loop_uses*/ true)) {
708 Vectorize(node, body, exit, trip_count);
709 graph_->SetHasSIMD(true); // flag SIMD usage
710 MaybeRecordStat(stats_, MethodCompilationStat::kLoopVectorized);
711 return true;
712 }
713 return false;
714 }
715
716 //
717 // Loop vectorization. The implementation is based on the book by Aart J.C. Bik:
718 // "The Software Vectorization Handbook. Applying Multimedia Extensions for Maximum Performance."
719 // Intel Press, June, 2004 (http://www.aartbik.com/).
720 //
721
ShouldVectorize(LoopNode * node,HBasicBlock * block,int64_t trip_count)722 bool HLoopOptimization::ShouldVectorize(LoopNode* node, HBasicBlock* block, int64_t trip_count) {
723 // Reset vector bookkeeping.
724 vector_length_ = 0;
725 vector_refs_->clear();
726 vector_static_peeling_factor_ = 0;
727 vector_dynamic_peeling_candidate_ = nullptr;
728 vector_runtime_test_a_ =
729 vector_runtime_test_b_ = nullptr;
730
731 // Phis in the loop-body prevent vectorization.
732 if (!block->GetPhis().IsEmpty()) {
733 return false;
734 }
735
736 // Scan the loop-body, starting a right-hand-side tree traversal at each left-hand-side
737 // occurrence, which allows passing down attributes down the use tree.
738 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
739 if (!VectorizeDef(node, it.Current(), /*generate_code*/ false)) {
740 return false; // failure to vectorize a left-hand-side
741 }
742 }
743
744 // Prepare alignment analysis:
745 // (1) find desired alignment (SIMD vector size in bytes).
746 // (2) initialize static loop peeling votes (peeling factor that will
747 // make one particular reference aligned), never to exceed (1).
748 // (3) variable to record how many references share same alignment.
749 // (4) variable to record suitable candidate for dynamic loop peeling.
750 uint32_t desired_alignment = GetVectorSizeInBytes();
751 DCHECK_LE(desired_alignment, 16u);
752 uint32_t peeling_votes[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
753 uint32_t max_num_same_alignment = 0;
754 const ArrayReference* peeling_candidate = nullptr;
755
756 // Data dependence analysis. Find each pair of references with same type, where
757 // at least one is a write. Each such pair denotes a possible data dependence.
758 // This analysis exploits the property that differently typed arrays cannot be
759 // aliased, as well as the property that references either point to the same
760 // array or to two completely disjoint arrays, i.e., no partial aliasing.
761 // Other than a few simply heuristics, no detailed subscript analysis is done.
762 // The scan over references also prepares finding a suitable alignment strategy.
763 for (auto i = vector_refs_->begin(); i != vector_refs_->end(); ++i) {
764 uint32_t num_same_alignment = 0;
765 // Scan over all next references.
766 for (auto j = i; ++j != vector_refs_->end(); ) {
767 if (i->type == j->type && (i->lhs || j->lhs)) {
768 // Found same-typed a[i+x] vs. b[i+y], where at least one is a write.
769 HInstruction* a = i->base;
770 HInstruction* b = j->base;
771 HInstruction* x = i->offset;
772 HInstruction* y = j->offset;
773 if (a == b) {
774 // Found a[i+x] vs. a[i+y]. Accept if x == y (loop-independent data dependence).
775 // Conservatively assume a loop-carried data dependence otherwise, and reject.
776 if (x != y) {
777 return false;
778 }
779 // Count the number of references that have the same alignment (since
780 // base and offset are the same) and where at least one is a write, so
781 // e.g. a[i] = a[i] + b[i] counts a[i] but not b[i]).
782 num_same_alignment++;
783 } else {
784 // Found a[i+x] vs. b[i+y]. Accept if x == y (at worst loop-independent data dependence).
785 // Conservatively assume a potential loop-carried data dependence otherwise, avoided by
786 // generating an explicit a != b disambiguation runtime test on the two references.
787 if (x != y) {
788 // To avoid excessive overhead, we only accept one a != b test.
789 if (vector_runtime_test_a_ == nullptr) {
790 // First test found.
791 vector_runtime_test_a_ = a;
792 vector_runtime_test_b_ = b;
793 } else if ((vector_runtime_test_a_ != a || vector_runtime_test_b_ != b) &&
794 (vector_runtime_test_a_ != b || vector_runtime_test_b_ != a)) {
795 return false; // second test would be needed
796 }
797 }
798 }
799 }
800 }
801 // Update information for finding suitable alignment strategy:
802 // (1) update votes for static loop peeling,
803 // (2) update suitable candidate for dynamic loop peeling.
804 Alignment alignment = ComputeAlignment(i->offset, i->type, i->is_string_char_at);
805 if (alignment.Base() >= desired_alignment) {
806 // If the array/string object has a known, sufficient alignment, use the
807 // initial offset to compute the static loop peeling vote (this always
808 // works, since elements have natural alignment).
809 uint32_t offset = alignment.Offset() & (desired_alignment - 1u);
810 uint32_t vote = (offset == 0)
811 ? 0
812 : ((desired_alignment - offset) >> DataType::SizeShift(i->type));
813 DCHECK_LT(vote, 16u);
814 ++peeling_votes[vote];
815 } else if (BaseAlignment() >= desired_alignment &&
816 num_same_alignment > max_num_same_alignment) {
817 // Otherwise, if the array/string object has a known, sufficient alignment
818 // for just the base but with an unknown offset, record the candidate with
819 // the most occurrences for dynamic loop peeling (again, the peeling always
820 // works, since elements have natural alignment).
821 max_num_same_alignment = num_same_alignment;
822 peeling_candidate = &(*i);
823 }
824 } // for i
825
826 // Find a suitable alignment strategy.
827 SetAlignmentStrategy(peeling_votes, peeling_candidate);
828
829 // Does vectorization seem profitable?
830 if (!IsVectorizationProfitable(trip_count)) {
831 return false;
832 }
833
834 // Success!
835 return true;
836 }
837
Vectorize(LoopNode * node,HBasicBlock * block,HBasicBlock * exit,int64_t trip_count)838 void HLoopOptimization::Vectorize(LoopNode* node,
839 HBasicBlock* block,
840 HBasicBlock* exit,
841 int64_t trip_count) {
842 HBasicBlock* header = node->loop_info->GetHeader();
843 HBasicBlock* preheader = node->loop_info->GetPreHeader();
844
845 // Pick a loop unrolling factor for the vector loop.
846 uint32_t unroll = GetUnrollingFactor(block, trip_count);
847 uint32_t chunk = vector_length_ * unroll;
848
849 DCHECK(trip_count == 0 || (trip_count >= MaxNumberPeeled() + chunk));
850
851 // A cleanup loop is needed, at least, for any unknown trip count or
852 // for a known trip count with remainder iterations after vectorization.
853 bool needs_cleanup = trip_count == 0 ||
854 ((trip_count - vector_static_peeling_factor_) % chunk) != 0;
855
856 // Adjust vector bookkeeping.
857 HPhi* main_phi = nullptr;
858 bool is_simple_loop_header = TrySetSimpleLoopHeader(header, &main_phi); // refills sets
859 DCHECK(is_simple_loop_header);
860 vector_header_ = header;
861 vector_body_ = block;
862
863 // Loop induction type.
864 DataType::Type induc_type = main_phi->GetType();
865 DCHECK(induc_type == DataType::Type::kInt32 || induc_type == DataType::Type::kInt64)
866 << induc_type;
867
868 // Generate the trip count for static or dynamic loop peeling, if needed:
869 // ptc = <peeling factor>;
870 HInstruction* ptc = nullptr;
871 if (vector_static_peeling_factor_ != 0) {
872 // Static loop peeling for SIMD alignment (using the most suitable
873 // fixed peeling factor found during prior alignment analysis).
874 DCHECK(vector_dynamic_peeling_candidate_ == nullptr);
875 ptc = graph_->GetConstant(induc_type, vector_static_peeling_factor_);
876 } else if (vector_dynamic_peeling_candidate_ != nullptr) {
877 // Dynamic loop peeling for SIMD alignment (using the most suitable
878 // candidate found during prior alignment analysis):
879 // rem = offset % ALIGN; // adjusted as #elements
880 // ptc = rem == 0 ? 0 : (ALIGN - rem);
881 uint32_t shift = DataType::SizeShift(vector_dynamic_peeling_candidate_->type);
882 uint32_t align = GetVectorSizeInBytes() >> shift;
883 uint32_t hidden_offset = HiddenOffset(vector_dynamic_peeling_candidate_->type,
884 vector_dynamic_peeling_candidate_->is_string_char_at);
885 HInstruction* adjusted_offset = graph_->GetConstant(induc_type, hidden_offset >> shift);
886 HInstruction* offset = Insert(preheader, new (global_allocator_) HAdd(
887 induc_type, vector_dynamic_peeling_candidate_->offset, adjusted_offset));
888 HInstruction* rem = Insert(preheader, new (global_allocator_) HAnd(
889 induc_type, offset, graph_->GetConstant(induc_type, align - 1u)));
890 HInstruction* sub = Insert(preheader, new (global_allocator_) HSub(
891 induc_type, graph_->GetConstant(induc_type, align), rem));
892 HInstruction* cond = Insert(preheader, new (global_allocator_) HEqual(
893 rem, graph_->GetConstant(induc_type, 0)));
894 ptc = Insert(preheader, new (global_allocator_) HSelect(
895 cond, graph_->GetConstant(induc_type, 0), sub, kNoDexPc));
896 needs_cleanup = true; // don't know the exact amount
897 }
898
899 // Generate loop control:
900 // stc = <trip-count>;
901 // ptc = min(stc, ptc);
902 // vtc = stc - (stc - ptc) % chunk;
903 // i = 0;
904 HInstruction* stc = induction_range_.GenerateTripCount(node->loop_info, graph_, preheader);
905 HInstruction* vtc = stc;
906 if (needs_cleanup) {
907 DCHECK(IsPowerOfTwo(chunk));
908 HInstruction* diff = stc;
909 if (ptc != nullptr) {
910 if (trip_count == 0) {
911 HInstruction* cond = Insert(preheader, new (global_allocator_) HAboveOrEqual(stc, ptc));
912 ptc = Insert(preheader, new (global_allocator_) HSelect(cond, ptc, stc, kNoDexPc));
913 }
914 diff = Insert(preheader, new (global_allocator_) HSub(induc_type, stc, ptc));
915 }
916 HInstruction* rem = Insert(
917 preheader, new (global_allocator_) HAnd(induc_type,
918 diff,
919 graph_->GetConstant(induc_type, chunk - 1)));
920 vtc = Insert(preheader, new (global_allocator_) HSub(induc_type, stc, rem));
921 }
922 vector_index_ = graph_->GetConstant(induc_type, 0);
923
924 // Generate runtime disambiguation test:
925 // vtc = a != b ? vtc : 0;
926 if (vector_runtime_test_a_ != nullptr) {
927 HInstruction* rt = Insert(
928 preheader,
929 new (global_allocator_) HNotEqual(vector_runtime_test_a_, vector_runtime_test_b_));
930 vtc = Insert(preheader,
931 new (global_allocator_)
932 HSelect(rt, vtc, graph_->GetConstant(induc_type, 0), kNoDexPc));
933 needs_cleanup = true;
934 }
935
936 // Generate alignment peeling loop, if needed:
937 // for ( ; i < ptc; i += 1)
938 // <loop-body>
939 //
940 // NOTE: The alignment forced by the peeling loop is preserved even if data is
941 // moved around during suspend checks, since all analysis was based on
942 // nothing more than the Android runtime alignment conventions.
943 if (ptc != nullptr) {
944 vector_mode_ = kSequential;
945 GenerateNewLoop(node,
946 block,
947 graph_->TransformLoopForVectorization(vector_header_, vector_body_, exit),
948 vector_index_,
949 ptc,
950 graph_->GetConstant(induc_type, 1),
951 kNoUnrollingFactor);
952 }
953
954 // Generate vector loop, possibly further unrolled:
955 // for ( ; i < vtc; i += chunk)
956 // <vectorized-loop-body>
957 vector_mode_ = kVector;
958 GenerateNewLoop(node,
959 block,
960 graph_->TransformLoopForVectorization(vector_header_, vector_body_, exit),
961 vector_index_,
962 vtc,
963 graph_->GetConstant(induc_type, vector_length_), // increment per unroll
964 unroll);
965 HLoopInformation* vloop = vector_header_->GetLoopInformation();
966
967 // Generate cleanup loop, if needed:
968 // for ( ; i < stc; i += 1)
969 // <loop-body>
970 if (needs_cleanup) {
971 vector_mode_ = kSequential;
972 GenerateNewLoop(node,
973 block,
974 graph_->TransformLoopForVectorization(vector_header_, vector_body_, exit),
975 vector_index_,
976 stc,
977 graph_->GetConstant(induc_type, 1),
978 kNoUnrollingFactor);
979 }
980
981 // Link reductions to their final uses.
982 for (auto i = reductions_->begin(); i != reductions_->end(); ++i) {
983 if (i->first->IsPhi()) {
984 HInstruction* phi = i->first;
985 HInstruction* repl = ReduceAndExtractIfNeeded(i->second);
986 // Deal with regular uses.
987 for (const HUseListNode<HInstruction*>& use : phi->GetUses()) {
988 induction_range_.Replace(use.GetUser(), phi, repl); // update induction use
989 }
990 phi->ReplaceWith(repl);
991 }
992 }
993
994 // Remove the original loop by disconnecting the body block
995 // and removing all instructions from the header.
996 block->DisconnectAndDelete();
997 while (!header->GetFirstInstruction()->IsGoto()) {
998 header->RemoveInstruction(header->GetFirstInstruction());
999 }
1000
1001 // Update loop hierarchy: the old header now resides in the same outer loop
1002 // as the old preheader. Note that we don't bother putting sequential
1003 // loops back in the hierarchy at this point.
1004 header->SetLoopInformation(preheader->GetLoopInformation()); // outward
1005 node->loop_info = vloop;
1006 }
1007
GenerateNewLoop(LoopNode * node,HBasicBlock * block,HBasicBlock * new_preheader,HInstruction * lo,HInstruction * hi,HInstruction * step,uint32_t unroll)1008 void HLoopOptimization::GenerateNewLoop(LoopNode* node,
1009 HBasicBlock* block,
1010 HBasicBlock* new_preheader,
1011 HInstruction* lo,
1012 HInstruction* hi,
1013 HInstruction* step,
1014 uint32_t unroll) {
1015 DCHECK(unroll == 1 || vector_mode_ == kVector);
1016 DataType::Type induc_type = lo->GetType();
1017 // Prepare new loop.
1018 vector_preheader_ = new_preheader,
1019 vector_header_ = vector_preheader_->GetSingleSuccessor();
1020 vector_body_ = vector_header_->GetSuccessors()[1];
1021 HPhi* phi = new (global_allocator_) HPhi(global_allocator_,
1022 kNoRegNumber,
1023 0,
1024 HPhi::ToPhiType(induc_type));
1025 // Generate header and prepare body.
1026 // for (i = lo; i < hi; i += step)
1027 // <loop-body>
1028 HInstruction* cond = new (global_allocator_) HAboveOrEqual(phi, hi);
1029 vector_header_->AddPhi(phi);
1030 vector_header_->AddInstruction(cond);
1031 vector_header_->AddInstruction(new (global_allocator_) HIf(cond));
1032 vector_index_ = phi;
1033 vector_permanent_map_->clear(); // preserved over unrolling
1034 for (uint32_t u = 0; u < unroll; u++) {
1035 // Generate instruction map.
1036 vector_map_->clear();
1037 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
1038 bool vectorized_def = VectorizeDef(node, it.Current(), /*generate_code*/ true);
1039 DCHECK(vectorized_def);
1040 }
1041 // Generate body from the instruction map, but in original program order.
1042 HEnvironment* env = vector_header_->GetFirstInstruction()->GetEnvironment();
1043 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
1044 auto i = vector_map_->find(it.Current());
1045 if (i != vector_map_->end() && !i->second->IsInBlock()) {
1046 Insert(vector_body_, i->second);
1047 // Deal with instructions that need an environment, such as the scalar intrinsics.
1048 if (i->second->NeedsEnvironment()) {
1049 i->second->CopyEnvironmentFromWithLoopPhiAdjustment(env, vector_header_);
1050 }
1051 }
1052 }
1053 // Generate the induction.
1054 vector_index_ = new (global_allocator_) HAdd(induc_type, vector_index_, step);
1055 Insert(vector_body_, vector_index_);
1056 }
1057 // Finalize phi inputs for the reductions (if any).
1058 for (auto i = reductions_->begin(); i != reductions_->end(); ++i) {
1059 if (!i->first->IsPhi()) {
1060 DCHECK(i->second->IsPhi());
1061 GenerateVecReductionPhiInputs(i->second->AsPhi(), i->first);
1062 }
1063 }
1064 // Finalize phi inputs for the loop index.
1065 phi->AddInput(lo);
1066 phi->AddInput(vector_index_);
1067 vector_index_ = phi;
1068 }
1069
VectorizeDef(LoopNode * node,HInstruction * instruction,bool generate_code)1070 bool HLoopOptimization::VectorizeDef(LoopNode* node,
1071 HInstruction* instruction,
1072 bool generate_code) {
1073 // Accept a left-hand-side array base[index] for
1074 // (1) supported vector type,
1075 // (2) loop-invariant base,
1076 // (3) unit stride index,
1077 // (4) vectorizable right-hand-side value.
1078 uint64_t restrictions = kNone;
1079 if (instruction->IsArraySet()) {
1080 DataType::Type type = instruction->AsArraySet()->GetComponentType();
1081 HInstruction* base = instruction->InputAt(0);
1082 HInstruction* index = instruction->InputAt(1);
1083 HInstruction* value = instruction->InputAt(2);
1084 HInstruction* offset = nullptr;
1085 if (TrySetVectorType(type, &restrictions) &&
1086 node->loop_info->IsDefinedOutOfTheLoop(base) &&
1087 induction_range_.IsUnitStride(instruction, index, graph_, &offset) &&
1088 VectorizeUse(node, value, generate_code, type, restrictions)) {
1089 if (generate_code) {
1090 GenerateVecSub(index, offset);
1091 GenerateVecMem(instruction, vector_map_->Get(index), vector_map_->Get(value), offset, type);
1092 } else {
1093 vector_refs_->insert(ArrayReference(base, offset, type, /*lhs*/ true));
1094 }
1095 return true;
1096 }
1097 return false;
1098 }
1099 // Accept a left-hand-side reduction for
1100 // (1) supported vector type,
1101 // (2) vectorizable right-hand-side value.
1102 auto redit = reductions_->find(instruction);
1103 if (redit != reductions_->end()) {
1104 DataType::Type type = instruction->GetType();
1105 // Recognize SAD idiom or direct reduction.
1106 if (VectorizeSADIdiom(node, instruction, generate_code, type, restrictions) ||
1107 (TrySetVectorType(type, &restrictions) &&
1108 VectorizeUse(node, instruction, generate_code, type, restrictions))) {
1109 if (generate_code) {
1110 HInstruction* new_red = vector_map_->Get(instruction);
1111 vector_permanent_map_->Put(new_red, vector_map_->Get(redit->second));
1112 vector_permanent_map_->Overwrite(redit->second, new_red);
1113 }
1114 return true;
1115 }
1116 return false;
1117 }
1118 // Branch back okay.
1119 if (instruction->IsGoto()) {
1120 return true;
1121 }
1122 // Otherwise accept only expressions with no effects outside the immediate loop-body.
1123 // Note that actual uses are inspected during right-hand-side tree traversal.
1124 return !IsUsedOutsideLoop(node->loop_info, instruction) && !instruction->DoesAnyWrite();
1125 }
1126
1127 // TODO: saturation arithmetic.
VectorizeUse(LoopNode * node,HInstruction * instruction,bool generate_code,DataType::Type type,uint64_t restrictions)1128 bool HLoopOptimization::VectorizeUse(LoopNode* node,
1129 HInstruction* instruction,
1130 bool generate_code,
1131 DataType::Type type,
1132 uint64_t restrictions) {
1133 // Accept anything for which code has already been generated.
1134 if (generate_code) {
1135 if (vector_map_->find(instruction) != vector_map_->end()) {
1136 return true;
1137 }
1138 }
1139 // Continue the right-hand-side tree traversal, passing in proper
1140 // types and vector restrictions along the way. During code generation,
1141 // all new nodes are drawn from the global allocator.
1142 if (node->loop_info->IsDefinedOutOfTheLoop(instruction)) {
1143 // Accept invariant use, using scalar expansion.
1144 if (generate_code) {
1145 GenerateVecInv(instruction, type);
1146 }
1147 return true;
1148 } else if (instruction->IsArrayGet()) {
1149 // Deal with vector restrictions.
1150 bool is_string_char_at = instruction->AsArrayGet()->IsStringCharAt();
1151 if (is_string_char_at && HasVectorRestrictions(restrictions, kNoStringCharAt)) {
1152 return false;
1153 }
1154 // Accept a right-hand-side array base[index] for
1155 // (1) matching vector type (exact match or signed/unsigned integral type of the same size),
1156 // (2) loop-invariant base,
1157 // (3) unit stride index,
1158 // (4) vectorizable right-hand-side value.
1159 HInstruction* base = instruction->InputAt(0);
1160 HInstruction* index = instruction->InputAt(1);
1161 HInstruction* offset = nullptr;
1162 if (HVecOperation::ToSignedType(type) == HVecOperation::ToSignedType(instruction->GetType()) &&
1163 node->loop_info->IsDefinedOutOfTheLoop(base) &&
1164 induction_range_.IsUnitStride(instruction, index, graph_, &offset)) {
1165 if (generate_code) {
1166 GenerateVecSub(index, offset);
1167 GenerateVecMem(instruction, vector_map_->Get(index), nullptr, offset, type);
1168 } else {
1169 vector_refs_->insert(ArrayReference(base, offset, type, /*lhs*/ false, is_string_char_at));
1170 }
1171 return true;
1172 }
1173 } else if (instruction->IsPhi()) {
1174 // Accept particular phi operations.
1175 if (reductions_->find(instruction) != reductions_->end()) {
1176 // Deal with vector restrictions.
1177 if (HasVectorRestrictions(restrictions, kNoReduction)) {
1178 return false;
1179 }
1180 // Accept a reduction.
1181 if (generate_code) {
1182 GenerateVecReductionPhi(instruction->AsPhi());
1183 }
1184 return true;
1185 }
1186 // TODO: accept right-hand-side induction?
1187 return false;
1188 } else if (instruction->IsTypeConversion()) {
1189 // Accept particular type conversions.
1190 HTypeConversion* conversion = instruction->AsTypeConversion();
1191 HInstruction* opa = conversion->InputAt(0);
1192 DataType::Type from = conversion->GetInputType();
1193 DataType::Type to = conversion->GetResultType();
1194 if (DataType::IsIntegralType(from) && DataType::IsIntegralType(to)) {
1195 uint32_t size_vec = DataType::Size(type);
1196 uint32_t size_from = DataType::Size(from);
1197 uint32_t size_to = DataType::Size(to);
1198 // Accept an integral conversion
1199 // (1a) narrowing into vector type, "wider" operations cannot bring in higher order bits, or
1200 // (1b) widening from at least vector type, and
1201 // (2) vectorizable operand.
1202 if ((size_to < size_from &&
1203 size_to == size_vec &&
1204 VectorizeUse(node, opa, generate_code, type, restrictions | kNoHiBits)) ||
1205 (size_to >= size_from &&
1206 size_from >= size_vec &&
1207 VectorizeUse(node, opa, generate_code, type, restrictions))) {
1208 if (generate_code) {
1209 if (vector_mode_ == kVector) {
1210 vector_map_->Put(instruction, vector_map_->Get(opa)); // operand pass-through
1211 } else {
1212 GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type);
1213 }
1214 }
1215 return true;
1216 }
1217 } else if (to == DataType::Type::kFloat32 && from == DataType::Type::kInt32) {
1218 DCHECK_EQ(to, type);
1219 // Accept int to float conversion for
1220 // (1) supported int,
1221 // (2) vectorizable operand.
1222 if (TrySetVectorType(from, &restrictions) &&
1223 VectorizeUse(node, opa, generate_code, from, restrictions)) {
1224 if (generate_code) {
1225 GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type);
1226 }
1227 return true;
1228 }
1229 }
1230 return false;
1231 } else if (instruction->IsNeg() || instruction->IsNot() || instruction->IsBooleanNot()) {
1232 // Accept unary operator for vectorizable operand.
1233 HInstruction* opa = instruction->InputAt(0);
1234 if (VectorizeUse(node, opa, generate_code, type, restrictions)) {
1235 if (generate_code) {
1236 GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type);
1237 }
1238 return true;
1239 }
1240 } else if (instruction->IsAdd() || instruction->IsSub() ||
1241 instruction->IsMul() || instruction->IsDiv() ||
1242 instruction->IsAnd() || instruction->IsOr() || instruction->IsXor()) {
1243 // Deal with vector restrictions.
1244 if ((instruction->IsMul() && HasVectorRestrictions(restrictions, kNoMul)) ||
1245 (instruction->IsDiv() && HasVectorRestrictions(restrictions, kNoDiv))) {
1246 return false;
1247 }
1248 // Accept binary operator for vectorizable operands.
1249 HInstruction* opa = instruction->InputAt(0);
1250 HInstruction* opb = instruction->InputAt(1);
1251 if (VectorizeUse(node, opa, generate_code, type, restrictions) &&
1252 VectorizeUse(node, opb, generate_code, type, restrictions)) {
1253 if (generate_code) {
1254 GenerateVecOp(instruction, vector_map_->Get(opa), vector_map_->Get(opb), type);
1255 }
1256 return true;
1257 }
1258 } else if (instruction->IsShl() || instruction->IsShr() || instruction->IsUShr()) {
1259 // Recognize halving add idiom.
1260 if (VectorizeHalvingAddIdiom(node, instruction, generate_code, type, restrictions)) {
1261 return true;
1262 }
1263 // Deal with vector restrictions.
1264 HInstruction* opa = instruction->InputAt(0);
1265 HInstruction* opb = instruction->InputAt(1);
1266 HInstruction* r = opa;
1267 bool is_unsigned = false;
1268 if ((HasVectorRestrictions(restrictions, kNoShift)) ||
1269 (instruction->IsShr() && HasVectorRestrictions(restrictions, kNoShr))) {
1270 return false; // unsupported instruction
1271 } else if (HasVectorRestrictions(restrictions, kNoHiBits)) {
1272 // Shifts right need extra care to account for higher order bits.
1273 // TODO: less likely shr/unsigned and ushr/signed can by flipping signess.
1274 if (instruction->IsShr() &&
1275 (!IsNarrowerOperand(opa, type, &r, &is_unsigned) || is_unsigned)) {
1276 return false; // reject, unless all operands are sign-extension narrower
1277 } else if (instruction->IsUShr() &&
1278 (!IsNarrowerOperand(opa, type, &r, &is_unsigned) || !is_unsigned)) {
1279 return false; // reject, unless all operands are zero-extension narrower
1280 }
1281 }
1282 // Accept shift operator for vectorizable/invariant operands.
1283 // TODO: accept symbolic, albeit loop invariant shift factors.
1284 DCHECK(r != nullptr);
1285 if (generate_code && vector_mode_ != kVector) { // de-idiom
1286 r = opa;
1287 }
1288 int64_t distance = 0;
1289 if (VectorizeUse(node, r, generate_code, type, restrictions) &&
1290 IsInt64AndGet(opb, /*out*/ &distance)) {
1291 // Restrict shift distance to packed data type width.
1292 int64_t max_distance = DataType::Size(type) * 8;
1293 if (0 <= distance && distance < max_distance) {
1294 if (generate_code) {
1295 GenerateVecOp(instruction, vector_map_->Get(r), opb, type);
1296 }
1297 return true;
1298 }
1299 }
1300 } else if (instruction->IsInvokeStaticOrDirect()) {
1301 // Accept particular intrinsics.
1302 HInvokeStaticOrDirect* invoke = instruction->AsInvokeStaticOrDirect();
1303 switch (invoke->GetIntrinsic()) {
1304 case Intrinsics::kMathAbsInt:
1305 case Intrinsics::kMathAbsLong:
1306 case Intrinsics::kMathAbsFloat:
1307 case Intrinsics::kMathAbsDouble: {
1308 // Deal with vector restrictions.
1309 HInstruction* opa = instruction->InputAt(0);
1310 HInstruction* r = opa;
1311 bool is_unsigned = false;
1312 if (HasVectorRestrictions(restrictions, kNoAbs)) {
1313 return false;
1314 } else if (HasVectorRestrictions(restrictions, kNoHiBits) &&
1315 (!IsNarrowerOperand(opa, type, &r, &is_unsigned) || is_unsigned)) {
1316 return false; // reject, unless operand is sign-extension narrower
1317 }
1318 // Accept ABS(x) for vectorizable operand.
1319 DCHECK(r != nullptr);
1320 if (generate_code && vector_mode_ != kVector) { // de-idiom
1321 r = opa;
1322 }
1323 if (VectorizeUse(node, r, generate_code, type, restrictions)) {
1324 if (generate_code) {
1325 GenerateVecOp(instruction,
1326 vector_map_->Get(r),
1327 nullptr,
1328 HVecOperation::ToProperType(type, is_unsigned));
1329 }
1330 return true;
1331 }
1332 return false;
1333 }
1334 case Intrinsics::kMathMinIntInt:
1335 case Intrinsics::kMathMinLongLong:
1336 case Intrinsics::kMathMinFloatFloat:
1337 case Intrinsics::kMathMinDoubleDouble:
1338 case Intrinsics::kMathMaxIntInt:
1339 case Intrinsics::kMathMaxLongLong:
1340 case Intrinsics::kMathMaxFloatFloat:
1341 case Intrinsics::kMathMaxDoubleDouble: {
1342 // Deal with vector restrictions.
1343 HInstruction* opa = instruction->InputAt(0);
1344 HInstruction* opb = instruction->InputAt(1);
1345 HInstruction* r = opa;
1346 HInstruction* s = opb;
1347 bool is_unsigned = false;
1348 if (HasVectorRestrictions(restrictions, kNoMinMax)) {
1349 return false;
1350 } else if (HasVectorRestrictions(restrictions, kNoHiBits) &&
1351 !IsNarrowerOperands(opa, opb, type, &r, &s, &is_unsigned)) {
1352 return false; // reject, unless all operands are same-extension narrower
1353 }
1354 // Accept MIN/MAX(x, y) for vectorizable operands.
1355 DCHECK(r != nullptr);
1356 DCHECK(s != nullptr);
1357 if (generate_code && vector_mode_ != kVector) { // de-idiom
1358 r = opa;
1359 s = opb;
1360 }
1361 if (VectorizeUse(node, r, generate_code, type, restrictions) &&
1362 VectorizeUse(node, s, generate_code, type, restrictions)) {
1363 if (generate_code) {
1364 GenerateVecOp(
1365 instruction, vector_map_->Get(r), vector_map_->Get(s), type, is_unsigned);
1366 }
1367 return true;
1368 }
1369 return false;
1370 }
1371 default:
1372 return false;
1373 } // switch
1374 }
1375 return false;
1376 }
1377
GetVectorSizeInBytes()1378 uint32_t HLoopOptimization::GetVectorSizeInBytes() {
1379 switch (compiler_driver_->GetInstructionSet()) {
1380 case InstructionSet::kArm:
1381 case InstructionSet::kThumb2:
1382 return 8; // 64-bit SIMD
1383 default:
1384 return 16; // 128-bit SIMD
1385 }
1386 }
1387
TrySetVectorType(DataType::Type type,uint64_t * restrictions)1388 bool HLoopOptimization::TrySetVectorType(DataType::Type type, uint64_t* restrictions) {
1389 const InstructionSetFeatures* features = compiler_driver_->GetInstructionSetFeatures();
1390 switch (compiler_driver_->GetInstructionSet()) {
1391 case InstructionSet::kArm:
1392 case InstructionSet::kThumb2:
1393 // Allow vectorization for all ARM devices, because Android assumes that
1394 // ARM 32-bit always supports advanced SIMD (64-bit SIMD).
1395 switch (type) {
1396 case DataType::Type::kBool:
1397 case DataType::Type::kUint8:
1398 case DataType::Type::kInt8:
1399 *restrictions |= kNoDiv | kNoReduction;
1400 return TrySetVectorLength(8);
1401 case DataType::Type::kUint16:
1402 case DataType::Type::kInt16:
1403 *restrictions |= kNoDiv | kNoStringCharAt | kNoReduction;
1404 return TrySetVectorLength(4);
1405 case DataType::Type::kInt32:
1406 *restrictions |= kNoDiv | kNoWideSAD;
1407 return TrySetVectorLength(2);
1408 default:
1409 break;
1410 }
1411 return false;
1412 case InstructionSet::kArm64:
1413 // Allow vectorization for all ARM devices, because Android assumes that
1414 // ARMv8 AArch64 always supports advanced SIMD (128-bit SIMD).
1415 switch (type) {
1416 case DataType::Type::kBool:
1417 case DataType::Type::kUint8:
1418 case DataType::Type::kInt8:
1419 *restrictions |= kNoDiv;
1420 return TrySetVectorLength(16);
1421 case DataType::Type::kUint16:
1422 case DataType::Type::kInt16:
1423 *restrictions |= kNoDiv;
1424 return TrySetVectorLength(8);
1425 case DataType::Type::kInt32:
1426 *restrictions |= kNoDiv;
1427 return TrySetVectorLength(4);
1428 case DataType::Type::kInt64:
1429 *restrictions |= kNoDiv | kNoMul | kNoMinMax;
1430 return TrySetVectorLength(2);
1431 case DataType::Type::kFloat32:
1432 *restrictions |= kNoReduction;
1433 return TrySetVectorLength(4);
1434 case DataType::Type::kFloat64:
1435 *restrictions |= kNoReduction;
1436 return TrySetVectorLength(2);
1437 default:
1438 return false;
1439 }
1440 case InstructionSet::kX86:
1441 case InstructionSet::kX86_64:
1442 // Allow vectorization for SSE4.1-enabled X86 devices only (128-bit SIMD).
1443 if (features->AsX86InstructionSetFeatures()->HasSSE4_1()) {
1444 switch (type) {
1445 case DataType::Type::kBool:
1446 case DataType::Type::kUint8:
1447 case DataType::Type::kInt8:
1448 *restrictions |=
1449 kNoMul | kNoDiv | kNoShift | kNoAbs | kNoSignedHAdd | kNoUnroundedHAdd | kNoSAD;
1450 return TrySetVectorLength(16);
1451 case DataType::Type::kUint16:
1452 case DataType::Type::kInt16:
1453 *restrictions |= kNoDiv | kNoAbs | kNoSignedHAdd | kNoUnroundedHAdd | kNoSAD;
1454 return TrySetVectorLength(8);
1455 case DataType::Type::kInt32:
1456 *restrictions |= kNoDiv | kNoSAD;
1457 return TrySetVectorLength(4);
1458 case DataType::Type::kInt64:
1459 *restrictions |= kNoMul | kNoDiv | kNoShr | kNoAbs | kNoMinMax | kNoSAD;
1460 return TrySetVectorLength(2);
1461 case DataType::Type::kFloat32:
1462 *restrictions |= kNoMinMax | kNoReduction; // minmax: -0.0 vs +0.0
1463 return TrySetVectorLength(4);
1464 case DataType::Type::kFloat64:
1465 *restrictions |= kNoMinMax | kNoReduction; // minmax: -0.0 vs +0.0
1466 return TrySetVectorLength(2);
1467 default:
1468 break;
1469 } // switch type
1470 }
1471 return false;
1472 case InstructionSet::kMips:
1473 if (features->AsMipsInstructionSetFeatures()->HasMsa()) {
1474 switch (type) {
1475 case DataType::Type::kBool:
1476 case DataType::Type::kUint8:
1477 case DataType::Type::kInt8:
1478 *restrictions |= kNoDiv;
1479 return TrySetVectorLength(16);
1480 case DataType::Type::kUint16:
1481 case DataType::Type::kInt16:
1482 *restrictions |= kNoDiv | kNoStringCharAt;
1483 return TrySetVectorLength(8);
1484 case DataType::Type::kInt32:
1485 *restrictions |= kNoDiv;
1486 return TrySetVectorLength(4);
1487 case DataType::Type::kInt64:
1488 *restrictions |= kNoDiv;
1489 return TrySetVectorLength(2);
1490 case DataType::Type::kFloat32:
1491 *restrictions |= kNoMinMax | kNoReduction; // min/max(x, NaN)
1492 return TrySetVectorLength(4);
1493 case DataType::Type::kFloat64:
1494 *restrictions |= kNoMinMax | kNoReduction; // min/max(x, NaN)
1495 return TrySetVectorLength(2);
1496 default:
1497 break;
1498 } // switch type
1499 }
1500 return false;
1501 case InstructionSet::kMips64:
1502 if (features->AsMips64InstructionSetFeatures()->HasMsa()) {
1503 switch (type) {
1504 case DataType::Type::kBool:
1505 case DataType::Type::kUint8:
1506 case DataType::Type::kInt8:
1507 *restrictions |= kNoDiv;
1508 return TrySetVectorLength(16);
1509 case DataType::Type::kUint16:
1510 case DataType::Type::kInt16:
1511 *restrictions |= kNoDiv | kNoStringCharAt;
1512 return TrySetVectorLength(8);
1513 case DataType::Type::kInt32:
1514 *restrictions |= kNoDiv;
1515 return TrySetVectorLength(4);
1516 case DataType::Type::kInt64:
1517 *restrictions |= kNoDiv;
1518 return TrySetVectorLength(2);
1519 case DataType::Type::kFloat32:
1520 *restrictions |= kNoMinMax | kNoReduction; // min/max(x, NaN)
1521 return TrySetVectorLength(4);
1522 case DataType::Type::kFloat64:
1523 *restrictions |= kNoMinMax | kNoReduction; // min/max(x, NaN)
1524 return TrySetVectorLength(2);
1525 default:
1526 break;
1527 } // switch type
1528 }
1529 return false;
1530 default:
1531 return false;
1532 } // switch instruction set
1533 }
1534
TrySetVectorLength(uint32_t length)1535 bool HLoopOptimization::TrySetVectorLength(uint32_t length) {
1536 DCHECK(IsPowerOfTwo(length) && length >= 2u);
1537 // First time set?
1538 if (vector_length_ == 0) {
1539 vector_length_ = length;
1540 }
1541 // Different types are acceptable within a loop-body, as long as all the corresponding vector
1542 // lengths match exactly to obtain a uniform traversal through the vector iteration space
1543 // (idiomatic exceptions to this rule can be handled by further unrolling sub-expressions).
1544 return vector_length_ == length;
1545 }
1546
GenerateVecInv(HInstruction * org,DataType::Type type)1547 void HLoopOptimization::GenerateVecInv(HInstruction* org, DataType::Type type) {
1548 if (vector_map_->find(org) == vector_map_->end()) {
1549 // In scalar code, just use a self pass-through for scalar invariants
1550 // (viz. expression remains itself).
1551 if (vector_mode_ == kSequential) {
1552 vector_map_->Put(org, org);
1553 return;
1554 }
1555 // In vector code, explicit scalar expansion is needed.
1556 HInstruction* vector = nullptr;
1557 auto it = vector_permanent_map_->find(org);
1558 if (it != vector_permanent_map_->end()) {
1559 vector = it->second; // reuse during unrolling
1560 } else {
1561 // Generates ReplicateScalar( (optional_type_conv) org ).
1562 HInstruction* input = org;
1563 DataType::Type input_type = input->GetType();
1564 if (type != input_type && (type == DataType::Type::kInt64 ||
1565 input_type == DataType::Type::kInt64)) {
1566 input = Insert(vector_preheader_,
1567 new (global_allocator_) HTypeConversion(type, input, kNoDexPc));
1568 }
1569 vector = new (global_allocator_)
1570 HVecReplicateScalar(global_allocator_, input, type, vector_length_, kNoDexPc);
1571 vector_permanent_map_->Put(org, Insert(vector_preheader_, vector));
1572 }
1573 vector_map_->Put(org, vector);
1574 }
1575 }
1576
GenerateVecSub(HInstruction * org,HInstruction * offset)1577 void HLoopOptimization::GenerateVecSub(HInstruction* org, HInstruction* offset) {
1578 if (vector_map_->find(org) == vector_map_->end()) {
1579 HInstruction* subscript = vector_index_;
1580 int64_t value = 0;
1581 if (!IsInt64AndGet(offset, &value) || value != 0) {
1582 subscript = new (global_allocator_) HAdd(DataType::Type::kInt32, subscript, offset);
1583 if (org->IsPhi()) {
1584 Insert(vector_body_, subscript); // lacks layout placeholder
1585 }
1586 }
1587 vector_map_->Put(org, subscript);
1588 }
1589 }
1590
GenerateVecMem(HInstruction * org,HInstruction * opa,HInstruction * opb,HInstruction * offset,DataType::Type type)1591 void HLoopOptimization::GenerateVecMem(HInstruction* org,
1592 HInstruction* opa,
1593 HInstruction* opb,
1594 HInstruction* offset,
1595 DataType::Type type) {
1596 uint32_t dex_pc = org->GetDexPc();
1597 HInstruction* vector = nullptr;
1598 if (vector_mode_ == kVector) {
1599 // Vector store or load.
1600 bool is_string_char_at = false;
1601 HInstruction* base = org->InputAt(0);
1602 if (opb != nullptr) {
1603 vector = new (global_allocator_) HVecStore(
1604 global_allocator_, base, opa, opb, type, org->GetSideEffects(), vector_length_, dex_pc);
1605 } else {
1606 is_string_char_at = org->AsArrayGet()->IsStringCharAt();
1607 vector = new (global_allocator_) HVecLoad(global_allocator_,
1608 base,
1609 opa,
1610 type,
1611 org->GetSideEffects(),
1612 vector_length_,
1613 is_string_char_at,
1614 dex_pc);
1615 }
1616 // Known (forced/adjusted/original) alignment?
1617 if (vector_dynamic_peeling_candidate_ != nullptr) {
1618 if (vector_dynamic_peeling_candidate_->offset == offset && // TODO: diffs too?
1619 DataType::Size(vector_dynamic_peeling_candidate_->type) == DataType::Size(type) &&
1620 vector_dynamic_peeling_candidate_->is_string_char_at == is_string_char_at) {
1621 vector->AsVecMemoryOperation()->SetAlignment( // forced
1622 Alignment(GetVectorSizeInBytes(), 0));
1623 }
1624 } else {
1625 vector->AsVecMemoryOperation()->SetAlignment( // adjusted/original
1626 ComputeAlignment(offset, type, is_string_char_at, vector_static_peeling_factor_));
1627 }
1628 } else {
1629 // Scalar store or load.
1630 DCHECK(vector_mode_ == kSequential);
1631 if (opb != nullptr) {
1632 DataType::Type component_type = org->AsArraySet()->GetComponentType();
1633 vector = new (global_allocator_) HArraySet(
1634 org->InputAt(0), opa, opb, component_type, org->GetSideEffects(), dex_pc);
1635 } else {
1636 bool is_string_char_at = org->AsArrayGet()->IsStringCharAt();
1637 vector = new (global_allocator_) HArrayGet(
1638 org->InputAt(0), opa, org->GetType(), org->GetSideEffects(), dex_pc, is_string_char_at);
1639 }
1640 }
1641 vector_map_->Put(org, vector);
1642 }
1643
GenerateVecReductionPhi(HPhi * phi)1644 void HLoopOptimization::GenerateVecReductionPhi(HPhi* phi) {
1645 DCHECK(reductions_->find(phi) != reductions_->end());
1646 DCHECK(reductions_->Get(phi->InputAt(1)) == phi);
1647 HInstruction* vector = nullptr;
1648 if (vector_mode_ == kSequential) {
1649 HPhi* new_phi = new (global_allocator_) HPhi(
1650 global_allocator_, kNoRegNumber, 0, phi->GetType());
1651 vector_header_->AddPhi(new_phi);
1652 vector = new_phi;
1653 } else {
1654 // Link vector reduction back to prior unrolled update, or a first phi.
1655 auto it = vector_permanent_map_->find(phi);
1656 if (it != vector_permanent_map_->end()) {
1657 vector = it->second;
1658 } else {
1659 HPhi* new_phi = new (global_allocator_) HPhi(
1660 global_allocator_, kNoRegNumber, 0, HVecOperation::kSIMDType);
1661 vector_header_->AddPhi(new_phi);
1662 vector = new_phi;
1663 }
1664 }
1665 vector_map_->Put(phi, vector);
1666 }
1667
GenerateVecReductionPhiInputs(HPhi * phi,HInstruction * reduction)1668 void HLoopOptimization::GenerateVecReductionPhiInputs(HPhi* phi, HInstruction* reduction) {
1669 HInstruction* new_phi = vector_map_->Get(phi);
1670 HInstruction* new_init = reductions_->Get(phi);
1671 HInstruction* new_red = vector_map_->Get(reduction);
1672 // Link unrolled vector loop back to new phi.
1673 for (; !new_phi->IsPhi(); new_phi = vector_permanent_map_->Get(new_phi)) {
1674 DCHECK(new_phi->IsVecOperation());
1675 }
1676 // Prepare the new initialization.
1677 if (vector_mode_ == kVector) {
1678 // Generate a [initial, 0, .., 0] vector for add or
1679 // a [initial, initial, .., initial] vector for min/max.
1680 HVecOperation* red_vector = new_red->AsVecOperation();
1681 HVecReduce::ReductionKind kind = GetReductionKind(red_vector);
1682 uint32_t vector_length = red_vector->GetVectorLength();
1683 DataType::Type type = red_vector->GetPackedType();
1684 if (kind == HVecReduce::ReductionKind::kSum) {
1685 new_init = Insert(vector_preheader_,
1686 new (global_allocator_) HVecSetScalars(global_allocator_,
1687 &new_init,
1688 type,
1689 vector_length,
1690 1,
1691 kNoDexPc));
1692 } else {
1693 new_init = Insert(vector_preheader_,
1694 new (global_allocator_) HVecReplicateScalar(global_allocator_,
1695 new_init,
1696 type,
1697 vector_length,
1698 kNoDexPc));
1699 }
1700 } else {
1701 new_init = ReduceAndExtractIfNeeded(new_init);
1702 }
1703 // Set the phi inputs.
1704 DCHECK(new_phi->IsPhi());
1705 new_phi->AsPhi()->AddInput(new_init);
1706 new_phi->AsPhi()->AddInput(new_red);
1707 // New feed value for next phi (safe mutation in iteration).
1708 reductions_->find(phi)->second = new_phi;
1709 }
1710
ReduceAndExtractIfNeeded(HInstruction * instruction)1711 HInstruction* HLoopOptimization::ReduceAndExtractIfNeeded(HInstruction* instruction) {
1712 if (instruction->IsPhi()) {
1713 HInstruction* input = instruction->InputAt(1);
1714 if (HVecOperation::ReturnsSIMDValue(input)) {
1715 DCHECK(!input->IsPhi());
1716 HVecOperation* input_vector = input->AsVecOperation();
1717 uint32_t vector_length = input_vector->GetVectorLength();
1718 DataType::Type type = input_vector->GetPackedType();
1719 HVecReduce::ReductionKind kind = GetReductionKind(input_vector);
1720 HBasicBlock* exit = instruction->GetBlock()->GetSuccessors()[0];
1721 // Generate a vector reduction and scalar extract
1722 // x = REDUCE( [x_1, .., x_n] )
1723 // y = x_1
1724 // along the exit of the defining loop.
1725 HInstruction* reduce = new (global_allocator_) HVecReduce(
1726 global_allocator_, instruction, type, vector_length, kind, kNoDexPc);
1727 exit->InsertInstructionBefore(reduce, exit->GetFirstInstruction());
1728 instruction = new (global_allocator_) HVecExtractScalar(
1729 global_allocator_, reduce, type, vector_length, 0, kNoDexPc);
1730 exit->InsertInstructionAfter(instruction, reduce);
1731 }
1732 }
1733 return instruction;
1734 }
1735
1736 #define GENERATE_VEC(x, y) \
1737 if (vector_mode_ == kVector) { \
1738 vector = (x); \
1739 } else { \
1740 DCHECK(vector_mode_ == kSequential); \
1741 vector = (y); \
1742 } \
1743 break;
1744
GenerateVecOp(HInstruction * org,HInstruction * opa,HInstruction * opb,DataType::Type type,bool is_unsigned)1745 void HLoopOptimization::GenerateVecOp(HInstruction* org,
1746 HInstruction* opa,
1747 HInstruction* opb,
1748 DataType::Type type,
1749 bool is_unsigned) {
1750 uint32_t dex_pc = org->GetDexPc();
1751 HInstruction* vector = nullptr;
1752 DataType::Type org_type = org->GetType();
1753 switch (org->GetKind()) {
1754 case HInstruction::kNeg:
1755 DCHECK(opb == nullptr);
1756 GENERATE_VEC(
1757 new (global_allocator_) HVecNeg(global_allocator_, opa, type, vector_length_, dex_pc),
1758 new (global_allocator_) HNeg(org_type, opa, dex_pc));
1759 case HInstruction::kNot:
1760 DCHECK(opb == nullptr);
1761 GENERATE_VEC(
1762 new (global_allocator_) HVecNot(global_allocator_, opa, type, vector_length_, dex_pc),
1763 new (global_allocator_) HNot(org_type, opa, dex_pc));
1764 case HInstruction::kBooleanNot:
1765 DCHECK(opb == nullptr);
1766 GENERATE_VEC(
1767 new (global_allocator_) HVecNot(global_allocator_, opa, type, vector_length_, dex_pc),
1768 new (global_allocator_) HBooleanNot(opa, dex_pc));
1769 case HInstruction::kTypeConversion:
1770 DCHECK(opb == nullptr);
1771 GENERATE_VEC(
1772 new (global_allocator_) HVecCnv(global_allocator_, opa, type, vector_length_, dex_pc),
1773 new (global_allocator_) HTypeConversion(org_type, opa, dex_pc));
1774 case HInstruction::kAdd:
1775 GENERATE_VEC(
1776 new (global_allocator_) HVecAdd(global_allocator_, opa, opb, type, vector_length_, dex_pc),
1777 new (global_allocator_) HAdd(org_type, opa, opb, dex_pc));
1778 case HInstruction::kSub:
1779 GENERATE_VEC(
1780 new (global_allocator_) HVecSub(global_allocator_, opa, opb, type, vector_length_, dex_pc),
1781 new (global_allocator_) HSub(org_type, opa, opb, dex_pc));
1782 case HInstruction::kMul:
1783 GENERATE_VEC(
1784 new (global_allocator_) HVecMul(global_allocator_, opa, opb, type, vector_length_, dex_pc),
1785 new (global_allocator_) HMul(org_type, opa, opb, dex_pc));
1786 case HInstruction::kDiv:
1787 GENERATE_VEC(
1788 new (global_allocator_) HVecDiv(global_allocator_, opa, opb, type, vector_length_, dex_pc),
1789 new (global_allocator_) HDiv(org_type, opa, opb, dex_pc));
1790 case HInstruction::kAnd:
1791 GENERATE_VEC(
1792 new (global_allocator_) HVecAnd(global_allocator_, opa, opb, type, vector_length_, dex_pc),
1793 new (global_allocator_) HAnd(org_type, opa, opb, dex_pc));
1794 case HInstruction::kOr:
1795 GENERATE_VEC(
1796 new (global_allocator_) HVecOr(global_allocator_, opa, opb, type, vector_length_, dex_pc),
1797 new (global_allocator_) HOr(org_type, opa, opb, dex_pc));
1798 case HInstruction::kXor:
1799 GENERATE_VEC(
1800 new (global_allocator_) HVecXor(global_allocator_, opa, opb, type, vector_length_, dex_pc),
1801 new (global_allocator_) HXor(org_type, opa, opb, dex_pc));
1802 case HInstruction::kShl:
1803 GENERATE_VEC(
1804 new (global_allocator_) HVecShl(global_allocator_, opa, opb, type, vector_length_, dex_pc),
1805 new (global_allocator_) HShl(org_type, opa, opb, dex_pc));
1806 case HInstruction::kShr:
1807 GENERATE_VEC(
1808 new (global_allocator_) HVecShr(global_allocator_, opa, opb, type, vector_length_, dex_pc),
1809 new (global_allocator_) HShr(org_type, opa, opb, dex_pc));
1810 case HInstruction::kUShr:
1811 GENERATE_VEC(
1812 new (global_allocator_) HVecUShr(global_allocator_, opa, opb, type, vector_length_, dex_pc),
1813 new (global_allocator_) HUShr(org_type, opa, opb, dex_pc));
1814 case HInstruction::kInvokeStaticOrDirect: {
1815 HInvokeStaticOrDirect* invoke = org->AsInvokeStaticOrDirect();
1816 if (vector_mode_ == kVector) {
1817 switch (invoke->GetIntrinsic()) {
1818 case Intrinsics::kMathAbsInt:
1819 case Intrinsics::kMathAbsLong:
1820 case Intrinsics::kMathAbsFloat:
1821 case Intrinsics::kMathAbsDouble:
1822 DCHECK(opb == nullptr);
1823 vector = new (global_allocator_)
1824 HVecAbs(global_allocator_, opa, type, vector_length_, dex_pc);
1825 break;
1826 case Intrinsics::kMathMinIntInt:
1827 case Intrinsics::kMathMinLongLong:
1828 case Intrinsics::kMathMinFloatFloat:
1829 case Intrinsics::kMathMinDoubleDouble: {
1830 vector = new (global_allocator_)
1831 HVecMin(global_allocator_,
1832 opa,
1833 opb,
1834 HVecOperation::ToProperType(type, is_unsigned),
1835 vector_length_,
1836 dex_pc);
1837 break;
1838 }
1839 case Intrinsics::kMathMaxIntInt:
1840 case Intrinsics::kMathMaxLongLong:
1841 case Intrinsics::kMathMaxFloatFloat:
1842 case Intrinsics::kMathMaxDoubleDouble: {
1843 vector = new (global_allocator_)
1844 HVecMax(global_allocator_,
1845 opa,
1846 opb,
1847 HVecOperation::ToProperType(type, is_unsigned),
1848 vector_length_,
1849 dex_pc);
1850 break;
1851 }
1852 default:
1853 LOG(FATAL) << "Unsupported SIMD intrinsic " << org->GetId();
1854 UNREACHABLE();
1855 } // switch invoke
1856 } else {
1857 // In scalar code, simply clone the method invoke, and replace its operands with the
1858 // corresponding new scalar instructions in the loop. The instruction will get an
1859 // environment while being inserted from the instruction map in original program order.
1860 DCHECK(vector_mode_ == kSequential);
1861 size_t num_args = invoke->GetNumberOfArguments();
1862 HInvokeStaticOrDirect* new_invoke = new (global_allocator_) HInvokeStaticOrDirect(
1863 global_allocator_,
1864 num_args,
1865 invoke->GetType(),
1866 invoke->GetDexPc(),
1867 invoke->GetDexMethodIndex(),
1868 invoke->GetResolvedMethod(),
1869 invoke->GetDispatchInfo(),
1870 invoke->GetInvokeType(),
1871 invoke->GetTargetMethod(),
1872 invoke->GetClinitCheckRequirement());
1873 HInputsRef inputs = invoke->GetInputs();
1874 size_t num_inputs = inputs.size();
1875 DCHECK_LE(num_args, num_inputs);
1876 DCHECK_EQ(num_inputs, new_invoke->GetInputs().size()); // both invokes agree
1877 for (size_t index = 0; index < num_inputs; ++index) {
1878 HInstruction* new_input = index < num_args
1879 ? vector_map_->Get(inputs[index])
1880 : inputs[index]; // beyond arguments: just pass through
1881 new_invoke->SetArgumentAt(index, new_input);
1882 }
1883 new_invoke->SetIntrinsic(invoke->GetIntrinsic(),
1884 kNeedsEnvironmentOrCache,
1885 kNoSideEffects,
1886 kNoThrow);
1887 vector = new_invoke;
1888 }
1889 break;
1890 }
1891 default:
1892 break;
1893 } // switch
1894 CHECK(vector != nullptr) << "Unsupported SIMD operator";
1895 vector_map_->Put(org, vector);
1896 }
1897
1898 #undef GENERATE_VEC
1899
1900 //
1901 // Vectorization idioms.
1902 //
1903
1904 // Method recognizes the following idioms:
1905 // rounding halving add (a + b + 1) >> 1 for unsigned/signed operands a, b
1906 // truncated halving add (a + b) >> 1 for unsigned/signed operands a, b
1907 // Provided that the operands are promoted to a wider form to do the arithmetic and
1908 // then cast back to narrower form, the idioms can be mapped into efficient SIMD
1909 // implementation that operates directly in narrower form (plus one extra bit).
1910 // TODO: current version recognizes implicit byte/short/char widening only;
1911 // explicit widening from int to long could be added later.
VectorizeHalvingAddIdiom(LoopNode * node,HInstruction * instruction,bool generate_code,DataType::Type type,uint64_t restrictions)1912 bool HLoopOptimization::VectorizeHalvingAddIdiom(LoopNode* node,
1913 HInstruction* instruction,
1914 bool generate_code,
1915 DataType::Type type,
1916 uint64_t restrictions) {
1917 // Test for top level arithmetic shift right x >> 1 or logical shift right x >>> 1
1918 // (note whether the sign bit in wider precision is shifted in has no effect
1919 // on the narrow precision computed by the idiom).
1920 if ((instruction->IsShr() ||
1921 instruction->IsUShr()) &&
1922 IsInt64Value(instruction->InputAt(1), 1)) {
1923 // Test for (a + b + c) >> 1 for optional constant c.
1924 HInstruction* a = nullptr;
1925 HInstruction* b = nullptr;
1926 int64_t c = 0;
1927 if (IsAddConst(instruction->InputAt(0), /*out*/ &a, /*out*/ &b, /*out*/ &c)) {
1928 DCHECK(a != nullptr && b != nullptr);
1929 // Accept c == 1 (rounded) or c == 0 (not rounded).
1930 bool is_rounded = false;
1931 if (c == 1) {
1932 is_rounded = true;
1933 } else if (c != 0) {
1934 return false;
1935 }
1936 // Accept consistent zero or sign extension on operands a and b.
1937 HInstruction* r = nullptr;
1938 HInstruction* s = nullptr;
1939 bool is_unsigned = false;
1940 if (!IsNarrowerOperands(a, b, type, &r, &s, &is_unsigned)) {
1941 return false;
1942 }
1943 // Deal with vector restrictions.
1944 if ((!is_unsigned && HasVectorRestrictions(restrictions, kNoSignedHAdd)) ||
1945 (!is_rounded && HasVectorRestrictions(restrictions, kNoUnroundedHAdd))) {
1946 return false;
1947 }
1948 // Accept recognized halving add for vectorizable operands. Vectorized code uses the
1949 // shorthand idiomatic operation. Sequential code uses the original scalar expressions.
1950 DCHECK(r != nullptr);
1951 DCHECK(s != nullptr);
1952 if (generate_code && vector_mode_ != kVector) { // de-idiom
1953 r = instruction->InputAt(0);
1954 s = instruction->InputAt(1);
1955 }
1956 if (VectorizeUse(node, r, generate_code, type, restrictions) &&
1957 VectorizeUse(node, s, generate_code, type, restrictions)) {
1958 if (generate_code) {
1959 if (vector_mode_ == kVector) {
1960 vector_map_->Put(instruction, new (global_allocator_) HVecHalvingAdd(
1961 global_allocator_,
1962 vector_map_->Get(r),
1963 vector_map_->Get(s),
1964 HVecOperation::ToProperType(type, is_unsigned),
1965 vector_length_,
1966 is_rounded,
1967 kNoDexPc));
1968 MaybeRecordStat(stats_, MethodCompilationStat::kLoopVectorizedIdiom);
1969 } else {
1970 GenerateVecOp(instruction, vector_map_->Get(r), vector_map_->Get(s), type);
1971 }
1972 }
1973 return true;
1974 }
1975 }
1976 }
1977 return false;
1978 }
1979
1980 // Method recognizes the following idiom:
1981 // q += ABS(a - b) for signed operands a, b
1982 // Provided that the operands have the same type or are promoted to a wider form.
1983 // Since this may involve a vector length change, the idiom is handled by going directly
1984 // to a sad-accumulate node (rather than relying combining finer grained nodes later).
1985 // TODO: unsigned SAD too?
VectorizeSADIdiom(LoopNode * node,HInstruction * instruction,bool generate_code,DataType::Type reduction_type,uint64_t restrictions)1986 bool HLoopOptimization::VectorizeSADIdiom(LoopNode* node,
1987 HInstruction* instruction,
1988 bool generate_code,
1989 DataType::Type reduction_type,
1990 uint64_t restrictions) {
1991 // Filter integral "q += ABS(a - b);" reduction, where ABS and SUB
1992 // are done in the same precision (either int or long).
1993 if (!instruction->IsAdd() ||
1994 (reduction_type != DataType::Type::kInt32 && reduction_type != DataType::Type::kInt64)) {
1995 return false;
1996 }
1997 HInstruction* q = instruction->InputAt(0);
1998 HInstruction* v = instruction->InputAt(1);
1999 HInstruction* a = nullptr;
2000 HInstruction* b = nullptr;
2001 if (v->IsInvokeStaticOrDirect() &&
2002 (v->AsInvokeStaticOrDirect()->GetIntrinsic() == Intrinsics::kMathAbsInt ||
2003 v->AsInvokeStaticOrDirect()->GetIntrinsic() == Intrinsics::kMathAbsLong)) {
2004 HInstruction* x = v->InputAt(0);
2005 if (x->GetType() == reduction_type) {
2006 int64_t c = 0;
2007 if (x->IsSub()) {
2008 a = x->InputAt(0);
2009 b = x->InputAt(1);
2010 } else if (IsAddConst(x, /*out*/ &a, /*out*/ &c)) {
2011 b = graph_->GetConstant(reduction_type, -c); // hidden SUB!
2012 }
2013 }
2014 }
2015 if (a == nullptr || b == nullptr) {
2016 return false;
2017 }
2018 // Accept same-type or consistent sign extension for narrower-type on operands a and b.
2019 // The same-type or narrower operands are called r (a or lower) and s (b or lower).
2020 // We inspect the operands carefully to pick the most suited type.
2021 HInstruction* r = a;
2022 HInstruction* s = b;
2023 bool is_unsigned = false;
2024 DataType::Type sub_type = a->GetType();
2025 if (DataType::Size(b->GetType()) < DataType::Size(sub_type)) {
2026 sub_type = b->GetType();
2027 }
2028 if (a->IsTypeConversion() &&
2029 DataType::Size(a->InputAt(0)->GetType()) < DataType::Size(sub_type)) {
2030 sub_type = a->InputAt(0)->GetType();
2031 }
2032 if (b->IsTypeConversion() &&
2033 DataType::Size(b->InputAt(0)->GetType()) < DataType::Size(sub_type)) {
2034 sub_type = b->InputAt(0)->GetType();
2035 }
2036 if (reduction_type != sub_type &&
2037 (!IsNarrowerOperands(a, b, sub_type, &r, &s, &is_unsigned) || is_unsigned)) {
2038 return false;
2039 }
2040 // Try same/narrower type and deal with vector restrictions.
2041 if (!TrySetVectorType(sub_type, &restrictions) ||
2042 HasVectorRestrictions(restrictions, kNoSAD) ||
2043 (reduction_type != sub_type && HasVectorRestrictions(restrictions, kNoWideSAD))) {
2044 return false;
2045 }
2046 // Accept SAD idiom for vectorizable operands. Vectorized code uses the shorthand
2047 // idiomatic operation. Sequential code uses the original scalar expressions.
2048 DCHECK(r != nullptr);
2049 DCHECK(s != nullptr);
2050 if (generate_code && vector_mode_ != kVector) { // de-idiom
2051 r = s = v->InputAt(0);
2052 }
2053 if (VectorizeUse(node, q, generate_code, sub_type, restrictions) &&
2054 VectorizeUse(node, r, generate_code, sub_type, restrictions) &&
2055 VectorizeUse(node, s, generate_code, sub_type, restrictions)) {
2056 if (generate_code) {
2057 reduction_type = HVecOperation::ToProperType(reduction_type, is_unsigned);
2058 if (vector_mode_ == kVector) {
2059 vector_map_->Put(instruction, new (global_allocator_) HVecSADAccumulate(
2060 global_allocator_,
2061 vector_map_->Get(q),
2062 vector_map_->Get(r),
2063 vector_map_->Get(s),
2064 reduction_type,
2065 GetOtherVL(reduction_type, sub_type, vector_length_),
2066 kNoDexPc));
2067 MaybeRecordStat(stats_, MethodCompilationStat::kLoopVectorizedIdiom);
2068 } else {
2069 GenerateVecOp(v, vector_map_->Get(r), nullptr, reduction_type);
2070 GenerateVecOp(instruction, vector_map_->Get(q), vector_map_->Get(v), reduction_type);
2071 }
2072 }
2073 return true;
2074 }
2075 return false;
2076 }
2077
2078 //
2079 // Vectorization heuristics.
2080 //
2081
ComputeAlignment(HInstruction * offset,DataType::Type type,bool is_string_char_at,uint32_t peeling)2082 Alignment HLoopOptimization::ComputeAlignment(HInstruction* offset,
2083 DataType::Type type,
2084 bool is_string_char_at,
2085 uint32_t peeling) {
2086 // Combine the alignment and hidden offset that is guaranteed by
2087 // the Android runtime with a known starting index adjusted as bytes.
2088 int64_t value = 0;
2089 if (IsInt64AndGet(offset, /*out*/ &value)) {
2090 uint32_t start_offset =
2091 HiddenOffset(type, is_string_char_at) + (value + peeling) * DataType::Size(type);
2092 return Alignment(BaseAlignment(), start_offset & (BaseAlignment() - 1u));
2093 }
2094 // Otherwise, the Android runtime guarantees at least natural alignment.
2095 return Alignment(DataType::Size(type), 0);
2096 }
2097
SetAlignmentStrategy(uint32_t peeling_votes[],const ArrayReference * peeling_candidate)2098 void HLoopOptimization::SetAlignmentStrategy(uint32_t peeling_votes[],
2099 const ArrayReference* peeling_candidate) {
2100 // Current heuristic: pick the best static loop peeling factor, if any,
2101 // or otherwise use dynamic loop peeling on suggested peeling candidate.
2102 uint32_t max_vote = 0;
2103 for (int32_t i = 0; i < 16; i++) {
2104 if (peeling_votes[i] > max_vote) {
2105 max_vote = peeling_votes[i];
2106 vector_static_peeling_factor_ = i;
2107 }
2108 }
2109 if (max_vote == 0) {
2110 vector_dynamic_peeling_candidate_ = peeling_candidate;
2111 }
2112 }
2113
MaxNumberPeeled()2114 uint32_t HLoopOptimization::MaxNumberPeeled() {
2115 if (vector_dynamic_peeling_candidate_ != nullptr) {
2116 return vector_length_ - 1u; // worst-case
2117 }
2118 return vector_static_peeling_factor_; // known exactly
2119 }
2120
IsVectorizationProfitable(int64_t trip_count)2121 bool HLoopOptimization::IsVectorizationProfitable(int64_t trip_count) {
2122 // Current heuristic: non-empty body with sufficient number of iterations (if known).
2123 // TODO: refine by looking at e.g. operation count, alignment, etc.
2124 // TODO: trip count is really unsigned entity, provided the guarding test
2125 // is satisfied; deal with this more carefully later
2126 uint32_t max_peel = MaxNumberPeeled();
2127 if (vector_length_ == 0) {
2128 return false; // nothing found
2129 } else if (trip_count < 0) {
2130 return false; // guard against non-taken/large
2131 } else if ((0 < trip_count) && (trip_count < (vector_length_ + max_peel))) {
2132 return false; // insufficient iterations
2133 }
2134 return true;
2135 }
2136
2137 static constexpr uint32_t ARM64_SIMD_MAXIMUM_UNROLL_FACTOR = 8;
2138 static constexpr uint32_t ARM64_SIMD_HEURISTIC_MAX_BODY_SIZE = 50;
2139
GetUnrollingFactor(HBasicBlock * block,int64_t trip_count)2140 uint32_t HLoopOptimization::GetUnrollingFactor(HBasicBlock* block, int64_t trip_count) {
2141 uint32_t max_peel = MaxNumberPeeled();
2142 switch (compiler_driver_->GetInstructionSet()) {
2143 case InstructionSet::kArm64: {
2144 // Don't unroll with insufficient iterations.
2145 // TODO: Unroll loops with unknown trip count.
2146 DCHECK_NE(vector_length_, 0u);
2147 if (trip_count < (2 * vector_length_ + max_peel)) {
2148 return kNoUnrollingFactor;
2149 }
2150 // Don't unroll for large loop body size.
2151 uint32_t instruction_count = block->GetInstructions().CountSize();
2152 if (instruction_count >= ARM64_SIMD_HEURISTIC_MAX_BODY_SIZE) {
2153 return kNoUnrollingFactor;
2154 }
2155 // Find a beneficial unroll factor with the following restrictions:
2156 // - At least one iteration of the transformed loop should be executed.
2157 // - The loop body shouldn't be "too big" (heuristic).
2158 uint32_t uf1 = ARM64_SIMD_HEURISTIC_MAX_BODY_SIZE / instruction_count;
2159 uint32_t uf2 = (trip_count - max_peel) / vector_length_;
2160 uint32_t unroll_factor =
2161 TruncToPowerOfTwo(std::min({uf1, uf2, ARM64_SIMD_MAXIMUM_UNROLL_FACTOR}));
2162 DCHECK_GE(unroll_factor, 1u);
2163 return unroll_factor;
2164 }
2165 case InstructionSet::kX86:
2166 case InstructionSet::kX86_64:
2167 default:
2168 return kNoUnrollingFactor;
2169 }
2170 }
2171
2172 //
2173 // Helpers.
2174 //
2175
TrySetPhiInduction(HPhi * phi,bool restrict_uses)2176 bool HLoopOptimization::TrySetPhiInduction(HPhi* phi, bool restrict_uses) {
2177 // Start with empty phi induction.
2178 iset_->clear();
2179
2180 // Special case Phis that have equivalent in a debuggable setup. Our graph checker isn't
2181 // smart enough to follow strongly connected components (and it's probably not worth
2182 // it to make it so). See b/33775412.
2183 if (graph_->IsDebuggable() && phi->HasEquivalentPhi()) {
2184 return false;
2185 }
2186
2187 // Lookup phi induction cycle.
2188 ArenaSet<HInstruction*>* set = induction_range_.LookupCycle(phi);
2189 if (set != nullptr) {
2190 for (HInstruction* i : *set) {
2191 // Check that, other than instructions that are no longer in the graph (removed earlier)
2192 // each instruction is removable and, when restrict uses are requested, other than for phi,
2193 // all uses are contained within the cycle.
2194 if (!i->IsInBlock()) {
2195 continue;
2196 } else if (!i->IsRemovable()) {
2197 return false;
2198 } else if (i != phi && restrict_uses) {
2199 // Deal with regular uses.
2200 for (const HUseListNode<HInstruction*>& use : i->GetUses()) {
2201 if (set->find(use.GetUser()) == set->end()) {
2202 return false;
2203 }
2204 }
2205 }
2206 iset_->insert(i); // copy
2207 }
2208 return true;
2209 }
2210 return false;
2211 }
2212
TrySetPhiReduction(HPhi * phi)2213 bool HLoopOptimization::TrySetPhiReduction(HPhi* phi) {
2214 DCHECK(iset_->empty());
2215 // Only unclassified phi cycles are candidates for reductions.
2216 if (induction_range_.IsClassified(phi)) {
2217 return false;
2218 }
2219 // Accept operations like x = x + .., provided that the phi and the reduction are
2220 // used exactly once inside the loop, and by each other.
2221 HInputsRef inputs = phi->GetInputs();
2222 if (inputs.size() == 2) {
2223 HInstruction* reduction = inputs[1];
2224 if (HasReductionFormat(reduction, phi)) {
2225 HLoopInformation* loop_info = phi->GetBlock()->GetLoopInformation();
2226 uint32_t use_count = 0;
2227 bool single_use_inside_loop =
2228 // Reduction update only used by phi.
2229 reduction->GetUses().HasExactlyOneElement() &&
2230 !reduction->HasEnvironmentUses() &&
2231 // Reduction update is only use of phi inside the loop.
2232 IsOnlyUsedAfterLoop(loop_info, phi, /*collect_loop_uses*/ true, &use_count) &&
2233 iset_->size() == 1;
2234 iset_->clear(); // leave the way you found it
2235 if (single_use_inside_loop) {
2236 // Link reduction back, and start recording feed value.
2237 reductions_->Put(reduction, phi);
2238 reductions_->Put(phi, phi->InputAt(0));
2239 return true;
2240 }
2241 }
2242 }
2243 return false;
2244 }
2245
TrySetSimpleLoopHeader(HBasicBlock * block,HPhi ** main_phi)2246 bool HLoopOptimization::TrySetSimpleLoopHeader(HBasicBlock* block, /*out*/ HPhi** main_phi) {
2247 // Start with empty phi induction and reductions.
2248 iset_->clear();
2249 reductions_->clear();
2250
2251 // Scan the phis to find the following (the induction structure has already
2252 // been optimized, so we don't need to worry about trivial cases):
2253 // (1) optional reductions in loop,
2254 // (2) the main induction, used in loop control.
2255 HPhi* phi = nullptr;
2256 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
2257 if (TrySetPhiReduction(it.Current()->AsPhi())) {
2258 continue;
2259 } else if (phi == nullptr) {
2260 // Found the first candidate for main induction.
2261 phi = it.Current()->AsPhi();
2262 } else {
2263 return false;
2264 }
2265 }
2266
2267 // Then test for a typical loopheader:
2268 // s: SuspendCheck
2269 // c: Condition(phi, bound)
2270 // i: If(c)
2271 if (phi != nullptr && TrySetPhiInduction(phi, /*restrict_uses*/ false)) {
2272 HInstruction* s = block->GetFirstInstruction();
2273 if (s != nullptr && s->IsSuspendCheck()) {
2274 HInstruction* c = s->GetNext();
2275 if (c != nullptr &&
2276 c->IsCondition() &&
2277 c->GetUses().HasExactlyOneElement() && // only used for termination
2278 !c->HasEnvironmentUses()) { // unlikely, but not impossible
2279 HInstruction* i = c->GetNext();
2280 if (i != nullptr && i->IsIf() && i->InputAt(0) == c) {
2281 iset_->insert(c);
2282 iset_->insert(s);
2283 *main_phi = phi;
2284 return true;
2285 }
2286 }
2287 }
2288 }
2289 return false;
2290 }
2291
IsEmptyBody(HBasicBlock * block)2292 bool HLoopOptimization::IsEmptyBody(HBasicBlock* block) {
2293 if (!block->GetPhis().IsEmpty()) {
2294 return false;
2295 }
2296 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
2297 HInstruction* instruction = it.Current();
2298 if (!instruction->IsGoto() && iset_->find(instruction) == iset_->end()) {
2299 return false;
2300 }
2301 }
2302 return true;
2303 }
2304
IsUsedOutsideLoop(HLoopInformation * loop_info,HInstruction * instruction)2305 bool HLoopOptimization::IsUsedOutsideLoop(HLoopInformation* loop_info,
2306 HInstruction* instruction) {
2307 // Deal with regular uses.
2308 for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
2309 if (use.GetUser()->GetBlock()->GetLoopInformation() != loop_info) {
2310 return true;
2311 }
2312 }
2313 return false;
2314 }
2315
IsOnlyUsedAfterLoop(HLoopInformation * loop_info,HInstruction * instruction,bool collect_loop_uses,uint32_t * use_count)2316 bool HLoopOptimization::IsOnlyUsedAfterLoop(HLoopInformation* loop_info,
2317 HInstruction* instruction,
2318 bool collect_loop_uses,
2319 /*out*/ uint32_t* use_count) {
2320 // Deal with regular uses.
2321 for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
2322 HInstruction* user = use.GetUser();
2323 if (iset_->find(user) == iset_->end()) { // not excluded?
2324 HLoopInformation* other_loop_info = user->GetBlock()->GetLoopInformation();
2325 if (other_loop_info != nullptr && other_loop_info->IsIn(*loop_info)) {
2326 // If collect_loop_uses is set, simply keep adding those uses to the set.
2327 // Otherwise, reject uses inside the loop that were not already in the set.
2328 if (collect_loop_uses) {
2329 iset_->insert(user);
2330 continue;
2331 }
2332 return false;
2333 }
2334 ++*use_count;
2335 }
2336 }
2337 return true;
2338 }
2339
TryReplaceWithLastValue(HLoopInformation * loop_info,HInstruction * instruction,HBasicBlock * block)2340 bool HLoopOptimization::TryReplaceWithLastValue(HLoopInformation* loop_info,
2341 HInstruction* instruction,
2342 HBasicBlock* block) {
2343 // Try to replace outside uses with the last value.
2344 if (induction_range_.CanGenerateLastValue(instruction)) {
2345 HInstruction* replacement = induction_range_.GenerateLastValue(instruction, graph_, block);
2346 // Deal with regular uses.
2347 const HUseList<HInstruction*>& uses = instruction->GetUses();
2348 for (auto it = uses.begin(), end = uses.end(); it != end;) {
2349 HInstruction* user = it->GetUser();
2350 size_t index = it->GetIndex();
2351 ++it; // increment before replacing
2352 if (iset_->find(user) == iset_->end()) { // not excluded?
2353 if (kIsDebugBuild) {
2354 // We have checked earlier in 'IsOnlyUsedAfterLoop' that the use is after the loop.
2355 HLoopInformation* other_loop_info = user->GetBlock()->GetLoopInformation();
2356 CHECK(other_loop_info == nullptr || !other_loop_info->IsIn(*loop_info));
2357 }
2358 user->ReplaceInput(replacement, index);
2359 induction_range_.Replace(user, instruction, replacement); // update induction
2360 }
2361 }
2362 // Deal with environment uses.
2363 const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses();
2364 for (auto it = env_uses.begin(), end = env_uses.end(); it != end;) {
2365 HEnvironment* user = it->GetUser();
2366 size_t index = it->GetIndex();
2367 ++it; // increment before replacing
2368 if (iset_->find(user->GetHolder()) == iset_->end()) { // not excluded?
2369 // Only update environment uses after the loop.
2370 HLoopInformation* other_loop_info = user->GetHolder()->GetBlock()->GetLoopInformation();
2371 if (other_loop_info == nullptr || !other_loop_info->IsIn(*loop_info)) {
2372 user->RemoveAsUserOfInput(index);
2373 user->SetRawEnvAt(index, replacement);
2374 replacement->AddEnvUseAt(user, index);
2375 }
2376 }
2377 }
2378 return true;
2379 }
2380 return false;
2381 }
2382
TryAssignLastValue(HLoopInformation * loop_info,HInstruction * instruction,HBasicBlock * block,bool collect_loop_uses)2383 bool HLoopOptimization::TryAssignLastValue(HLoopInformation* loop_info,
2384 HInstruction* instruction,
2385 HBasicBlock* block,
2386 bool collect_loop_uses) {
2387 // Assigning the last value is always successful if there are no uses.
2388 // Otherwise, it succeeds in a no early-exit loop by generating the
2389 // proper last value assignment.
2390 uint32_t use_count = 0;
2391 return IsOnlyUsedAfterLoop(loop_info, instruction, collect_loop_uses, &use_count) &&
2392 (use_count == 0 ||
2393 (!IsEarlyExit(loop_info) && TryReplaceWithLastValue(loop_info, instruction, block)));
2394 }
2395
RemoveDeadInstructions(const HInstructionList & list)2396 void HLoopOptimization::RemoveDeadInstructions(const HInstructionList& list) {
2397 for (HBackwardInstructionIterator i(list); !i.Done(); i.Advance()) {
2398 HInstruction* instruction = i.Current();
2399 if (instruction->IsDeadAndRemovable()) {
2400 simplified_ = true;
2401 instruction->GetBlock()->RemoveInstructionOrPhi(instruction);
2402 }
2403 }
2404 }
2405
CanRemoveCycle()2406 bool HLoopOptimization::CanRemoveCycle() {
2407 for (HInstruction* i : *iset_) {
2408 // We can never remove instructions that have environment
2409 // uses when we compile 'debuggable'.
2410 if (i->HasEnvironmentUses() && graph_->IsDebuggable()) {
2411 return false;
2412 }
2413 // A deoptimization should never have an environment input removed.
2414 for (const HUseListNode<HEnvironment*>& use : i->GetEnvUses()) {
2415 if (use.GetUser()->GetHolder()->IsDeoptimize()) {
2416 return false;
2417 }
2418 }
2419 }
2420 return true;
2421 }
2422
2423 } // namespace art
2424