1 /*
2 **
3 ** Copyright 2012, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 ** http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17
18
19 #define LOG_TAG "AudioFlinger"
20 //#define LOG_NDEBUG 0
21 #define ATRACE_TAG ATRACE_TAG_AUDIO
22
23 #include "Configuration.h"
24 #include <math.h>
25 #include <fcntl.h>
26 #include <linux/futex.h>
27 #include <sys/stat.h>
28 #include <sys/syscall.h>
29 #include <cutils/properties.h>
30 #include <media/AudioParameter.h>
31 #include <media/AudioResamplerPublic.h>
32 #include <media/RecordBufferConverter.h>
33 #include <media/TypeConverter.h>
34 #include <utils/Log.h>
35 #include <utils/Trace.h>
36
37 #include <private/media/AudioTrackShared.h>
38 #include <private/android_filesystem_config.h>
39 #include <audio_utils/mono_blend.h>
40 #include <audio_utils/primitives.h>
41 #include <audio_utils/format.h>
42 #include <audio_utils/minifloat.h>
43 #include <system/audio_effects/effect_ns.h>
44 #include <system/audio_effects/effect_aec.h>
45 #include <system/audio.h>
46
47 // NBAIO implementations
48 #include <media/nbaio/AudioStreamInSource.h>
49 #include <media/nbaio/AudioStreamOutSink.h>
50 #include <media/nbaio/MonoPipe.h>
51 #include <media/nbaio/MonoPipeReader.h>
52 #include <media/nbaio/Pipe.h>
53 #include <media/nbaio/PipeReader.h>
54 #include <media/nbaio/SourceAudioBufferProvider.h>
55 #include <mediautils/BatteryNotifier.h>
56
57 #include <powermanager/PowerManager.h>
58
59 #include <media/audiohal/EffectsFactoryHalInterface.h>
60 #include <media/audiohal/StreamHalInterface.h>
61
62 #include "AudioFlinger.h"
63 #include "FastMixer.h"
64 #include "FastCapture.h"
65 #include "ServiceUtilities.h"
66 #include "mediautils/SchedulingPolicyService.h"
67
68 #ifdef ADD_BATTERY_DATA
69 #include <media/IMediaPlayerService.h>
70 #include <media/IMediaDeathNotifier.h>
71 #endif
72
73 #ifdef DEBUG_CPU_USAGE
74 #include <cpustats/CentralTendencyStatistics.h>
75 #include <cpustats/ThreadCpuUsage.h>
76 #endif
77
78 #include "AutoPark.h"
79
80 #include <pthread.h>
81 #include "TypedLogger.h"
82
83 // ----------------------------------------------------------------------------
84
85 // Note: the following macro is used for extremely verbose logging message. In
86 // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
87 // 0; but one side effect of this is to turn all LOGV's as well. Some messages
88 // are so verbose that we want to suppress them even when we have ALOG_ASSERT
89 // turned on. Do not uncomment the #def below unless you really know what you
90 // are doing and want to see all of the extremely verbose messages.
91 //#define VERY_VERY_VERBOSE_LOGGING
92 #ifdef VERY_VERY_VERBOSE_LOGGING
93 #define ALOGVV ALOGV
94 #else
95 #define ALOGVV(a...) do { } while(0)
96 #endif
97
98 // TODO: Move these macro/inlines to a header file.
99 #define max(a, b) ((a) > (b) ? (a) : (b))
100 template <typename T>
min(const T & a,const T & b)101 static inline T min(const T& a, const T& b)
102 {
103 return a < b ? a : b;
104 }
105
106 namespace android {
107
108 // retry counts for buffer fill timeout
109 // 50 * ~20msecs = 1 second
110 static const int8_t kMaxTrackRetries = 50;
111 static const int8_t kMaxTrackStartupRetries = 50;
112 // allow less retry attempts on direct output thread.
113 // direct outputs can be a scarce resource in audio hardware and should
114 // be released as quickly as possible.
115 static const int8_t kMaxTrackRetriesDirect = 2;
116
117
118
119 // don't warn about blocked writes or record buffer overflows more often than this
120 static const nsecs_t kWarningThrottleNs = seconds(5);
121
122 // RecordThread loop sleep time upon application overrun or audio HAL read error
123 static const int kRecordThreadSleepUs = 5000;
124
125 // maximum time to wait in sendConfigEvent_l() for a status to be received
126 static const nsecs_t kConfigEventTimeoutNs = seconds(2);
127
128 // minimum sleep time for the mixer thread loop when tracks are active but in underrun
129 static const uint32_t kMinThreadSleepTimeUs = 5000;
130 // maximum divider applied to the active sleep time in the mixer thread loop
131 static const uint32_t kMaxThreadSleepTimeShift = 2;
132
133 // minimum normal sink buffer size, expressed in milliseconds rather than frames
134 // FIXME This should be based on experimentally observed scheduling jitter
135 static const uint32_t kMinNormalSinkBufferSizeMs = 20;
136 // maximum normal sink buffer size
137 static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
138
139 // minimum capture buffer size in milliseconds to _not_ need a fast capture thread
140 // FIXME This should be based on experimentally observed scheduling jitter
141 static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
142
143 // Offloaded output thread standby delay: allows track transition without going to standby
144 static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
145
146 // Direct output thread minimum sleep time in idle or active(underrun) state
147 static const nsecs_t kDirectMinSleepTimeUs = 10000;
148
149 // The universal constant for ubiquitous 20ms value. The value of 20ms seems to provide a good
150 // balance between power consumption and latency, and allows threads to be scheduled reliably
151 // by the CFS scheduler.
152 // FIXME Express other hardcoded references to 20ms with references to this constant and move
153 // it appropriately.
154 #define FMS_20 20
155
156 // Whether to use fast mixer
157 static const enum {
158 FastMixer_Never, // never initialize or use: for debugging only
159 FastMixer_Always, // always initialize and use, even if not needed: for debugging only
160 // normal mixer multiplier is 1
161 FastMixer_Static, // initialize if needed, then use all the time if initialized,
162 // multiplier is calculated based on min & max normal mixer buffer size
163 FastMixer_Dynamic, // initialize if needed, then use dynamically depending on track load,
164 // multiplier is calculated based on min & max normal mixer buffer size
165 // FIXME for FastMixer_Dynamic:
166 // Supporting this option will require fixing HALs that can't handle large writes.
167 // For example, one HAL implementation returns an error from a large write,
168 // and another HAL implementation corrupts memory, possibly in the sample rate converter.
169 // We could either fix the HAL implementations, or provide a wrapper that breaks
170 // up large writes into smaller ones, and the wrapper would need to deal with scheduler.
171 } kUseFastMixer = FastMixer_Static;
172
173 // Whether to use fast capture
174 static const enum {
175 FastCapture_Never, // never initialize or use: for debugging only
176 FastCapture_Always, // always initialize and use, even if not needed: for debugging only
177 FastCapture_Static, // initialize if needed, then use all the time if initialized
178 } kUseFastCapture = FastCapture_Static;
179
180 // Priorities for requestPriority
181 static const int kPriorityAudioApp = 2;
182 static const int kPriorityFastMixer = 3;
183 static const int kPriorityFastCapture = 3;
184
185 // IAudioFlinger::createTrack() has an in/out parameter 'pFrameCount' for the total size of the
186 // track buffer in shared memory. Zero on input means to use a default value. For fast tracks,
187 // AudioFlinger derives the default from HAL buffer size and 'fast track multiplier'.
188
189 // This is the default value, if not specified by property.
190 static const int kFastTrackMultiplier = 2;
191
192 // The minimum and maximum allowed values
193 static const int kFastTrackMultiplierMin = 1;
194 static const int kFastTrackMultiplierMax = 2;
195
196 // The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
197 static int sFastTrackMultiplier = kFastTrackMultiplier;
198
199 // See Thread::readOnlyHeap().
200 // Initially this heap is used to allocate client buffers for "fast" AudioRecord.
201 // Eventually it will be the single buffer that FastCapture writes into via HAL read(),
202 // and that all "fast" AudioRecord clients read from. In either case, the size can be small.
203 static const size_t kRecordThreadReadOnlyHeapSize = 0x4000;
204
205 // ----------------------------------------------------------------------------
206
207 static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
208
sFastTrackMultiplierInit()209 static void sFastTrackMultiplierInit()
210 {
211 char value[PROPERTY_VALUE_MAX];
212 if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
213 char *endptr;
214 unsigned long ul = strtoul(value, &endptr, 0);
215 if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
216 sFastTrackMultiplier = (int) ul;
217 }
218 }
219 }
220
221 // ----------------------------------------------------------------------------
222
223 #ifdef ADD_BATTERY_DATA
224 // To collect the amplifier usage
addBatteryData(uint32_t params)225 static void addBatteryData(uint32_t params) {
226 sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
227 if (service == NULL) {
228 // it already logged
229 return;
230 }
231
232 service->addBatteryData(params);
233 }
234 #endif
235
236 // Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset
237 struct {
238 // call when you acquire a partial wakelock
acquireandroid::__anonf7c4eeac0308239 void acquire(const sp<IBinder> &wakeLockToken) {
240 pthread_mutex_lock(&mLock);
241 if (wakeLockToken.get() == nullptr) {
242 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
243 } else {
244 if (mCount == 0) {
245 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
246 }
247 ++mCount;
248 }
249 pthread_mutex_unlock(&mLock);
250 }
251
252 // call when you release a partial wakelock.
releaseandroid::__anonf7c4eeac0308253 void release(const sp<IBinder> &wakeLockToken) {
254 if (wakeLockToken.get() == nullptr) {
255 return;
256 }
257 pthread_mutex_lock(&mLock);
258 if (--mCount < 0) {
259 ALOGE("negative wakelock count");
260 mCount = 0;
261 }
262 pthread_mutex_unlock(&mLock);
263 }
264
265 // retrieves the boottime timebase offset from monotonic.
getBoottimeOffsetandroid::__anonf7c4eeac0308266 int64_t getBoottimeOffset() {
267 pthread_mutex_lock(&mLock);
268 int64_t boottimeOffset = mBoottimeOffset;
269 pthread_mutex_unlock(&mLock);
270 return boottimeOffset;
271 }
272
273 // Adjusts the timebase offset between TIMEBASE_MONOTONIC
274 // and the selected timebase.
275 // Currently only TIMEBASE_BOOTTIME is allowed.
276 //
277 // This only needs to be called upon acquiring the first partial wakelock
278 // after all other partial wakelocks are released.
279 //
280 // We do an empirical measurement of the offset rather than parsing
281 // /proc/timer_list since the latter is not a formal kernel ABI.
adjustTimebaseOffsetandroid::__anonf7c4eeac0308282 static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) {
283 int clockbase;
284 switch (timebase) {
285 case ExtendedTimestamp::TIMEBASE_BOOTTIME:
286 clockbase = SYSTEM_TIME_BOOTTIME;
287 break;
288 default:
289 LOG_ALWAYS_FATAL("invalid timebase %d", timebase);
290 break;
291 }
292 // try three times to get the clock offset, choose the one
293 // with the minimum gap in measurements.
294 const int tries = 3;
295 nsecs_t bestGap, measured;
296 for (int i = 0; i < tries; ++i) {
297 const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC);
298 const nsecs_t tbase = systemTime(clockbase);
299 const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC);
300 const nsecs_t gap = tmono2 - tmono;
301 if (i == 0 || gap < bestGap) {
302 bestGap = gap;
303 measured = tbase - ((tmono + tmono2) >> 1);
304 }
305 }
306
307 // to avoid micro-adjusting, we don't change the timebase
308 // unless it is significantly different.
309 //
310 // Assumption: It probably takes more than toleranceNs to
311 // suspend and resume the device.
312 static int64_t toleranceNs = 10000; // 10 us
313 if (llabs(*offset - measured) > toleranceNs) {
314 ALOGV("Adjusting timebase offset old: %lld new: %lld",
315 (long long)*offset, (long long)measured);
316 *offset = measured;
317 }
318 }
319
320 pthread_mutex_t mLock;
321 int32_t mCount;
322 int64_t mBoottimeOffset;
323 } gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization
324
325 // ----------------------------------------------------------------------------
326 // CPU Stats
327 // ----------------------------------------------------------------------------
328
329 class CpuStats {
330 public:
331 CpuStats();
332 void sample(const String8 &title);
333 #ifdef DEBUG_CPU_USAGE
334 private:
335 ThreadCpuUsage mCpuUsage; // instantaneous thread CPU usage in wall clock ns
336 CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
337
338 CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
339
340 int mCpuNum; // thread's current CPU number
341 int mCpukHz; // frequency of thread's current CPU in kHz
342 #endif
343 };
344
CpuStats()345 CpuStats::CpuStats()
346 #ifdef DEBUG_CPU_USAGE
347 : mCpuNum(-1), mCpukHz(-1)
348 #endif
349 {
350 }
351
sample(const String8 & title __unused)352 void CpuStats::sample(const String8 &title
353 #ifndef DEBUG_CPU_USAGE
354 __unused
355 #endif
356 ) {
357 #ifdef DEBUG_CPU_USAGE
358 // get current thread's delta CPU time in wall clock ns
359 double wcNs;
360 bool valid = mCpuUsage.sampleAndEnable(wcNs);
361
362 // record sample for wall clock statistics
363 if (valid) {
364 mWcStats.sample(wcNs);
365 }
366
367 // get the current CPU number
368 int cpuNum = sched_getcpu();
369
370 // get the current CPU frequency in kHz
371 int cpukHz = mCpuUsage.getCpukHz(cpuNum);
372
373 // check if either CPU number or frequency changed
374 if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
375 mCpuNum = cpuNum;
376 mCpukHz = cpukHz;
377 // ignore sample for purposes of cycles
378 valid = false;
379 }
380
381 // if no change in CPU number or frequency, then record sample for cycle statistics
382 if (valid && mCpukHz > 0) {
383 double cycles = wcNs * cpukHz * 0.000001;
384 mHzStats.sample(cycles);
385 }
386
387 unsigned n = mWcStats.n();
388 // mCpuUsage.elapsed() is expensive, so don't call it every loop
389 if ((n & 127) == 1) {
390 long long elapsed = mCpuUsage.elapsed();
391 if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
392 double perLoop = elapsed / (double) n;
393 double perLoop100 = perLoop * 0.01;
394 double perLoop1k = perLoop * 0.001;
395 double mean = mWcStats.mean();
396 double stddev = mWcStats.stddev();
397 double minimum = mWcStats.minimum();
398 double maximum = mWcStats.maximum();
399 double meanCycles = mHzStats.mean();
400 double stddevCycles = mHzStats.stddev();
401 double minCycles = mHzStats.minimum();
402 double maxCycles = mHzStats.maximum();
403 mCpuUsage.resetElapsed();
404 mWcStats.reset();
405 mHzStats.reset();
406 ALOGD("CPU usage for %s over past %.1f secs\n"
407 " (%u mixer loops at %.1f mean ms per loop):\n"
408 " us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
409 " %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
410 " MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
411 title.string(),
412 elapsed * .000000001, n, perLoop * .000001,
413 mean * .001,
414 stddev * .001,
415 minimum * .001,
416 maximum * .001,
417 mean / perLoop100,
418 stddev / perLoop100,
419 minimum / perLoop100,
420 maximum / perLoop100,
421 meanCycles / perLoop1k,
422 stddevCycles / perLoop1k,
423 minCycles / perLoop1k,
424 maxCycles / perLoop1k);
425
426 }
427 }
428 #endif
429 };
430
431 // ----------------------------------------------------------------------------
432 // ThreadBase
433 // ----------------------------------------------------------------------------
434
435 // static
threadTypeToString(AudioFlinger::ThreadBase::type_t type)436 const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
437 {
438 switch (type) {
439 case MIXER:
440 return "MIXER";
441 case DIRECT:
442 return "DIRECT";
443 case DUPLICATING:
444 return "DUPLICATING";
445 case RECORD:
446 return "RECORD";
447 case OFFLOAD:
448 return "OFFLOAD";
449 case MMAP:
450 return "MMAP";
451 default:
452 return "unknown";
453 }
454 }
455
devicesToString(audio_devices_t devices)456 std::string devicesToString(audio_devices_t devices)
457 {
458 std::string result;
459 if (devices & AUDIO_DEVICE_BIT_IN) {
460 InputDeviceConverter::maskToString(devices, result);
461 } else {
462 OutputDeviceConverter::maskToString(devices, result);
463 }
464 return result;
465 }
466
inputFlagsToString(audio_input_flags_t flags)467 std::string inputFlagsToString(audio_input_flags_t flags)
468 {
469 std::string result;
470 InputFlagConverter::maskToString(flags, result);
471 return result;
472 }
473
outputFlagsToString(audio_output_flags_t flags)474 std::string outputFlagsToString(audio_output_flags_t flags)
475 {
476 std::string result;
477 OutputFlagConverter::maskToString(flags, result);
478 return result;
479 }
480
sourceToString(audio_source_t source)481 const char *sourceToString(audio_source_t source)
482 {
483 switch (source) {
484 case AUDIO_SOURCE_DEFAULT: return "default";
485 case AUDIO_SOURCE_MIC: return "mic";
486 case AUDIO_SOURCE_VOICE_UPLINK: return "voice uplink";
487 case AUDIO_SOURCE_VOICE_DOWNLINK: return "voice downlink";
488 case AUDIO_SOURCE_VOICE_CALL: return "voice call";
489 case AUDIO_SOURCE_CAMCORDER: return "camcorder";
490 case AUDIO_SOURCE_VOICE_RECOGNITION: return "voice recognition";
491 case AUDIO_SOURCE_VOICE_COMMUNICATION: return "voice communication";
492 case AUDIO_SOURCE_REMOTE_SUBMIX: return "remote submix";
493 case AUDIO_SOURCE_UNPROCESSED: return "unprocessed";
494 case AUDIO_SOURCE_FM_TUNER: return "FM tuner";
495 case AUDIO_SOURCE_HOTWORD: return "hotword";
496 default: return "unknown";
497 }
498 }
499
ThreadBase(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,audio_devices_t outDevice,audio_devices_t inDevice,type_t type,bool systemReady)500 AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
501 audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady)
502 : Thread(false /*canCallJava*/),
503 mType(type),
504 mAudioFlinger(audioFlinger),
505 // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
506 // are set by PlaybackThread::readOutputParameters_l() or
507 // RecordThread::readInputParameters_l()
508 //FIXME: mStandby should be true here. Is this some kind of hack?
509 mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
510 mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE),
511 mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
512 // mName will be set by concrete (non-virtual) subclass
513 mDeathRecipient(new PMDeathRecipient(this)),
514 mSystemReady(systemReady),
515 mSignalPending(false)
516 {
517 memset(&mPatch, 0, sizeof(struct audio_patch));
518 }
519
~ThreadBase()520 AudioFlinger::ThreadBase::~ThreadBase()
521 {
522 // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
523 mConfigEvents.clear();
524
525 // do not lock the mutex in destructor
526 releaseWakeLock_l();
527 if (mPowerManager != 0) {
528 sp<IBinder> binder = IInterface::asBinder(mPowerManager);
529 binder->unlinkToDeath(mDeathRecipient);
530 }
531 }
532
readyToRun()533 status_t AudioFlinger::ThreadBase::readyToRun()
534 {
535 status_t status = initCheck();
536 if (status == NO_ERROR) {
537 ALOGI("AudioFlinger's thread %p tid=%d ready to run", this, getTid());
538 } else {
539 ALOGE("No working audio driver found.");
540 }
541 return status;
542 }
543
exit()544 void AudioFlinger::ThreadBase::exit()
545 {
546 ALOGV("ThreadBase::exit");
547 // do any cleanup required for exit to succeed
548 preExit();
549 {
550 // This lock prevents the following race in thread (uniprocessor for illustration):
551 // if (!exitPending()) {
552 // // context switch from here to exit()
553 // // exit() calls requestExit(), what exitPending() observes
554 // // exit() calls signal(), which is dropped since no waiters
555 // // context switch back from exit() to here
556 // mWaitWorkCV.wait(...);
557 // // now thread is hung
558 // }
559 AutoMutex lock(mLock);
560 requestExit();
561 mWaitWorkCV.broadcast();
562 }
563 // When Thread::requestExitAndWait is made virtual and this method is renamed to
564 // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
565 requestExitAndWait();
566 }
567
setParameters(const String8 & keyValuePairs)568 status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
569 {
570 ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
571 Mutex::Autolock _l(mLock);
572
573 return sendSetParameterConfigEvent_l(keyValuePairs);
574 }
575
576 // sendConfigEvent_l() must be called with ThreadBase::mLock held
577 // Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
sendConfigEvent_l(sp<ConfigEvent> & event)578 status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
579 {
580 status_t status = NO_ERROR;
581
582 if (event->mRequiresSystemReady && !mSystemReady) {
583 event->mWaitStatus = false;
584 mPendingConfigEvents.add(event);
585 return status;
586 }
587 mConfigEvents.add(event);
588 ALOGV("sendConfigEvent_l() num events %zu event %d", mConfigEvents.size(), event->mType);
589 mWaitWorkCV.signal();
590 mLock.unlock();
591 {
592 Mutex::Autolock _l(event->mLock);
593 while (event->mWaitStatus) {
594 if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
595 event->mStatus = TIMED_OUT;
596 event->mWaitStatus = false;
597 }
598 }
599 status = event->mStatus;
600 }
601 mLock.lock();
602 return status;
603 }
604
sendIoConfigEvent(audio_io_config_event event,pid_t pid)605 void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid)
606 {
607 Mutex::Autolock _l(mLock);
608 sendIoConfigEvent_l(event, pid);
609 }
610
611 // sendIoConfigEvent_l() must be called with ThreadBase::mLock held
sendIoConfigEvent_l(audio_io_config_event event,pid_t pid)612 void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid)
613 {
614 sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid);
615 sendConfigEvent_l(configEvent);
616 }
617
sendPrioConfigEvent(pid_t pid,pid_t tid,int32_t prio,bool forApp)618 void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio, bool forApp)
619 {
620 Mutex::Autolock _l(mLock);
621 sendPrioConfigEvent_l(pid, tid, prio, forApp);
622 }
623
624 // sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
sendPrioConfigEvent_l(pid_t pid,pid_t tid,int32_t prio,bool forApp)625 void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(
626 pid_t pid, pid_t tid, int32_t prio, bool forApp)
627 {
628 sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio, forApp);
629 sendConfigEvent_l(configEvent);
630 }
631
632 // sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
sendSetParameterConfigEvent_l(const String8 & keyValuePair)633 status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
634 {
635 sp<ConfigEvent> configEvent;
636 AudioParameter param(keyValuePair);
637 int value;
638 if (param.getInt(String8(AudioParameter::keyMonoOutput), value) == NO_ERROR) {
639 setMasterMono_l(value != 0);
640 if (param.size() == 1) {
641 return NO_ERROR; // should be a solo parameter - we don't pass down
642 }
643 param.remove(String8(AudioParameter::keyMonoOutput));
644 configEvent = new SetParameterConfigEvent(param.toString());
645 } else {
646 configEvent = new SetParameterConfigEvent(keyValuePair);
647 }
648 return sendConfigEvent_l(configEvent);
649 }
650
sendCreateAudioPatchConfigEvent(const struct audio_patch * patch,audio_patch_handle_t * handle)651 status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
652 const struct audio_patch *patch,
653 audio_patch_handle_t *handle)
654 {
655 Mutex::Autolock _l(mLock);
656 sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
657 status_t status = sendConfigEvent_l(configEvent);
658 if (status == NO_ERROR) {
659 CreateAudioPatchConfigEventData *data =
660 (CreateAudioPatchConfigEventData *)configEvent->mData.get();
661 *handle = data->mHandle;
662 }
663 return status;
664 }
665
sendReleaseAudioPatchConfigEvent(const audio_patch_handle_t handle)666 status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
667 const audio_patch_handle_t handle)
668 {
669 Mutex::Autolock _l(mLock);
670 sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
671 return sendConfigEvent_l(configEvent);
672 }
673
674
675 // post condition: mConfigEvents.isEmpty()
processConfigEvents_l()676 void AudioFlinger::ThreadBase::processConfigEvents_l()
677 {
678 bool configChanged = false;
679
680 while (!mConfigEvents.isEmpty()) {
681 ALOGV("processConfigEvents_l() remaining events %zu", mConfigEvents.size());
682 sp<ConfigEvent> event = mConfigEvents[0];
683 mConfigEvents.removeAt(0);
684 switch (event->mType) {
685 case CFG_EVENT_PRIO: {
686 PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
687 // FIXME Need to understand why this has to be done asynchronously
688 int err = requestPriority(data->mPid, data->mTid, data->mPrio, data->mForApp,
689 true /*asynchronous*/);
690 if (err != 0) {
691 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
692 data->mPrio, data->mPid, data->mTid, err);
693 }
694 } break;
695 case CFG_EVENT_IO: {
696 IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
697 ioConfigChanged(data->mEvent, data->mPid);
698 } break;
699 case CFG_EVENT_SET_PARAMETER: {
700 SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
701 if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
702 configChanged = true;
703 mLocalLog.log("CFG_EVENT_SET_PARAMETER: (%s) configuration changed",
704 data->mKeyValuePairs.string());
705 }
706 } break;
707 case CFG_EVENT_CREATE_AUDIO_PATCH: {
708 const audio_devices_t oldDevice = getDevice();
709 CreateAudioPatchConfigEventData *data =
710 (CreateAudioPatchConfigEventData *)event->mData.get();
711 event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
712 const audio_devices_t newDevice = getDevice();
713 mLocalLog.log("CFG_EVENT_CREATE_AUDIO_PATCH: old device %#x (%s) new device %#x (%s)",
714 (unsigned)oldDevice, devicesToString(oldDevice).c_str(),
715 (unsigned)newDevice, devicesToString(newDevice).c_str());
716 } break;
717 case CFG_EVENT_RELEASE_AUDIO_PATCH: {
718 const audio_devices_t oldDevice = getDevice();
719 ReleaseAudioPatchConfigEventData *data =
720 (ReleaseAudioPatchConfigEventData *)event->mData.get();
721 event->mStatus = releaseAudioPatch_l(data->mHandle);
722 const audio_devices_t newDevice = getDevice();
723 mLocalLog.log("CFG_EVENT_RELEASE_AUDIO_PATCH: old device %#x (%s) new device %#x (%s)",
724 (unsigned)oldDevice, devicesToString(oldDevice).c_str(),
725 (unsigned)newDevice, devicesToString(newDevice).c_str());
726 } break;
727 default:
728 ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
729 break;
730 }
731 {
732 Mutex::Autolock _l(event->mLock);
733 if (event->mWaitStatus) {
734 event->mWaitStatus = false;
735 event->mCond.signal();
736 }
737 }
738 ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
739 }
740
741 if (configChanged) {
742 cacheParameters_l();
743 }
744 }
745
channelMaskToString(audio_channel_mask_t mask,bool output)746 String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
747 String8 s;
748 const audio_channel_representation_t representation =
749 audio_channel_mask_get_representation(mask);
750
751 switch (representation) {
752 case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
753 if (output) {
754 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
755 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
756 if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
757 if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
758 if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
759 if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
760 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
761 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
762 if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
763 if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
764 if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
765 if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
766 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
767 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
768 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
769 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
770 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
771 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
772 if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown, ");
773 } else {
774 if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
775 if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
776 if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
777 if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
778 if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
779 if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
780 if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
781 if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
782 if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
783 if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
784 if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
785 if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
786 if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
787 if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
788 if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown, ");
789 }
790 const int len = s.length();
791 if (len > 2) {
792 (void) s.lockBuffer(len); // needed?
793 s.unlockBuffer(len - 2); // remove trailing ", "
794 }
795 return s;
796 }
797 case AUDIO_CHANNEL_REPRESENTATION_INDEX:
798 s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
799 return s;
800 default:
801 s.appendFormat("unknown mask, representation:%d bits:%#x",
802 representation, audio_channel_mask_get_bits(mask));
803 return s;
804 }
805 }
806
dumpBase(int fd,const Vector<String16> & args __unused)807 void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
808 {
809 const size_t SIZE = 256;
810 char buffer[SIZE];
811 String8 result;
812
813 dprintf(fd, "\n%s thread %p, name %s, tid %d, type %d (%s):\n", isOutput() ? "Output" : "Input",
814 this, mThreadName, getTid(), type(), threadTypeToString(type()));
815
816 bool locked = AudioFlinger::dumpTryLock(mLock);
817 if (!locked) {
818 dprintf(fd, " Thread may be deadlocked\n");
819 }
820
821 dprintf(fd, " I/O handle: %d\n", mId);
822 dprintf(fd, " Standby: %s\n", mStandby ? "yes" : "no");
823 dprintf(fd, " Sample rate: %u Hz\n", mSampleRate);
824 dprintf(fd, " HAL frame count: %zu\n", mFrameCount);
825 dprintf(fd, " HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat).c_str());
826 dprintf(fd, " HAL buffer size: %zu bytes\n", mBufferSize);
827 dprintf(fd, " Channel count: %u\n", mChannelCount);
828 dprintf(fd, " Channel mask: 0x%08x (%s)\n", mChannelMask,
829 channelMaskToString(mChannelMask, mType != RECORD).string());
830 dprintf(fd, " Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat).c_str());
831 dprintf(fd, " Processing frame size: %zu bytes\n", mFrameSize);
832 dprintf(fd, " Pending config events:");
833 size_t numConfig = mConfigEvents.size();
834 if (numConfig) {
835 for (size_t i = 0; i < numConfig; i++) {
836 mConfigEvents[i]->dump(buffer, SIZE);
837 dprintf(fd, "\n %s", buffer);
838 }
839 dprintf(fd, "\n");
840 } else {
841 dprintf(fd, " none\n");
842 }
843 // Note: output device may be used by capture threads for effects such as AEC.
844 dprintf(fd, " Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).c_str());
845 dprintf(fd, " Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).c_str());
846 dprintf(fd, " Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
847
848 if (locked) {
849 mLock.unlock();
850 }
851 }
852
dumpEffectChains(int fd,const Vector<String16> & args)853 void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
854 {
855 const size_t SIZE = 256;
856 char buffer[SIZE];
857 String8 result;
858
859 size_t numEffectChains = mEffectChains.size();
860 snprintf(buffer, SIZE, " %zu Effect Chains\n", numEffectChains);
861 write(fd, buffer, strlen(buffer));
862
863 for (size_t i = 0; i < numEffectChains; ++i) {
864 sp<EffectChain> chain = mEffectChains[i];
865 if (chain != 0) {
866 chain->dump(fd, args);
867 }
868 }
869 }
870
acquireWakeLock()871 void AudioFlinger::ThreadBase::acquireWakeLock()
872 {
873 Mutex::Autolock _l(mLock);
874 acquireWakeLock_l();
875 }
876
getWakeLockTag()877 String16 AudioFlinger::ThreadBase::getWakeLockTag()
878 {
879 switch (mType) {
880 case MIXER:
881 return String16("AudioMix");
882 case DIRECT:
883 return String16("AudioDirectOut");
884 case DUPLICATING:
885 return String16("AudioDup");
886 case RECORD:
887 return String16("AudioIn");
888 case OFFLOAD:
889 return String16("AudioOffload");
890 case MMAP:
891 return String16("Mmap");
892 default:
893 ALOG_ASSERT(false);
894 return String16("AudioUnknown");
895 }
896 }
897
acquireWakeLock_l()898 void AudioFlinger::ThreadBase::acquireWakeLock_l()
899 {
900 getPowerManager_l();
901 if (mPowerManager != 0) {
902 sp<IBinder> binder = new BBinder();
903 // Uses AID_AUDIOSERVER for wakelock. updateWakeLockUids_l() updates with client uids.
904 status_t status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
905 binder,
906 getWakeLockTag(),
907 String16("audioserver"),
908 true /* FIXME force oneway contrary to .aidl */);
909 if (status == NO_ERROR) {
910 mWakeLockToken = binder;
911 }
912 ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
913 }
914
915 gBoottime.acquire(mWakeLockToken);
916 mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] =
917 gBoottime.getBoottimeOffset();
918 }
919
releaseWakeLock()920 void AudioFlinger::ThreadBase::releaseWakeLock()
921 {
922 Mutex::Autolock _l(mLock);
923 releaseWakeLock_l();
924 }
925
releaseWakeLock_l()926 void AudioFlinger::ThreadBase::releaseWakeLock_l()
927 {
928 gBoottime.release(mWakeLockToken);
929 if (mWakeLockToken != 0) {
930 ALOGV("releaseWakeLock_l() %s", mThreadName);
931 if (mPowerManager != 0) {
932 mPowerManager->releaseWakeLock(mWakeLockToken, 0,
933 true /* FIXME force oneway contrary to .aidl */);
934 }
935 mWakeLockToken.clear();
936 }
937 }
938
getPowerManager_l()939 void AudioFlinger::ThreadBase::getPowerManager_l() {
940 if (mSystemReady && mPowerManager == 0) {
941 // use checkService() to avoid blocking if power service is not up yet
942 sp<IBinder> binder =
943 defaultServiceManager()->checkService(String16("power"));
944 if (binder == 0) {
945 ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
946 } else {
947 mPowerManager = interface_cast<IPowerManager>(binder);
948 binder->linkToDeath(mDeathRecipient);
949 }
950 }
951 }
952
updateWakeLockUids_l(const SortedVector<uid_t> & uids)953 void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<uid_t> &uids) {
954 getPowerManager_l();
955
956 #if !LOG_NDEBUG
957 std::stringstream s;
958 for (uid_t uid : uids) {
959 s << uid << " ";
960 }
961 ALOGD("updateWakeLockUids_l %s uids:%s", mThreadName, s.str().c_str());
962 #endif
963
964 if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called.
965 if (mSystemReady) {
966 ALOGE("no wake lock to update, but system ready!");
967 } else {
968 ALOGW("no wake lock to update, system not ready yet");
969 }
970 return;
971 }
972 if (mPowerManager != 0) {
973 std::vector<int> uidsAsInt(uids.begin(), uids.end()); // powermanager expects uids as ints
974 status_t status = mPowerManager->updateWakeLockUids(
975 mWakeLockToken, uidsAsInt.size(), uidsAsInt.data(),
976 true /* FIXME force oneway contrary to .aidl */);
977 ALOGV("updateWakeLockUids_l() %s status %d", mThreadName, status);
978 }
979 }
980
clearPowerManager()981 void AudioFlinger::ThreadBase::clearPowerManager()
982 {
983 Mutex::Autolock _l(mLock);
984 releaseWakeLock_l();
985 mPowerManager.clear();
986 }
987
binderDied(const wp<IBinder> & who __unused)988 void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
989 {
990 sp<ThreadBase> thread = mThread.promote();
991 if (thread != 0) {
992 thread->clearPowerManager();
993 }
994 ALOGW("power manager service died !!!");
995 }
996
setEffectSuspended_l(const effect_uuid_t * type,bool suspend,audio_session_t sessionId)997 void AudioFlinger::ThreadBase::setEffectSuspended_l(
998 const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
999 {
1000 sp<EffectChain> chain = getEffectChain_l(sessionId);
1001 if (chain != 0) {
1002 if (type != NULL) {
1003 chain->setEffectSuspended_l(type, suspend);
1004 } else {
1005 chain->setEffectSuspendedAll_l(suspend);
1006 }
1007 }
1008
1009 updateSuspendedSessions_l(type, suspend, sessionId);
1010 }
1011
checkSuspendOnAddEffectChain_l(const sp<EffectChain> & chain)1012 void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
1013 {
1014 ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1015 if (index < 0) {
1016 return;
1017 }
1018
1019 const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1020 mSuspendedSessions.valueAt(index);
1021
1022 for (size_t i = 0; i < sessionEffects.size(); i++) {
1023 const sp<SuspendedSessionDesc>& desc = sessionEffects.valueAt(i);
1024 for (int j = 0; j < desc->mRefCount; j++) {
1025 if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
1026 chain->setEffectSuspendedAll_l(true);
1027 } else {
1028 ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1029 desc->mType.timeLow);
1030 chain->setEffectSuspended_l(&desc->mType, true);
1031 }
1032 }
1033 }
1034 }
1035
updateSuspendedSessions_l(const effect_uuid_t * type,bool suspend,audio_session_t sessionId)1036 void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
1037 bool suspend,
1038 audio_session_t sessionId)
1039 {
1040 ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1041
1042 KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1043
1044 if (suspend) {
1045 if (index >= 0) {
1046 sessionEffects = mSuspendedSessions.valueAt(index);
1047 } else {
1048 mSuspendedSessions.add(sessionId, sessionEffects);
1049 }
1050 } else {
1051 if (index < 0) {
1052 return;
1053 }
1054 sessionEffects = mSuspendedSessions.valueAt(index);
1055 }
1056
1057
1058 int key = EffectChain::kKeyForSuspendAll;
1059 if (type != NULL) {
1060 key = type->timeLow;
1061 }
1062 index = sessionEffects.indexOfKey(key);
1063
1064 sp<SuspendedSessionDesc> desc;
1065 if (suspend) {
1066 if (index >= 0) {
1067 desc = sessionEffects.valueAt(index);
1068 } else {
1069 desc = new SuspendedSessionDesc();
1070 if (type != NULL) {
1071 desc->mType = *type;
1072 }
1073 sessionEffects.add(key, desc);
1074 ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1075 }
1076 desc->mRefCount++;
1077 } else {
1078 if (index < 0) {
1079 return;
1080 }
1081 desc = sessionEffects.valueAt(index);
1082 if (--desc->mRefCount == 0) {
1083 ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1084 sessionEffects.removeItemsAt(index);
1085 if (sessionEffects.isEmpty()) {
1086 ALOGV("updateSuspendedSessions_l() restore removing session %d",
1087 sessionId);
1088 mSuspendedSessions.removeItem(sessionId);
1089 }
1090 }
1091 }
1092 if (!sessionEffects.isEmpty()) {
1093 mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1094 }
1095 }
1096
checkSuspendOnEffectEnabled(const sp<EffectModule> & effect,bool enabled,audio_session_t sessionId)1097 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
1098 bool enabled,
1099 audio_session_t sessionId)
1100 {
1101 Mutex::Autolock _l(mLock);
1102 checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
1103 }
1104
checkSuspendOnEffectEnabled_l(const sp<EffectModule> & effect,bool enabled,audio_session_t sessionId)1105 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
1106 bool enabled,
1107 audio_session_t sessionId)
1108 {
1109 if (mType != RECORD) {
1110 // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1111 // another session. This gives the priority to well behaved effect control panels
1112 // and applications not using global effects.
1113 // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1114 // global effects
1115 if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
1116 setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1117 }
1118 }
1119
1120 sp<EffectChain> chain = getEffectChain_l(sessionId);
1121 if (chain != 0) {
1122 chain->checkSuspendOnEffectEnabled(effect, enabled);
1123 }
1124 }
1125
1126 // checkEffectCompatibility_l() must be called with ThreadBase::mLock held
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)1127 status_t AudioFlinger::RecordThread::checkEffectCompatibility_l(
1128 const effect_descriptor_t *desc, audio_session_t sessionId)
1129 {
1130 // No global effect sessions on record threads
1131 if (sessionId == AUDIO_SESSION_OUTPUT_MIX || sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1132 ALOGW("checkEffectCompatibility_l(): global effect %s on record thread %s",
1133 desc->name, mThreadName);
1134 return BAD_VALUE;
1135 }
1136 // only pre processing effects on record thread
1137 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC) {
1138 ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on record thread %s",
1139 desc->name, mThreadName);
1140 return BAD_VALUE;
1141 }
1142
1143 // always allow effects without processing load or latency
1144 if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) == EFFECT_FLAG_NO_PROCESS) {
1145 return NO_ERROR;
1146 }
1147
1148 audio_input_flags_t flags = mInput->flags;
1149 if (hasFastCapture() || (flags & AUDIO_INPUT_FLAG_FAST)) {
1150 if (flags & AUDIO_INPUT_FLAG_RAW) {
1151 ALOGW("checkEffectCompatibility_l(): effect %s on record thread %s in raw mode",
1152 desc->name, mThreadName);
1153 return BAD_VALUE;
1154 }
1155 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1156 ALOGW("checkEffectCompatibility_l(): non HW effect %s on record thread %s in fast mode",
1157 desc->name, mThreadName);
1158 return BAD_VALUE;
1159 }
1160 }
1161 return NO_ERROR;
1162 }
1163
1164 // checkEffectCompatibility_l() must be called with ThreadBase::mLock held
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)1165 status_t AudioFlinger::PlaybackThread::checkEffectCompatibility_l(
1166 const effect_descriptor_t *desc, audio_session_t sessionId)
1167 {
1168 // no preprocessing on playback threads
1169 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC) {
1170 ALOGW("checkEffectCompatibility_l(): pre processing effect %s created on playback"
1171 " thread %s", desc->name, mThreadName);
1172 return BAD_VALUE;
1173 }
1174
1175 // always allow effects without processing load or latency
1176 if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) == EFFECT_FLAG_NO_PROCESS) {
1177 return NO_ERROR;
1178 }
1179
1180 switch (mType) {
1181 case MIXER: {
1182 #ifndef MULTICHANNEL_EFFECT_CHAIN
1183 // Reject any effect on mixer multichannel sinks.
1184 // TODO: fix both format and multichannel issues with effects.
1185 if (mChannelCount != FCC_2) {
1186 ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d) on MIXER"
1187 " thread %s", desc->name, mChannelCount, mThreadName);
1188 return BAD_VALUE;
1189 }
1190 #endif
1191 audio_output_flags_t flags = mOutput->flags;
1192 if (hasFastMixer() || (flags & AUDIO_OUTPUT_FLAG_FAST)) {
1193 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1194 // global effects are applied only to non fast tracks if they are SW
1195 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1196 break;
1197 }
1198 } else if (sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1199 // only post processing on output stage session
1200 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) {
1201 ALOGW("checkEffectCompatibility_l(): non post processing effect %s not allowed"
1202 " on output stage session", desc->name);
1203 return BAD_VALUE;
1204 }
1205 } else {
1206 // no restriction on effects applied on non fast tracks
1207 if ((hasAudioSession_l(sessionId) & ThreadBase::FAST_SESSION) == 0) {
1208 break;
1209 }
1210 }
1211
1212 if (flags & AUDIO_OUTPUT_FLAG_RAW) {
1213 ALOGW("checkEffectCompatibility_l(): effect %s on playback thread in raw mode",
1214 desc->name);
1215 return BAD_VALUE;
1216 }
1217 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1218 ALOGW("checkEffectCompatibility_l(): non HW effect %s on playback thread"
1219 " in fast mode", desc->name);
1220 return BAD_VALUE;
1221 }
1222 }
1223 } break;
1224 case OFFLOAD:
1225 // nothing actionable on offload threads, if the effect:
1226 // - is offloadable: the effect can be created
1227 // - is NOT offloadable: the effect should still be created, but EffectHandle::enable()
1228 // will take care of invalidating the tracks of the thread
1229 break;
1230 case DIRECT:
1231 // Reject any effect on Direct output threads for now, since the format of
1232 // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1233 ALOGW("checkEffectCompatibility_l(): effect %s on DIRECT output thread %s",
1234 desc->name, mThreadName);
1235 return BAD_VALUE;
1236 case DUPLICATING:
1237 #ifndef MULTICHANNEL_EFFECT_CHAIN
1238 // Reject any effect on mixer multichannel sinks.
1239 // TODO: fix both format and multichannel issues with effects.
1240 if (mChannelCount != FCC_2) {
1241 ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d)"
1242 " on DUPLICATING thread %s", desc->name, mChannelCount, mThreadName);
1243 return BAD_VALUE;
1244 }
1245 #endif
1246 if ((sessionId == AUDIO_SESSION_OUTPUT_STAGE) || (sessionId == AUDIO_SESSION_OUTPUT_MIX)) {
1247 ALOGW("checkEffectCompatibility_l(): global effect %s on DUPLICATING"
1248 " thread %s", desc->name, mThreadName);
1249 return BAD_VALUE;
1250 }
1251 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_POST_PROC) {
1252 ALOGW("checkEffectCompatibility_l(): post processing effect %s on"
1253 " DUPLICATING thread %s", desc->name, mThreadName);
1254 return BAD_VALUE;
1255 }
1256 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) != 0) {
1257 ALOGW("checkEffectCompatibility_l(): HW tunneled effect %s on"
1258 " DUPLICATING thread %s", desc->name, mThreadName);
1259 return BAD_VALUE;
1260 }
1261 break;
1262 default:
1263 LOG_ALWAYS_FATAL("checkEffectCompatibility_l(): wrong thread type %d", mType);
1264 }
1265
1266 return NO_ERROR;
1267 }
1268
1269 // ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
createEffect_l(const sp<AudioFlinger::Client> & client,const sp<IEffectClient> & effectClient,int32_t priority,audio_session_t sessionId,effect_descriptor_t * desc,int * enabled,status_t * status,bool pinned)1270 sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1271 const sp<AudioFlinger::Client>& client,
1272 const sp<IEffectClient>& effectClient,
1273 int32_t priority,
1274 audio_session_t sessionId,
1275 effect_descriptor_t *desc,
1276 int *enabled,
1277 status_t *status,
1278 bool pinned)
1279 {
1280 sp<EffectModule> effect;
1281 sp<EffectHandle> handle;
1282 status_t lStatus;
1283 sp<EffectChain> chain;
1284 bool chainCreated = false;
1285 bool effectCreated = false;
1286 bool effectRegistered = false;
1287 audio_unique_id_t effectId = AUDIO_UNIQUE_ID_USE_UNSPECIFIED;
1288
1289 lStatus = initCheck();
1290 if (lStatus != NO_ERROR) {
1291 ALOGW("createEffect_l() Audio driver not initialized.");
1292 goto Exit;
1293 }
1294
1295 ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1296
1297 { // scope for mLock
1298 Mutex::Autolock _l(mLock);
1299
1300 lStatus = checkEffectCompatibility_l(desc, sessionId);
1301 if (lStatus != NO_ERROR) {
1302 goto Exit;
1303 }
1304
1305 // check for existing effect chain with the requested audio session
1306 chain = getEffectChain_l(sessionId);
1307 if (chain == 0) {
1308 // create a new chain for this session
1309 ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1310 chain = new EffectChain(this, sessionId);
1311 addEffectChain_l(chain);
1312 chain->setStrategy(getStrategyForSession_l(sessionId));
1313 chainCreated = true;
1314 } else {
1315 effect = chain->getEffectFromDesc_l(desc);
1316 }
1317
1318 ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1319
1320 if (effect == 0) {
1321 effectId = mAudioFlinger->nextUniqueId(AUDIO_UNIQUE_ID_USE_EFFECT);
1322 // Check CPU and memory usage
1323 lStatus = AudioSystem::registerEffect(
1324 desc, mId, chain->strategy(), sessionId, effectId);
1325 if (lStatus != NO_ERROR) {
1326 goto Exit;
1327 }
1328 effectRegistered = true;
1329 // create a new effect module if none present in the chain
1330 lStatus = chain->createEffect_l(effect, this, desc, effectId, sessionId, pinned);
1331 if (lStatus != NO_ERROR) {
1332 goto Exit;
1333 }
1334 effectCreated = true;
1335
1336 effect->setDevice(mOutDevice);
1337 effect->setDevice(mInDevice);
1338 effect->setMode(mAudioFlinger->getMode());
1339 effect->setAudioSource(mAudioSource);
1340 }
1341 // create effect handle and connect it to effect module
1342 handle = new EffectHandle(effect, client, effectClient, priority);
1343 lStatus = handle->initCheck();
1344 if (lStatus == OK) {
1345 lStatus = effect->addHandle(handle.get());
1346 }
1347 if (enabled != NULL) {
1348 *enabled = (int)effect->isEnabled();
1349 }
1350 }
1351
1352 Exit:
1353 if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1354 Mutex::Autolock _l(mLock);
1355 if (effectCreated) {
1356 chain->removeEffect_l(effect);
1357 }
1358 if (effectRegistered) {
1359 AudioSystem::unregisterEffect(effectId);
1360 }
1361 if (chainCreated) {
1362 removeEffectChain_l(chain);
1363 }
1364 // handle must be cleared by caller to avoid deadlock.
1365 }
1366
1367 *status = lStatus;
1368 return handle;
1369 }
1370
disconnectEffectHandle(EffectHandle * handle,bool unpinIfLast)1371 void AudioFlinger::ThreadBase::disconnectEffectHandle(EffectHandle *handle,
1372 bool unpinIfLast)
1373 {
1374 bool remove = false;
1375 sp<EffectModule> effect;
1376 {
1377 Mutex::Autolock _l(mLock);
1378
1379 effect = handle->effect().promote();
1380 if (effect == 0) {
1381 return;
1382 }
1383 // restore suspended effects if the disconnected handle was enabled and the last one.
1384 remove = (effect->removeHandle(handle) == 0) && (!effect->isPinned() || unpinIfLast);
1385 if (remove) {
1386 removeEffect_l(effect, true);
1387 }
1388 }
1389 if (remove) {
1390 mAudioFlinger->updateOrphanEffectChains(effect);
1391 AudioSystem::unregisterEffect(effect->id());
1392 if (handle->enabled()) {
1393 checkSuspendOnEffectEnabled(effect, false, effect->sessionId());
1394 }
1395 }
1396 }
1397
getEffect(audio_session_t sessionId,int effectId)1398 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(audio_session_t sessionId,
1399 int effectId)
1400 {
1401 Mutex::Autolock _l(mLock);
1402 return getEffect_l(sessionId, effectId);
1403 }
1404
getEffect_l(audio_session_t sessionId,int effectId)1405 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(audio_session_t sessionId,
1406 int effectId)
1407 {
1408 sp<EffectChain> chain = getEffectChain_l(sessionId);
1409 return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1410 }
1411
1412 // PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1413 // PlaybackThread::mLock held
addEffect_l(const sp<EffectModule> & effect)1414 status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1415 {
1416 // check for existing effect chain with the requested audio session
1417 audio_session_t sessionId = effect->sessionId();
1418 sp<EffectChain> chain = getEffectChain_l(sessionId);
1419 bool chainCreated = false;
1420
1421 ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1422 "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %#x",
1423 this, effect->desc().name, effect->desc().flags);
1424
1425 if (chain == 0) {
1426 // create a new chain for this session
1427 ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1428 chain = new EffectChain(this, sessionId);
1429 addEffectChain_l(chain);
1430 chain->setStrategy(getStrategyForSession_l(sessionId));
1431 chainCreated = true;
1432 }
1433 ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1434
1435 if (chain->getEffectFromId_l(effect->id()) != 0) {
1436 ALOGW("addEffect_l() %p effect %s already present in chain %p",
1437 this, effect->desc().name, chain.get());
1438 return BAD_VALUE;
1439 }
1440
1441 effect->setOffloaded(mType == OFFLOAD, mId);
1442
1443 status_t status = chain->addEffect_l(effect);
1444 if (status != NO_ERROR) {
1445 if (chainCreated) {
1446 removeEffectChain_l(chain);
1447 }
1448 return status;
1449 }
1450
1451 effect->setDevice(mOutDevice);
1452 effect->setDevice(mInDevice);
1453 effect->setMode(mAudioFlinger->getMode());
1454 effect->setAudioSource(mAudioSource);
1455
1456 return NO_ERROR;
1457 }
1458
removeEffect_l(const sp<EffectModule> & effect,bool release)1459 void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect, bool release) {
1460
1461 ALOGV("%s %p effect %p", __FUNCTION__, this, effect.get());
1462 effect_descriptor_t desc = effect->desc();
1463 if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1464 detachAuxEffect_l(effect->id());
1465 }
1466
1467 sp<EffectChain> chain = effect->chain().promote();
1468 if (chain != 0) {
1469 // remove effect chain if removing last effect
1470 if (chain->removeEffect_l(effect, release) == 0) {
1471 removeEffectChain_l(chain);
1472 }
1473 } else {
1474 ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1475 }
1476 }
1477
lockEffectChains_l(Vector<sp<AudioFlinger::EffectChain>> & effectChains)1478 void AudioFlinger::ThreadBase::lockEffectChains_l(
1479 Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1480 {
1481 effectChains = mEffectChains;
1482 for (size_t i = 0; i < mEffectChains.size(); i++) {
1483 mEffectChains[i]->lock();
1484 }
1485 }
1486
unlockEffectChains(const Vector<sp<AudioFlinger::EffectChain>> & effectChains)1487 void AudioFlinger::ThreadBase::unlockEffectChains(
1488 const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1489 {
1490 for (size_t i = 0; i < effectChains.size(); i++) {
1491 effectChains[i]->unlock();
1492 }
1493 }
1494
getEffectChain(audio_session_t sessionId)1495 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(audio_session_t sessionId)
1496 {
1497 Mutex::Autolock _l(mLock);
1498 return getEffectChain_l(sessionId);
1499 }
1500
getEffectChain_l(audio_session_t sessionId) const1501 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(audio_session_t sessionId)
1502 const
1503 {
1504 size_t size = mEffectChains.size();
1505 for (size_t i = 0; i < size; i++) {
1506 if (mEffectChains[i]->sessionId() == sessionId) {
1507 return mEffectChains[i];
1508 }
1509 }
1510 return 0;
1511 }
1512
setMode(audio_mode_t mode)1513 void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1514 {
1515 Mutex::Autolock _l(mLock);
1516 size_t size = mEffectChains.size();
1517 for (size_t i = 0; i < size; i++) {
1518 mEffectChains[i]->setMode_l(mode);
1519 }
1520 }
1521
getAudioPortConfig(struct audio_port_config * config)1522 void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1523 {
1524 config->type = AUDIO_PORT_TYPE_MIX;
1525 config->ext.mix.handle = mId;
1526 config->sample_rate = mSampleRate;
1527 config->format = mFormat;
1528 config->channel_mask = mChannelMask;
1529 config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1530 AUDIO_PORT_CONFIG_FORMAT;
1531 }
1532
systemReady()1533 void AudioFlinger::ThreadBase::systemReady()
1534 {
1535 Mutex::Autolock _l(mLock);
1536 if (mSystemReady) {
1537 return;
1538 }
1539 mSystemReady = true;
1540
1541 for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1542 sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1543 }
1544 mPendingConfigEvents.clear();
1545 }
1546
1547 template <typename T>
add(const sp<T> & track)1548 ssize_t AudioFlinger::ThreadBase::ActiveTracks<T>::add(const sp<T> &track) {
1549 ssize_t index = mActiveTracks.indexOf(track);
1550 if (index >= 0) {
1551 ALOGW("ActiveTracks<T>::add track %p already there", track.get());
1552 return index;
1553 }
1554 logTrack("add", track);
1555 mActiveTracksGeneration++;
1556 mLatestActiveTrack = track;
1557 ++mBatteryCounter[track->uid()].second;
1558 mHasChanged = true;
1559 return mActiveTracks.add(track);
1560 }
1561
1562 template <typename T>
remove(const sp<T> & track)1563 ssize_t AudioFlinger::ThreadBase::ActiveTracks<T>::remove(const sp<T> &track) {
1564 ssize_t index = mActiveTracks.remove(track);
1565 if (index < 0) {
1566 ALOGW("ActiveTracks<T>::remove nonexistent track %p", track.get());
1567 return index;
1568 }
1569 logTrack("remove", track);
1570 mActiveTracksGeneration++;
1571 --mBatteryCounter[track->uid()].second;
1572 // mLatestActiveTrack is not cleared even if is the same as track.
1573 mHasChanged = true;
1574 return index;
1575 }
1576
1577 template <typename T>
clear()1578 void AudioFlinger::ThreadBase::ActiveTracks<T>::clear() {
1579 for (const sp<T> &track : mActiveTracks) {
1580 BatteryNotifier::getInstance().noteStopAudio(track->uid());
1581 logTrack("clear", track);
1582 }
1583 mLastActiveTracksGeneration = mActiveTracksGeneration;
1584 if (!mActiveTracks.empty()) { mHasChanged = true; }
1585 mActiveTracks.clear();
1586 mLatestActiveTrack.clear();
1587 mBatteryCounter.clear();
1588 }
1589
1590 template <typename T>
updatePowerState(sp<ThreadBase> thread,bool force)1591 void AudioFlinger::ThreadBase::ActiveTracks<T>::updatePowerState(
1592 sp<ThreadBase> thread, bool force) {
1593 // Updates ActiveTracks client uids to the thread wakelock.
1594 if (mActiveTracksGeneration != mLastActiveTracksGeneration || force) {
1595 thread->updateWakeLockUids_l(getWakeLockUids());
1596 mLastActiveTracksGeneration = mActiveTracksGeneration;
1597 }
1598
1599 // Updates BatteryNotifier uids
1600 for (auto it = mBatteryCounter.begin(); it != mBatteryCounter.end();) {
1601 const uid_t uid = it->first;
1602 ssize_t &previous = it->second.first;
1603 ssize_t ¤t = it->second.second;
1604 if (current > 0) {
1605 if (previous == 0) {
1606 BatteryNotifier::getInstance().noteStartAudio(uid);
1607 }
1608 previous = current;
1609 ++it;
1610 } else if (current == 0) {
1611 if (previous > 0) {
1612 BatteryNotifier::getInstance().noteStopAudio(uid);
1613 }
1614 it = mBatteryCounter.erase(it); // std::map<> is stable on iterator erase.
1615 } else /* (current < 0) */ {
1616 LOG_ALWAYS_FATAL("negative battery count %zd", current);
1617 }
1618 }
1619 }
1620
1621 template <typename T>
readAndClearHasChanged()1622 bool AudioFlinger::ThreadBase::ActiveTracks<T>::readAndClearHasChanged() {
1623 const bool hasChanged = mHasChanged;
1624 mHasChanged = false;
1625 return hasChanged;
1626 }
1627
1628 template <typename T>
logTrack(const char * funcName,const sp<T> & track) const1629 void AudioFlinger::ThreadBase::ActiveTracks<T>::logTrack(
1630 const char *funcName, const sp<T> &track) const {
1631 if (mLocalLog != nullptr) {
1632 String8 result;
1633 track->appendDump(result, false /* active */);
1634 mLocalLog->log("AT::%-10s(%p) %s", funcName, track.get(), result.string());
1635 }
1636 }
1637
broadcast_l()1638 void AudioFlinger::ThreadBase::broadcast_l()
1639 {
1640 // Thread could be blocked waiting for async
1641 // so signal it to handle state changes immediately
1642 // If threadLoop is currently unlocked a signal of mWaitWorkCV will
1643 // be lost so we also flag to prevent it blocking on mWaitWorkCV
1644 mSignalPending = true;
1645 mWaitWorkCV.broadcast();
1646 }
1647
1648 // ----------------------------------------------------------------------------
1649 // Playback
1650 // ----------------------------------------------------------------------------
1651
PlaybackThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,type_t type,bool systemReady)1652 AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1653 AudioStreamOut* output,
1654 audio_io_handle_t id,
1655 audio_devices_t device,
1656 type_t type,
1657 bool systemReady)
1658 : ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady),
1659 mNormalFrameCount(0), mSinkBuffer(NULL),
1660 mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1661 mMixerBuffer(NULL),
1662 mMixerBufferSize(0),
1663 mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1664 mMixerBufferValid(false),
1665 mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1666 mEffectBuffer(NULL),
1667 mEffectBufferSize(0),
1668 mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1669 mEffectBufferValid(false),
1670 mSuspended(0), mBytesWritten(0),
1671 mFramesWritten(0),
1672 mSuspendedFrames(0),
1673 mActiveTracks(&this->mLocalLog),
1674 // mStreamTypes[] initialized in constructor body
1675 mTracks(type == MIXER),
1676 mOutput(output),
1677 mLastWriteTime(-1), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1678 mMixerStatus(MIXER_IDLE),
1679 mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1680 mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
1681 mBytesRemaining(0),
1682 mCurrentWriteLength(0),
1683 mUseAsyncWrite(false),
1684 mWriteAckSequence(0),
1685 mDrainSequence(0),
1686 mScreenState(AudioFlinger::mScreenState),
1687 // index 0 is reserved for normal mixer's submix
1688 mFastTrackAvailMask(((1 << FastMixerState::sMaxFastTracks) - 1) & ~1),
1689 mHwSupportsPause(false), mHwPaused(false), mFlushPending(false),
1690 mLeftVolFloat(-1.0), mRightVolFloat(-1.0)
1691 {
1692 snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1693 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1694
1695 // Assumes constructor is called by AudioFlinger with it's mLock held, but
1696 // it would be safer to explicitly pass initial masterVolume/masterMute as
1697 // parameter.
1698 //
1699 // If the HAL we are using has support for master volume or master mute,
1700 // then do not attenuate or mute during mixing (just leave the volume at 1.0
1701 // and the mute set to false).
1702 mMasterVolume = audioFlinger->masterVolume_l();
1703 mMasterMute = audioFlinger->masterMute_l();
1704 if (mOutput && mOutput->audioHwDev) {
1705 if (mOutput->audioHwDev->canSetMasterVolume()) {
1706 mMasterVolume = 1.0;
1707 }
1708
1709 if (mOutput->audioHwDev->canSetMasterMute()) {
1710 mMasterMute = false;
1711 }
1712 }
1713
1714 readOutputParameters_l();
1715
1716 // ++ operator does not compile
1717 for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_FOR_POLICY_CNT;
1718 stream = (audio_stream_type_t) (stream + 1)) {
1719 mStreamTypes[stream].volume = 0.0f;
1720 mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1721 }
1722 // Audio patch volume is always max
1723 mStreamTypes[AUDIO_STREAM_PATCH].volume = 1.0f;
1724 mStreamTypes[AUDIO_STREAM_PATCH].mute = false;
1725 }
1726
~PlaybackThread()1727 AudioFlinger::PlaybackThread::~PlaybackThread()
1728 {
1729 mAudioFlinger->unregisterWriter(mNBLogWriter);
1730 free(mSinkBuffer);
1731 free(mMixerBuffer);
1732 free(mEffectBuffer);
1733 }
1734
dump(int fd,const Vector<String16> & args)1735 void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1736 {
1737 dumpInternals(fd, args);
1738 dumpTracks(fd, args);
1739 dumpEffectChains(fd, args);
1740 dprintf(fd, " Local log:\n");
1741 mLocalLog.dump(fd, " " /* prefix */, 40 /* lines */);
1742 }
1743
dumpTracks(int fd,const Vector<String16> & args __unused)1744 void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1745 {
1746 String8 result;
1747
1748 result.appendFormat(" Stream volumes in dB: ");
1749 for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1750 const stream_type_t *st = &mStreamTypes[i];
1751 if (i > 0) {
1752 result.appendFormat(", ");
1753 }
1754 result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1755 if (st->mute) {
1756 result.append("M");
1757 }
1758 }
1759 result.append("\n");
1760 write(fd, result.string(), result.length());
1761 result.clear();
1762
1763 // These values are "raw"; they will wrap around. See prepareTracks_l() for a better way.
1764 FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1765 dprintf(fd, " Normal mixer raw underrun counters: partial=%u empty=%u\n",
1766 underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1767
1768 size_t numtracks = mTracks.size();
1769 size_t numactive = mActiveTracks.size();
1770 dprintf(fd, " %zu Tracks", numtracks);
1771 size_t numactiveseen = 0;
1772 const char *prefix = " ";
1773 if (numtracks) {
1774 dprintf(fd, " of which %zu are active\n", numactive);
1775 result.append(prefix);
1776 Track::appendDumpHeader(result);
1777 for (size_t i = 0; i < numtracks; ++i) {
1778 sp<Track> track = mTracks[i];
1779 if (track != 0) {
1780 bool active = mActiveTracks.indexOf(track) >= 0;
1781 if (active) {
1782 numactiveseen++;
1783 }
1784 result.append(prefix);
1785 track->appendDump(result, active);
1786 }
1787 }
1788 } else {
1789 result.append("\n");
1790 }
1791 if (numactiveseen != numactive) {
1792 // some tracks in the active list were not in the tracks list
1793 result.append(" The following tracks are in the active list but"
1794 " not in the track list\n");
1795 result.append(prefix);
1796 Track::appendDumpHeader(result);
1797 for (size_t i = 0; i < numactive; ++i) {
1798 sp<Track> track = mActiveTracks[i];
1799 if (mTracks.indexOf(track) < 0) {
1800 result.append(prefix);
1801 track->appendDump(result, true /* active */);
1802 }
1803 }
1804 }
1805
1806 write(fd, result.string(), result.size());
1807 }
1808
dumpInternals(int fd,const Vector<String16> & args)1809 void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1810 {
1811 dumpBase(fd, args);
1812
1813 dprintf(fd, " Normal frame count: %zu\n", mNormalFrameCount);
1814 dprintf(fd, " Last write occurred (msecs): %llu\n",
1815 (unsigned long long) ns2ms(systemTime() - mLastWriteTime));
1816 dprintf(fd, " Total writes: %d\n", mNumWrites);
1817 dprintf(fd, " Delayed writes: %d\n", mNumDelayedWrites);
1818 dprintf(fd, " Blocked in write: %s\n", mInWrite ? "yes" : "no");
1819 dprintf(fd, " Suspend count: %d\n", mSuspended);
1820 dprintf(fd, " Sink buffer : %p\n", mSinkBuffer);
1821 dprintf(fd, " Mixer buffer: %p\n", mMixerBuffer);
1822 dprintf(fd, " Effect buffer: %p\n", mEffectBuffer);
1823 dprintf(fd, " Fast track availMask=%#x\n", mFastTrackAvailMask);
1824 dprintf(fd, " Standby delay ns=%lld\n", (long long)mStandbyDelayNs);
1825 AudioStreamOut *output = mOutput;
1826 audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1827 dprintf(fd, " AudioStreamOut: %p flags %#x (%s)\n",
1828 output, flags, outputFlagsToString(flags).c_str());
1829 dprintf(fd, " Frames written: %lld\n", (long long)mFramesWritten);
1830 dprintf(fd, " Suspended frames: %lld\n", (long long)mSuspendedFrames);
1831 if (mPipeSink.get() != nullptr) {
1832 dprintf(fd, " PipeSink frames written: %lld\n", (long long)mPipeSink->framesWritten());
1833 }
1834 if (output != nullptr) {
1835 dprintf(fd, " Hal stream dump:\n");
1836 (void)output->stream->dump(fd);
1837 }
1838 }
1839
1840 // Thread virtuals
1841
onFirstRef()1842 void AudioFlinger::PlaybackThread::onFirstRef()
1843 {
1844 run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1845 }
1846
1847 // ThreadBase virtuals
preExit()1848 void AudioFlinger::PlaybackThread::preExit()
1849 {
1850 ALOGV(" preExit()");
1851 // FIXME this is using hard-coded strings but in the future, this functionality will be
1852 // converted to use audio HAL extensions required to support tunneling
1853 status_t result = mOutput->stream->setParameters(String8("exiting=1"));
1854 ALOGE_IF(result != OK, "Error when setting parameters on exit: %d", result);
1855 }
1856
1857 // PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
createTrack_l(const sp<AudioFlinger::Client> & client,audio_stream_type_t streamType,const audio_attributes_t & attr,uint32_t * pSampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,size_t * pNotificationFrameCount,uint32_t notificationsPerBuffer,float speed,const sp<IMemory> & sharedBuffer,audio_session_t sessionId,audio_output_flags_t * flags,pid_t tid,uid_t uid,status_t * status,audio_port_handle_t portId)1858 sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1859 const sp<AudioFlinger::Client>& client,
1860 audio_stream_type_t streamType,
1861 const audio_attributes_t& attr,
1862 uint32_t *pSampleRate,
1863 audio_format_t format,
1864 audio_channel_mask_t channelMask,
1865 size_t *pFrameCount,
1866 size_t *pNotificationFrameCount,
1867 uint32_t notificationsPerBuffer,
1868 float speed,
1869 const sp<IMemory>& sharedBuffer,
1870 audio_session_t sessionId,
1871 audio_output_flags_t *flags,
1872 pid_t tid,
1873 uid_t uid,
1874 status_t *status,
1875 audio_port_handle_t portId)
1876 {
1877 size_t frameCount = *pFrameCount;
1878 size_t notificationFrameCount = *pNotificationFrameCount;
1879 sp<Track> track;
1880 status_t lStatus;
1881 audio_output_flags_t outputFlags = mOutput->flags;
1882 audio_output_flags_t requestedFlags = *flags;
1883
1884 if (*pSampleRate == 0) {
1885 *pSampleRate = mSampleRate;
1886 }
1887 uint32_t sampleRate = *pSampleRate;
1888
1889 // special case for FAST flag considered OK if fast mixer is present
1890 if (hasFastMixer()) {
1891 outputFlags = (audio_output_flags_t)(outputFlags | AUDIO_OUTPUT_FLAG_FAST);
1892 }
1893
1894 // Check if requested flags are compatible with output stream flags
1895 if ((*flags & outputFlags) != *flags) {
1896 ALOGW("createTrack_l(): mismatch between requested flags (%08x) and output flags (%08x)",
1897 *flags, outputFlags);
1898 *flags = (audio_output_flags_t)(*flags & outputFlags);
1899 }
1900
1901 // client expresses a preference for FAST, but we get the final say
1902 if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
1903 if (
1904 // PCM data
1905 audio_is_linear_pcm(format) &&
1906 // TODO: extract as a data library function that checks that a computationally
1907 // expensive downmixer is not required: isFastOutputChannelConversion()
1908 (channelMask == mChannelMask ||
1909 mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
1910 (channelMask == AUDIO_CHANNEL_OUT_MONO
1911 /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
1912 // hardware sample rate
1913 (sampleRate == mSampleRate) &&
1914 // normal mixer has an associated fast mixer
1915 hasFastMixer() &&
1916 // there are sufficient fast track slots available
1917 (mFastTrackAvailMask != 0)
1918 // FIXME test that MixerThread for this fast track has a capable output HAL
1919 // FIXME add a permission test also?
1920 ) {
1921 // static tracks can have any nonzero framecount, streaming tracks check against minimum.
1922 if (sharedBuffer == 0) {
1923 // read the fast track multiplier property the first time it is needed
1924 int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1925 if (ok != 0) {
1926 ALOGE("%s pthread_once failed: %d", __func__, ok);
1927 }
1928 frameCount = max(frameCount, mFrameCount * sFastTrackMultiplier); // incl framecount 0
1929 }
1930
1931 // check compatibility with audio effects.
1932 { // scope for mLock
1933 Mutex::Autolock _l(mLock);
1934 for (audio_session_t session : {
1935 AUDIO_SESSION_OUTPUT_STAGE,
1936 AUDIO_SESSION_OUTPUT_MIX,
1937 sessionId,
1938 }) {
1939 sp<EffectChain> chain = getEffectChain_l(session);
1940 if (chain.get() != nullptr) {
1941 audio_output_flags_t old = *flags;
1942 chain->checkOutputFlagCompatibility(flags);
1943 if (old != *flags) {
1944 ALOGV("AUDIO_OUTPUT_FLAGS denied by effect, session=%d old=%#x new=%#x",
1945 (int)session, (int)old, (int)*flags);
1946 }
1947 }
1948 }
1949 }
1950 ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_FAST) != 0,
1951 "AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
1952 frameCount, mFrameCount);
1953 } else {
1954 ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%zu "
1955 "mFrameCount=%zu format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1956 "sampleRate=%u mSampleRate=%u "
1957 "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1958 sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1959 audio_is_linear_pcm(format),
1960 channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1961 *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
1962 }
1963 }
1964
1965 if (!audio_has_proportional_frames(format)) {
1966 if (sharedBuffer != 0) {
1967 // Same comment as below about ignoring frameCount parameter for set()
1968 frameCount = sharedBuffer->size();
1969 } else if (frameCount == 0) {
1970 frameCount = mNormalFrameCount;
1971 }
1972 if (notificationFrameCount != frameCount) {
1973 notificationFrameCount = frameCount;
1974 }
1975 } else if (sharedBuffer != 0) {
1976 // FIXME: Ensure client side memory buffers need
1977 // not have additional alignment beyond sample
1978 // (e.g. 16 bit stereo accessed as 32 bit frame).
1979 size_t alignment = audio_bytes_per_sample(format);
1980 if (alignment & 1) {
1981 // for AUDIO_FORMAT_PCM_24_BIT_PACKED (not exposed through Java).
1982 alignment = 1;
1983 }
1984 uint32_t channelCount = audio_channel_count_from_out_mask(channelMask);
1985 size_t frameSize = channelCount * audio_bytes_per_sample(format);
1986 if (channelCount > 1) {
1987 // More than 2 channels does not require stronger alignment than stereo
1988 alignment <<= 1;
1989 }
1990 if (((uintptr_t)sharedBuffer->pointer() & (alignment - 1)) != 0) {
1991 ALOGE("Invalid buffer alignment: address %p, channel count %u",
1992 sharedBuffer->pointer(), channelCount);
1993 lStatus = BAD_VALUE;
1994 goto Exit;
1995 }
1996
1997 // When initializing a shared buffer AudioTrack via constructors,
1998 // there's no frameCount parameter.
1999 // But when initializing a shared buffer AudioTrack via set(),
2000 // there _is_ a frameCount parameter. We silently ignore it.
2001 frameCount = sharedBuffer->size() / frameSize;
2002 } else {
2003 size_t minFrameCount = 0;
2004 // For fast tracks we try to respect the application's request for notifications per buffer.
2005 if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
2006 if (notificationsPerBuffer > 0) {
2007 // Avoid possible arithmetic overflow during multiplication.
2008 if (notificationsPerBuffer > SIZE_MAX / mFrameCount) {
2009 ALOGE("Requested notificationPerBuffer=%u ignored for HAL frameCount=%zu",
2010 notificationsPerBuffer, mFrameCount);
2011 } else {
2012 minFrameCount = mFrameCount * notificationsPerBuffer;
2013 }
2014 }
2015 } else {
2016 // For normal PCM streaming tracks, update minimum frame count.
2017 // Buffer depth is forced to be at least 2 x the normal mixer frame count and
2018 // cover audio hardware latency.
2019 // This is probably too conservative, but legacy application code may depend on it.
2020 // If you change this calculation, also review the start threshold which is related.
2021 uint32_t latencyMs = latency_l();
2022 if (latencyMs == 0) {
2023 ALOGE("Error when retrieving output stream latency");
2024 lStatus = UNKNOWN_ERROR;
2025 goto Exit;
2026 }
2027
2028 minFrameCount = AudioSystem::calculateMinFrameCount(latencyMs, mNormalFrameCount,
2029 mSampleRate, sampleRate, speed /*, 0 mNotificationsPerBufferReq*/);
2030
2031 }
2032 if (frameCount < minFrameCount) {
2033 frameCount = minFrameCount;
2034 }
2035 }
2036
2037 // Make sure that application is notified with sufficient margin before underrun.
2038 // The client can divide the AudioTrack buffer into sub-buffers,
2039 // and expresses its desire to server as the notification frame count.
2040 if (sharedBuffer == 0 && audio_is_linear_pcm(format)) {
2041 size_t maxNotificationFrames;
2042 if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
2043 // notify every HAL buffer, regardless of the size of the track buffer
2044 maxNotificationFrames = mFrameCount;
2045 } else {
2046 // For normal tracks, use at least double-buffering if no sample rate conversion,
2047 // or at least triple-buffering if there is sample rate conversion
2048 const int nBuffering = sampleRate == mSampleRate ? 2 : 3;
2049 maxNotificationFrames = frameCount / nBuffering;
2050 // If client requested a fast track but this was denied, then use the smaller maximum.
2051 if (requestedFlags & AUDIO_OUTPUT_FLAG_FAST) {
2052 size_t maxNotificationFramesFastDenied = FMS_20 * sampleRate / 1000;
2053 if (maxNotificationFrames > maxNotificationFramesFastDenied) {
2054 maxNotificationFrames = maxNotificationFramesFastDenied;
2055 }
2056 }
2057 }
2058 if (notificationFrameCount == 0 || notificationFrameCount > maxNotificationFrames) {
2059 if (notificationFrameCount == 0) {
2060 ALOGD("Client defaulted notificationFrames to %zu for frameCount %zu",
2061 maxNotificationFrames, frameCount);
2062 } else {
2063 ALOGW("Client adjusted notificationFrames from %zu to %zu for frameCount %zu",
2064 notificationFrameCount, maxNotificationFrames, frameCount);
2065 }
2066 notificationFrameCount = maxNotificationFrames;
2067 }
2068 }
2069
2070 *pFrameCount = frameCount;
2071 *pNotificationFrameCount = notificationFrameCount;
2072
2073 switch (mType) {
2074
2075 case DIRECT:
2076 if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()?
2077 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
2078 ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
2079 "for output %p with format %#x",
2080 sampleRate, format, channelMask, mOutput, mFormat);
2081 lStatus = BAD_VALUE;
2082 goto Exit;
2083 }
2084 }
2085 break;
2086
2087 case OFFLOAD:
2088 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
2089 ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
2090 "for output %p with format %#x",
2091 sampleRate, format, channelMask, mOutput, mFormat);
2092 lStatus = BAD_VALUE;
2093 goto Exit;
2094 }
2095 break;
2096
2097 default:
2098 if (!audio_is_linear_pcm(format)) {
2099 ALOGE("createTrack_l() Bad parameter: format %#x \""
2100 "for output %p with format %#x",
2101 format, mOutput, mFormat);
2102 lStatus = BAD_VALUE;
2103 goto Exit;
2104 }
2105 if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
2106 ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
2107 lStatus = BAD_VALUE;
2108 goto Exit;
2109 }
2110 break;
2111
2112 }
2113
2114 lStatus = initCheck();
2115 if (lStatus != NO_ERROR) {
2116 ALOGE("createTrack_l() audio driver not initialized");
2117 goto Exit;
2118 }
2119
2120 { // scope for mLock
2121 Mutex::Autolock _l(mLock);
2122
2123 // all tracks in same audio session must share the same routing strategy otherwise
2124 // conflicts will happen when tracks are moved from one output to another by audio policy
2125 // manager
2126 uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
2127 for (size_t i = 0; i < mTracks.size(); ++i) {
2128 sp<Track> t = mTracks[i];
2129 if (t != 0 && t->isExternalTrack()) {
2130 uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
2131 if (sessionId == t->sessionId() && strategy != actual) {
2132 ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
2133 strategy, actual);
2134 lStatus = BAD_VALUE;
2135 goto Exit;
2136 }
2137 }
2138 }
2139
2140 track = new Track(this, client, streamType, attr, sampleRate, format,
2141 channelMask, frameCount,
2142 nullptr /* buffer */, (size_t)0 /* bufferSize */, sharedBuffer,
2143 sessionId, uid, *flags, TrackBase::TYPE_DEFAULT, portId);
2144
2145 lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
2146 if (lStatus != NO_ERROR) {
2147 ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
2148 // track must be cleared from the caller as the caller has the AF lock
2149 goto Exit;
2150 }
2151 mTracks.add(track);
2152
2153 sp<EffectChain> chain = getEffectChain_l(sessionId);
2154 if (chain != 0) {
2155 ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
2156 track->setMainBuffer(chain->inBuffer());
2157 chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
2158 chain->incTrackCnt();
2159 }
2160
2161 if ((*flags & AUDIO_OUTPUT_FLAG_FAST) && (tid != -1)) {
2162 pid_t callingPid = IPCThreadState::self()->getCallingPid();
2163 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
2164 // so ask activity manager to do this on our behalf
2165 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp, true /*forApp*/);
2166 }
2167 }
2168
2169 lStatus = NO_ERROR;
2170
2171 Exit:
2172 *status = lStatus;
2173 return track;
2174 }
2175
2176 template<typename T>
add(const sp<T> & track)2177 ssize_t AudioFlinger::PlaybackThread::Tracks<T>::add(const sp<T> &track)
2178 {
2179 const ssize_t index = mTracks.add(track);
2180 if (index >= 0) {
2181 // set name for track when adding.
2182 int name;
2183 if (mUnusedTrackNames.empty()) {
2184 name = mTracks.size() - 1; // new name {0 ... size-1}.
2185 } else {
2186 // reuse smallest name for deleted track.
2187 auto it = mUnusedTrackNames.begin();
2188 name = *it;
2189 (void)mUnusedTrackNames.erase(it);
2190 }
2191 track->setName(name);
2192 } else {
2193 LOG_ALWAYS_FATAL("cannot add track");
2194 }
2195 return index;
2196 }
2197
2198 template<typename T>
remove(const sp<T> & track)2199 ssize_t AudioFlinger::PlaybackThread::Tracks<T>::remove(const sp<T> &track)
2200 {
2201 const int name = track->name();
2202 const ssize_t index = mTracks.remove(track);
2203 if (index >= 0) {
2204 // invalidate name when removing from mTracks.
2205 LOG_ALWAYS_FATAL_IF(name < 0, "invalid name %d for track on mTracks", name);
2206
2207 if (mSaveDeletedTrackNames) {
2208 // We can't directly access mAudioMixer since the caller may be outside of threadLoop.
2209 // Instead, we add to mDeletedTrackNames which is solely used for mAudioMixer update,
2210 // to be handled when MixerThread::prepareTracks_l() next changes mAudioMixer.
2211 mDeletedTrackNames.emplace(name);
2212 }
2213
2214 mUnusedTrackNames.emplace(name);
2215 track->setName(T::TRACK_NAME_PENDING);
2216 } else {
2217 LOG_ALWAYS_FATAL_IF(name >= 0,
2218 "valid name %d for track not in mTracks (returned %zd)", name, index);
2219 }
2220 return index;
2221 }
2222
correctLatency_l(uint32_t latency) const2223 uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
2224 {
2225 return latency;
2226 }
2227
latency() const2228 uint32_t AudioFlinger::PlaybackThread::latency() const
2229 {
2230 Mutex::Autolock _l(mLock);
2231 return latency_l();
2232 }
latency_l() const2233 uint32_t AudioFlinger::PlaybackThread::latency_l() const
2234 {
2235 uint32_t latency;
2236 if (initCheck() == NO_ERROR && mOutput->stream->getLatency(&latency) == OK) {
2237 return correctLatency_l(latency);
2238 }
2239 return 0;
2240 }
2241
setMasterVolume(float value)2242 void AudioFlinger::PlaybackThread::setMasterVolume(float value)
2243 {
2244 Mutex::Autolock _l(mLock);
2245 // Don't apply master volume in SW if our HAL can do it for us.
2246 if (mOutput && mOutput->audioHwDev &&
2247 mOutput->audioHwDev->canSetMasterVolume()) {
2248 mMasterVolume = 1.0;
2249 } else {
2250 mMasterVolume = value;
2251 }
2252 }
2253
setMasterMute(bool muted)2254 void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
2255 {
2256 if (isDuplicating()) {
2257 return;
2258 }
2259 Mutex::Autolock _l(mLock);
2260 // Don't apply master mute in SW if our HAL can do it for us.
2261 if (mOutput && mOutput->audioHwDev &&
2262 mOutput->audioHwDev->canSetMasterMute()) {
2263 mMasterMute = false;
2264 } else {
2265 mMasterMute = muted;
2266 }
2267 }
2268
setStreamVolume(audio_stream_type_t stream,float value)2269 void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
2270 {
2271 Mutex::Autolock _l(mLock);
2272 mStreamTypes[stream].volume = value;
2273 broadcast_l();
2274 }
2275
setStreamMute(audio_stream_type_t stream,bool muted)2276 void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
2277 {
2278 Mutex::Autolock _l(mLock);
2279 mStreamTypes[stream].mute = muted;
2280 broadcast_l();
2281 }
2282
streamVolume(audio_stream_type_t stream) const2283 float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
2284 {
2285 Mutex::Autolock _l(mLock);
2286 return mStreamTypes[stream].volume;
2287 }
2288
2289 // addTrack_l() must be called with ThreadBase::mLock held
addTrack_l(const sp<Track> & track)2290 status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
2291 {
2292 status_t status = ALREADY_EXISTS;
2293
2294 if (mActiveTracks.indexOf(track) < 0) {
2295 // the track is newly added, make sure it fills up all its
2296 // buffers before playing. This is to ensure the client will
2297 // effectively get the latency it requested.
2298 if (track->isExternalTrack()) {
2299 TrackBase::track_state state = track->mState;
2300 mLock.unlock();
2301 status = AudioSystem::startOutput(mId, track->streamType(),
2302 track->sessionId());
2303 mLock.lock();
2304 // abort track was stopped/paused while we released the lock
2305 if (state != track->mState) {
2306 if (status == NO_ERROR) {
2307 mLock.unlock();
2308 AudioSystem::stopOutput(mId, track->streamType(),
2309 track->sessionId());
2310 mLock.lock();
2311 }
2312 return INVALID_OPERATION;
2313 }
2314 // abort if start is rejected by audio policy manager
2315 if (status != NO_ERROR) {
2316 return PERMISSION_DENIED;
2317 }
2318 #ifdef ADD_BATTERY_DATA
2319 // to track the speaker usage
2320 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
2321 #endif
2322 }
2323
2324 // set retry count for buffer fill
2325 if (track->isOffloaded()) {
2326 if (track->isStopping_1()) {
2327 track->mRetryCount = kMaxTrackStopRetriesOffload;
2328 } else {
2329 track->mRetryCount = kMaxTrackStartupRetriesOffload;
2330 }
2331 track->mFillingUpStatus = mStandby ? Track::FS_FILLING : Track::FS_FILLED;
2332 } else {
2333 track->mRetryCount = kMaxTrackStartupRetries;
2334 track->mFillingUpStatus =
2335 track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
2336 }
2337
2338 track->mResetDone = false;
2339 track->mPresentationCompleteFrames = 0;
2340 mActiveTracks.add(track);
2341 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2342 if (chain != 0) {
2343 ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
2344 track->sessionId());
2345 chain->incActiveTrackCnt();
2346 }
2347
2348 status = NO_ERROR;
2349 }
2350
2351 onAddNewTrack_l();
2352 return status;
2353 }
2354
destroyTrack_l(const sp<Track> & track)2355 bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
2356 {
2357 track->terminate();
2358 // active tracks are removed by threadLoop()
2359 bool trackActive = (mActiveTracks.indexOf(track) >= 0);
2360 track->mState = TrackBase::STOPPED;
2361 if (!trackActive) {
2362 removeTrack_l(track);
2363 } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
2364 track->mState = TrackBase::STOPPING_1;
2365 }
2366
2367 return trackActive;
2368 }
2369
removeTrack_l(const sp<Track> & track)2370 void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
2371 {
2372 track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
2373
2374 String8 result;
2375 track->appendDump(result, false /* active */);
2376 mLocalLog.log("removeTrack_l (%p) %s", track.get(), result.string());
2377
2378 mTracks.remove(track);
2379 if (track->isFastTrack()) {
2380 int index = track->mFastIndex;
2381 ALOG_ASSERT(0 < index && index < (int)FastMixerState::sMaxFastTracks);
2382 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
2383 mFastTrackAvailMask |= 1 << index;
2384 // redundant as track is about to be destroyed, for dumpsys only
2385 track->mFastIndex = -1;
2386 }
2387 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2388 if (chain != 0) {
2389 chain->decTrackCnt();
2390 }
2391 }
2392
getParameters(const String8 & keys)2393 String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
2394 {
2395 Mutex::Autolock _l(mLock);
2396 String8 out_s8;
2397 if (initCheck() == NO_ERROR && mOutput->stream->getParameters(keys, &out_s8) == OK) {
2398 return out_s8;
2399 }
2400 return String8();
2401 }
2402
ioConfigChanged(audio_io_config_event event,pid_t pid)2403 void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
2404 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
2405 ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
2406
2407 desc->mIoHandle = mId;
2408
2409 switch (event) {
2410 case AUDIO_OUTPUT_OPENED:
2411 case AUDIO_OUTPUT_REGISTERED:
2412 case AUDIO_OUTPUT_CONFIG_CHANGED:
2413 desc->mPatch = mPatch;
2414 desc->mChannelMask = mChannelMask;
2415 desc->mSamplingRate = mSampleRate;
2416 desc->mFormat = mFormat;
2417 desc->mFrameCount = mNormalFrameCount; // FIXME see
2418 // AudioFlinger::frameCount(audio_io_handle_t)
2419 desc->mFrameCountHAL = mFrameCount;
2420 desc->mLatency = latency_l();
2421 break;
2422
2423 case AUDIO_OUTPUT_CLOSED:
2424 default:
2425 break;
2426 }
2427 mAudioFlinger->ioConfigChanged(event, desc, pid);
2428 }
2429
onWriteReady()2430 void AudioFlinger::PlaybackThread::onWriteReady()
2431 {
2432 mCallbackThread->resetWriteBlocked();
2433 }
2434
onDrainReady()2435 void AudioFlinger::PlaybackThread::onDrainReady()
2436 {
2437 mCallbackThread->resetDraining();
2438 }
2439
onError()2440 void AudioFlinger::PlaybackThread::onError()
2441 {
2442 mCallbackThread->setAsyncError();
2443 }
2444
resetWriteBlocked(uint32_t sequence)2445 void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
2446 {
2447 Mutex::Autolock _l(mLock);
2448 // reject out of sequence requests
2449 if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
2450 mWriteAckSequence &= ~1;
2451 mWaitWorkCV.signal();
2452 }
2453 }
2454
resetDraining(uint32_t sequence)2455 void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
2456 {
2457 Mutex::Autolock _l(mLock);
2458 // reject out of sequence requests
2459 if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
2460 mDrainSequence &= ~1;
2461 mWaitWorkCV.signal();
2462 }
2463 }
2464
readOutputParameters_l()2465 void AudioFlinger::PlaybackThread::readOutputParameters_l()
2466 {
2467 // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2468 mSampleRate = mOutput->getSampleRate();
2469 mChannelMask = mOutput->getChannelMask();
2470 if (!audio_is_output_channel(mChannelMask)) {
2471 LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2472 }
2473 if ((mType == MIXER || mType == DUPLICATING)
2474 && !isValidPcmSinkChannelMask(mChannelMask)) {
2475 LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2476 mChannelMask);
2477 }
2478 mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2479
2480 // Get actual HAL format.
2481 status_t result = mOutput->stream->getFormat(&mHALFormat);
2482 LOG_ALWAYS_FATAL_IF(result != OK, "Error when retrieving output stream format: %d", result);
2483 // Get format from the shim, which will be different than the HAL format
2484 // if playing compressed audio over HDMI passthrough.
2485 mFormat = mOutput->getFormat();
2486 if (!audio_is_valid_format(mFormat)) {
2487 LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2488 }
2489 if ((mType == MIXER || mType == DUPLICATING)
2490 && !isValidPcmSinkFormat(mFormat)) {
2491 LOG_FATAL("HAL format %#x not supported for mixed output",
2492 mFormat);
2493 }
2494 mFrameSize = mOutput->getFrameSize();
2495 result = mOutput->stream->getBufferSize(&mBufferSize);
2496 LOG_ALWAYS_FATAL_IF(result != OK,
2497 "Error when retrieving output stream buffer size: %d", result);
2498 mFrameCount = mBufferSize / mFrameSize;
2499 if (mFrameCount & 15) {
2500 ALOGW("HAL output buffer size is %zu frames but AudioMixer requires multiples of 16 frames",
2501 mFrameCount);
2502 }
2503
2504 if (mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) {
2505 if (mOutput->stream->setCallback(this) == OK) {
2506 mUseAsyncWrite = true;
2507 mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2508 }
2509 }
2510
2511 mHwSupportsPause = false;
2512 if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2513 bool supportsPause = false, supportsResume = false;
2514 if (mOutput->stream->supportsPauseAndResume(&supportsPause, &supportsResume) == OK) {
2515 if (supportsPause && supportsResume) {
2516 mHwSupportsPause = true;
2517 } else if (supportsPause) {
2518 ALOGW("direct output implements pause but not resume");
2519 } else if (supportsResume) {
2520 ALOGW("direct output implements resume but not pause");
2521 }
2522 }
2523 }
2524 if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2525 LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2526 }
2527
2528 if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2529 // For best precision, we use float instead of the associated output
2530 // device format (typically PCM 16 bit).
2531
2532 mFormat = AUDIO_FORMAT_PCM_FLOAT;
2533 mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2534 mBufferSize = mFrameSize * mFrameCount;
2535
2536 // TODO: We currently use the associated output device channel mask and sample rate.
2537 // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2538 // (if a valid mask) to avoid premature downmix.
2539 // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2540 // instead of the output device sample rate to avoid loss of high frequency information.
2541 // This may need to be updated as MixerThread/OutputTracks are added and not here.
2542 }
2543
2544 // Calculate size of normal sink buffer relative to the HAL output buffer size
2545 double multiplier = 1.0;
2546 if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2547 kUseFastMixer == FastMixer_Dynamic)) {
2548 size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2549 size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2550
2551 // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2552 minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2553 maxNormalFrameCount = maxNormalFrameCount & ~15;
2554 if (maxNormalFrameCount < minNormalFrameCount) {
2555 maxNormalFrameCount = minNormalFrameCount;
2556 }
2557 multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2558 if (multiplier <= 1.0) {
2559 multiplier = 1.0;
2560 } else if (multiplier <= 2.0) {
2561 if (2 * mFrameCount <= maxNormalFrameCount) {
2562 multiplier = 2.0;
2563 } else {
2564 multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2565 }
2566 } else {
2567 multiplier = floor(multiplier);
2568 }
2569 }
2570 mNormalFrameCount = multiplier * mFrameCount;
2571 // round up to nearest 16 frames to satisfy AudioMixer
2572 if (mType == MIXER || mType == DUPLICATING) {
2573 mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2574 }
2575 ALOGI("HAL output buffer size %zu frames, normal sink buffer size %zu frames", mFrameCount,
2576 mNormalFrameCount);
2577
2578 // Check if we want to throttle the processing to no more than 2x normal rate
2579 mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
2580 mThreadThrottleTimeMs = 0;
2581 mThreadThrottleEndMs = 0;
2582 mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
2583
2584 // mSinkBuffer is the sink buffer. Size is always multiple-of-16 frames.
2585 // Originally this was int16_t[] array, need to remove legacy implications.
2586 free(mSinkBuffer);
2587 mSinkBuffer = NULL;
2588 // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2589 // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2590 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2591 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2592
2593 // We resize the mMixerBuffer according to the requirements of the sink buffer which
2594 // drives the output.
2595 free(mMixerBuffer);
2596 mMixerBuffer = NULL;
2597 if (mMixerBufferEnabled) {
2598 mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
2599 mMixerBufferSize = mNormalFrameCount * mChannelCount
2600 * audio_bytes_per_sample(mMixerBufferFormat);
2601 (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2602 }
2603 free(mEffectBuffer);
2604 mEffectBuffer = NULL;
2605 if (mEffectBufferEnabled) {
2606 mEffectBufferFormat = EFFECT_BUFFER_FORMAT;
2607 mEffectBufferSize = mNormalFrameCount * mChannelCount
2608 * audio_bytes_per_sample(mEffectBufferFormat);
2609 (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2610 }
2611
2612 // force reconfiguration of effect chains and engines to take new buffer size and audio
2613 // parameters into account
2614 // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2615 // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2616 // matter.
2617 // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2618 Vector< sp<EffectChain> > effectChains = mEffectChains;
2619 for (size_t i = 0; i < effectChains.size(); i ++) {
2620 mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
2621 }
2622 }
2623
updateMetadata_l()2624 void AudioFlinger::PlaybackThread::updateMetadata_l()
2625 {
2626 if (mOutput == nullptr || mOutput->stream == nullptr ) {
2627 return; // That should not happen
2628 }
2629 bool hasChanged = mActiveTracks.readAndClearHasChanged();
2630 for (const sp<Track> &track : mActiveTracks) {
2631 // Do not short-circuit as all hasChanged states must be reset
2632 // as all the metadata are going to be sent
2633 hasChanged |= track->readAndClearHasChanged();
2634 }
2635 if (!hasChanged) {
2636 return; // nothing to do
2637 }
2638 StreamOutHalInterface::SourceMetadata metadata;
2639 auto backInserter = std::back_inserter(metadata.tracks);
2640 for (const sp<Track> &track : mActiveTracks) {
2641 // No track is invalid as this is called after prepareTrack_l in the same critical section
2642 track->copyMetadataTo(backInserter);
2643 }
2644 sendMetadataToBackend_l(metadata);
2645 }
2646
sendMetadataToBackend_l(const StreamOutHalInterface::SourceMetadata & metadata)2647 void AudioFlinger::PlaybackThread::sendMetadataToBackend_l(
2648 const StreamOutHalInterface::SourceMetadata& metadata)
2649 {
2650 mOutput->stream->updateSourceMetadata(metadata);
2651 };
2652
getRenderPosition(uint32_t * halFrames,uint32_t * dspFrames)2653 status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2654 {
2655 if (halFrames == NULL || dspFrames == NULL) {
2656 return BAD_VALUE;
2657 }
2658 Mutex::Autolock _l(mLock);
2659 if (initCheck() != NO_ERROR) {
2660 return INVALID_OPERATION;
2661 }
2662 int64_t framesWritten = mBytesWritten / mFrameSize;
2663 *halFrames = framesWritten;
2664
2665 if (isSuspended()) {
2666 // return an estimation of rendered frames when the output is suspended
2667 size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2668 *dspFrames = (uint32_t)
2669 (framesWritten >= (int64_t)latencyFrames ? framesWritten - latencyFrames : 0);
2670 return NO_ERROR;
2671 } else {
2672 status_t status;
2673 uint32_t frames;
2674 status = mOutput->getRenderPosition(&frames);
2675 *dspFrames = (size_t)frames;
2676 return status;
2677 }
2678 }
2679
2680 // hasAudioSession_l() must be called with ThreadBase::mLock held
hasAudioSession_l(audio_session_t sessionId) const2681 uint32_t AudioFlinger::PlaybackThread::hasAudioSession_l(audio_session_t sessionId) const
2682 {
2683 uint32_t result = 0;
2684 if (getEffectChain_l(sessionId) != 0) {
2685 result = EFFECT_SESSION;
2686 }
2687
2688 for (size_t i = 0; i < mTracks.size(); ++i) {
2689 sp<Track> track = mTracks[i];
2690 if (sessionId == track->sessionId() && !track->isInvalid()) {
2691 result |= TRACK_SESSION;
2692 if (track->isFastTrack()) {
2693 result |= FAST_SESSION;
2694 }
2695 break;
2696 }
2697 }
2698
2699 return result;
2700 }
2701
getStrategyForSession_l(audio_session_t sessionId)2702 uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(audio_session_t sessionId)
2703 {
2704 // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2705 // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2706 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2707 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2708 }
2709 for (size_t i = 0; i < mTracks.size(); i++) {
2710 sp<Track> track = mTracks[i];
2711 if (sessionId == track->sessionId() && !track->isInvalid()) {
2712 return AudioSystem::getStrategyForStream(track->streamType());
2713 }
2714 }
2715 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2716 }
2717
2718
getOutput() const2719 AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2720 {
2721 Mutex::Autolock _l(mLock);
2722 return mOutput;
2723 }
2724
clearOutput()2725 AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2726 {
2727 Mutex::Autolock _l(mLock);
2728 AudioStreamOut *output = mOutput;
2729 mOutput = NULL;
2730 // FIXME FastMixer might also have a raw ptr to mOutputSink;
2731 // must push a NULL and wait for ack
2732 mOutputSink.clear();
2733 mPipeSink.clear();
2734 mNormalSink.clear();
2735 return output;
2736 }
2737
2738 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const2739 sp<StreamHalInterface> AudioFlinger::PlaybackThread::stream() const
2740 {
2741 if (mOutput == NULL) {
2742 return NULL;
2743 }
2744 return mOutput->stream;
2745 }
2746
activeSleepTimeUs() const2747 uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2748 {
2749 return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2750 }
2751
setSyncEvent(const sp<SyncEvent> & event)2752 status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2753 {
2754 if (!isValidSyncEvent(event)) {
2755 return BAD_VALUE;
2756 }
2757
2758 Mutex::Autolock _l(mLock);
2759
2760 for (size_t i = 0; i < mTracks.size(); ++i) {
2761 sp<Track> track = mTracks[i];
2762 if (event->triggerSession() == track->sessionId()) {
2763 (void) track->setSyncEvent(event);
2764 return NO_ERROR;
2765 }
2766 }
2767
2768 return NAME_NOT_FOUND;
2769 }
2770
isValidSyncEvent(const sp<SyncEvent> & event) const2771 bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2772 {
2773 return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2774 }
2775
threadLoop_removeTracks(const Vector<sp<Track>> & tracksToRemove)2776 void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2777 const Vector< sp<Track> >& tracksToRemove)
2778 {
2779 size_t count = tracksToRemove.size();
2780 if (count > 0) {
2781 for (size_t i = 0 ; i < count ; i++) {
2782 const sp<Track>& track = tracksToRemove.itemAt(i);
2783 if (track->isExternalTrack()) {
2784 AudioSystem::stopOutput(mId, track->streamType(),
2785 track->sessionId());
2786 #ifdef ADD_BATTERY_DATA
2787 // to track the speaker usage
2788 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2789 #endif
2790 if (track->isTerminated()) {
2791 AudioSystem::releaseOutput(mId, track->streamType(),
2792 track->sessionId());
2793 }
2794 }
2795 }
2796 }
2797 }
2798
checkSilentMode_l()2799 void AudioFlinger::PlaybackThread::checkSilentMode_l()
2800 {
2801 if (!mMasterMute) {
2802 char value[PROPERTY_VALUE_MAX];
2803 if (mOutDevice == AUDIO_DEVICE_OUT_REMOTE_SUBMIX) {
2804 ALOGD("ro.audio.silent will be ignored for threads on AUDIO_DEVICE_OUT_REMOTE_SUBMIX");
2805 return;
2806 }
2807 if (property_get("ro.audio.silent", value, "0") > 0) {
2808 char *endptr;
2809 unsigned long ul = strtoul(value, &endptr, 0);
2810 if (*endptr == '\0' && ul != 0) {
2811 ALOGD("Silence is golden");
2812 // The setprop command will not allow a property to be changed after
2813 // the first time it is set, so we don't have to worry about un-muting.
2814 setMasterMute_l(true);
2815 }
2816 }
2817 }
2818 }
2819
2820 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_write()2821 ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2822 {
2823 LOG_HIST_TS();
2824 mInWrite = true;
2825 ssize_t bytesWritten;
2826 const size_t offset = mCurrentWriteLength - mBytesRemaining;
2827
2828 // If an NBAIO sink is present, use it to write the normal mixer's submix
2829 if (mNormalSink != 0) {
2830
2831 const size_t count = mBytesRemaining / mFrameSize;
2832
2833 ATRACE_BEGIN("write");
2834 // update the setpoint when AudioFlinger::mScreenState changes
2835 uint32_t screenState = AudioFlinger::mScreenState;
2836 if (screenState != mScreenState) {
2837 mScreenState = screenState;
2838 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2839 if (pipe != NULL) {
2840 pipe->setAvgFrames((mScreenState & 1) ?
2841 (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2842 }
2843 }
2844 ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2845 ATRACE_END();
2846 if (framesWritten > 0) {
2847 bytesWritten = framesWritten * mFrameSize;
2848 } else {
2849 bytesWritten = framesWritten;
2850 }
2851 // otherwise use the HAL / AudioStreamOut directly
2852 } else {
2853 // Direct output and offload threads
2854
2855 if (mUseAsyncWrite) {
2856 ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2857 mWriteAckSequence += 2;
2858 mWriteAckSequence |= 1;
2859 ALOG_ASSERT(mCallbackThread != 0);
2860 mCallbackThread->setWriteBlocked(mWriteAckSequence);
2861 }
2862 // FIXME We should have an implementation of timestamps for direct output threads.
2863 // They are used e.g for multichannel PCM playback over HDMI.
2864 bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
2865
2866 if (mUseAsyncWrite &&
2867 ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2868 // do not wait for async callback in case of error of full write
2869 mWriteAckSequence &= ~1;
2870 ALOG_ASSERT(mCallbackThread != 0);
2871 mCallbackThread->setWriteBlocked(mWriteAckSequence);
2872 }
2873 }
2874
2875 mNumWrites++;
2876 mInWrite = false;
2877 mStandby = false;
2878 return bytesWritten;
2879 }
2880
threadLoop_drain()2881 void AudioFlinger::PlaybackThread::threadLoop_drain()
2882 {
2883 bool supportsDrain = false;
2884 if (mOutput->stream->supportsDrain(&supportsDrain) == OK && supportsDrain) {
2885 ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2886 if (mUseAsyncWrite) {
2887 ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2888 mDrainSequence |= 1;
2889 ALOG_ASSERT(mCallbackThread != 0);
2890 mCallbackThread->setDraining(mDrainSequence);
2891 }
2892 status_t result = mOutput->stream->drain(mMixerStatus == MIXER_DRAIN_TRACK);
2893 ALOGE_IF(result != OK, "Error when draining stream: %d", result);
2894 }
2895 }
2896
threadLoop_exit()2897 void AudioFlinger::PlaybackThread::threadLoop_exit()
2898 {
2899 {
2900 Mutex::Autolock _l(mLock);
2901 for (size_t i = 0; i < mTracks.size(); i++) {
2902 sp<Track> track = mTracks[i];
2903 track->invalidate();
2904 }
2905 // Clear ActiveTracks to update BatteryNotifier in case active tracks remain.
2906 // After we exit there are no more track changes sent to BatteryNotifier
2907 // because that requires an active threadLoop.
2908 // TODO: should we decActiveTrackCnt() of the cleared track effect chain?
2909 mActiveTracks.clear();
2910 }
2911 }
2912
2913 /*
2914 The derived values that are cached:
2915 - mSinkBufferSize from frame count * frame size
2916 - mActiveSleepTimeUs from activeSleepTimeUs()
2917 - mIdleSleepTimeUs from idleSleepTimeUs()
2918 - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least
2919 kDefaultStandbyTimeInNsecs when connected to an A2DP device.
2920 - maxPeriod from frame count and sample rate (MIXER only)
2921
2922 The parameters that affect these derived values are:
2923 - frame count
2924 - frame size
2925 - sample rate
2926 - device type: A2DP or not
2927 - device latency
2928 - format: PCM or not
2929 - active sleep time
2930 - idle sleep time
2931 */
2932
cacheParameters_l()2933 void AudioFlinger::PlaybackThread::cacheParameters_l()
2934 {
2935 mSinkBufferSize = mNormalFrameCount * mFrameSize;
2936 mActiveSleepTimeUs = activeSleepTimeUs();
2937 mIdleSleepTimeUs = idleSleepTimeUs();
2938
2939 // make sure standby delay is not too short when connected to an A2DP sink to avoid
2940 // truncating audio when going to standby.
2941 mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs;
2942 if ((mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != 0) {
2943 if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) {
2944 mStandbyDelayNs = kDefaultStandbyTimeInNsecs;
2945 }
2946 }
2947 }
2948
invalidateTracks_l(audio_stream_type_t streamType)2949 bool AudioFlinger::PlaybackThread::invalidateTracks_l(audio_stream_type_t streamType)
2950 {
2951 ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %zu",
2952 this, streamType, mTracks.size());
2953 bool trackMatch = false;
2954 size_t size = mTracks.size();
2955 for (size_t i = 0; i < size; i++) {
2956 sp<Track> t = mTracks[i];
2957 if (t->streamType() == streamType && t->isExternalTrack()) {
2958 t->invalidate();
2959 trackMatch = true;
2960 }
2961 }
2962 return trackMatch;
2963 }
2964
invalidateTracks(audio_stream_type_t streamType)2965 void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2966 {
2967 Mutex::Autolock _l(mLock);
2968 invalidateTracks_l(streamType);
2969 }
2970
addEffectChain_l(const sp<EffectChain> & chain)2971 status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2972 {
2973 audio_session_t session = chain->sessionId();
2974 sp<EffectBufferHalInterface> halInBuffer, halOutBuffer;
2975 status_t result = mAudioFlinger->mEffectsFactoryHal->mirrorBuffer(
2976 mEffectBufferEnabled ? mEffectBuffer : mSinkBuffer,
2977 mEffectBufferEnabled ? mEffectBufferSize : mSinkBufferSize,
2978 &halInBuffer);
2979 if (result != OK) return result;
2980 halOutBuffer = halInBuffer;
2981 effect_buffer_t *buffer = reinterpret_cast<effect_buffer_t*>(halInBuffer->externalData());
2982 ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2983 if (session > AUDIO_SESSION_OUTPUT_MIX) {
2984 // Only one effect chain can be present in direct output thread and it uses
2985 // the sink buffer as input
2986 if (mType != DIRECT) {
2987 size_t numSamples = mNormalFrameCount * mChannelCount;
2988 status_t result = mAudioFlinger->mEffectsFactoryHal->allocateBuffer(
2989 numSamples * sizeof(effect_buffer_t),
2990 &halInBuffer);
2991 if (result != OK) return result;
2992 #ifdef FLOAT_EFFECT_CHAIN
2993 buffer = halInBuffer->audioBuffer()->f32;
2994 #else
2995 buffer = halInBuffer->audioBuffer()->s16;
2996 #endif
2997 ALOGV("addEffectChain_l() creating new input buffer %p session %d",
2998 buffer, session);
2999 }
3000
3001 // Attach all tracks with same session ID to this chain.
3002 for (size_t i = 0; i < mTracks.size(); ++i) {
3003 sp<Track> track = mTracks[i];
3004 if (session == track->sessionId()) {
3005 ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
3006 buffer);
3007 track->setMainBuffer(buffer);
3008 chain->incTrackCnt();
3009 }
3010 }
3011
3012 // indicate all active tracks in the chain
3013 for (const sp<Track> &track : mActiveTracks) {
3014 if (session == track->sessionId()) {
3015 ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
3016 chain->incActiveTrackCnt();
3017 }
3018 }
3019 }
3020 chain->setThread(this);
3021 chain->setInBuffer(halInBuffer);
3022 chain->setOutBuffer(halOutBuffer);
3023 // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
3024 // chains list in order to be processed last as it contains output stage effects.
3025 // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
3026 // session AUDIO_SESSION_OUTPUT_STAGE to be processed
3027 // after track specific effects and before output stage.
3028 // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
3029 // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX.
3030 // Effect chain for other sessions are inserted at beginning of effect
3031 // chains list to be processed before output mix effects. Relative order between other
3032 // sessions is not important.
3033 static_assert(AUDIO_SESSION_OUTPUT_MIX == 0 &&
3034 AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX,
3035 "audio_session_t constants misdefined");
3036 size_t size = mEffectChains.size();
3037 size_t i = 0;
3038 for (i = 0; i < size; i++) {
3039 if (mEffectChains[i]->sessionId() < session) {
3040 break;
3041 }
3042 }
3043 mEffectChains.insertAt(chain, i);
3044 checkSuspendOnAddEffectChain_l(chain);
3045
3046 return NO_ERROR;
3047 }
3048
removeEffectChain_l(const sp<EffectChain> & chain)3049 size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
3050 {
3051 audio_session_t session = chain->sessionId();
3052
3053 ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
3054
3055 for (size_t i = 0; i < mEffectChains.size(); i++) {
3056 if (chain == mEffectChains[i]) {
3057 mEffectChains.removeAt(i);
3058 // detach all active tracks from the chain
3059 for (const sp<Track> &track : mActiveTracks) {
3060 if (session == track->sessionId()) {
3061 ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
3062 chain.get(), session);
3063 chain->decActiveTrackCnt();
3064 }
3065 }
3066
3067 // detach all tracks with same session ID from this chain
3068 for (size_t i = 0; i < mTracks.size(); ++i) {
3069 sp<Track> track = mTracks[i];
3070 if (session == track->sessionId()) {
3071 track->setMainBuffer(reinterpret_cast<effect_buffer_t*>(mSinkBuffer));
3072 chain->decTrackCnt();
3073 }
3074 }
3075 break;
3076 }
3077 }
3078 return mEffectChains.size();
3079 }
3080
attachAuxEffect(const sp<AudioFlinger::PlaybackThread::Track> & track,int EffectId)3081 status_t AudioFlinger::PlaybackThread::attachAuxEffect(
3082 const sp<AudioFlinger::PlaybackThread::Track>& track, int EffectId)
3083 {
3084 Mutex::Autolock _l(mLock);
3085 return attachAuxEffect_l(track, EffectId);
3086 }
3087
attachAuxEffect_l(const sp<AudioFlinger::PlaybackThread::Track> & track,int EffectId)3088 status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
3089 const sp<AudioFlinger::PlaybackThread::Track>& track, int EffectId)
3090 {
3091 status_t status = NO_ERROR;
3092
3093 if (EffectId == 0) {
3094 track->setAuxBuffer(0, NULL);
3095 } else {
3096 // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
3097 sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
3098 if (effect != 0) {
3099 if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
3100 track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
3101 } else {
3102 status = INVALID_OPERATION;
3103 }
3104 } else {
3105 status = BAD_VALUE;
3106 }
3107 }
3108 return status;
3109 }
3110
detachAuxEffect_l(int effectId)3111 void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
3112 {
3113 for (size_t i = 0; i < mTracks.size(); ++i) {
3114 sp<Track> track = mTracks[i];
3115 if (track->auxEffectId() == effectId) {
3116 attachAuxEffect_l(track, 0);
3117 }
3118 }
3119 }
3120
threadLoop()3121 bool AudioFlinger::PlaybackThread::threadLoop()
3122 {
3123 tlNBLogWriter = mNBLogWriter.get();
3124
3125 Vector< sp<Track> > tracksToRemove;
3126
3127 mStandbyTimeNs = systemTime();
3128 nsecs_t lastWriteFinished = -1; // time last server write completed
3129 int64_t lastFramesWritten = -1; // track changes in timestamp server frames written
3130
3131 // MIXER
3132 nsecs_t lastWarning = 0;
3133
3134 // DUPLICATING
3135 // FIXME could this be made local to while loop?
3136 writeFrames = 0;
3137
3138 cacheParameters_l();
3139 mSleepTimeUs = mIdleSleepTimeUs;
3140
3141 if (mType == MIXER) {
3142 sleepTimeShift = 0;
3143 }
3144
3145 CpuStats cpuStats;
3146 const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
3147
3148 acquireWakeLock();
3149
3150 // mNBLogWriter logging APIs can only be called by a single thread, typically the
3151 // thread associated with this PlaybackThread.
3152 // If you want to share the mNBLogWriter with other threads (for example, binder threads)
3153 // then all such threads must agree to hold a common mutex before logging.
3154 // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
3155 // and then that string will be logged at the next convenient opportunity.
3156 // See reference to logString below.
3157 const char *logString = NULL;
3158
3159 // Estimated time for next buffer to be written to hal. This is used only on
3160 // suspended mode (for now) to help schedule the wait time until next iteration.
3161 nsecs_t timeLoopNextNs = 0;
3162
3163 checkSilentMode_l();
3164
3165 while (!exitPending())
3166 {
3167 // Log merge requests are performed during AudioFlinger binder transactions, but
3168 // that does not cover audio playback. It's requested here for that reason.
3169 mAudioFlinger->requestLogMerge();
3170
3171 cpuStats.sample(myName);
3172
3173 Vector< sp<EffectChain> > effectChains;
3174
3175 { // scope for mLock
3176
3177 Mutex::Autolock _l(mLock);
3178
3179 processConfigEvents_l();
3180
3181 // See comment at declaration of logString for why this is done under mLock
3182 if (logString != NULL) {
3183 mNBLogWriter->logTimestamp();
3184 mNBLogWriter->log(logString);
3185 logString = NULL;
3186 }
3187
3188 // Gather the framesReleased counters for all active tracks,
3189 // and associate with the sink frames written out. We need
3190 // this to convert the sink timestamp to the track timestamp.
3191 bool kernelLocationUpdate = false;
3192 if (mNormalSink != 0) {
3193 // Note: The DuplicatingThread may not have a mNormalSink.
3194 // We always fetch the timestamp here because often the downstream
3195 // sink will block while writing.
3196 ExtendedTimestamp timestamp; // use private copy to fetch
3197 (void) mNormalSink->getTimestamp(timestamp);
3198
3199 // We keep track of the last valid kernel position in case we are in underrun
3200 // and the normal mixer period is the same as the fast mixer period, or there
3201 // is some error from the HAL.
3202 if (mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
3203 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
3204 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
3205 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
3206 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
3207
3208 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
3209 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER];
3210 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
3211 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER];
3212 }
3213
3214 if (timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
3215 kernelLocationUpdate = true;
3216 } else {
3217 ALOGVV("getTimestamp error - no valid kernel position");
3218 }
3219
3220 // copy over kernel info
3221 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] =
3222 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
3223 + mSuspendedFrames; // add frames discarded when suspended
3224 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] =
3225 timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
3226 }
3227 // mFramesWritten for non-offloaded tracks are contiguous
3228 // even after standby() is called. This is useful for the track frame
3229 // to sink frame mapping.
3230 bool serverLocationUpdate = false;
3231 if (mFramesWritten != lastFramesWritten) {
3232 serverLocationUpdate = true;
3233 lastFramesWritten = mFramesWritten;
3234 }
3235 // Only update timestamps if there is a meaningful change.
3236 // Either the kernel timestamp must be valid or we have written something.
3237 if (kernelLocationUpdate || serverLocationUpdate) {
3238 if (serverLocationUpdate) {
3239 // use the time before we called the HAL write - it is a bit more accurate
3240 // to when the server last read data than the current time here.
3241 //
3242 // If we haven't written anything, mLastWriteTime will be -1
3243 // and we use systemTime().
3244 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] = mFramesWritten;
3245 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = mLastWriteTime == -1
3246 ? systemTime() : mLastWriteTime;
3247 }
3248
3249 for (const sp<Track> &t : mActiveTracks) {
3250 if (!t->isFastTrack()) {
3251 t->updateTrackFrameInfo(
3252 t->mAudioTrackServerProxy->framesReleased(),
3253 mFramesWritten,
3254 mTimestamp);
3255 }
3256 }
3257 }
3258 #if 0
3259 // logFormat example
3260 if (z % 100 == 0) {
3261 timespec ts;
3262 clock_gettime(CLOCK_MONOTONIC, &ts);
3263 LOGT("This is an integer %d, this is a float %f, this is my "
3264 "pid %p %% %s %t", 42, 3.14, "and this is a timestamp", ts);
3265 LOGT("A deceptive null-terminated string %\0");
3266 }
3267 ++z;
3268 #endif
3269 saveOutputTracks();
3270 if (mSignalPending) {
3271 // A signal was raised while we were unlocked
3272 mSignalPending = false;
3273 } else if (waitingAsyncCallback_l()) {
3274 if (exitPending()) {
3275 break;
3276 }
3277 bool released = false;
3278 if (!keepWakeLock()) {
3279 releaseWakeLock_l();
3280 released = true;
3281 }
3282
3283 const int64_t waitNs = computeWaitTimeNs_l();
3284 ALOGV("wait async completion (wait time: %lld)", (long long)waitNs);
3285 status_t status = mWaitWorkCV.waitRelative(mLock, waitNs);
3286 if (status == TIMED_OUT) {
3287 mSignalPending = true; // if timeout recheck everything
3288 }
3289 ALOGV("async completion/wake");
3290 if (released) {
3291 acquireWakeLock_l();
3292 }
3293 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3294 mSleepTimeUs = 0;
3295
3296 continue;
3297 }
3298 if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) ||
3299 isSuspended()) {
3300 // put audio hardware into standby after short delay
3301 if (shouldStandby_l()) {
3302
3303 threadLoop_standby();
3304
3305 // This is where we go into standby
3306 if (!mStandby) {
3307 LOG_AUDIO_STATE();
3308 }
3309 mStandby = true;
3310 }
3311
3312 if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
3313 // we're about to wait, flush the binder command buffer
3314 IPCThreadState::self()->flushCommands();
3315
3316 clearOutputTracks();
3317
3318 if (exitPending()) {
3319 break;
3320 }
3321
3322 releaseWakeLock_l();
3323 // wait until we have something to do...
3324 ALOGV("%s going to sleep", myName.string());
3325 mWaitWorkCV.wait(mLock);
3326 ALOGV("%s waking up", myName.string());
3327 acquireWakeLock_l();
3328
3329 mMixerStatus = MIXER_IDLE;
3330 mMixerStatusIgnoringFastTracks = MIXER_IDLE;
3331 mBytesWritten = 0;
3332 mBytesRemaining = 0;
3333 checkSilentMode_l();
3334
3335 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3336 mSleepTimeUs = mIdleSleepTimeUs;
3337 if (mType == MIXER) {
3338 sleepTimeShift = 0;
3339 }
3340
3341 continue;
3342 }
3343 }
3344 // mMixerStatusIgnoringFastTracks is also updated internally
3345 mMixerStatus = prepareTracks_l(&tracksToRemove);
3346
3347 mActiveTracks.updatePowerState(this);
3348
3349 updateMetadata_l();
3350
3351 // prevent any changes in effect chain list and in each effect chain
3352 // during mixing and effect process as the audio buffers could be deleted
3353 // or modified if an effect is created or deleted
3354 lockEffectChains_l(effectChains);
3355 } // mLock scope ends
3356
3357 if (mBytesRemaining == 0) {
3358 mCurrentWriteLength = 0;
3359 if (mMixerStatus == MIXER_TRACKS_READY) {
3360 // threadLoop_mix() sets mCurrentWriteLength
3361 threadLoop_mix();
3362 } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
3363 && (mMixerStatus != MIXER_DRAIN_ALL)) {
3364 // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
3365 // must be written to HAL
3366 threadLoop_sleepTime();
3367 if (mSleepTimeUs == 0) {
3368 mCurrentWriteLength = mSinkBufferSize;
3369 }
3370 }
3371 // Either threadLoop_mix() or threadLoop_sleepTime() should have set
3372 // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
3373 // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
3374 // or mSinkBuffer (if there are no effects).
3375 //
3376 // This is done pre-effects computation; if effects change to
3377 // support higher precision, this needs to move.
3378 //
3379 // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
3380 // TODO use mSleepTimeUs == 0 as an additional condition.
3381 if (mMixerBufferValid) {
3382 void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
3383 audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
3384
3385 // mono blend occurs for mixer threads only (not direct or offloaded)
3386 // and is handled here if we're going directly to the sink.
3387 if (requireMonoBlend() && !mEffectBufferValid) {
3388 mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount,
3389 true /*limit*/);
3390 }
3391
3392 memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
3393 mNormalFrameCount * mChannelCount);
3394 }
3395
3396 mBytesRemaining = mCurrentWriteLength;
3397 if (isSuspended()) {
3398 // Simulate write to HAL when suspended (e.g. BT SCO phone call).
3399 mSleepTimeUs = suspendSleepTimeUs(); // assumes full buffer.
3400 const size_t framesRemaining = mBytesRemaining / mFrameSize;
3401 mBytesWritten += mBytesRemaining;
3402 mFramesWritten += framesRemaining;
3403 mSuspendedFrames += framesRemaining; // to adjust kernel HAL position
3404 mBytesRemaining = 0;
3405 }
3406
3407 // only process effects if we're going to write
3408 if (mSleepTimeUs == 0 && mType != OFFLOAD) {
3409 for (size_t i = 0; i < effectChains.size(); i ++) {
3410 effectChains[i]->process_l();
3411 }
3412 }
3413 }
3414 // Process effect chains for offloaded thread even if no audio
3415 // was read from audio track: process only updates effect state
3416 // and thus does have to be synchronized with audio writes but may have
3417 // to be called while waiting for async write callback
3418 if (mType == OFFLOAD) {
3419 for (size_t i = 0; i < effectChains.size(); i ++) {
3420 effectChains[i]->process_l();
3421 }
3422 }
3423
3424 // Only if the Effects buffer is enabled and there is data in the
3425 // Effects buffer (buffer valid), we need to
3426 // copy into the sink buffer.
3427 // TODO use mSleepTimeUs == 0 as an additional condition.
3428 if (mEffectBufferValid) {
3429 //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
3430
3431 if (requireMonoBlend()) {
3432 mono_blend(mEffectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount,
3433 true /*limit*/);
3434 }
3435
3436 memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
3437 mNormalFrameCount * mChannelCount);
3438 }
3439
3440 // enable changes in effect chain
3441 unlockEffectChains(effectChains);
3442
3443 if (!waitingAsyncCallback()) {
3444 // mSleepTimeUs == 0 means we must write to audio hardware
3445 if (mSleepTimeUs == 0) {
3446 ssize_t ret = 0;
3447 // We save lastWriteFinished here, as previousLastWriteFinished,
3448 // for throttling. On thread start, previousLastWriteFinished will be
3449 // set to -1, which properly results in no throttling after the first write.
3450 nsecs_t previousLastWriteFinished = lastWriteFinished;
3451 nsecs_t delta = 0;
3452 if (mBytesRemaining) {
3453 // FIXME rewrite to reduce number of system calls
3454 mLastWriteTime = systemTime(); // also used for dumpsys
3455 ret = threadLoop_write();
3456 lastWriteFinished = systemTime();
3457 delta = lastWriteFinished - mLastWriteTime;
3458 if (ret < 0) {
3459 mBytesRemaining = 0;
3460 } else {
3461 mBytesWritten += ret;
3462 mBytesRemaining -= ret;
3463 mFramesWritten += ret / mFrameSize;
3464 }
3465 } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
3466 (mMixerStatus == MIXER_DRAIN_ALL)) {
3467 threadLoop_drain();
3468 }
3469 if (mType == MIXER && !mStandby) {
3470 // write blocked detection
3471 if (delta > maxPeriod) {
3472 mNumDelayedWrites++;
3473 if ((lastWriteFinished - lastWarning) > kWarningThrottleNs) {
3474 ATRACE_NAME("underrun");
3475 ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
3476 (unsigned long long) ns2ms(delta), mNumDelayedWrites, this);
3477 lastWarning = lastWriteFinished;
3478 }
3479 }
3480
3481 if (mThreadThrottle
3482 && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
3483 && ret > 0) { // we wrote something
3484 // Limit MixerThread data processing to no more than twice the
3485 // expected processing rate.
3486 //
3487 // This helps prevent underruns with NuPlayer and other applications
3488 // which may set up buffers that are close to the minimum size, or use
3489 // deep buffers, and rely on a double-buffering sleep strategy to fill.
3490 //
3491 // The throttle smooths out sudden large data drains from the device,
3492 // e.g. when it comes out of standby, which often causes problems with
3493 // (1) mixer threads without a fast mixer (which has its own warm-up)
3494 // (2) minimum buffer sized tracks (even if the track is full,
3495 // the app won't fill fast enough to handle the sudden draw).
3496 //
3497 // Total time spent in last processing cycle equals time spent in
3498 // 1. threadLoop_write, as well as time spent in
3499 // 2. threadLoop_mix (significant for heavy mixing, especially
3500 // on low tier processors)
3501
3502 // it's OK if deltaMs (and deltaNs) is an overestimate.
3503 nsecs_t deltaNs;
3504 // deltaNs = lastWriteFinished - previousLastWriteFinished;
3505 __builtin_sub_overflow(
3506 lastWriteFinished,previousLastWriteFinished, &deltaNs);
3507 const int32_t deltaMs = deltaNs / 1000000;
3508
3509 const int32_t throttleMs = (int32_t)mHalfBufferMs - deltaMs;
3510 if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
3511 usleep(throttleMs * 1000);
3512 // notify of throttle start on verbose log
3513 ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
3514 "mixer(%p) throttle begin:"
3515 " ret(%zd) deltaMs(%d) requires sleep %d ms",
3516 this, ret, deltaMs, throttleMs);
3517 mThreadThrottleTimeMs += throttleMs;
3518 // Throttle must be attributed to the previous mixer loop's write time
3519 // to allow back-to-back throttling.
3520 lastWriteFinished += throttleMs * 1000000;
3521 } else {
3522 uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
3523 if (diff > 0) {
3524 // notify of throttle end on debug log
3525 // but prevent spamming for bluetooth
3526 ALOGD_IF(!audio_is_a2dp_out_device(outDevice()) &&
3527 !audio_is_hearing_aid_out_device(outDevice()),
3528 "mixer(%p) throttle end: throttle time(%u)", this, diff);
3529 mThreadThrottleEndMs = mThreadThrottleTimeMs;
3530 }
3531 }
3532 }
3533 }
3534
3535 } else {
3536 ATRACE_BEGIN("sleep");
3537 Mutex::Autolock _l(mLock);
3538 // suspended requires accurate metering of sleep time.
3539 if (isSuspended()) {
3540 // advance by expected sleepTime
3541 timeLoopNextNs += microseconds((nsecs_t)mSleepTimeUs);
3542 const nsecs_t nowNs = systemTime();
3543
3544 // compute expected next time vs current time.
3545 // (negative deltas are treated as delays).
3546 nsecs_t deltaNs = timeLoopNextNs - nowNs;
3547 if (deltaNs < -kMaxNextBufferDelayNs) {
3548 // Delays longer than the max allowed trigger a reset.
3549 ALOGV("DelayNs: %lld, resetting timeLoopNextNs", (long long) deltaNs);
3550 deltaNs = microseconds((nsecs_t)mSleepTimeUs);
3551 timeLoopNextNs = nowNs + deltaNs;
3552 } else if (deltaNs < 0) {
3553 // Delays within the max delay allowed: zero the delta/sleepTime
3554 // to help the system catch up in the next iteration(s)
3555 ALOGV("DelayNs: %lld, catching-up", (long long) deltaNs);
3556 deltaNs = 0;
3557 }
3558 // update sleep time (which is >= 0)
3559 mSleepTimeUs = deltaNs / 1000;
3560 }
3561 if (!mSignalPending && mConfigEvents.isEmpty() && !exitPending()) {
3562 mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)mSleepTimeUs));
3563 }
3564 ATRACE_END();
3565 }
3566 }
3567
3568 // Finally let go of removed track(s), without the lock held
3569 // since we can't guarantee the destructors won't acquire that
3570 // same lock. This will also mutate and push a new fast mixer state.
3571 threadLoop_removeTracks(tracksToRemove);
3572 tracksToRemove.clear();
3573
3574 // FIXME I don't understand the need for this here;
3575 // it was in the original code but maybe the
3576 // assignment in saveOutputTracks() makes this unnecessary?
3577 clearOutputTracks();
3578
3579 // Effect chains will be actually deleted here if they were removed from
3580 // mEffectChains list during mixing or effects processing
3581 effectChains.clear();
3582
3583 // FIXME Note that the above .clear() is no longer necessary since effectChains
3584 // is now local to this block, but will keep it for now (at least until merge done).
3585 }
3586
3587 threadLoop_exit();
3588
3589 if (!mStandby) {
3590 threadLoop_standby();
3591 mStandby = true;
3592 }
3593
3594 releaseWakeLock();
3595
3596 ALOGV("Thread %p type %d exiting", this, mType);
3597 return false;
3598 }
3599
3600 // removeTracks_l() must be called with ThreadBase::mLock held
removeTracks_l(const Vector<sp<Track>> & tracksToRemove)3601 void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
3602 {
3603 size_t count = tracksToRemove.size();
3604 if (count > 0) {
3605 for (size_t i=0 ; i<count ; i++) {
3606 const sp<Track>& track = tracksToRemove.itemAt(i);
3607 mActiveTracks.remove(track);
3608 ALOGV("removeTracks_l removing track on session %d", track->sessionId());
3609 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
3610 if (chain != 0) {
3611 ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
3612 track->sessionId());
3613 chain->decActiveTrackCnt();
3614 }
3615 if (track->isTerminated()) {
3616 removeTrack_l(track);
3617 }
3618 }
3619 }
3620
3621 }
3622
getTimestamp_l(AudioTimestamp & timestamp)3623 status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
3624 {
3625 if (mNormalSink != 0) {
3626 ExtendedTimestamp ets;
3627 status_t status = mNormalSink->getTimestamp(ets);
3628 if (status == NO_ERROR) {
3629 status = ets.getBestTimestamp(×tamp);
3630 }
3631 return status;
3632 }
3633 if ((mType == OFFLOAD || mType == DIRECT) && mOutput != NULL) {
3634 uint64_t position64;
3635 if (mOutput->getPresentationPosition(&position64, ×tamp.mTime) == OK) {
3636 timestamp.mPosition = (uint32_t)position64;
3637 return NO_ERROR;
3638 }
3639 }
3640 return INVALID_OPERATION;
3641 }
3642
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)3643 status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
3644 audio_patch_handle_t *handle)
3645 {
3646 status_t status;
3647 if (property_get_bool("af.patch_park", false /* default_value */)) {
3648 // Park FastMixer to avoid potential DOS issues with writing to the HAL
3649 // or if HAL does not properly lock against access.
3650 AutoPark<FastMixer> park(mFastMixer);
3651 status = PlaybackThread::createAudioPatch_l(patch, handle);
3652 } else {
3653 status = PlaybackThread::createAudioPatch_l(patch, handle);
3654 }
3655 return status;
3656 }
3657
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)3658 status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
3659 audio_patch_handle_t *handle)
3660 {
3661 status_t status = NO_ERROR;
3662
3663 // store new device and send to effects
3664 audio_devices_t type = AUDIO_DEVICE_NONE;
3665 for (unsigned int i = 0; i < patch->num_sinks; i++) {
3666 type |= patch->sinks[i].ext.device.type;
3667 }
3668
3669 #ifdef ADD_BATTERY_DATA
3670 // when changing the audio output device, call addBatteryData to notify
3671 // the change
3672 if (mOutDevice != type) {
3673 uint32_t params = 0;
3674 // check whether speaker is on
3675 if (type & AUDIO_DEVICE_OUT_SPEAKER) {
3676 params |= IMediaPlayerService::kBatteryDataSpeakerOn;
3677 }
3678
3679 audio_devices_t deviceWithoutSpeaker
3680 = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
3681 // check if any other device (except speaker) is on
3682 if (type & deviceWithoutSpeaker) {
3683 params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
3684 }
3685
3686 if (params != 0) {
3687 addBatteryData(params);
3688 }
3689 }
3690 #endif
3691
3692 for (size_t i = 0; i < mEffectChains.size(); i++) {
3693 mEffectChains[i]->setDevice_l(type);
3694 }
3695
3696 // mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when
3697 // the thread is created so that the first patch creation triggers an ioConfigChanged callback
3698 bool configChanged = mPrevOutDevice != type;
3699 mOutDevice = type;
3700 mPatch = *patch;
3701
3702 if (mOutput->audioHwDev->supportsAudioPatches()) {
3703 sp<DeviceHalInterface> hwDevice = mOutput->audioHwDev->hwDevice();
3704 status = hwDevice->createAudioPatch(patch->num_sources,
3705 patch->sources,
3706 patch->num_sinks,
3707 patch->sinks,
3708 handle);
3709 } else {
3710 char *address;
3711 if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
3712 //FIXME: we only support address on first sink with HAL version < 3.0
3713 address = audio_device_address_to_parameter(
3714 patch->sinks[0].ext.device.type,
3715 patch->sinks[0].ext.device.address);
3716 } else {
3717 address = (char *)calloc(1, 1);
3718 }
3719 AudioParameter param = AudioParameter(String8(address));
3720 free(address);
3721 param.addInt(String8(AudioParameter::keyRouting), (int)type);
3722 status = mOutput->stream->setParameters(param.toString());
3723 *handle = AUDIO_PATCH_HANDLE_NONE;
3724 }
3725 if (configChanged) {
3726 mPrevOutDevice = type;
3727 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
3728 }
3729 return status;
3730 }
3731
releaseAudioPatch_l(const audio_patch_handle_t handle)3732 status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3733 {
3734 status_t status;
3735 if (property_get_bool("af.patch_park", false /* default_value */)) {
3736 // Park FastMixer to avoid potential DOS issues with writing to the HAL
3737 // or if HAL does not properly lock against access.
3738 AutoPark<FastMixer> park(mFastMixer);
3739 status = PlaybackThread::releaseAudioPatch_l(handle);
3740 } else {
3741 status = PlaybackThread::releaseAudioPatch_l(handle);
3742 }
3743 return status;
3744 }
3745
releaseAudioPatch_l(const audio_patch_handle_t handle)3746 status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3747 {
3748 status_t status = NO_ERROR;
3749
3750 mOutDevice = AUDIO_DEVICE_NONE;
3751
3752 if (mOutput->audioHwDev->supportsAudioPatches()) {
3753 sp<DeviceHalInterface> hwDevice = mOutput->audioHwDev->hwDevice();
3754 status = hwDevice->releaseAudioPatch(handle);
3755 } else {
3756 AudioParameter param;
3757 param.addInt(String8(AudioParameter::keyRouting), 0);
3758 status = mOutput->stream->setParameters(param.toString());
3759 }
3760 return status;
3761 }
3762
addPatchTrack(const sp<PatchTrack> & track)3763 void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
3764 {
3765 Mutex::Autolock _l(mLock);
3766 mTracks.add(track);
3767 }
3768
deletePatchTrack(const sp<PatchTrack> & track)3769 void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
3770 {
3771 Mutex::Autolock _l(mLock);
3772 destroyTrack_l(track);
3773 }
3774
getAudioPortConfig(struct audio_port_config * config)3775 void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
3776 {
3777 ThreadBase::getAudioPortConfig(config);
3778 config->role = AUDIO_PORT_ROLE_SOURCE;
3779 config->ext.mix.hw_module = mOutput->audioHwDev->handle();
3780 config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
3781 }
3782
3783 // ----------------------------------------------------------------------------
3784
MixerThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,bool systemReady,type_t type)3785 AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
3786 audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type)
3787 : PlaybackThread(audioFlinger, output, id, device, type, systemReady),
3788 // mAudioMixer below
3789 // mFastMixer below
3790 mFastMixerFutex(0),
3791 mMasterMono(false)
3792 // mOutputSink below
3793 // mPipeSink below
3794 // mNormalSink below
3795 {
3796 ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
3797 ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%#x, mFrameSize=%zu, "
3798 "mFrameCount=%zu, mNormalFrameCount=%zu",
3799 mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
3800 mNormalFrameCount);
3801 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
3802
3803 if (type == DUPLICATING) {
3804 // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
3805 // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
3806 // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
3807 return;
3808 }
3809 // create an NBAIO sink for the HAL output stream, and negotiate
3810 mOutputSink = new AudioStreamOutSink(output->stream);
3811 size_t numCounterOffers = 0;
3812 const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
3813 #if !LOG_NDEBUG
3814 ssize_t index =
3815 #else
3816 (void)
3817 #endif
3818 mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
3819 ALOG_ASSERT(index == 0);
3820
3821 // initialize fast mixer depending on configuration
3822 bool initFastMixer;
3823 switch (kUseFastMixer) {
3824 case FastMixer_Never:
3825 initFastMixer = false;
3826 break;
3827 case FastMixer_Always:
3828 initFastMixer = true;
3829 break;
3830 case FastMixer_Static:
3831 case FastMixer_Dynamic:
3832 // FastMixer was designed to operate with a HAL that pulls at a regular rate,
3833 // where the period is less than an experimentally determined threshold that can be
3834 // scheduled reliably with CFS. However, the BT A2DP HAL is
3835 // bursty (does not pull at a regular rate) and so cannot operate with FastMixer.
3836 initFastMixer = mFrameCount < mNormalFrameCount
3837 && (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) == 0;
3838 break;
3839 }
3840 ALOGW_IF(initFastMixer == false && mFrameCount < mNormalFrameCount,
3841 "FastMixer is preferred for this sink as frameCount %zu is less than threshold %zu",
3842 mFrameCount, mNormalFrameCount);
3843 if (initFastMixer) {
3844 audio_format_t fastMixerFormat;
3845 if (mMixerBufferEnabled && mEffectBufferEnabled) {
3846 fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
3847 } else {
3848 fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
3849 }
3850 if (mFormat != fastMixerFormat) {
3851 // change our Sink format to accept our intermediate precision
3852 mFormat = fastMixerFormat;
3853 free(mSinkBuffer);
3854 mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
3855 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3856 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3857 }
3858
3859 // create a MonoPipe to connect our submix to FastMixer
3860 NBAIO_Format format = mOutputSink->format();
3861 #ifdef TEE_SINK
3862 NBAIO_Format origformat = format;
3863 #endif
3864 // adjust format to match that of the Fast Mixer
3865 ALOGV("format changed from %#x to %#x", format.mFormat, fastMixerFormat);
3866 format.mFormat = fastMixerFormat;
3867 format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
3868
3869 // This pipe depth compensates for scheduling latency of the normal mixer thread.
3870 // When it wakes up after a maximum latency, it runs a few cycles quickly before
3871 // finally blocking. Note the pipe implementation rounds up the request to a power of 2.
3872 MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
3873 const NBAIO_Format offers[1] = {format};
3874 size_t numCounterOffers = 0;
3875 #if !LOG_NDEBUG || defined(TEE_SINK)
3876 ssize_t index =
3877 #else
3878 (void)
3879 #endif
3880 monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
3881 ALOG_ASSERT(index == 0);
3882 monoPipe->setAvgFrames((mScreenState & 1) ?
3883 (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3884 mPipeSink = monoPipe;
3885
3886 #ifdef TEE_SINK
3887 if (mTeeSinkOutputEnabled) {
3888 // create a Pipe to archive a copy of FastMixer's output for dumpsys
3889 Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
3890 const NBAIO_Format offers2[1] = {origformat};
3891 numCounterOffers = 0;
3892 index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
3893 ALOG_ASSERT(index == 0);
3894 mTeeSink = teeSink;
3895 PipeReader *teeSource = new PipeReader(*teeSink);
3896 numCounterOffers = 0;
3897 index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
3898 ALOG_ASSERT(index == 0);
3899 mTeeSource = teeSource;
3900 }
3901 #endif
3902
3903 // create fast mixer and configure it initially with just one fast track for our submix
3904 mFastMixer = new FastMixer();
3905 FastMixerStateQueue *sq = mFastMixer->sq();
3906 #ifdef STATE_QUEUE_DUMP
3907 sq->setObserverDump(&mStateQueueObserverDump);
3908 sq->setMutatorDump(&mStateQueueMutatorDump);
3909 #endif
3910 FastMixerState *state = sq->begin();
3911 FastTrack *fastTrack = &state->mFastTracks[0];
3912 // wrap the source side of the MonoPipe to make it an AudioBufferProvider
3913 fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
3914 fastTrack->mVolumeProvider = NULL;
3915 fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
3916 fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
3917 fastTrack->mGeneration++;
3918 state->mFastTracksGen++;
3919 state->mTrackMask = 1;
3920 // fast mixer will use the HAL output sink
3921 state->mOutputSink = mOutputSink.get();
3922 state->mOutputSinkGen++;
3923 state->mFrameCount = mFrameCount;
3924 state->mCommand = FastMixerState::COLD_IDLE;
3925 // already done in constructor initialization list
3926 //mFastMixerFutex = 0;
3927 state->mColdFutexAddr = &mFastMixerFutex;
3928 state->mColdGen++;
3929 state->mDumpState = &mFastMixerDumpState;
3930 #ifdef TEE_SINK
3931 state->mTeeSink = mTeeSink.get();
3932 #endif
3933 mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
3934 state->mNBLogWriter = mFastMixerNBLogWriter.get();
3935 sq->end();
3936 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3937
3938 // start the fast mixer
3939 mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
3940 pid_t tid = mFastMixer->getTid();
3941 sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer, false /*forApp*/);
3942 stream()->setHalThreadPriority(kPriorityFastMixer);
3943
3944 #ifdef AUDIO_WATCHDOG
3945 // create and start the watchdog
3946 mAudioWatchdog = new AudioWatchdog();
3947 mAudioWatchdog->setDump(&mAudioWatchdogDump);
3948 mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
3949 tid = mAudioWatchdog->getTid();
3950 sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer, false /*forApp*/);
3951 #endif
3952
3953 }
3954
3955 switch (kUseFastMixer) {
3956 case FastMixer_Never:
3957 case FastMixer_Dynamic:
3958 mNormalSink = mOutputSink;
3959 break;
3960 case FastMixer_Always:
3961 mNormalSink = mPipeSink;
3962 break;
3963 case FastMixer_Static:
3964 mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
3965 break;
3966 }
3967 }
3968
~MixerThread()3969 AudioFlinger::MixerThread::~MixerThread()
3970 {
3971 if (mFastMixer != 0) {
3972 FastMixerStateQueue *sq = mFastMixer->sq();
3973 FastMixerState *state = sq->begin();
3974 if (state->mCommand == FastMixerState::COLD_IDLE) {
3975 int32_t old = android_atomic_inc(&mFastMixerFutex);
3976 if (old == -1) {
3977 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3978 }
3979 }
3980 state->mCommand = FastMixerState::EXIT;
3981 sq->end();
3982 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3983 mFastMixer->join();
3984 // Though the fast mixer thread has exited, it's state queue is still valid.
3985 // We'll use that extract the final state which contains one remaining fast track
3986 // corresponding to our sub-mix.
3987 state = sq->begin();
3988 ALOG_ASSERT(state->mTrackMask == 1);
3989 FastTrack *fastTrack = &state->mFastTracks[0];
3990 ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
3991 delete fastTrack->mBufferProvider;
3992 sq->end(false /*didModify*/);
3993 mFastMixer.clear();
3994 #ifdef AUDIO_WATCHDOG
3995 if (mAudioWatchdog != 0) {
3996 mAudioWatchdog->requestExit();
3997 mAudioWatchdog->requestExitAndWait();
3998 mAudioWatchdog.clear();
3999 }
4000 #endif
4001 }
4002 mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
4003 delete mAudioMixer;
4004 }
4005
4006
correctLatency_l(uint32_t latency) const4007 uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
4008 {
4009 if (mFastMixer != 0) {
4010 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
4011 latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
4012 }
4013 return latency;
4014 }
4015
4016
threadLoop_removeTracks(const Vector<sp<Track>> & tracksToRemove)4017 void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
4018 {
4019 PlaybackThread::threadLoop_removeTracks(tracksToRemove);
4020 }
4021
threadLoop_write()4022 ssize_t AudioFlinger::MixerThread::threadLoop_write()
4023 {
4024 // FIXME we should only do one push per cycle; confirm this is true
4025 // Start the fast mixer if it's not already running
4026 if (mFastMixer != 0) {
4027 FastMixerStateQueue *sq = mFastMixer->sq();
4028 FastMixerState *state = sq->begin();
4029 if (state->mCommand != FastMixerState::MIX_WRITE &&
4030 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
4031 if (state->mCommand == FastMixerState::COLD_IDLE) {
4032
4033 // FIXME workaround for first HAL write being CPU bound on some devices
4034 ATRACE_BEGIN("write");
4035 mOutput->write((char *)mSinkBuffer, 0);
4036 ATRACE_END();
4037
4038 int32_t old = android_atomic_inc(&mFastMixerFutex);
4039 if (old == -1) {
4040 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
4041 }
4042 #ifdef AUDIO_WATCHDOG
4043 if (mAudioWatchdog != 0) {
4044 mAudioWatchdog->resume();
4045 }
4046 #endif
4047 }
4048 state->mCommand = FastMixerState::MIX_WRITE;
4049 #ifdef FAST_THREAD_STATISTICS
4050 mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
4051 FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
4052 #endif
4053 sq->end();
4054 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4055 if (kUseFastMixer == FastMixer_Dynamic) {
4056 mNormalSink = mPipeSink;
4057 }
4058 } else {
4059 sq->end(false /*didModify*/);
4060 }
4061 }
4062 return PlaybackThread::threadLoop_write();
4063 }
4064
threadLoop_standby()4065 void AudioFlinger::MixerThread::threadLoop_standby()
4066 {
4067 // Idle the fast mixer if it's currently running
4068 if (mFastMixer != 0) {
4069 FastMixerStateQueue *sq = mFastMixer->sq();
4070 FastMixerState *state = sq->begin();
4071 if (!(state->mCommand & FastMixerState::IDLE)) {
4072 // Report any frames trapped in the Monopipe
4073 MonoPipe *monoPipe = (MonoPipe *)mPipeSink.get();
4074 const long long pipeFrames = monoPipe->maxFrames() - monoPipe->availableToWrite();
4075 mLocalLog.log("threadLoop_standby: framesWritten:%lld suspendedFrames:%lld "
4076 "monoPipeWritten:%lld monoPipeLeft:%lld",
4077 (long long)mFramesWritten, (long long)mSuspendedFrames,
4078 (long long)mPipeSink->framesWritten(), pipeFrames);
4079 mLocalLog.log("threadLoop_standby: %s", mTimestamp.toString().c_str());
4080
4081 state->mCommand = FastMixerState::COLD_IDLE;
4082 state->mColdFutexAddr = &mFastMixerFutex;
4083 state->mColdGen++;
4084 mFastMixerFutex = 0;
4085 sq->end();
4086 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
4087 sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
4088 if (kUseFastMixer == FastMixer_Dynamic) {
4089 mNormalSink = mOutputSink;
4090 }
4091 #ifdef AUDIO_WATCHDOG
4092 if (mAudioWatchdog != 0) {
4093 mAudioWatchdog->pause();
4094 }
4095 #endif
4096 } else {
4097 sq->end(false /*didModify*/);
4098 }
4099 }
4100 PlaybackThread::threadLoop_standby();
4101 }
4102
waitingAsyncCallback_l()4103 bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
4104 {
4105 return false;
4106 }
4107
shouldStandby_l()4108 bool AudioFlinger::PlaybackThread::shouldStandby_l()
4109 {
4110 return !mStandby;
4111 }
4112
waitingAsyncCallback()4113 bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
4114 {
4115 Mutex::Autolock _l(mLock);
4116 return waitingAsyncCallback_l();
4117 }
4118
4119 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_standby()4120 void AudioFlinger::PlaybackThread::threadLoop_standby()
4121 {
4122 ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
4123 mOutput->standby();
4124 if (mUseAsyncWrite != 0) {
4125 // discard any pending drain or write ack by incrementing sequence
4126 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
4127 mDrainSequence = (mDrainSequence + 2) & ~1;
4128 ALOG_ASSERT(mCallbackThread != 0);
4129 mCallbackThread->setWriteBlocked(mWriteAckSequence);
4130 mCallbackThread->setDraining(mDrainSequence);
4131 }
4132 mHwPaused = false;
4133 }
4134
onAddNewTrack_l()4135 void AudioFlinger::PlaybackThread::onAddNewTrack_l()
4136 {
4137 ALOGV("signal playback thread");
4138 broadcast_l();
4139 }
4140
onAsyncError()4141 void AudioFlinger::PlaybackThread::onAsyncError()
4142 {
4143 for (int i = AUDIO_STREAM_SYSTEM; i < (int)AUDIO_STREAM_CNT; i++) {
4144 invalidateTracks((audio_stream_type_t)i);
4145 }
4146 }
4147
threadLoop_mix()4148 void AudioFlinger::MixerThread::threadLoop_mix()
4149 {
4150 // mix buffers...
4151 mAudioMixer->process();
4152 mCurrentWriteLength = mSinkBufferSize;
4153 // increase sleep time progressively when application underrun condition clears.
4154 // Only increase sleep time if the mixer is ready for two consecutive times to avoid
4155 // that a steady state of alternating ready/not ready conditions keeps the sleep time
4156 // such that we would underrun the audio HAL.
4157 if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
4158 sleepTimeShift--;
4159 }
4160 mSleepTimeUs = 0;
4161 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
4162 //TODO: delay standby when effects have a tail
4163
4164 }
4165
threadLoop_sleepTime()4166 void AudioFlinger::MixerThread::threadLoop_sleepTime()
4167 {
4168 // If no tracks are ready, sleep once for the duration of an output
4169 // buffer size, then write 0s to the output
4170 if (mSleepTimeUs == 0) {
4171 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4172 if (mPipeSink.get() != nullptr && mPipeSink == mNormalSink) {
4173 // Using the Monopipe availableToWrite, we estimate the
4174 // sleep time to retry for more data (before we underrun).
4175 MonoPipe *monoPipe = static_cast<MonoPipe *>(mPipeSink.get());
4176 const ssize_t availableToWrite = mPipeSink->availableToWrite();
4177 const size_t pipeFrames = monoPipe->maxFrames();
4178 const size_t framesLeft = pipeFrames - max(availableToWrite, 0);
4179 // HAL_framecount <= framesDelay ~ framesLeft / 2 <= Normal_Mixer_framecount
4180 const size_t framesDelay = std::min(
4181 mNormalFrameCount, max(framesLeft / 2, mFrameCount));
4182 ALOGV("pipeFrames:%zu framesLeft:%zu framesDelay:%zu",
4183 pipeFrames, framesLeft, framesDelay);
4184 mSleepTimeUs = framesDelay * MICROS_PER_SECOND / mSampleRate;
4185 } else {
4186 mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
4187 if (mSleepTimeUs < kMinThreadSleepTimeUs) {
4188 mSleepTimeUs = kMinThreadSleepTimeUs;
4189 }
4190 // reduce sleep time in case of consecutive application underruns to avoid
4191 // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
4192 // duration we would end up writing less data than needed by the audio HAL if
4193 // the condition persists.
4194 if (sleepTimeShift < kMaxThreadSleepTimeShift) {
4195 sleepTimeShift++;
4196 }
4197 }
4198 } else {
4199 mSleepTimeUs = mIdleSleepTimeUs;
4200 }
4201 } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
4202 // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
4203 // before effects processing or output.
4204 if (mMixerBufferValid) {
4205 memset(mMixerBuffer, 0, mMixerBufferSize);
4206 } else {
4207 memset(mSinkBuffer, 0, mSinkBufferSize);
4208 }
4209 mSleepTimeUs = 0;
4210 ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
4211 "anticipated start");
4212 }
4213 // TODO add standby time extension fct of effect tail
4214 }
4215
4216 // prepareTracks_l() must be called with ThreadBase::mLock held
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)4217 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
4218 Vector< sp<Track> > *tracksToRemove)
4219 {
4220 // clean up deleted track names in AudioMixer before allocating new tracks
4221 (void)mTracks.processDeletedTrackNames([this](int name) {
4222 // for each name, destroy it in the AudioMixer
4223 if (mAudioMixer->exists(name)) {
4224 mAudioMixer->destroy(name);
4225 }
4226 });
4227 mTracks.clearDeletedTrackNames();
4228
4229 mixer_state mixerStatus = MIXER_IDLE;
4230 // find out which tracks need to be processed
4231 size_t count = mActiveTracks.size();
4232 size_t mixedTracks = 0;
4233 size_t tracksWithEffect = 0;
4234 // counts only _active_ fast tracks
4235 size_t fastTracks = 0;
4236 uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
4237
4238 float masterVolume = mMasterVolume;
4239 bool masterMute = mMasterMute;
4240
4241 if (masterMute) {
4242 masterVolume = 0;
4243 }
4244 // Delegate master volume control to effect in output mix effect chain if needed
4245 sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
4246 if (chain != 0) {
4247 uint32_t v = (uint32_t)(masterVolume * (1 << 24));
4248 chain->setVolume_l(&v, &v);
4249 masterVolume = (float)((v + (1 << 23)) >> 24);
4250 chain.clear();
4251 }
4252
4253 // prepare a new state to push
4254 FastMixerStateQueue *sq = NULL;
4255 FastMixerState *state = NULL;
4256 bool didModify = false;
4257 FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
4258 bool coldIdle = false;
4259 if (mFastMixer != 0) {
4260 sq = mFastMixer->sq();
4261 state = sq->begin();
4262 coldIdle = state->mCommand == FastMixerState::COLD_IDLE;
4263 }
4264
4265 mMixerBufferValid = false; // mMixerBuffer has no valid data until appropriate tracks found.
4266 mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
4267
4268 for (size_t i=0 ; i<count ; i++) {
4269 const sp<Track> t = mActiveTracks[i];
4270
4271 // this const just means the local variable doesn't change
4272 Track* const track = t.get();
4273
4274 // process fast tracks
4275 if (track->isFastTrack()) {
4276
4277 // It's theoretically possible (though unlikely) for a fast track to be created
4278 // and then removed within the same normal mix cycle. This is not a problem, as
4279 // the track never becomes active so it's fast mixer slot is never touched.
4280 // The converse, of removing an (active) track and then creating a new track
4281 // at the identical fast mixer slot within the same normal mix cycle,
4282 // is impossible because the slot isn't marked available until the end of each cycle.
4283 int j = track->mFastIndex;
4284 ALOG_ASSERT(0 < j && j < (int)FastMixerState::sMaxFastTracks);
4285 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
4286 FastTrack *fastTrack = &state->mFastTracks[j];
4287
4288 // Determine whether the track is currently in underrun condition,
4289 // and whether it had a recent underrun.
4290 FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
4291 FastTrackUnderruns underruns = ftDump->mUnderruns;
4292 uint32_t recentFull = (underruns.mBitFields.mFull -
4293 track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
4294 uint32_t recentPartial = (underruns.mBitFields.mPartial -
4295 track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
4296 uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
4297 track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
4298 uint32_t recentUnderruns = recentPartial + recentEmpty;
4299 track->mObservedUnderruns = underruns;
4300 // don't count underruns that occur while stopping or pausing
4301 // or stopped which can occur when flush() is called while active
4302 if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
4303 recentUnderruns > 0) {
4304 // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
4305 track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
4306 } else {
4307 track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
4308 }
4309
4310 // This is similar to the state machine for normal tracks,
4311 // with a few modifications for fast tracks.
4312 bool isActive = true;
4313 switch (track->mState) {
4314 case TrackBase::STOPPING_1:
4315 // track stays active in STOPPING_1 state until first underrun
4316 if (recentUnderruns > 0 || track->isTerminated()) {
4317 track->mState = TrackBase::STOPPING_2;
4318 }
4319 break;
4320 case TrackBase::PAUSING:
4321 // ramp down is not yet implemented
4322 track->setPaused();
4323 break;
4324 case TrackBase::RESUMING:
4325 // ramp up is not yet implemented
4326 track->mState = TrackBase::ACTIVE;
4327 break;
4328 case TrackBase::ACTIVE:
4329 if (recentFull > 0 || recentPartial > 0) {
4330 // track has provided at least some frames recently: reset retry count
4331 track->mRetryCount = kMaxTrackRetries;
4332 }
4333 if (recentUnderruns == 0) {
4334 // no recent underruns: stay active
4335 break;
4336 }
4337 // there has recently been an underrun of some kind
4338 if (track->sharedBuffer() == 0) {
4339 // were any of the recent underruns "empty" (no frames available)?
4340 if (recentEmpty == 0) {
4341 // no, then ignore the partial underruns as they are allowed indefinitely
4342 break;
4343 }
4344 // there has recently been an "empty" underrun: decrement the retry counter
4345 if (--(track->mRetryCount) > 0) {
4346 break;
4347 }
4348 // indicate to client process that the track was disabled because of underrun;
4349 // it will then automatically call start() when data is available
4350 track->disable();
4351 // remove from active list, but state remains ACTIVE [confusing but true]
4352 isActive = false;
4353 break;
4354 }
4355 // fall through
4356 case TrackBase::STOPPING_2:
4357 case TrackBase::PAUSED:
4358 case TrackBase::STOPPED:
4359 case TrackBase::FLUSHED: // flush() while active
4360 // Check for presentation complete if track is inactive
4361 // We have consumed all the buffers of this track.
4362 // This would be incomplete if we auto-paused on underrun
4363 {
4364 uint32_t latency = 0;
4365 status_t result = mOutput->stream->getLatency(&latency);
4366 ALOGE_IF(result != OK,
4367 "Error when retrieving output stream latency: %d", result);
4368 size_t audioHALFrames = (latency * mSampleRate) / 1000;
4369 int64_t framesWritten = mBytesWritten / mFrameSize;
4370 if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
4371 // track stays in active list until presentation is complete
4372 break;
4373 }
4374 }
4375 if (track->isStopping_2()) {
4376 track->mState = TrackBase::STOPPED;
4377 }
4378 if (track->isStopped()) {
4379 // Can't reset directly, as fast mixer is still polling this track
4380 // track->reset();
4381 // So instead mark this track as needing to be reset after push with ack
4382 resetMask |= 1 << i;
4383 }
4384 isActive = false;
4385 break;
4386 case TrackBase::IDLE:
4387 default:
4388 LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
4389 }
4390
4391 if (isActive) {
4392 // was it previously inactive?
4393 if (!(state->mTrackMask & (1 << j))) {
4394 ExtendedAudioBufferProvider *eabp = track;
4395 VolumeProvider *vp = track;
4396 fastTrack->mBufferProvider = eabp;
4397 fastTrack->mVolumeProvider = vp;
4398 fastTrack->mChannelMask = track->mChannelMask;
4399 fastTrack->mFormat = track->mFormat;
4400 fastTrack->mGeneration++;
4401 state->mTrackMask |= 1 << j;
4402 didModify = true;
4403 // no acknowledgement required for newly active tracks
4404 }
4405 sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
4406 // cache the combined master volume and stream type volume for fast mixer; this
4407 // lacks any synchronization or barrier so VolumeProvider may read a stale value
4408 const float vh = track->getVolumeHandler()->getVolume(
4409 proxy->framesReleased()).first;
4410 float volume = masterVolume
4411 * mStreamTypes[track->streamType()].volume
4412 * vh;
4413 track->mCachedVolume = volume;
4414 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4415 float vlf = volume * float_from_gain(gain_minifloat_unpack_left(vlr));
4416 float vrf = volume * float_from_gain(gain_minifloat_unpack_right(vlr));
4417 track->setFinalVolume((vlf + vrf) / 2.f);
4418 ++fastTracks;
4419 } else {
4420 // was it previously active?
4421 if (state->mTrackMask & (1 << j)) {
4422 fastTrack->mBufferProvider = NULL;
4423 fastTrack->mGeneration++;
4424 state->mTrackMask &= ~(1 << j);
4425 didModify = true;
4426 // If any fast tracks were removed, we must wait for acknowledgement
4427 // because we're about to decrement the last sp<> on those tracks.
4428 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4429 } else {
4430 // ALOGW rather than LOG_ALWAYS_FATAL because it seems there are cases where an
4431 // AudioTrack may start (which may not be with a start() but with a write()
4432 // after underrun) and immediately paused or released. In that case the
4433 // FastTrack state hasn't had time to update.
4434 // TODO Remove the ALOGW when this theory is confirmed.
4435 ALOGW("fast track %d should have been active; "
4436 "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d",
4437 j, track->mState, state->mTrackMask, recentUnderruns,
4438 track->sharedBuffer() != 0);
4439 // Since the FastMixer state already has the track inactive, do nothing here.
4440 }
4441 tracksToRemove->add(track);
4442 // Avoids a misleading display in dumpsys
4443 track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
4444 }
4445 continue;
4446 }
4447
4448 { // local variable scope to avoid goto warning
4449
4450 audio_track_cblk_t* cblk = track->cblk();
4451
4452 // The first time a track is added we wait
4453 // for all its buffers to be filled before processing it
4454 int name = track->name();
4455
4456 // if an active track doesn't exist in the AudioMixer, create it.
4457 if (!mAudioMixer->exists(name)) {
4458 status_t status = mAudioMixer->create(
4459 name,
4460 track->mChannelMask,
4461 track->mFormat,
4462 track->mSessionId);
4463 if (status != OK) {
4464 ALOGW("%s: cannot create track name"
4465 " %d, mask %#x, format %#x, sessionId %d in AudioMixer",
4466 __func__, name, track->mChannelMask, track->mFormat, track->mSessionId);
4467 tracksToRemove->add(track);
4468 track->invalidate(); // consider it dead.
4469 continue;
4470 }
4471 }
4472
4473 // make sure that we have enough frames to mix one full buffer.
4474 // enforce this condition only once to enable draining the buffer in case the client
4475 // app does not call stop() and relies on underrun to stop:
4476 // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
4477 // during last round
4478 size_t desiredFrames;
4479 const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
4480 AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4481
4482 desiredFrames = sourceFramesNeededWithTimestretch(
4483 sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
4484 // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
4485 // add frames already consumed but not yet released by the resampler
4486 // because mAudioTrackServerProxy->framesReady() will include these frames
4487 desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
4488
4489 uint32_t minFrames = 1;
4490 if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
4491 (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
4492 minFrames = desiredFrames;
4493 }
4494
4495 size_t framesReady = track->framesReady();
4496 if (ATRACE_ENABLED()) {
4497 // I wish we had formatted trace names
4498 std::string traceName("nRdy");
4499 traceName += std::to_string(track->name());
4500 ATRACE_INT(traceName.c_str(), framesReady);
4501 }
4502 if ((framesReady >= minFrames) && track->isReady() &&
4503 !track->isPaused() && !track->isTerminated())
4504 {
4505 ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
4506
4507 mixedTracks++;
4508
4509 // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
4510 // there is an effect chain connected to the track
4511 chain.clear();
4512 if (track->mainBuffer() != mSinkBuffer &&
4513 track->mainBuffer() != mMixerBuffer) {
4514 if (mEffectBufferEnabled) {
4515 mEffectBufferValid = true; // Later can set directly.
4516 }
4517 chain = getEffectChain_l(track->sessionId());
4518 // Delegate volume control to effect in track effect chain if needed
4519 if (chain != 0) {
4520 tracksWithEffect++;
4521 } else {
4522 ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
4523 "session %d",
4524 name, track->sessionId());
4525 }
4526 }
4527
4528
4529 int param = AudioMixer::VOLUME;
4530 if (track->mFillingUpStatus == Track::FS_FILLED) {
4531 // no ramp for the first volume setting
4532 track->mFillingUpStatus = Track::FS_ACTIVE;
4533 if (track->mState == TrackBase::RESUMING) {
4534 track->mState = TrackBase::ACTIVE;
4535 param = AudioMixer::RAMP_VOLUME;
4536 }
4537 mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
4538 mLeftVolFloat = -1.0;
4539 // FIXME should not make a decision based on mServer
4540 } else if (cblk->mServer != 0) {
4541 // If the track is stopped before the first frame was mixed,
4542 // do not apply ramp
4543 param = AudioMixer::RAMP_VOLUME;
4544 }
4545
4546 // compute volume for this track
4547 uint32_t vl, vr; // in U8.24 integer format
4548 float vlf, vrf, vaf; // in [0.0, 1.0] float format
4549 // read original volumes with volume control
4550 float typeVolume = mStreamTypes[track->streamType()].volume;
4551 float v = masterVolume * typeVolume;
4552
4553 if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
4554 vl = vr = 0;
4555 vlf = vrf = vaf = 0.;
4556 if (track->isPausing()) {
4557 track->setPaused();
4558 }
4559 } else {
4560 sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
4561 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4562 vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
4563 vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
4564 // track volumes come from shared memory, so can't be trusted and must be clamped
4565 if (vlf > GAIN_FLOAT_UNITY) {
4566 ALOGV("Track left volume out of range: %.3g", vlf);
4567 vlf = GAIN_FLOAT_UNITY;
4568 }
4569 if (vrf > GAIN_FLOAT_UNITY) {
4570 ALOGV("Track right volume out of range: %.3g", vrf);
4571 vrf = GAIN_FLOAT_UNITY;
4572 }
4573 const float vh = track->getVolumeHandler()->getVolume(
4574 track->mAudioTrackServerProxy->framesReleased()).first;
4575 // now apply the master volume and stream type volume and shaper volume
4576 vlf *= v * vh;
4577 vrf *= v * vh;
4578 // assuming master volume and stream type volume each go up to 1.0,
4579 // then derive vl and vr as U8.24 versions for the effect chain
4580 const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
4581 vl = (uint32_t) (scaleto8_24 * vlf);
4582 vr = (uint32_t) (scaleto8_24 * vrf);
4583 // vl and vr are now in U8.24 format
4584 uint16_t sendLevel = proxy->getSendLevel_U4_12();
4585 // send level comes from shared memory and so may be corrupt
4586 if (sendLevel > MAX_GAIN_INT) {
4587 ALOGV("Track send level out of range: %04X", sendLevel);
4588 sendLevel = MAX_GAIN_INT;
4589 }
4590 // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
4591 vaf = v * sendLevel * (1. / MAX_GAIN_INT);
4592 }
4593
4594 track->setFinalVolume((vrf + vlf) / 2.f);
4595
4596 // Delegate volume control to effect in track effect chain if needed
4597 if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
4598 // Do not ramp volume if volume is controlled by effect
4599 param = AudioMixer::VOLUME;
4600 // Update remaining floating point volume levels
4601 vlf = (float)vl / (1 << 24);
4602 vrf = (float)vr / (1 << 24);
4603 track->mHasVolumeController = true;
4604 } else {
4605 // force no volume ramp when volume controller was just disabled or removed
4606 // from effect chain to avoid volume spike
4607 if (track->mHasVolumeController) {
4608 param = AudioMixer::VOLUME;
4609 }
4610 track->mHasVolumeController = false;
4611 }
4612
4613 // For dedicated VoIP outputs, let the HAL apply the stream volume. Track volume is
4614 // still applied by the mixer.
4615 if ((mOutput->flags & AUDIO_OUTPUT_FLAG_VOIP_RX) != 0) {
4616 v = mStreamTypes[track->streamType()].mute ? 0.0f : v;
4617 if (v != mLeftVolFloat) {
4618 status_t result = mOutput->stream->setVolume(v, v);
4619 ALOGE_IF(result != OK, "Error when setting output stream volume: %d", result);
4620 if (result == OK) {
4621 mLeftVolFloat = v;
4622 }
4623 }
4624 // if stream volume was successfully sent to the HAL, mLeftVolFloat == v here and we
4625 // remove stream volume contribution from software volume.
4626 if (v != 0.0f && mLeftVolFloat == v) {
4627 vlf = min(1.0f, vlf / v);
4628 vrf = min(1.0f, vrf / v);
4629 vaf = min(1.0f, vaf / v);
4630 }
4631 }
4632 // XXX: these things DON'T need to be done each time
4633 mAudioMixer->setBufferProvider(name, track);
4634 mAudioMixer->enable(name);
4635
4636 mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
4637 mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
4638 mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
4639 mAudioMixer->setParameter(
4640 name,
4641 AudioMixer::TRACK,
4642 AudioMixer::FORMAT, (void *)track->format());
4643 mAudioMixer->setParameter(
4644 name,
4645 AudioMixer::TRACK,
4646 AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
4647 mAudioMixer->setParameter(
4648 name,
4649 AudioMixer::TRACK,
4650 AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
4651 // limit track sample rate to 2 x output sample rate, which changes at re-configuration
4652 uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
4653 uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
4654 if (reqSampleRate == 0) {
4655 reqSampleRate = mSampleRate;
4656 } else if (reqSampleRate > maxSampleRate) {
4657 reqSampleRate = maxSampleRate;
4658 }
4659 mAudioMixer->setParameter(
4660 name,
4661 AudioMixer::RESAMPLE,
4662 AudioMixer::SAMPLE_RATE,
4663 (void *)(uintptr_t)reqSampleRate);
4664
4665 AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4666 mAudioMixer->setParameter(
4667 name,
4668 AudioMixer::TIMESTRETCH,
4669 AudioMixer::PLAYBACK_RATE,
4670 &playbackRate);
4671
4672 /*
4673 * Select the appropriate output buffer for the track.
4674 *
4675 * Tracks with effects go into their own effects chain buffer
4676 * and from there into either mEffectBuffer or mSinkBuffer.
4677 *
4678 * Other tracks can use mMixerBuffer for higher precision
4679 * channel accumulation. If this buffer is enabled
4680 * (mMixerBufferEnabled true), then selected tracks will accumulate
4681 * into it.
4682 *
4683 */
4684 if (mMixerBufferEnabled
4685 && (track->mainBuffer() == mSinkBuffer
4686 || track->mainBuffer() == mMixerBuffer)) {
4687 mAudioMixer->setParameter(
4688 name,
4689 AudioMixer::TRACK,
4690 AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
4691 mAudioMixer->setParameter(
4692 name,
4693 AudioMixer::TRACK,
4694 AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
4695 // TODO: override track->mainBuffer()?
4696 mMixerBufferValid = true;
4697 } else {
4698 mAudioMixer->setParameter(
4699 name,
4700 AudioMixer::TRACK,
4701 AudioMixer::MIXER_FORMAT, (void *)EFFECT_BUFFER_FORMAT);
4702 mAudioMixer->setParameter(
4703 name,
4704 AudioMixer::TRACK,
4705 AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
4706 }
4707 mAudioMixer->setParameter(
4708 name,
4709 AudioMixer::TRACK,
4710 AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
4711
4712 // reset retry count
4713 track->mRetryCount = kMaxTrackRetries;
4714
4715 // If one track is ready, set the mixer ready if:
4716 // - the mixer was not ready during previous round OR
4717 // - no other track is not ready
4718 if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
4719 mixerStatus != MIXER_TRACKS_ENABLED) {
4720 mixerStatus = MIXER_TRACKS_READY;
4721 }
4722 } else {
4723 if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
4724 ALOGV("track(%p) underrun, framesReady(%zu) < framesDesired(%zd)",
4725 track, framesReady, desiredFrames);
4726 track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
4727 } else {
4728 track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
4729 }
4730
4731 // clear effect chain input buffer if an active track underruns to avoid sending
4732 // previous audio buffer again to effects
4733 chain = getEffectChain_l(track->sessionId());
4734 if (chain != 0) {
4735 chain->clearInputBuffer();
4736 }
4737
4738 ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
4739 if ((track->sharedBuffer() != 0) || track->isTerminated() ||
4740 track->isStopped() || track->isPaused()) {
4741 // We have consumed all the buffers of this track.
4742 // Remove it from the list of active tracks.
4743 // TODO: use actual buffer filling status instead of latency when available from
4744 // audio HAL
4745 size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
4746 int64_t framesWritten = mBytesWritten / mFrameSize;
4747 if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
4748 if (track->isStopped()) {
4749 track->reset();
4750 }
4751 tracksToRemove->add(track);
4752 }
4753 } else {
4754 // No buffers for this track. Give it a few chances to
4755 // fill a buffer, then remove it from active list.
4756 if (--(track->mRetryCount) <= 0) {
4757 ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
4758 tracksToRemove->add(track);
4759 // indicate to client process that the track was disabled because of underrun;
4760 // it will then automatically call start() when data is available
4761 track->disable();
4762 // If one track is not ready, mark the mixer also not ready if:
4763 // - the mixer was ready during previous round OR
4764 // - no other track is ready
4765 } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
4766 mixerStatus != MIXER_TRACKS_READY) {
4767 mixerStatus = MIXER_TRACKS_ENABLED;
4768 }
4769 }
4770 mAudioMixer->disable(name);
4771 }
4772
4773 } // local variable scope to avoid goto warning
4774
4775 }
4776
4777 // Push the new FastMixer state if necessary
4778 bool pauseAudioWatchdog = false;
4779 if (didModify) {
4780 state->mFastTracksGen++;
4781 // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
4782 if (kUseFastMixer == FastMixer_Dynamic &&
4783 state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
4784 state->mCommand = FastMixerState::COLD_IDLE;
4785 state->mColdFutexAddr = &mFastMixerFutex;
4786 state->mColdGen++;
4787 mFastMixerFutex = 0;
4788 if (kUseFastMixer == FastMixer_Dynamic) {
4789 mNormalSink = mOutputSink;
4790 }
4791 // If we go into cold idle, need to wait for acknowledgement
4792 // so that fast mixer stops doing I/O.
4793 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4794 pauseAudioWatchdog = true;
4795 }
4796 }
4797 if (sq != NULL) {
4798 sq->end(didModify);
4799 // No need to block if the FastMixer is in COLD_IDLE as the FastThread
4800 // is not active. (We BLOCK_UNTIL_ACKED when entering COLD_IDLE
4801 // when bringing the output sink into standby.)
4802 //
4803 // We will get the latest FastMixer state when we come out of COLD_IDLE.
4804 //
4805 // This occurs with BT suspend when we idle the FastMixer with
4806 // active tracks, which may be added or removed.
4807 sq->push(coldIdle ? FastMixerStateQueue::BLOCK_NEVER : block);
4808 }
4809 #ifdef AUDIO_WATCHDOG
4810 if (pauseAudioWatchdog && mAudioWatchdog != 0) {
4811 mAudioWatchdog->pause();
4812 }
4813 #endif
4814
4815 // Now perform the deferred reset on fast tracks that have stopped
4816 while (resetMask != 0) {
4817 size_t i = __builtin_ctz(resetMask);
4818 ALOG_ASSERT(i < count);
4819 resetMask &= ~(1 << i);
4820 sp<Track> track = mActiveTracks[i];
4821 ALOG_ASSERT(track->isFastTrack() && track->isStopped());
4822 track->reset();
4823 }
4824
4825 // Track destruction may occur outside of threadLoop once it is removed from active tracks.
4826 // Ensure the AudioMixer doesn't have a raw "buffer provider" pointer to the track if
4827 // it ceases to be active, to allow safe removal from the AudioMixer at the start
4828 // of prepareTracks_l(); this releases any outstanding buffer back to the track.
4829 // See also the implementation of destroyTrack_l().
4830 for (const auto &track : *tracksToRemove) {
4831 const int name = track->name();
4832 if (mAudioMixer->exists(name)) { // Normal tracks here, fast tracks in FastMixer.
4833 mAudioMixer->setBufferProvider(name, nullptr /* bufferProvider */);
4834 }
4835 }
4836
4837 // remove all the tracks that need to be...
4838 removeTracks_l(*tracksToRemove);
4839
4840 if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
4841 mEffectBufferValid = true;
4842 }
4843
4844 if (mEffectBufferValid) {
4845 // as long as there are effects we should clear the effects buffer, to avoid
4846 // passing a non-clean buffer to the effect chain
4847 memset(mEffectBuffer, 0, mEffectBufferSize);
4848 }
4849 // sink or mix buffer must be cleared if all tracks are connected to an
4850 // effect chain as in this case the mixer will not write to the sink or mix buffer
4851 // and track effects will accumulate into it
4852 if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4853 (mixedTracks == 0 && fastTracks > 0))) {
4854 // FIXME as a performance optimization, should remember previous zero status
4855 if (mMixerBufferValid) {
4856 memset(mMixerBuffer, 0, mMixerBufferSize);
4857 // TODO: In testing, mSinkBuffer below need not be cleared because
4858 // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
4859 // after mixing.
4860 //
4861 // To enforce this guarantee:
4862 // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4863 // (mixedTracks == 0 && fastTracks > 0))
4864 // must imply MIXER_TRACKS_READY.
4865 // Later, we may clear buffers regardless, and skip much of this logic.
4866 }
4867 // FIXME as a performance optimization, should remember previous zero status
4868 memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
4869 }
4870
4871 // if any fast tracks, then status is ready
4872 mMixerStatusIgnoringFastTracks = mixerStatus;
4873 if (fastTracks > 0) {
4874 mixerStatus = MIXER_TRACKS_READY;
4875 }
4876 return mixerStatus;
4877 }
4878
4879 // trackCountForUid_l() must be called with ThreadBase::mLock held
trackCountForUid_l(uid_t uid) const4880 uint32_t AudioFlinger::PlaybackThread::trackCountForUid_l(uid_t uid) const
4881 {
4882 uint32_t trackCount = 0;
4883 for (size_t i = 0; i < mTracks.size() ; i++) {
4884 if (mTracks[i]->uid() == uid) {
4885 trackCount++;
4886 }
4887 }
4888 return trackCount;
4889 }
4890
4891 // isTrackAllowed_l() must be called with ThreadBase::mLock held
isTrackAllowed_l(audio_channel_mask_t channelMask,audio_format_t format,audio_session_t sessionId,uid_t uid) const4892 bool AudioFlinger::MixerThread::isTrackAllowed_l(
4893 audio_channel_mask_t channelMask, audio_format_t format,
4894 audio_session_t sessionId, uid_t uid) const
4895 {
4896 if (!PlaybackThread::isTrackAllowed_l(channelMask, format, sessionId, uid)) {
4897 return false;
4898 }
4899 // Check validity as we don't call AudioMixer::create() here.
4900 if (!AudioMixer::isValidFormat(format)) {
4901 ALOGW("%s: invalid format: %#x", __func__, format);
4902 return false;
4903 }
4904 if (!AudioMixer::isValidChannelMask(channelMask)) {
4905 ALOGW("%s: invalid channelMask: %#x", __func__, channelMask);
4906 return false;
4907 }
4908 return true;
4909 }
4910
4911 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)4912 bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
4913 status_t& status)
4914 {
4915 bool reconfig = false;
4916 bool a2dpDeviceChanged = false;
4917
4918 status = NO_ERROR;
4919
4920 AutoPark<FastMixer> park(mFastMixer);
4921
4922 AudioParameter param = AudioParameter(keyValuePair);
4923 int value;
4924 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
4925 reconfig = true;
4926 }
4927 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
4928 if (!isValidPcmSinkFormat((audio_format_t) value)) {
4929 status = BAD_VALUE;
4930 } else {
4931 // no need to save value, since it's constant
4932 reconfig = true;
4933 }
4934 }
4935 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
4936 if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
4937 status = BAD_VALUE;
4938 } else {
4939 // no need to save value, since it's constant
4940 reconfig = true;
4941 }
4942 }
4943 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4944 // do not accept frame count changes if tracks are open as the track buffer
4945 // size depends on frame count and correct behavior would not be guaranteed
4946 // if frame count is changed after track creation
4947 if (!mTracks.isEmpty()) {
4948 status = INVALID_OPERATION;
4949 } else {
4950 reconfig = true;
4951 }
4952 }
4953 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4954 #ifdef ADD_BATTERY_DATA
4955 // when changing the audio output device, call addBatteryData to notify
4956 // the change
4957 if (mOutDevice != value) {
4958 uint32_t params = 0;
4959 // check whether speaker is on
4960 if (value & AUDIO_DEVICE_OUT_SPEAKER) {
4961 params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4962 }
4963
4964 audio_devices_t deviceWithoutSpeaker
4965 = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
4966 // check if any other device (except speaker) is on
4967 if (value & deviceWithoutSpeaker) {
4968 params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4969 }
4970
4971 if (params != 0) {
4972 addBatteryData(params);
4973 }
4974 }
4975 #endif
4976
4977 // forward device change to effects that have requested to be
4978 // aware of attached audio device.
4979 if (value != AUDIO_DEVICE_NONE) {
4980 a2dpDeviceChanged =
4981 (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
4982 mOutDevice = value;
4983 for (size_t i = 0; i < mEffectChains.size(); i++) {
4984 mEffectChains[i]->setDevice_l(mOutDevice);
4985 }
4986 }
4987 }
4988
4989 if (status == NO_ERROR) {
4990 status = mOutput->stream->setParameters(keyValuePair);
4991 if (!mStandby && status == INVALID_OPERATION) {
4992 mOutput->standby();
4993 mStandby = true;
4994 mBytesWritten = 0;
4995 status = mOutput->stream->setParameters(keyValuePair);
4996 }
4997 if (status == NO_ERROR && reconfig) {
4998 readOutputParameters_l();
4999 delete mAudioMixer;
5000 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
5001 for (const auto &track : mTracks) {
5002 const int name = track->name();
5003 status_t status = mAudioMixer->create(
5004 name,
5005 track->mChannelMask,
5006 track->mFormat,
5007 track->mSessionId);
5008 ALOGW_IF(status != NO_ERROR,
5009 "%s: cannot create track name"
5010 " %d, mask %#x, format %#x, sessionId %d in AudioMixer",
5011 __func__,
5012 name, track->mChannelMask, track->mFormat, track->mSessionId);
5013 }
5014 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
5015 }
5016 }
5017
5018 return reconfig || a2dpDeviceChanged;
5019 }
5020
5021
dumpInternals(int fd,const Vector<String16> & args)5022 void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
5023 {
5024 PlaybackThread::dumpInternals(fd, args);
5025 dprintf(fd, " Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
5026 dprintf(fd, " AudioMixer tracks: %s\n", mAudioMixer->trackNames().c_str());
5027 dprintf(fd, " Master mono: %s\n", mMasterMono ? "on" : "off");
5028
5029 if (hasFastMixer()) {
5030 dprintf(fd, " FastMixer thread %p tid=%d", mFastMixer.get(), mFastMixer->getTid());
5031
5032 // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
5033 // while we are dumping it. It may be inconsistent, but it won't mutate!
5034 // This is a large object so we place it on the heap.
5035 // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
5036 const FastMixerDumpState *copy = new FastMixerDumpState(mFastMixerDumpState);
5037 copy->dump(fd);
5038 delete copy;
5039
5040 #ifdef STATE_QUEUE_DUMP
5041 // Similar for state queue
5042 StateQueueObserverDump observerCopy = mStateQueueObserverDump;
5043 observerCopy.dump(fd);
5044 StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
5045 mutatorCopy.dump(fd);
5046 #endif
5047
5048 #ifdef AUDIO_WATCHDOG
5049 if (mAudioWatchdog != 0) {
5050 // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
5051 AudioWatchdogDump wdCopy = mAudioWatchdogDump;
5052 wdCopy.dump(fd);
5053 }
5054 #endif
5055
5056 } else {
5057 dprintf(fd, " No FastMixer\n");
5058 }
5059
5060 #ifdef TEE_SINK
5061 // Write the tee output to a .wav file
5062 dumpTee(fd, mTeeSource, mId, 'M');
5063 #endif
5064
5065 }
5066
idleSleepTimeUs() const5067 uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
5068 {
5069 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
5070 }
5071
suspendSleepTimeUs() const5072 uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
5073 {
5074 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
5075 }
5076
cacheParameters_l()5077 void AudioFlinger::MixerThread::cacheParameters_l()
5078 {
5079 PlaybackThread::cacheParameters_l();
5080
5081 // FIXME: Relaxed timing because of a certain device that can't meet latency
5082 // Should be reduced to 2x after the vendor fixes the driver issue
5083 // increase threshold again due to low power audio mode. The way this warning
5084 // threshold is calculated and its usefulness should be reconsidered anyway.
5085 maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
5086 }
5087
5088 // ----------------------------------------------------------------------------
5089
DirectOutputThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,bool systemReady)5090 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
5091 AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady)
5092 : PlaybackThread(audioFlinger, output, id, device, DIRECT, systemReady)
5093 {
5094 }
5095
DirectOutputThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,uint32_t device,ThreadBase::type_t type,bool systemReady)5096 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
5097 AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
5098 ThreadBase::type_t type, bool systemReady)
5099 : PlaybackThread(audioFlinger, output, id, device, type, systemReady)
5100 , mVolumeShaperActive(false)
5101 {
5102 }
5103
~DirectOutputThread()5104 AudioFlinger::DirectOutputThread::~DirectOutputThread()
5105 {
5106 }
5107
processVolume_l(Track * track,bool lastTrack)5108 void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
5109 {
5110 float left, right;
5111
5112 if (mMasterMute || mStreamTypes[track->streamType()].mute) {
5113 left = right = 0;
5114 } else {
5115 float typeVolume = mStreamTypes[track->streamType()].volume;
5116 float v = mMasterVolume * typeVolume;
5117 sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
5118
5119 // Get volumeshaper scaling
5120 std::pair<float /* volume */, bool /* active */>
5121 vh = track->getVolumeHandler()->getVolume(
5122 track->mAudioTrackServerProxy->framesReleased());
5123 v *= vh.first;
5124 mVolumeShaperActive = vh.second;
5125
5126 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
5127 left = float_from_gain(gain_minifloat_unpack_left(vlr));
5128 if (left > GAIN_FLOAT_UNITY) {
5129 left = GAIN_FLOAT_UNITY;
5130 }
5131 left *= v;
5132 right = float_from_gain(gain_minifloat_unpack_right(vlr));
5133 if (right > GAIN_FLOAT_UNITY) {
5134 right = GAIN_FLOAT_UNITY;
5135 }
5136 right *= v;
5137 }
5138
5139 if (lastTrack) {
5140 track->setFinalVolume((left + right) / 2.f);
5141 if (left != mLeftVolFloat || right != mRightVolFloat) {
5142 mLeftVolFloat = left;
5143 mRightVolFloat = right;
5144
5145 // Convert volumes from float to 8.24
5146 uint32_t vl = (uint32_t)(left * (1 << 24));
5147 uint32_t vr = (uint32_t)(right * (1 << 24));
5148
5149 // Delegate volume control to effect in track effect chain if needed
5150 // only one effect chain can be present on DirectOutputThread, so if
5151 // there is one, the track is connected to it
5152 if (!mEffectChains.isEmpty()) {
5153 mEffectChains[0]->setVolume_l(&vl, &vr);
5154 left = (float)vl / (1 << 24);
5155 right = (float)vr / (1 << 24);
5156 }
5157 status_t result = mOutput->stream->setVolume(left, right);
5158 ALOGE_IF(result != OK, "Error when setting output stream volume: %d", result);
5159 }
5160 }
5161 }
5162
onAddNewTrack_l()5163 void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
5164 {
5165 sp<Track> previousTrack = mPreviousTrack.promote();
5166 sp<Track> latestTrack = mActiveTracks.getLatest();
5167
5168 if (previousTrack != 0 && latestTrack != 0) {
5169 if (mType == DIRECT) {
5170 if (previousTrack.get() != latestTrack.get()) {
5171 mFlushPending = true;
5172 }
5173 } else /* mType == OFFLOAD */ {
5174 if (previousTrack->sessionId() != latestTrack->sessionId()) {
5175 mFlushPending = true;
5176 }
5177 }
5178 }
5179 PlaybackThread::onAddNewTrack_l();
5180 }
5181
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)5182 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
5183 Vector< sp<Track> > *tracksToRemove
5184 )
5185 {
5186 size_t count = mActiveTracks.size();
5187 mixer_state mixerStatus = MIXER_IDLE;
5188 bool doHwPause = false;
5189 bool doHwResume = false;
5190
5191 // find out which tracks need to be processed
5192 for (const sp<Track> &t : mActiveTracks) {
5193 if (t->isInvalid()) {
5194 ALOGW("An invalidated track shouldn't be in active list");
5195 tracksToRemove->add(t);
5196 continue;
5197 }
5198
5199 Track* const track = t.get();
5200 #ifdef VERY_VERY_VERBOSE_LOGGING
5201 audio_track_cblk_t* cblk = track->cblk();
5202 #endif
5203 // Only consider last track started for volume and mixer state control.
5204 // In theory an older track could underrun and restart after the new one starts
5205 // but as we only care about the transition phase between two tracks on a
5206 // direct output, it is not a problem to ignore the underrun case.
5207 sp<Track> l = mActiveTracks.getLatest();
5208 bool last = l.get() == track;
5209
5210 if (track->isPausing()) {
5211 track->setPaused();
5212 if (mHwSupportsPause && last && !mHwPaused) {
5213 doHwPause = true;
5214 mHwPaused = true;
5215 }
5216 tracksToRemove->add(track);
5217 } else if (track->isFlushPending()) {
5218 track->flushAck();
5219 if (last) {
5220 mFlushPending = true;
5221 }
5222 } else if (track->isResumePending()) {
5223 track->resumeAck();
5224 if (last) {
5225 mLeftVolFloat = mRightVolFloat = -1.0;
5226 if (mHwPaused) {
5227 doHwResume = true;
5228 mHwPaused = false;
5229 }
5230 }
5231 }
5232
5233 // The first time a track is added we wait
5234 // for all its buffers to be filled before processing it.
5235 // Allow draining the buffer in case the client
5236 // app does not call stop() and relies on underrun to stop:
5237 // hence the test on (track->mRetryCount > 1).
5238 // If retryCount<=1 then track is about to underrun and be removed.
5239 // Do not use a high threshold for compressed audio.
5240 uint32_t minFrames;
5241 if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
5242 && (track->mRetryCount > 1) && audio_has_proportional_frames(mFormat)) {
5243 minFrames = mNormalFrameCount;
5244 } else {
5245 minFrames = 1;
5246 }
5247
5248 if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
5249 !track->isStopping_2() && !track->isStopped())
5250 {
5251 ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
5252
5253 if (track->mFillingUpStatus == Track::FS_FILLED) {
5254 track->mFillingUpStatus = Track::FS_ACTIVE;
5255 if (last) {
5256 // make sure processVolume_l() will apply new volume even if 0
5257 mLeftVolFloat = mRightVolFloat = -1.0;
5258 }
5259 if (!mHwSupportsPause) {
5260 track->resumeAck();
5261 }
5262 }
5263
5264 // compute volume for this track
5265 processVolume_l(track, last);
5266 if (last) {
5267 sp<Track> previousTrack = mPreviousTrack.promote();
5268 if (previousTrack != 0) {
5269 if (track != previousTrack.get()) {
5270 // Flush any data still being written from last track
5271 mBytesRemaining = 0;
5272 // Invalidate previous track to force a seek when resuming.
5273 previousTrack->invalidate();
5274 }
5275 }
5276 mPreviousTrack = track;
5277
5278 // reset retry count
5279 track->mRetryCount = kMaxTrackRetriesDirect;
5280 mActiveTrack = t;
5281 mixerStatus = MIXER_TRACKS_READY;
5282 if (mHwPaused) {
5283 doHwResume = true;
5284 mHwPaused = false;
5285 }
5286 }
5287 } else {
5288 // clear effect chain input buffer if the last active track started underruns
5289 // to avoid sending previous audio buffer again to effects
5290 if (!mEffectChains.isEmpty() && last) {
5291 mEffectChains[0]->clearInputBuffer();
5292 }
5293 if (track->isStopping_1()) {
5294 track->mState = TrackBase::STOPPING_2;
5295 if (last && mHwPaused) {
5296 doHwResume = true;
5297 mHwPaused = false;
5298 }
5299 }
5300 if ((track->sharedBuffer() != 0) || track->isStopped() ||
5301 track->isStopping_2() || track->isPaused()) {
5302 // We have consumed all the buffers of this track.
5303 // Remove it from the list of active tracks.
5304 size_t audioHALFrames;
5305 if (audio_has_proportional_frames(mFormat)) {
5306 audioHALFrames = (latency_l() * mSampleRate) / 1000;
5307 } else {
5308 audioHALFrames = 0;
5309 }
5310
5311 int64_t framesWritten = mBytesWritten / mFrameSize;
5312 if (mStandby || !last ||
5313 track->presentationComplete(framesWritten, audioHALFrames)) {
5314 if (track->isStopping_2()) {
5315 track->mState = TrackBase::STOPPED;
5316 }
5317 if (track->isStopped()) {
5318 track->reset();
5319 }
5320 tracksToRemove->add(track);
5321 }
5322 } else {
5323 // No buffers for this track. Give it a few chances to
5324 // fill a buffer, then remove it from active list.
5325 // Only consider last track started for mixer state control
5326 if (--(track->mRetryCount) <= 0) {
5327 ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
5328 tracksToRemove->add(track);
5329 // indicate to client process that the track was disabled because of underrun;
5330 // it will then automatically call start() when data is available
5331 track->disable();
5332 } else if (last) {
5333 ALOGW("pause because of UNDERRUN, framesReady = %zu,"
5334 "minFrames = %u, mFormat = %#x",
5335 track->framesReady(), minFrames, mFormat);
5336 mixerStatus = MIXER_TRACKS_ENABLED;
5337 if (mHwSupportsPause && !mHwPaused && !mStandby) {
5338 doHwPause = true;
5339 mHwPaused = true;
5340 }
5341 }
5342 }
5343 }
5344 }
5345
5346 // if an active track did not command a flush, check for pending flush on stopped tracks
5347 if (!mFlushPending) {
5348 for (size_t i = 0; i < mTracks.size(); i++) {
5349 if (mTracks[i]->isFlushPending()) {
5350 mTracks[i]->flushAck();
5351 mFlushPending = true;
5352 }
5353 }
5354 }
5355
5356 // make sure the pause/flush/resume sequence is executed in the right order.
5357 // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5358 // before flush and then resume HW. This can happen in case of pause/flush/resume
5359 // if resume is received before pause is executed.
5360 if (mHwSupportsPause && !mStandby &&
5361 (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5362 status_t result = mOutput->stream->pause();
5363 ALOGE_IF(result != OK, "Error when pausing output stream: %d", result);
5364 }
5365 if (mFlushPending) {
5366 flushHw_l();
5367 }
5368 if (mHwSupportsPause && !mStandby && doHwResume) {
5369 status_t result = mOutput->stream->resume();
5370 ALOGE_IF(result != OK, "Error when resuming output stream: %d", result);
5371 }
5372 // remove all the tracks that need to be...
5373 removeTracks_l(*tracksToRemove);
5374
5375 return mixerStatus;
5376 }
5377
threadLoop_mix()5378 void AudioFlinger::DirectOutputThread::threadLoop_mix()
5379 {
5380 size_t frameCount = mFrameCount;
5381 int8_t *curBuf = (int8_t *)mSinkBuffer;
5382 // output audio to hardware
5383 while (frameCount) {
5384 AudioBufferProvider::Buffer buffer;
5385 buffer.frameCount = frameCount;
5386 status_t status = mActiveTrack->getNextBuffer(&buffer);
5387 if (status != NO_ERROR || buffer.raw == NULL) {
5388 // no need to pad with 0 for compressed audio
5389 if (audio_has_proportional_frames(mFormat)) {
5390 memset(curBuf, 0, frameCount * mFrameSize);
5391 }
5392 break;
5393 }
5394 memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
5395 frameCount -= buffer.frameCount;
5396 curBuf += buffer.frameCount * mFrameSize;
5397 mActiveTrack->releaseBuffer(&buffer);
5398 }
5399 mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
5400 mSleepTimeUs = 0;
5401 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5402 mActiveTrack.clear();
5403 }
5404
threadLoop_sleepTime()5405 void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
5406 {
5407 // do not write to HAL when paused
5408 if (mHwPaused || (usesHwAvSync() && mStandby)) {
5409 mSleepTimeUs = mIdleSleepTimeUs;
5410 return;
5411 }
5412 if (mSleepTimeUs == 0) {
5413 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5414 mSleepTimeUs = mActiveSleepTimeUs;
5415 } else {
5416 mSleepTimeUs = mIdleSleepTimeUs;
5417 }
5418 } else if (mBytesWritten != 0 && audio_has_proportional_frames(mFormat)) {
5419 memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
5420 mSleepTimeUs = 0;
5421 }
5422 }
5423
threadLoop_exit()5424 void AudioFlinger::DirectOutputThread::threadLoop_exit()
5425 {
5426 {
5427 Mutex::Autolock _l(mLock);
5428 for (size_t i = 0; i < mTracks.size(); i++) {
5429 if (mTracks[i]->isFlushPending()) {
5430 mTracks[i]->flushAck();
5431 mFlushPending = true;
5432 }
5433 }
5434 if (mFlushPending) {
5435 flushHw_l();
5436 }
5437 }
5438 PlaybackThread::threadLoop_exit();
5439 }
5440
5441 // must be called with thread mutex locked
shouldStandby_l()5442 bool AudioFlinger::DirectOutputThread::shouldStandby_l()
5443 {
5444 bool trackPaused = false;
5445 bool trackStopped = false;
5446
5447 if ((mType == DIRECT) && audio_is_linear_pcm(mFormat) && !usesHwAvSync()) {
5448 return !mStandby;
5449 }
5450
5451 // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
5452 // after a timeout and we will enter standby then.
5453 if (mTracks.size() > 0) {
5454 trackPaused = mTracks[mTracks.size() - 1]->isPaused();
5455 trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
5456 mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
5457 }
5458
5459 return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
5460 }
5461
5462 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)5463 bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
5464 status_t& status)
5465 {
5466 bool reconfig = false;
5467 bool a2dpDeviceChanged = false;
5468
5469 status = NO_ERROR;
5470
5471 AudioParameter param = AudioParameter(keyValuePair);
5472 int value;
5473 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
5474 // forward device change to effects that have requested to be
5475 // aware of attached audio device.
5476 if (value != AUDIO_DEVICE_NONE) {
5477 a2dpDeviceChanged =
5478 (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
5479 mOutDevice = value;
5480 for (size_t i = 0; i < mEffectChains.size(); i++) {
5481 mEffectChains[i]->setDevice_l(mOutDevice);
5482 }
5483 }
5484 }
5485 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
5486 // do not accept frame count changes if tracks are open as the track buffer
5487 // size depends on frame count and correct behavior would not be garantied
5488 // if frame count is changed after track creation
5489 if (!mTracks.isEmpty()) {
5490 status = INVALID_OPERATION;
5491 } else {
5492 reconfig = true;
5493 }
5494 }
5495 if (status == NO_ERROR) {
5496 status = mOutput->stream->setParameters(keyValuePair);
5497 if (!mStandby && status == INVALID_OPERATION) {
5498 mOutput->standby();
5499 mStandby = true;
5500 mBytesWritten = 0;
5501 status = mOutput->stream->setParameters(keyValuePair);
5502 }
5503 if (status == NO_ERROR && reconfig) {
5504 readOutputParameters_l();
5505 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
5506 }
5507 }
5508
5509 return reconfig || a2dpDeviceChanged;
5510 }
5511
activeSleepTimeUs() const5512 uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
5513 {
5514 uint32_t time;
5515 if (audio_has_proportional_frames(mFormat)) {
5516 time = PlaybackThread::activeSleepTimeUs();
5517 } else {
5518 time = kDirectMinSleepTimeUs;
5519 }
5520 return time;
5521 }
5522
idleSleepTimeUs() const5523 uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
5524 {
5525 uint32_t time;
5526 if (audio_has_proportional_frames(mFormat)) {
5527 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
5528 } else {
5529 time = kDirectMinSleepTimeUs;
5530 }
5531 return time;
5532 }
5533
suspendSleepTimeUs() const5534 uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
5535 {
5536 uint32_t time;
5537 if (audio_has_proportional_frames(mFormat)) {
5538 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
5539 } else {
5540 time = kDirectMinSleepTimeUs;
5541 }
5542 return time;
5543 }
5544
cacheParameters_l()5545 void AudioFlinger::DirectOutputThread::cacheParameters_l()
5546 {
5547 PlaybackThread::cacheParameters_l();
5548
5549 // use shorter standby delay as on normal output to release
5550 // hardware resources as soon as possible
5551 // no delay on outputs with HW A/V sync
5552 if (usesHwAvSync()) {
5553 mStandbyDelayNs = 0;
5554 } else if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
5555 mStandbyDelayNs = kOffloadStandbyDelayNs;
5556 } else {
5557 mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
5558 }
5559 }
5560
flushHw_l()5561 void AudioFlinger::DirectOutputThread::flushHw_l()
5562 {
5563 mOutput->flush();
5564 mHwPaused = false;
5565 mFlushPending = false;
5566 }
5567
computeWaitTimeNs_l() const5568 int64_t AudioFlinger::DirectOutputThread::computeWaitTimeNs_l() const {
5569 // If a VolumeShaper is active, we must wake up periodically to update volume.
5570 const int64_t NS_PER_MS = 1000000;
5571 return mVolumeShaperActive ?
5572 kMinNormalSinkBufferSizeMs * NS_PER_MS : PlaybackThread::computeWaitTimeNs_l();
5573 }
5574
5575 // ----------------------------------------------------------------------------
5576
AsyncCallbackThread(const wp<AudioFlinger::PlaybackThread> & playbackThread)5577 AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
5578 const wp<AudioFlinger::PlaybackThread>& playbackThread)
5579 : Thread(false /*canCallJava*/),
5580 mPlaybackThread(playbackThread),
5581 mWriteAckSequence(0),
5582 mDrainSequence(0),
5583 mAsyncError(false)
5584 {
5585 }
5586
~AsyncCallbackThread()5587 AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
5588 {
5589 }
5590
onFirstRef()5591 void AudioFlinger::AsyncCallbackThread::onFirstRef()
5592 {
5593 run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
5594 }
5595
threadLoop()5596 bool AudioFlinger::AsyncCallbackThread::threadLoop()
5597 {
5598 while (!exitPending()) {
5599 uint32_t writeAckSequence;
5600 uint32_t drainSequence;
5601 bool asyncError;
5602
5603 {
5604 Mutex::Autolock _l(mLock);
5605 while (!((mWriteAckSequence & 1) ||
5606 (mDrainSequence & 1) ||
5607 mAsyncError ||
5608 exitPending())) {
5609 mWaitWorkCV.wait(mLock);
5610 }
5611
5612 if (exitPending()) {
5613 break;
5614 }
5615 ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
5616 mWriteAckSequence, mDrainSequence);
5617 writeAckSequence = mWriteAckSequence;
5618 mWriteAckSequence &= ~1;
5619 drainSequence = mDrainSequence;
5620 mDrainSequence &= ~1;
5621 asyncError = mAsyncError;
5622 mAsyncError = false;
5623 }
5624 {
5625 sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
5626 if (playbackThread != 0) {
5627 if (writeAckSequence & 1) {
5628 playbackThread->resetWriteBlocked(writeAckSequence >> 1);
5629 }
5630 if (drainSequence & 1) {
5631 playbackThread->resetDraining(drainSequence >> 1);
5632 }
5633 if (asyncError) {
5634 playbackThread->onAsyncError();
5635 }
5636 }
5637 }
5638 }
5639 return false;
5640 }
5641
exit()5642 void AudioFlinger::AsyncCallbackThread::exit()
5643 {
5644 ALOGV("AsyncCallbackThread::exit");
5645 Mutex::Autolock _l(mLock);
5646 requestExit();
5647 mWaitWorkCV.broadcast();
5648 }
5649
setWriteBlocked(uint32_t sequence)5650 void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
5651 {
5652 Mutex::Autolock _l(mLock);
5653 // bit 0 is cleared
5654 mWriteAckSequence = sequence << 1;
5655 }
5656
resetWriteBlocked()5657 void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
5658 {
5659 Mutex::Autolock _l(mLock);
5660 // ignore unexpected callbacks
5661 if (mWriteAckSequence & 2) {
5662 mWriteAckSequence |= 1;
5663 mWaitWorkCV.signal();
5664 }
5665 }
5666
setDraining(uint32_t sequence)5667 void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
5668 {
5669 Mutex::Autolock _l(mLock);
5670 // bit 0 is cleared
5671 mDrainSequence = sequence << 1;
5672 }
5673
resetDraining()5674 void AudioFlinger::AsyncCallbackThread::resetDraining()
5675 {
5676 Mutex::Autolock _l(mLock);
5677 // ignore unexpected callbacks
5678 if (mDrainSequence & 2) {
5679 mDrainSequence |= 1;
5680 mWaitWorkCV.signal();
5681 }
5682 }
5683
setAsyncError()5684 void AudioFlinger::AsyncCallbackThread::setAsyncError()
5685 {
5686 Mutex::Autolock _l(mLock);
5687 mAsyncError = true;
5688 mWaitWorkCV.signal();
5689 }
5690
5691
5692 // ----------------------------------------------------------------------------
OffloadThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,uint32_t device,bool systemReady)5693 AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
5694 AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady)
5695 : DirectOutputThread(audioFlinger, output, id, device, OFFLOAD, systemReady),
5696 mPausedWriteLength(0), mPausedBytesRemaining(0), mKeepWakeLock(true),
5697 mOffloadUnderrunPosition(~0LL)
5698 {
5699 //FIXME: mStandby should be set to true by ThreadBase constructo
5700 mStandby = true;
5701 mKeepWakeLock = property_get_bool("ro.audio.offload_wakelock", true /* default_value */);
5702 }
5703
threadLoop_exit()5704 void AudioFlinger::OffloadThread::threadLoop_exit()
5705 {
5706 if (mFlushPending || mHwPaused) {
5707 // If a flush is pending or track was paused, just discard buffered data
5708 flushHw_l();
5709 } else {
5710 mMixerStatus = MIXER_DRAIN_ALL;
5711 threadLoop_drain();
5712 }
5713 if (mUseAsyncWrite) {
5714 ALOG_ASSERT(mCallbackThread != 0);
5715 mCallbackThread->exit();
5716 }
5717 PlaybackThread::threadLoop_exit();
5718 }
5719
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)5720 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
5721 Vector< sp<Track> > *tracksToRemove
5722 )
5723 {
5724 size_t count = mActiveTracks.size();
5725
5726 mixer_state mixerStatus = MIXER_IDLE;
5727 bool doHwPause = false;
5728 bool doHwResume = false;
5729
5730 ALOGV("OffloadThread::prepareTracks_l active tracks %zu", count);
5731
5732 // find out which tracks need to be processed
5733 for (const sp<Track> &t : mActiveTracks) {
5734 Track* const track = t.get();
5735 #ifdef VERY_VERY_VERBOSE_LOGGING
5736 audio_track_cblk_t* cblk = track->cblk();
5737 #endif
5738 // Only consider last track started for volume and mixer state control.
5739 // In theory an older track could underrun and restart after the new one starts
5740 // but as we only care about the transition phase between two tracks on a
5741 // direct output, it is not a problem to ignore the underrun case.
5742 sp<Track> l = mActiveTracks.getLatest();
5743 bool last = l.get() == track;
5744
5745 if (track->isInvalid()) {
5746 ALOGW("An invalidated track shouldn't be in active list");
5747 tracksToRemove->add(track);
5748 continue;
5749 }
5750
5751 if (track->mState == TrackBase::IDLE) {
5752 ALOGW("An idle track shouldn't be in active list");
5753 continue;
5754 }
5755
5756 if (track->isPausing()) {
5757 track->setPaused();
5758 if (last) {
5759 if (mHwSupportsPause && !mHwPaused) {
5760 doHwPause = true;
5761 mHwPaused = true;
5762 }
5763 // If we were part way through writing the mixbuffer to
5764 // the HAL we must save this until we resume
5765 // BUG - this will be wrong if a different track is made active,
5766 // in that case we want to discard the pending data in the
5767 // mixbuffer and tell the client to present it again when the
5768 // track is resumed
5769 mPausedWriteLength = mCurrentWriteLength;
5770 mPausedBytesRemaining = mBytesRemaining;
5771 mBytesRemaining = 0; // stop writing
5772 }
5773 tracksToRemove->add(track);
5774 } else if (track->isFlushPending()) {
5775 if (track->isStopping_1()) {
5776 track->mRetryCount = kMaxTrackStopRetriesOffload;
5777 } else {
5778 track->mRetryCount = kMaxTrackRetriesOffload;
5779 }
5780 track->flushAck();
5781 if (last) {
5782 mFlushPending = true;
5783 }
5784 } else if (track->isResumePending()){
5785 track->resumeAck();
5786 if (last) {
5787 if (mPausedBytesRemaining) {
5788 // Need to continue write that was interrupted
5789 mCurrentWriteLength = mPausedWriteLength;
5790 mBytesRemaining = mPausedBytesRemaining;
5791 mPausedBytesRemaining = 0;
5792 }
5793 if (mHwPaused) {
5794 doHwResume = true;
5795 mHwPaused = false;
5796 // threadLoop_mix() will handle the case that we need to
5797 // resume an interrupted write
5798 }
5799 // enable write to audio HAL
5800 mSleepTimeUs = 0;
5801
5802 mLeftVolFloat = mRightVolFloat = -1.0;
5803
5804 // Do not handle new data in this iteration even if track->framesReady()
5805 mixerStatus = MIXER_TRACKS_ENABLED;
5806 }
5807 } else if (track->framesReady() && track->isReady() &&
5808 !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
5809 ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
5810 if (track->mFillingUpStatus == Track::FS_FILLED) {
5811 track->mFillingUpStatus = Track::FS_ACTIVE;
5812 if (last) {
5813 // make sure processVolume_l() will apply new volume even if 0
5814 mLeftVolFloat = mRightVolFloat = -1.0;
5815 }
5816 }
5817
5818 if (last) {
5819 sp<Track> previousTrack = mPreviousTrack.promote();
5820 if (previousTrack != 0) {
5821 if (track != previousTrack.get()) {
5822 // Flush any data still being written from last track
5823 mBytesRemaining = 0;
5824 if (mPausedBytesRemaining) {
5825 // Last track was paused so we also need to flush saved
5826 // mixbuffer state and invalidate track so that it will
5827 // re-submit that unwritten data when it is next resumed
5828 mPausedBytesRemaining = 0;
5829 // Invalidate is a bit drastic - would be more efficient
5830 // to have a flag to tell client that some of the
5831 // previously written data was lost
5832 previousTrack->invalidate();
5833 }
5834 // flush data already sent to the DSP if changing audio session as audio
5835 // comes from a different source. Also invalidate previous track to force a
5836 // seek when resuming.
5837 if (previousTrack->sessionId() != track->sessionId()) {
5838 previousTrack->invalidate();
5839 }
5840 }
5841 }
5842 mPreviousTrack = track;
5843 // reset retry count
5844 if (track->isStopping_1()) {
5845 track->mRetryCount = kMaxTrackStopRetriesOffload;
5846 } else {
5847 track->mRetryCount = kMaxTrackRetriesOffload;
5848 }
5849 mActiveTrack = t;
5850 mixerStatus = MIXER_TRACKS_READY;
5851 }
5852 } else {
5853 ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
5854 if (track->isStopping_1()) {
5855 if (--(track->mRetryCount) <= 0) {
5856 // Hardware buffer can hold a large amount of audio so we must
5857 // wait for all current track's data to drain before we say
5858 // that the track is stopped.
5859 if (mBytesRemaining == 0) {
5860 // Only start draining when all data in mixbuffer
5861 // has been written
5862 ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
5863 track->mState = TrackBase::STOPPING_2; // so presentation completes after
5864 // drain do not drain if no data was ever sent to HAL (mStandby == true)
5865 if (last && !mStandby) {
5866 // do not modify drain sequence if we are already draining. This happens
5867 // when resuming from pause after drain.
5868 if ((mDrainSequence & 1) == 0) {
5869 mSleepTimeUs = 0;
5870 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5871 mixerStatus = MIXER_DRAIN_TRACK;
5872 mDrainSequence += 2;
5873 }
5874 if (mHwPaused) {
5875 // It is possible to move from PAUSED to STOPPING_1 without
5876 // a resume so we must ensure hardware is running
5877 doHwResume = true;
5878 mHwPaused = false;
5879 }
5880 }
5881 }
5882 } else if (last) {
5883 ALOGV("stopping1 underrun retries left %d", track->mRetryCount);
5884 mixerStatus = MIXER_TRACKS_ENABLED;
5885 }
5886 } else if (track->isStopping_2()) {
5887 // Drain has completed or we are in standby, signal presentation complete
5888 if (!(mDrainSequence & 1) || !last || mStandby) {
5889 track->mState = TrackBase::STOPPED;
5890 uint32_t latency = 0;
5891 status_t result = mOutput->stream->getLatency(&latency);
5892 ALOGE_IF(result != OK,
5893 "Error when retrieving output stream latency: %d", result);
5894 size_t audioHALFrames = (latency * mSampleRate) / 1000;
5895 int64_t framesWritten =
5896 mBytesWritten / mOutput->getFrameSize();
5897 track->presentationComplete(framesWritten, audioHALFrames);
5898 track->reset();
5899 tracksToRemove->add(track);
5900 }
5901 } else {
5902 // No buffers for this track. Give it a few chances to
5903 // fill a buffer, then remove it from active list.
5904 if (--(track->mRetryCount) <= 0) {
5905 bool running = false;
5906 uint64_t position = 0;
5907 struct timespec unused;
5908 // The running check restarts the retry counter at least once.
5909 status_t ret = mOutput->stream->getPresentationPosition(&position, &unused);
5910 if (ret == NO_ERROR && position != mOffloadUnderrunPosition) {
5911 running = true;
5912 mOffloadUnderrunPosition = position;
5913 }
5914 if (ret == NO_ERROR) {
5915 ALOGVV("underrun counter, running(%d): %lld vs %lld", running,
5916 (long long)position, (long long)mOffloadUnderrunPosition);
5917 }
5918 if (running) { // still running, give us more time.
5919 track->mRetryCount = kMaxTrackRetriesOffload;
5920 } else {
5921 ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
5922 track->name());
5923 tracksToRemove->add(track);
5924 // tell client process that the track was disabled because of underrun;
5925 // it will then automatically call start() when data is available
5926 track->disable();
5927 }
5928 } else if (last){
5929 mixerStatus = MIXER_TRACKS_ENABLED;
5930 }
5931 }
5932 }
5933 // compute volume for this track
5934 processVolume_l(track, last);
5935 }
5936
5937 // make sure the pause/flush/resume sequence is executed in the right order.
5938 // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5939 // before flush and then resume HW. This can happen in case of pause/flush/resume
5940 // if resume is received before pause is executed.
5941 if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5942 status_t result = mOutput->stream->pause();
5943 ALOGE_IF(result != OK, "Error when pausing output stream: %d", result);
5944 }
5945 if (mFlushPending) {
5946 flushHw_l();
5947 }
5948 if (!mStandby && doHwResume) {
5949 status_t result = mOutput->stream->resume();
5950 ALOGE_IF(result != OK, "Error when resuming output stream: %d", result);
5951 }
5952
5953 // remove all the tracks that need to be...
5954 removeTracks_l(*tracksToRemove);
5955
5956 return mixerStatus;
5957 }
5958
5959 // must be called with thread mutex locked
waitingAsyncCallback_l()5960 bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
5961 {
5962 ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
5963 mWriteAckSequence, mDrainSequence);
5964 if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
5965 return true;
5966 }
5967 return false;
5968 }
5969
waitingAsyncCallback()5970 bool AudioFlinger::OffloadThread::waitingAsyncCallback()
5971 {
5972 Mutex::Autolock _l(mLock);
5973 return waitingAsyncCallback_l();
5974 }
5975
flushHw_l()5976 void AudioFlinger::OffloadThread::flushHw_l()
5977 {
5978 DirectOutputThread::flushHw_l();
5979 // Flush anything still waiting in the mixbuffer
5980 mCurrentWriteLength = 0;
5981 mBytesRemaining = 0;
5982 mPausedWriteLength = 0;
5983 mPausedBytesRemaining = 0;
5984 // reset bytes written count to reflect that DSP buffers are empty after flush.
5985 mBytesWritten = 0;
5986 mOffloadUnderrunPosition = ~0LL;
5987
5988 if (mUseAsyncWrite) {
5989 // discard any pending drain or write ack by incrementing sequence
5990 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
5991 mDrainSequence = (mDrainSequence + 2) & ~1;
5992 ALOG_ASSERT(mCallbackThread != 0);
5993 mCallbackThread->setWriteBlocked(mWriteAckSequence);
5994 mCallbackThread->setDraining(mDrainSequence);
5995 }
5996 }
5997
invalidateTracks(audio_stream_type_t streamType)5998 void AudioFlinger::OffloadThread::invalidateTracks(audio_stream_type_t streamType)
5999 {
6000 Mutex::Autolock _l(mLock);
6001 if (PlaybackThread::invalidateTracks_l(streamType)) {
6002 mFlushPending = true;
6003 }
6004 }
6005
6006 // ----------------------------------------------------------------------------
6007
DuplicatingThread(const sp<AudioFlinger> & audioFlinger,AudioFlinger::MixerThread * mainThread,audio_io_handle_t id,bool systemReady)6008 AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
6009 AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
6010 : MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
6011 systemReady, DUPLICATING),
6012 mWaitTimeMs(UINT_MAX)
6013 {
6014 addOutputTrack(mainThread);
6015 }
6016
~DuplicatingThread()6017 AudioFlinger::DuplicatingThread::~DuplicatingThread()
6018 {
6019 for (size_t i = 0; i < mOutputTracks.size(); i++) {
6020 mOutputTracks[i]->destroy();
6021 }
6022 }
6023
threadLoop_mix()6024 void AudioFlinger::DuplicatingThread::threadLoop_mix()
6025 {
6026 // mix buffers...
6027 if (outputsReady(outputTracks)) {
6028 mAudioMixer->process();
6029 } else {
6030 if (mMixerBufferValid) {
6031 memset(mMixerBuffer, 0, mMixerBufferSize);
6032 } else {
6033 memset(mSinkBuffer, 0, mSinkBufferSize);
6034 }
6035 }
6036 mSleepTimeUs = 0;
6037 writeFrames = mNormalFrameCount;
6038 mCurrentWriteLength = mSinkBufferSize;
6039 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
6040 }
6041
threadLoop_sleepTime()6042 void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
6043 {
6044 if (mSleepTimeUs == 0) {
6045 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
6046 mSleepTimeUs = mActiveSleepTimeUs;
6047 } else {
6048 mSleepTimeUs = mIdleSleepTimeUs;
6049 }
6050 } else if (mBytesWritten != 0) {
6051 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
6052 writeFrames = mNormalFrameCount;
6053 memset(mSinkBuffer, 0, mSinkBufferSize);
6054 } else {
6055 // flush remaining overflow buffers in output tracks
6056 writeFrames = 0;
6057 }
6058 mSleepTimeUs = 0;
6059 }
6060 }
6061
threadLoop_write()6062 ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
6063 {
6064 for (size_t i = 0; i < outputTracks.size(); i++) {
6065 outputTracks[i]->write(mSinkBuffer, writeFrames);
6066 }
6067 mStandby = false;
6068 return (ssize_t)mSinkBufferSize;
6069 }
6070
threadLoop_standby()6071 void AudioFlinger::DuplicatingThread::threadLoop_standby()
6072 {
6073 // DuplicatingThread implements standby by stopping all tracks
6074 for (size_t i = 0; i < outputTracks.size(); i++) {
6075 outputTracks[i]->stop();
6076 }
6077 }
6078
dumpInternals(int fd,const Vector<String16> & args __unused)6079 void AudioFlinger::DuplicatingThread::dumpInternals(int fd, const Vector<String16>& args __unused)
6080 {
6081 MixerThread::dumpInternals(fd, args);
6082
6083 std::stringstream ss;
6084 const size_t numTracks = mOutputTracks.size();
6085 ss << " " << numTracks << " OutputTracks";
6086 if (numTracks > 0) {
6087 ss << ":";
6088 for (const auto &track : mOutputTracks) {
6089 const sp<ThreadBase> thread = track->thread().promote();
6090 ss << " (" << track->name() << " : ";
6091 if (thread.get() != nullptr) {
6092 ss << thread.get() << ", " << thread->id();
6093 } else {
6094 ss << "null";
6095 }
6096 ss << ")";
6097 }
6098 }
6099 ss << "\n";
6100 std::string result = ss.str();
6101 write(fd, result.c_str(), result.size());
6102 }
6103
saveOutputTracks()6104 void AudioFlinger::DuplicatingThread::saveOutputTracks()
6105 {
6106 outputTracks = mOutputTracks;
6107 }
6108
clearOutputTracks()6109 void AudioFlinger::DuplicatingThread::clearOutputTracks()
6110 {
6111 outputTracks.clear();
6112 }
6113
addOutputTrack(MixerThread * thread)6114 void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
6115 {
6116 Mutex::Autolock _l(mLock);
6117 // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
6118 // Adjust for thread->sampleRate() to determine minimum buffer frame count.
6119 // Then triple buffer because Threads do not run synchronously and may not be clock locked.
6120 const size_t frameCount =
6121 3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
6122 // TODO: Consider asynchronous sample rate conversion to handle clock disparity
6123 // from different OutputTracks and their associated MixerThreads (e.g. one may
6124 // nearly empty and the other may be dropping data).
6125
6126 sp<OutputTrack> outputTrack = new OutputTrack(thread,
6127 this,
6128 mSampleRate,
6129 mFormat,
6130 mChannelMask,
6131 frameCount,
6132 IPCThreadState::self()->getCallingUid());
6133 status_t status = outputTrack != 0 ? outputTrack->initCheck() : (status_t) NO_MEMORY;
6134 if (status != NO_ERROR) {
6135 ALOGE("addOutputTrack() initCheck failed %d", status);
6136 return;
6137 }
6138 thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
6139 mOutputTracks.add(outputTrack);
6140 ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
6141 updateWaitTime_l();
6142 }
6143
removeOutputTrack(MixerThread * thread)6144 void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
6145 {
6146 Mutex::Autolock _l(mLock);
6147 for (size_t i = 0; i < mOutputTracks.size(); i++) {
6148 if (mOutputTracks[i]->thread() == thread) {
6149 mOutputTracks[i]->destroy();
6150 mOutputTracks.removeAt(i);
6151 updateWaitTime_l();
6152 if (thread->getOutput() == mOutput) {
6153 mOutput = NULL;
6154 }
6155 return;
6156 }
6157 }
6158 ALOGV("removeOutputTrack(): unknown thread: %p", thread);
6159 }
6160
6161 // caller must hold mLock
updateWaitTime_l()6162 void AudioFlinger::DuplicatingThread::updateWaitTime_l()
6163 {
6164 mWaitTimeMs = UINT_MAX;
6165 for (size_t i = 0; i < mOutputTracks.size(); i++) {
6166 sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
6167 if (strong != 0) {
6168 uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
6169 if (waitTimeMs < mWaitTimeMs) {
6170 mWaitTimeMs = waitTimeMs;
6171 }
6172 }
6173 }
6174 }
6175
6176
outputsReady(const SortedVector<sp<OutputTrack>> & outputTracks)6177 bool AudioFlinger::DuplicatingThread::outputsReady(
6178 const SortedVector< sp<OutputTrack> > &outputTracks)
6179 {
6180 for (size_t i = 0; i < outputTracks.size(); i++) {
6181 sp<ThreadBase> thread = outputTracks[i]->thread().promote();
6182 if (thread == 0) {
6183 ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
6184 outputTracks[i].get());
6185 return false;
6186 }
6187 PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
6188 // see note at standby() declaration
6189 if (playbackThread->standby() && !playbackThread->isSuspended()) {
6190 ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
6191 thread.get());
6192 return false;
6193 }
6194 }
6195 return true;
6196 }
6197
sendMetadataToBackend_l(const StreamOutHalInterface::SourceMetadata & metadata)6198 void AudioFlinger::DuplicatingThread::sendMetadataToBackend_l(
6199 const StreamOutHalInterface::SourceMetadata& metadata)
6200 {
6201 for (auto& outputTrack : outputTracks) { // not mOutputTracks
6202 outputTrack->setMetadatas(metadata.tracks);
6203 }
6204 }
6205
activeSleepTimeUs() const6206 uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
6207 {
6208 return (mWaitTimeMs * 1000) / 2;
6209 }
6210
cacheParameters_l()6211 void AudioFlinger::DuplicatingThread::cacheParameters_l()
6212 {
6213 // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
6214 updateWaitTime_l();
6215
6216 MixerThread::cacheParameters_l();
6217 }
6218
6219
6220 // ----------------------------------------------------------------------------
6221 // Record
6222 // ----------------------------------------------------------------------------
6223
RecordThread(const sp<AudioFlinger> & audioFlinger,AudioStreamIn * input,audio_io_handle_t id,audio_devices_t outDevice,audio_devices_t inDevice,bool systemReady,const sp<NBAIO_Sink> & teeSink)6224 AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
6225 AudioStreamIn *input,
6226 audio_io_handle_t id,
6227 audio_devices_t outDevice,
6228 audio_devices_t inDevice,
6229 bool systemReady
6230 #ifdef TEE_SINK
6231 , const sp<NBAIO_Sink>& teeSink
6232 #endif
6233 ) :
6234 ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD, systemReady),
6235 mInput(input),
6236 mActiveTracks(&this->mLocalLog),
6237 mRsmpInBuffer(NULL),
6238 // mRsmpInFrames, mRsmpInFramesP2, and mRsmpInFramesOA are set by readInputParameters_l()
6239 mRsmpInRear(0)
6240 #ifdef TEE_SINK
6241 , mTeeSink(teeSink)
6242 #endif
6243 , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
6244 "RecordThreadRO", MemoryHeapBase::READ_ONLY))
6245 // mFastCapture below
6246 , mFastCaptureFutex(0)
6247 // mInputSource
6248 // mPipeSink
6249 // mPipeSource
6250 , mPipeFramesP2(0)
6251 // mPipeMemory
6252 // mFastCaptureNBLogWriter
6253 , mFastTrackAvail(false)
6254 , mBtNrecSuspended(false)
6255 {
6256 snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
6257 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
6258
6259 readInputParameters_l();
6260
6261 // create an NBAIO source for the HAL input stream, and negotiate
6262 mInputSource = new AudioStreamInSource(input->stream);
6263 size_t numCounterOffers = 0;
6264 const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
6265 #if !LOG_NDEBUG
6266 ssize_t index =
6267 #else
6268 (void)
6269 #endif
6270 mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
6271 ALOG_ASSERT(index == 0);
6272
6273 // initialize fast capture depending on configuration
6274 bool initFastCapture;
6275 switch (kUseFastCapture) {
6276 case FastCapture_Never:
6277 initFastCapture = false;
6278 ALOGV("%p kUseFastCapture = Never, initFastCapture = false", this);
6279 break;
6280 case FastCapture_Always:
6281 initFastCapture = true;
6282 ALOGV("%p kUseFastCapture = Always, initFastCapture = true", this);
6283 break;
6284 case FastCapture_Static:
6285 initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
6286 ALOGV("%p kUseFastCapture = Static, (%lld * 1000) / %u vs %u, initFastCapture = %d",
6287 this, (long long)mFrameCount, mSampleRate, kMinNormalCaptureBufferSizeMs,
6288 initFastCapture);
6289 break;
6290 // case FastCapture_Dynamic:
6291 }
6292
6293 if (initFastCapture) {
6294 // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
6295 NBAIO_Format format = mInputSource->format();
6296 // quadruple-buffering of 20 ms each; this ensures we can sleep for 20ms in RecordThread
6297 size_t pipeFramesP2 = roundup(4 * FMS_20 * mSampleRate / 1000);
6298 size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
6299 void *pipeBuffer = nullptr;
6300 const sp<MemoryDealer> roHeap(readOnlyHeap());
6301 sp<IMemory> pipeMemory;
6302 if ((roHeap == 0) ||
6303 (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
6304 (pipeBuffer = pipeMemory->pointer()) == nullptr) {
6305 ALOGE("not enough memory for pipe buffer size=%zu; "
6306 "roHeap=%p, pipeMemory=%p, pipeBuffer=%p; roHeapSize: %lld",
6307 pipeSize, roHeap.get(), pipeMemory.get(), pipeBuffer,
6308 (long long)kRecordThreadReadOnlyHeapSize);
6309 goto failed;
6310 }
6311 // pipe will be shared directly with fast clients, so clear to avoid leaking old information
6312 memset(pipeBuffer, 0, pipeSize);
6313 Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
6314 const NBAIO_Format offers[1] = {format};
6315 size_t numCounterOffers = 0;
6316 ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
6317 ALOG_ASSERT(index == 0);
6318 mPipeSink = pipe;
6319 PipeReader *pipeReader = new PipeReader(*pipe);
6320 numCounterOffers = 0;
6321 index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
6322 ALOG_ASSERT(index == 0);
6323 mPipeSource = pipeReader;
6324 mPipeFramesP2 = pipeFramesP2;
6325 mPipeMemory = pipeMemory;
6326
6327 // create fast capture
6328 mFastCapture = new FastCapture();
6329 FastCaptureStateQueue *sq = mFastCapture->sq();
6330 #ifdef STATE_QUEUE_DUMP
6331 // FIXME
6332 #endif
6333 FastCaptureState *state = sq->begin();
6334 state->mCblk = NULL;
6335 state->mInputSource = mInputSource.get();
6336 state->mInputSourceGen++;
6337 state->mPipeSink = pipe;
6338 state->mPipeSinkGen++;
6339 state->mFrameCount = mFrameCount;
6340 state->mCommand = FastCaptureState::COLD_IDLE;
6341 // already done in constructor initialization list
6342 //mFastCaptureFutex = 0;
6343 state->mColdFutexAddr = &mFastCaptureFutex;
6344 state->mColdGen++;
6345 state->mDumpState = &mFastCaptureDumpState;
6346 #ifdef TEE_SINK
6347 // FIXME
6348 #endif
6349 mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
6350 state->mNBLogWriter = mFastCaptureNBLogWriter.get();
6351 sq->end();
6352 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
6353
6354 // start the fast capture
6355 mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
6356 pid_t tid = mFastCapture->getTid();
6357 sendPrioConfigEvent(getpid_cached, tid, kPriorityFastCapture, false /*forApp*/);
6358 stream()->setHalThreadPriority(kPriorityFastCapture);
6359 #ifdef AUDIO_WATCHDOG
6360 // FIXME
6361 #endif
6362
6363 mFastTrackAvail = true;
6364 }
6365 failed: ;
6366
6367 // FIXME mNormalSource
6368 }
6369
~RecordThread()6370 AudioFlinger::RecordThread::~RecordThread()
6371 {
6372 if (mFastCapture != 0) {
6373 FastCaptureStateQueue *sq = mFastCapture->sq();
6374 FastCaptureState *state = sq->begin();
6375 if (state->mCommand == FastCaptureState::COLD_IDLE) {
6376 int32_t old = android_atomic_inc(&mFastCaptureFutex);
6377 if (old == -1) {
6378 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
6379 }
6380 }
6381 state->mCommand = FastCaptureState::EXIT;
6382 sq->end();
6383 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
6384 mFastCapture->join();
6385 mFastCapture.clear();
6386 }
6387 mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
6388 mAudioFlinger->unregisterWriter(mNBLogWriter);
6389 free(mRsmpInBuffer);
6390 }
6391
onFirstRef()6392 void AudioFlinger::RecordThread::onFirstRef()
6393 {
6394 run(mThreadName, PRIORITY_URGENT_AUDIO);
6395 }
6396
preExit()6397 void AudioFlinger::RecordThread::preExit()
6398 {
6399 ALOGV(" preExit()");
6400 Mutex::Autolock _l(mLock);
6401 for (size_t i = 0; i < mTracks.size(); i++) {
6402 sp<RecordTrack> track = mTracks[i];
6403 track->invalidate();
6404 }
6405 mActiveTracks.clear();
6406 mStartStopCond.broadcast();
6407 }
6408
threadLoop()6409 bool AudioFlinger::RecordThread::threadLoop()
6410 {
6411 nsecs_t lastWarning = 0;
6412
6413 inputStandBy();
6414
6415 reacquire_wakelock:
6416 sp<RecordTrack> activeTrack;
6417 {
6418 Mutex::Autolock _l(mLock);
6419 acquireWakeLock_l();
6420 }
6421
6422 // used to request a deferred sleep, to be executed later while mutex is unlocked
6423 uint32_t sleepUs = 0;
6424
6425 // loop while there is work to do
6426 for (;;) {
6427 Vector< sp<EffectChain> > effectChains;
6428
6429 // activeTracks accumulates a copy of a subset of mActiveTracks
6430 Vector< sp<RecordTrack> > activeTracks;
6431
6432 // reference to the (first and only) active fast track
6433 sp<RecordTrack> fastTrack;
6434
6435 // reference to a fast track which is about to be removed
6436 sp<RecordTrack> fastTrackToRemove;
6437
6438 { // scope for mLock
6439 Mutex::Autolock _l(mLock);
6440
6441 processConfigEvents_l();
6442
6443 // check exitPending here because checkForNewParameters_l() and
6444 // checkForNewParameters_l() can temporarily release mLock
6445 if (exitPending()) {
6446 break;
6447 }
6448
6449 // sleep with mutex unlocked
6450 if (sleepUs > 0) {
6451 ATRACE_BEGIN("sleepC");
6452 mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)sleepUs));
6453 ATRACE_END();
6454 sleepUs = 0;
6455 continue;
6456 }
6457
6458 // if no active track(s), then standby and release wakelock
6459 size_t size = mActiveTracks.size();
6460 if (size == 0) {
6461 standbyIfNotAlreadyInStandby();
6462 // exitPending() can't become true here
6463 releaseWakeLock_l();
6464 ALOGV("RecordThread: loop stopping");
6465 // go to sleep
6466 mWaitWorkCV.wait(mLock);
6467 ALOGV("RecordThread: loop starting");
6468 goto reacquire_wakelock;
6469 }
6470
6471 bool doBroadcast = false;
6472 bool allStopped = true;
6473 for (size_t i = 0; i < size; ) {
6474
6475 activeTrack = mActiveTracks[i];
6476 if (activeTrack->isTerminated()) {
6477 if (activeTrack->isFastTrack()) {
6478 ALOG_ASSERT(fastTrackToRemove == 0);
6479 fastTrackToRemove = activeTrack;
6480 }
6481 removeTrack_l(activeTrack);
6482 mActiveTracks.remove(activeTrack);
6483 size--;
6484 continue;
6485 }
6486
6487 TrackBase::track_state activeTrackState = activeTrack->mState;
6488 switch (activeTrackState) {
6489
6490 case TrackBase::PAUSING:
6491 mActiveTracks.remove(activeTrack);
6492 doBroadcast = true;
6493 size--;
6494 continue;
6495
6496 case TrackBase::STARTING_1:
6497 sleepUs = 10000;
6498 i++;
6499 allStopped = false;
6500 continue;
6501
6502 case TrackBase::STARTING_2:
6503 doBroadcast = true;
6504 mStandby = false;
6505 activeTrack->mState = TrackBase::ACTIVE;
6506 allStopped = false;
6507 break;
6508
6509 case TrackBase::ACTIVE:
6510 allStopped = false;
6511 break;
6512
6513 case TrackBase::IDLE:
6514 i++;
6515 continue;
6516
6517 default:
6518 LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
6519 }
6520
6521 activeTracks.add(activeTrack);
6522 i++;
6523
6524 if (activeTrack->isFastTrack()) {
6525 ALOG_ASSERT(!mFastTrackAvail);
6526 ALOG_ASSERT(fastTrack == 0);
6527 fastTrack = activeTrack;
6528 }
6529 }
6530
6531 mActiveTracks.updatePowerState(this);
6532
6533 updateMetadata_l();
6534
6535 if (allStopped) {
6536 standbyIfNotAlreadyInStandby();
6537 }
6538 if (doBroadcast) {
6539 mStartStopCond.broadcast();
6540 }
6541
6542 // sleep if there are no active tracks to process
6543 if (activeTracks.size() == 0) {
6544 if (sleepUs == 0) {
6545 sleepUs = kRecordThreadSleepUs;
6546 }
6547 continue;
6548 }
6549 sleepUs = 0;
6550
6551 lockEffectChains_l(effectChains);
6552 }
6553
6554 // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
6555
6556 size_t size = effectChains.size();
6557 for (size_t i = 0; i < size; i++) {
6558 // thread mutex is not locked, but effect chain is locked
6559 effectChains[i]->process_l();
6560 }
6561
6562 // Push a new fast capture state if fast capture is not already running, or cblk change
6563 if (mFastCapture != 0) {
6564 FastCaptureStateQueue *sq = mFastCapture->sq();
6565 FastCaptureState *state = sq->begin();
6566 bool didModify = false;
6567 FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
6568 if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
6569 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
6570 if (state->mCommand == FastCaptureState::COLD_IDLE) {
6571 int32_t old = android_atomic_inc(&mFastCaptureFutex);
6572 if (old == -1) {
6573 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
6574 }
6575 }
6576 state->mCommand = FastCaptureState::READ_WRITE;
6577 #if 0 // FIXME
6578 mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
6579 FastThreadDumpState::kSamplingNforLowRamDevice :
6580 FastThreadDumpState::kSamplingN);
6581 #endif
6582 didModify = true;
6583 }
6584 audio_track_cblk_t *cblkOld = state->mCblk;
6585 audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
6586 if (cblkNew != cblkOld) {
6587 state->mCblk = cblkNew;
6588 // block until acked if removing a fast track
6589 if (cblkOld != NULL) {
6590 block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
6591 }
6592 didModify = true;
6593 }
6594 sq->end(didModify);
6595 if (didModify) {
6596 sq->push(block);
6597 #if 0
6598 if (kUseFastCapture == FastCapture_Dynamic) {
6599 mNormalSource = mPipeSource;
6600 }
6601 #endif
6602 }
6603 }
6604
6605 // now run the fast track destructor with thread mutex unlocked
6606 fastTrackToRemove.clear();
6607
6608 // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
6609 // Only the client(s) that are too slow will overrun. But if even the fastest client is too
6610 // slow, then this RecordThread will overrun by not calling HAL read often enough.
6611 // If destination is non-contiguous, first read past the nominal end of buffer, then
6612 // copy to the right place. Permitted because mRsmpInBuffer was over-allocated.
6613
6614 int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
6615 ssize_t framesRead;
6616
6617 // If an NBAIO source is present, use it to read the normal capture's data
6618 if (mPipeSource != 0) {
6619 size_t framesToRead = mBufferSize / mFrameSize;
6620 framesToRead = min(mRsmpInFramesOA - rear, mRsmpInFramesP2 / 2);
6621
6622 // The audio fifo read() returns OVERRUN on overflow, and advances the read pointer
6623 // to the full buffer point (clearing the overflow condition). Upon OVERRUN error,
6624 // we immediately retry the read() to get data and prevent another overflow.
6625 for (int retries = 0; retries <= 2; ++retries) {
6626 ALOGW_IF(retries > 0, "overrun on read from pipe, retry #%d", retries);
6627 framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
6628 framesToRead);
6629 if (framesRead != OVERRUN) break;
6630 }
6631
6632 const ssize_t availableToRead = mPipeSource->availableToRead();
6633 if (availableToRead >= 0) {
6634 // PipeSource is the master clock. It is up to the AudioRecord client to keep up.
6635 LOG_ALWAYS_FATAL_IF((size_t)availableToRead > mPipeFramesP2,
6636 "more frames to read than fifo size, %zd > %zu",
6637 availableToRead, mPipeFramesP2);
6638 const size_t pipeFramesFree = mPipeFramesP2 - availableToRead;
6639 const size_t sleepFrames = min(pipeFramesFree, mRsmpInFramesP2) / 2;
6640 ALOGVV("mPipeFramesP2:%zu mRsmpInFramesP2:%zu sleepFrames:%zu availableToRead:%zd",
6641 mPipeFramesP2, mRsmpInFramesP2, sleepFrames, availableToRead);
6642 sleepUs = (sleepFrames * 1000000LL) / mSampleRate;
6643 }
6644 if (framesRead < 0) {
6645 status_t status = (status_t) framesRead;
6646 switch (status) {
6647 case OVERRUN:
6648 ALOGW("overrun on read from pipe");
6649 framesRead = 0;
6650 break;
6651 case NEGOTIATE:
6652 ALOGE("re-negotiation is needed");
6653 framesRead = -1; // Will cause an attempt to recover.
6654 break;
6655 default:
6656 ALOGE("unknown error %d on read from pipe", status);
6657 break;
6658 }
6659 }
6660 // otherwise use the HAL / AudioStreamIn directly
6661 } else {
6662 ATRACE_BEGIN("read");
6663 size_t bytesRead;
6664 status_t result = mInput->stream->read(
6665 (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize, &bytesRead);
6666 ATRACE_END();
6667 if (result < 0) {
6668 framesRead = result;
6669 } else {
6670 framesRead = bytesRead / mFrameSize;
6671 }
6672 }
6673
6674 // Update server timestamp with server stats
6675 // systemTime() is optional if the hardware supports timestamps.
6676 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead;
6677 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
6678
6679 // Update server timestamp with kernel stats
6680 if (mPipeSource.get() == nullptr /* don't obtain for FastCapture, could block */) {
6681 int64_t position, time;
6682 int ret = mInput->stream->getCapturePosition(&position, &time);
6683 if (ret == NO_ERROR) {
6684 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position;
6685 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time;
6686 // Note: In general record buffers should tend to be empty in
6687 // a properly running pipeline.
6688 //
6689 // Also, it is not advantageous to call get_presentation_position during the read
6690 // as the read obtains a lock, preventing the timestamp call from executing.
6691 }
6692 }
6693 // Use this to track timestamp information
6694 // ALOGD("%s", mTimestamp.toString().c_str());
6695
6696 if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
6697 ALOGE("read failed: framesRead=%zd", framesRead);
6698 // Force input into standby so that it tries to recover at next read attempt
6699 inputStandBy();
6700 sleepUs = kRecordThreadSleepUs;
6701 }
6702 if (framesRead <= 0) {
6703 goto unlock;
6704 }
6705 ALOG_ASSERT(framesRead > 0);
6706
6707 if (mTeeSink != 0) {
6708 (void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
6709 }
6710 // If destination is non-contiguous, we now correct for reading past end of buffer.
6711 {
6712 size_t part1 = mRsmpInFramesP2 - rear;
6713 if ((size_t) framesRead > part1) {
6714 memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
6715 (framesRead - part1) * mFrameSize);
6716 }
6717 }
6718 rear = mRsmpInRear += framesRead;
6719
6720 size = activeTracks.size();
6721
6722 // loop over each active track
6723 for (size_t i = 0; i < size; i++) {
6724 activeTrack = activeTracks[i];
6725
6726 // skip fast tracks, as those are handled directly by FastCapture
6727 if (activeTrack->isFastTrack()) {
6728 continue;
6729 }
6730
6731 // TODO: This code probably should be moved to RecordTrack.
6732 // TODO: Update the activeTrack buffer converter in case of reconfigure.
6733
6734 enum {
6735 OVERRUN_UNKNOWN,
6736 OVERRUN_TRUE,
6737 OVERRUN_FALSE
6738 } overrun = OVERRUN_UNKNOWN;
6739
6740 // loop over getNextBuffer to handle circular sink
6741 for (;;) {
6742
6743 activeTrack->mSink.frameCount = ~0;
6744 status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
6745 size_t framesOut = activeTrack->mSink.frameCount;
6746 LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
6747
6748 // check available frames and handle overrun conditions
6749 // if the record track isn't draining fast enough.
6750 bool hasOverrun;
6751 size_t framesIn;
6752 activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
6753 if (hasOverrun) {
6754 overrun = OVERRUN_TRUE;
6755 }
6756 if (framesOut == 0 || framesIn == 0) {
6757 break;
6758 }
6759
6760 // Don't allow framesOut to be larger than what is possible with resampling
6761 // from framesIn.
6762 // This isn't strictly necessary but helps limit buffer resizing in
6763 // RecordBufferConverter. TODO: remove when no longer needed.
6764 framesOut = min(framesOut,
6765 destinationFramesPossible(
6766 framesIn, mSampleRate, activeTrack->mSampleRate));
6767 // process frames from the RecordThread buffer provider to the RecordTrack buffer
6768 framesOut = activeTrack->mRecordBufferConverter->convert(
6769 activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut);
6770
6771 if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
6772 overrun = OVERRUN_FALSE;
6773 }
6774
6775 if (activeTrack->mFramesToDrop == 0) {
6776 if (framesOut > 0) {
6777 activeTrack->mSink.frameCount = framesOut;
6778 // Sanitize before releasing if the track has no access to the source data
6779 // An idle UID receives silence from non virtual devices until active
6780 if (activeTrack->isSilenced()) {
6781 memset(activeTrack->mSink.raw, 0, framesOut * mFrameSize);
6782 }
6783 activeTrack->releaseBuffer(&activeTrack->mSink);
6784 }
6785 } else {
6786 // FIXME could do a partial drop of framesOut
6787 if (activeTrack->mFramesToDrop > 0) {
6788 activeTrack->mFramesToDrop -= framesOut;
6789 if (activeTrack->mFramesToDrop <= 0) {
6790 activeTrack->clearSyncStartEvent();
6791 }
6792 } else {
6793 activeTrack->mFramesToDrop += framesOut;
6794 if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
6795 activeTrack->mSyncStartEvent->isCancelled()) {
6796 ALOGW("Synced record %s, session %d, trigger session %d",
6797 (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
6798 activeTrack->sessionId(),
6799 (activeTrack->mSyncStartEvent != 0) ?
6800 activeTrack->mSyncStartEvent->triggerSession() :
6801 AUDIO_SESSION_NONE);
6802 activeTrack->clearSyncStartEvent();
6803 }
6804 }
6805 }
6806
6807 if (framesOut == 0) {
6808 break;
6809 }
6810 }
6811
6812 switch (overrun) {
6813 case OVERRUN_TRUE:
6814 // client isn't retrieving buffers fast enough
6815 if (!activeTrack->setOverflow()) {
6816 nsecs_t now = systemTime();
6817 // FIXME should lastWarning per track?
6818 if ((now - lastWarning) > kWarningThrottleNs) {
6819 ALOGW("RecordThread: buffer overflow");
6820 lastWarning = now;
6821 }
6822 }
6823 break;
6824 case OVERRUN_FALSE:
6825 activeTrack->clearOverflow();
6826 break;
6827 case OVERRUN_UNKNOWN:
6828 break;
6829 }
6830
6831 // update frame information and push timestamp out
6832 activeTrack->updateTrackFrameInfo(
6833 activeTrack->mServerProxy->framesReleased(),
6834 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER],
6835 mSampleRate, mTimestamp);
6836 }
6837
6838 unlock:
6839 // enable changes in effect chain
6840 unlockEffectChains(effectChains);
6841 // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
6842 }
6843
6844 standbyIfNotAlreadyInStandby();
6845
6846 {
6847 Mutex::Autolock _l(mLock);
6848 for (size_t i = 0; i < mTracks.size(); i++) {
6849 sp<RecordTrack> track = mTracks[i];
6850 track->invalidate();
6851 }
6852 mActiveTracks.clear();
6853 mStartStopCond.broadcast();
6854 }
6855
6856 releaseWakeLock();
6857
6858 ALOGV("RecordThread %p exiting", this);
6859 return false;
6860 }
6861
standbyIfNotAlreadyInStandby()6862 void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
6863 {
6864 if (!mStandby) {
6865 inputStandBy();
6866 mStandby = true;
6867 }
6868 }
6869
inputStandBy()6870 void AudioFlinger::RecordThread::inputStandBy()
6871 {
6872 // Idle the fast capture if it's currently running
6873 if (mFastCapture != 0) {
6874 FastCaptureStateQueue *sq = mFastCapture->sq();
6875 FastCaptureState *state = sq->begin();
6876 if (!(state->mCommand & FastCaptureState::IDLE)) {
6877 state->mCommand = FastCaptureState::COLD_IDLE;
6878 state->mColdFutexAddr = &mFastCaptureFutex;
6879 state->mColdGen++;
6880 mFastCaptureFutex = 0;
6881 sq->end();
6882 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
6883 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
6884 #if 0
6885 if (kUseFastCapture == FastCapture_Dynamic) {
6886 // FIXME
6887 }
6888 #endif
6889 #ifdef AUDIO_WATCHDOG
6890 // FIXME
6891 #endif
6892 } else {
6893 sq->end(false /*didModify*/);
6894 }
6895 }
6896 status_t result = mInput->stream->standby();
6897 ALOGE_IF(result != OK, "Error when putting input stream into standby: %d", result);
6898
6899 // If going into standby, flush the pipe source.
6900 if (mPipeSource.get() != nullptr) {
6901 const ssize_t flushed = mPipeSource->flush();
6902 if (flushed > 0) {
6903 ALOGV("Input standby flushed PipeSource %zd frames", flushed);
6904 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += flushed;
6905 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
6906 }
6907 }
6908 }
6909
6910 // RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
createRecordTrack_l(const sp<AudioFlinger::Client> & client,const audio_attributes_t & attr,uint32_t * pSampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,audio_session_t sessionId,size_t * pNotificationFrameCount,uid_t uid,audio_input_flags_t * flags,pid_t tid,status_t * status,audio_port_handle_t portId)6911 sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
6912 const sp<AudioFlinger::Client>& client,
6913 const audio_attributes_t& attr,
6914 uint32_t *pSampleRate,
6915 audio_format_t format,
6916 audio_channel_mask_t channelMask,
6917 size_t *pFrameCount,
6918 audio_session_t sessionId,
6919 size_t *pNotificationFrameCount,
6920 uid_t uid,
6921 audio_input_flags_t *flags,
6922 pid_t tid,
6923 status_t *status,
6924 audio_port_handle_t portId)
6925 {
6926 size_t frameCount = *pFrameCount;
6927 size_t notificationFrameCount = *pNotificationFrameCount;
6928 sp<RecordTrack> track;
6929 status_t lStatus;
6930 audio_input_flags_t inputFlags = mInput->flags;
6931 audio_input_flags_t requestedFlags = *flags;
6932 uint32_t sampleRate;
6933
6934 lStatus = initCheck();
6935 if (lStatus != NO_ERROR) {
6936 ALOGE("createRecordTrack_l() audio driver not initialized");
6937 goto Exit;
6938 }
6939
6940 if (*pSampleRate == 0) {
6941 *pSampleRate = mSampleRate;
6942 }
6943 sampleRate = *pSampleRate;
6944
6945 // special case for FAST flag considered OK if fast capture is present
6946 if (hasFastCapture()) {
6947 inputFlags = (audio_input_flags_t)(inputFlags | AUDIO_INPUT_FLAG_FAST);
6948 }
6949
6950 // Check if requested flags are compatible with input stream flags
6951 if ((*flags & inputFlags) != *flags) {
6952 ALOGW("createRecordTrack_l(): mismatch between requested flags (%08x) and"
6953 " input flags (%08x)",
6954 *flags, inputFlags);
6955 *flags = (audio_input_flags_t)(*flags & inputFlags);
6956 }
6957
6958 // client expresses a preference for FAST, but we get the final say
6959 if (*flags & AUDIO_INPUT_FLAG_FAST) {
6960 if (
6961 // we formerly checked for a callback handler (non-0 tid),
6962 // but that is no longer required for TRANSFER_OBTAIN mode
6963 //
6964 // frame count is not specified, or is exactly the pipe depth
6965 ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
6966 // PCM data
6967 audio_is_linear_pcm(format) &&
6968 // hardware format
6969 (format == mFormat) &&
6970 // hardware channel mask
6971 (channelMask == mChannelMask) &&
6972 // hardware sample rate
6973 (sampleRate == mSampleRate) &&
6974 // record thread has an associated fast capture
6975 hasFastCapture() &&
6976 // there are sufficient fast track slots available
6977 mFastTrackAvail
6978 ) {
6979 // check compatibility with audio effects.
6980 Mutex::Autolock _l(mLock);
6981 // Do not accept FAST flag if the session has software effects
6982 sp<EffectChain> chain = getEffectChain_l(sessionId);
6983 if (chain != 0) {
6984 audio_input_flags_t old = *flags;
6985 chain->checkInputFlagCompatibility(flags);
6986 if (old != *flags) {
6987 ALOGV("%p AUDIO_INPUT_FLAGS denied by effect old=%#x new=%#x",
6988 this, (int)old, (int)*flags);
6989 }
6990 }
6991 ALOGV_IF((*flags & AUDIO_INPUT_FLAG_FAST) != 0,
6992 "%p AUDIO_INPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
6993 this, frameCount, mFrameCount);
6994 } else {
6995 ALOGV("%p AUDIO_INPUT_FLAG_FAST denied: frameCount=%zu mFrameCount=%zu mPipeFramesP2=%zu "
6996 "format=%#x isLinear=%d mFormat=%#x channelMask=%#x sampleRate=%u mSampleRate=%u "
6997 "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
6998 this, frameCount, mFrameCount, mPipeFramesP2,
6999 format, audio_is_linear_pcm(format), mFormat, channelMask, sampleRate, mSampleRate,
7000 hasFastCapture(), tid, mFastTrackAvail);
7001 *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_FAST);
7002 }
7003 }
7004
7005 // If FAST or RAW flags were corrected, ask caller to request new input from audio policy
7006 if ((*flags & AUDIO_INPUT_FLAG_FAST) !=
7007 (requestedFlags & AUDIO_INPUT_FLAG_FAST)) {
7008 *flags = (audio_input_flags_t) (*flags & ~(AUDIO_INPUT_FLAG_FAST | AUDIO_INPUT_FLAG_RAW));
7009 lStatus = BAD_TYPE;
7010 goto Exit;
7011 }
7012
7013 // compute track buffer size in frames, and suggest the notification frame count
7014 if (*flags & AUDIO_INPUT_FLAG_FAST) {
7015 // fast track: frame count is exactly the pipe depth
7016 frameCount = mPipeFramesP2;
7017 // ignore requested notificationFrames, and always notify exactly once every HAL buffer
7018 notificationFrameCount = mFrameCount;
7019 } else {
7020 // not fast track: max notification period is resampled equivalent of one HAL buffer time
7021 // or 20 ms if there is a fast capture
7022 // TODO This could be a roundupRatio inline, and const
7023 size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
7024 * sampleRate + mSampleRate - 1) / mSampleRate;
7025 // minimum number of notification periods is at least kMinNotifications,
7026 // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
7027 static const size_t kMinNotifications = 3;
7028 static const uint32_t kMinMs = 30;
7029 // TODO This could be a roundupRatio inline
7030 const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
7031 // TODO This could be a roundupRatio inline
7032 const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
7033 maxNotificationFrames;
7034 const size_t minFrameCount = maxNotificationFrames *
7035 max(kMinNotifications, minNotificationsByMs);
7036 frameCount = max(frameCount, minFrameCount);
7037 if (notificationFrameCount == 0 || notificationFrameCount > maxNotificationFrames) {
7038 notificationFrameCount = maxNotificationFrames;
7039 }
7040 }
7041 *pFrameCount = frameCount;
7042 *pNotificationFrameCount = notificationFrameCount;
7043
7044 { // scope for mLock
7045 Mutex::Autolock _l(mLock);
7046
7047 track = new RecordTrack(this, client, attr, sampleRate,
7048 format, channelMask, frameCount,
7049 nullptr /* buffer */, (size_t)0 /* bufferSize */, sessionId, uid,
7050 *flags, TrackBase::TYPE_DEFAULT, portId);
7051
7052 lStatus = track->initCheck();
7053 if (lStatus != NO_ERROR) {
7054 ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
7055 // track must be cleared from the caller as the caller has the AF lock
7056 goto Exit;
7057 }
7058 mTracks.add(track);
7059
7060 if ((*flags & AUDIO_INPUT_FLAG_FAST) && (tid != -1)) {
7061 pid_t callingPid = IPCThreadState::self()->getCallingPid();
7062 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
7063 // so ask activity manager to do this on our behalf
7064 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp, true /*forApp*/);
7065 }
7066 }
7067
7068 lStatus = NO_ERROR;
7069
7070 Exit:
7071 *status = lStatus;
7072 return track;
7073 }
7074
start(RecordThread::RecordTrack * recordTrack,AudioSystem::sync_event_t event,audio_session_t triggerSession)7075 status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
7076 AudioSystem::sync_event_t event,
7077 audio_session_t triggerSession)
7078 {
7079 ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
7080 sp<ThreadBase> strongMe = this;
7081 status_t status = NO_ERROR;
7082
7083 if (event == AudioSystem::SYNC_EVENT_NONE) {
7084 recordTrack->clearSyncStartEvent();
7085 } else if (event != AudioSystem::SYNC_EVENT_SAME) {
7086 recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
7087 triggerSession,
7088 recordTrack->sessionId(),
7089 syncStartEventCallback,
7090 recordTrack);
7091 // Sync event can be cancelled by the trigger session if the track is not in a
7092 // compatible state in which case we start record immediately
7093 if (recordTrack->mSyncStartEvent->isCancelled()) {
7094 recordTrack->clearSyncStartEvent();
7095 } else {
7096 // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
7097 recordTrack->mFramesToDrop = -(ssize_t)
7098 ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
7099 }
7100 }
7101
7102 {
7103 // This section is a rendezvous between binder thread executing start() and RecordThread
7104 AutoMutex lock(mLock);
7105 if (mActiveTracks.indexOf(recordTrack) >= 0) {
7106 if (recordTrack->mState == TrackBase::PAUSING) {
7107 ALOGV("active record track PAUSING -> ACTIVE");
7108 recordTrack->mState = TrackBase::ACTIVE;
7109 } else {
7110 ALOGV("active record track state %d", recordTrack->mState);
7111 }
7112 return status;
7113 }
7114
7115 // TODO consider other ways of handling this, such as changing the state to :STARTING and
7116 // adding the track to mActiveTracks after returning from AudioSystem::startInput(),
7117 // or using a separate command thread
7118 recordTrack->mState = TrackBase::STARTING_1;
7119 mActiveTracks.add(recordTrack);
7120 status_t status = NO_ERROR;
7121 if (recordTrack->isExternalTrack()) {
7122 mLock.unlock();
7123 bool silenced;
7124 status = AudioSystem::startInput(recordTrack->portId(), &silenced);
7125 mLock.lock();
7126 // FIXME should verify that recordTrack is still in mActiveTracks
7127 if (status != NO_ERROR) {
7128 mActiveTracks.remove(recordTrack);
7129 recordTrack->clearSyncStartEvent();
7130 ALOGV("RecordThread::start error %d", status);
7131 return status;
7132 }
7133 recordTrack->setSilenced(silenced);
7134 }
7135 // Catch up with current buffer indices if thread is already running.
7136 // This is what makes a new client discard all buffered data. If the track's mRsmpInFront
7137 // was initialized to some value closer to the thread's mRsmpInFront, then the track could
7138 // see previously buffered data before it called start(), but with greater risk of overrun.
7139
7140 recordTrack->mResamplerBufferProvider->reset();
7141 // clear any converter state as new data will be discontinuous
7142 recordTrack->mRecordBufferConverter->reset();
7143 recordTrack->mState = TrackBase::STARTING_2;
7144 // signal thread to start
7145 mWaitWorkCV.broadcast();
7146 if (mActiveTracks.indexOf(recordTrack) < 0) {
7147 ALOGV("Record failed to start");
7148 status = BAD_VALUE;
7149 goto startError;
7150 }
7151 return status;
7152 }
7153
7154 startError:
7155 if (recordTrack->isExternalTrack()) {
7156 AudioSystem::stopInput(recordTrack->portId());
7157 }
7158 recordTrack->clearSyncStartEvent();
7159 // FIXME I wonder why we do not reset the state here?
7160 return status;
7161 }
7162
syncStartEventCallback(const wp<SyncEvent> & event)7163 void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
7164 {
7165 sp<SyncEvent> strongEvent = event.promote();
7166
7167 if (strongEvent != 0) {
7168 sp<RefBase> ptr = strongEvent->cookie().promote();
7169 if (ptr != 0) {
7170 RecordTrack *recordTrack = (RecordTrack *)ptr.get();
7171 recordTrack->handleSyncStartEvent(strongEvent);
7172 }
7173 }
7174 }
7175
stop(RecordThread::RecordTrack * recordTrack)7176 bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
7177 ALOGV("RecordThread::stop");
7178 AutoMutex _l(mLock);
7179 if (mActiveTracks.indexOf(recordTrack) < 0 || recordTrack->mState == TrackBase::PAUSING) {
7180 return false;
7181 }
7182 // note that threadLoop may still be processing the track at this point [without lock]
7183 recordTrack->mState = TrackBase::PAUSING;
7184 // signal thread to stop
7185 mWaitWorkCV.broadcast();
7186 // do not wait for mStartStopCond if exiting
7187 if (exitPending()) {
7188 return true;
7189 }
7190 // FIXME incorrect usage of wait: no explicit predicate or loop
7191 mStartStopCond.wait(mLock);
7192 // if we have been restarted, recordTrack is in mActiveTracks here
7193 if (exitPending() || mActiveTracks.indexOf(recordTrack) < 0) {
7194 ALOGV("Record stopped OK");
7195 return true;
7196 }
7197 return false;
7198 }
7199
isValidSyncEvent(const sp<SyncEvent> & event __unused) const7200 bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
7201 {
7202 return false;
7203 }
7204
setSyncEvent(const sp<SyncEvent> & event __unused)7205 status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
7206 {
7207 #if 0 // This branch is currently dead code, but is preserved in case it will be needed in future
7208 if (!isValidSyncEvent(event)) {
7209 return BAD_VALUE;
7210 }
7211
7212 audio_session_t eventSession = event->triggerSession();
7213 status_t ret = NAME_NOT_FOUND;
7214
7215 Mutex::Autolock _l(mLock);
7216
7217 for (size_t i = 0; i < mTracks.size(); i++) {
7218 sp<RecordTrack> track = mTracks[i];
7219 if (eventSession == track->sessionId()) {
7220 (void) track->setSyncEvent(event);
7221 ret = NO_ERROR;
7222 }
7223 }
7224 return ret;
7225 #else
7226 return BAD_VALUE;
7227 #endif
7228 }
7229
getActiveMicrophones(std::vector<media::MicrophoneInfo> * activeMicrophones)7230 status_t AudioFlinger::RecordThread::getActiveMicrophones(
7231 std::vector<media::MicrophoneInfo>* activeMicrophones)
7232 {
7233 ALOGV("RecordThread::getActiveMicrophones");
7234 AutoMutex _l(mLock);
7235 status_t status = mInput->stream->getActiveMicrophones(activeMicrophones);
7236 return status;
7237 }
7238
updateMetadata_l()7239 void AudioFlinger::RecordThread::updateMetadata_l()
7240 {
7241 if (mInput == nullptr || mInput->stream == nullptr ||
7242 !mActiveTracks.readAndClearHasChanged()) {
7243 return;
7244 }
7245 StreamInHalInterface::SinkMetadata metadata;
7246 for (const sp<RecordTrack> &track : mActiveTracks) {
7247 // No track is invalid as this is called after prepareTrack_l in the same critical section
7248 metadata.tracks.push_back({
7249 .source = track->attributes().source,
7250 .gain = 1, // capture tracks do not have volumes
7251 });
7252 }
7253 mInput->stream->updateSinkMetadata(metadata);
7254 }
7255
7256 // destroyTrack_l() must be called with ThreadBase::mLock held
destroyTrack_l(const sp<RecordTrack> & track)7257 void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
7258 {
7259 track->terminate();
7260 track->mState = TrackBase::STOPPED;
7261 // active tracks are removed by threadLoop()
7262 if (mActiveTracks.indexOf(track) < 0) {
7263 removeTrack_l(track);
7264 }
7265 }
7266
removeTrack_l(const sp<RecordTrack> & track)7267 void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
7268 {
7269 String8 result;
7270 track->appendDump(result, false /* active */);
7271 mLocalLog.log("removeTrack_l (%p) %s", track.get(), result.string());
7272
7273 mTracks.remove(track);
7274 // need anything related to effects here?
7275 if (track->isFastTrack()) {
7276 ALOG_ASSERT(!mFastTrackAvail);
7277 mFastTrackAvail = true;
7278 }
7279 }
7280
dump(int fd,const Vector<String16> & args)7281 void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
7282 {
7283 dumpInternals(fd, args);
7284 dumpTracks(fd, args);
7285 dumpEffectChains(fd, args);
7286 dprintf(fd, " Local log:\n");
7287 mLocalLog.dump(fd, " " /* prefix */, 40 /* lines */);
7288 }
7289
dumpInternals(int fd,const Vector<String16> & args)7290 void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
7291 {
7292 dumpBase(fd, args);
7293
7294 AudioStreamIn *input = mInput;
7295 audio_input_flags_t flags = input != NULL ? input->flags : AUDIO_INPUT_FLAG_NONE;
7296 dprintf(fd, " AudioStreamIn: %p flags %#x (%s)\n",
7297 input, flags, inputFlagsToString(flags).c_str());
7298 if (mActiveTracks.size() == 0) {
7299 dprintf(fd, " No active record clients\n");
7300 }
7301
7302 if (input != nullptr) {
7303 dprintf(fd, " Hal stream dump:\n");
7304 (void)input->stream->dump(fd);
7305 }
7306
7307 dprintf(fd, " Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
7308 dprintf(fd, " Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
7309
7310 // Make a non-atomic copy of fast capture dump state so it won't change underneath us
7311 // while we are dumping it. It may be inconsistent, but it won't mutate!
7312 // This is a large object so we place it on the heap.
7313 // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
7314 const FastCaptureDumpState *copy = new FastCaptureDumpState(mFastCaptureDumpState);
7315 copy->dump(fd);
7316 delete copy;
7317 }
7318
dumpTracks(int fd,const Vector<String16> & args __unused)7319 void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
7320 {
7321 String8 result;
7322 size_t numtracks = mTracks.size();
7323 size_t numactive = mActiveTracks.size();
7324 size_t numactiveseen = 0;
7325 dprintf(fd, " %zu Tracks", numtracks);
7326 const char *prefix = " ";
7327 if (numtracks) {
7328 dprintf(fd, " of which %zu are active\n", numactive);
7329 result.append(prefix);
7330 RecordTrack::appendDumpHeader(result);
7331 for (size_t i = 0; i < numtracks ; ++i) {
7332 sp<RecordTrack> track = mTracks[i];
7333 if (track != 0) {
7334 bool active = mActiveTracks.indexOf(track) >= 0;
7335 if (active) {
7336 numactiveseen++;
7337 }
7338 result.append(prefix);
7339 track->appendDump(result, active);
7340 }
7341 }
7342 } else {
7343 dprintf(fd, "\n");
7344 }
7345
7346 if (numactiveseen != numactive) {
7347 result.append(" The following tracks are in the active list but"
7348 " not in the track list\n");
7349 result.append(prefix);
7350 RecordTrack::appendDumpHeader(result);
7351 for (size_t i = 0; i < numactive; ++i) {
7352 sp<RecordTrack> track = mActiveTracks[i];
7353 if (mTracks.indexOf(track) < 0) {
7354 result.append(prefix);
7355 track->appendDump(result, true /* active */);
7356 }
7357 }
7358
7359 }
7360 write(fd, result.string(), result.size());
7361 }
7362
setRecordSilenced(uid_t uid,bool silenced)7363 void AudioFlinger::RecordThread::setRecordSilenced(uid_t uid, bool silenced)
7364 {
7365 Mutex::Autolock _l(mLock);
7366 for (size_t i = 0; i < mTracks.size() ; i++) {
7367 sp<RecordTrack> track = mTracks[i];
7368 if (track != 0 && track->uid() == uid) {
7369 track->setSilenced(silenced);
7370 }
7371 }
7372 }
7373
reset()7374 void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
7375 {
7376 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
7377 RecordThread *recordThread = (RecordThread *) threadBase.get();
7378 mRsmpInFront = recordThread->mRsmpInRear;
7379 mRsmpInUnrel = 0;
7380 }
7381
sync(size_t * framesAvailable,bool * hasOverrun)7382 void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
7383 size_t *framesAvailable, bool *hasOverrun)
7384 {
7385 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
7386 RecordThread *recordThread = (RecordThread *) threadBase.get();
7387 const int32_t rear = recordThread->mRsmpInRear;
7388 const int32_t front = mRsmpInFront;
7389 const ssize_t filled = rear - front;
7390
7391 size_t framesIn;
7392 bool overrun = false;
7393 if (filled < 0) {
7394 // should not happen, but treat like a massive overrun and re-sync
7395 framesIn = 0;
7396 mRsmpInFront = rear;
7397 overrun = true;
7398 } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
7399 framesIn = (size_t) filled;
7400 } else {
7401 // client is not keeping up with server, but give it latest data
7402 framesIn = recordThread->mRsmpInFrames;
7403 mRsmpInFront = /* front = */ rear - framesIn;
7404 overrun = true;
7405 }
7406 if (framesAvailable != NULL) {
7407 *framesAvailable = framesIn;
7408 }
7409 if (hasOverrun != NULL) {
7410 *hasOverrun = overrun;
7411 }
7412 }
7413
7414 // AudioBufferProvider interface
getNextBuffer(AudioBufferProvider::Buffer * buffer)7415 status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
7416 AudioBufferProvider::Buffer* buffer)
7417 {
7418 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
7419 if (threadBase == 0) {
7420 buffer->frameCount = 0;
7421 buffer->raw = NULL;
7422 return NOT_ENOUGH_DATA;
7423 }
7424 RecordThread *recordThread = (RecordThread *) threadBase.get();
7425 int32_t rear = recordThread->mRsmpInRear;
7426 int32_t front = mRsmpInFront;
7427 ssize_t filled = rear - front;
7428 // FIXME should not be P2 (don't want to increase latency)
7429 // FIXME if client not keeping up, discard
7430 LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
7431 // 'filled' may be non-contiguous, so return only the first contiguous chunk
7432 front &= recordThread->mRsmpInFramesP2 - 1;
7433 size_t part1 = recordThread->mRsmpInFramesP2 - front;
7434 if (part1 > (size_t) filled) {
7435 part1 = filled;
7436 }
7437 size_t ask = buffer->frameCount;
7438 ALOG_ASSERT(ask > 0);
7439 if (part1 > ask) {
7440 part1 = ask;
7441 }
7442 if (part1 == 0) {
7443 // out of data is fine since the resampler will return a short-count.
7444 buffer->raw = NULL;
7445 buffer->frameCount = 0;
7446 mRsmpInUnrel = 0;
7447 return NOT_ENOUGH_DATA;
7448 }
7449
7450 buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
7451 buffer->frameCount = part1;
7452 mRsmpInUnrel = part1;
7453 return NO_ERROR;
7454 }
7455
7456 // AudioBufferProvider interface
releaseBuffer(AudioBufferProvider::Buffer * buffer)7457 void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
7458 AudioBufferProvider::Buffer* buffer)
7459 {
7460 size_t stepCount = buffer->frameCount;
7461 if (stepCount == 0) {
7462 return;
7463 }
7464 ALOG_ASSERT(stepCount <= mRsmpInUnrel);
7465 mRsmpInUnrel -= stepCount;
7466 mRsmpInFront += stepCount;
7467 buffer->raw = NULL;
7468 buffer->frameCount = 0;
7469 }
7470
checkBtNrec()7471 void AudioFlinger::RecordThread::checkBtNrec()
7472 {
7473 Mutex::Autolock _l(mLock);
7474 checkBtNrec_l();
7475 }
7476
checkBtNrec_l()7477 void AudioFlinger::RecordThread::checkBtNrec_l()
7478 {
7479 // disable AEC and NS if the device is a BT SCO headset supporting those
7480 // pre processings
7481 bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7482 mAudioFlinger->btNrecIsOff();
7483 if (mBtNrecSuspended.exchange(suspend) != suspend) {
7484 for (size_t i = 0; i < mEffectChains.size(); i++) {
7485 setEffectSuspended_l(FX_IID_AEC, suspend, mEffectChains[i]->sessionId());
7486 setEffectSuspended_l(FX_IID_NS, suspend, mEffectChains[i]->sessionId());
7487 }
7488 }
7489 }
7490
7491
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)7492 bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
7493 status_t& status)
7494 {
7495 bool reconfig = false;
7496
7497 status = NO_ERROR;
7498
7499 audio_format_t reqFormat = mFormat;
7500 uint32_t samplingRate = mSampleRate;
7501 // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
7502 audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
7503
7504 AudioParameter param = AudioParameter(keyValuePair);
7505 int value;
7506
7507 // scope for AutoPark extends to end of method
7508 AutoPark<FastCapture> park(mFastCapture);
7509
7510 // TODO Investigate when this code runs. Check with audio policy when a sample rate and
7511 // channel count change can be requested. Do we mandate the first client defines the
7512 // HAL sampling rate and channel count or do we allow changes on the fly?
7513 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
7514 samplingRate = value;
7515 reconfig = true;
7516 }
7517 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
7518 if (!audio_is_linear_pcm((audio_format_t) value)) {
7519 status = BAD_VALUE;
7520 } else {
7521 reqFormat = (audio_format_t) value;
7522 reconfig = true;
7523 }
7524 }
7525 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
7526 audio_channel_mask_t mask = (audio_channel_mask_t) value;
7527 if (!audio_is_input_channel(mask) ||
7528 audio_channel_count_from_in_mask(mask) > FCC_8) {
7529 status = BAD_VALUE;
7530 } else {
7531 channelMask = mask;
7532 reconfig = true;
7533 }
7534 }
7535 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
7536 // do not accept frame count changes if tracks are open as the track buffer
7537 // size depends on frame count and correct behavior would not be guaranteed
7538 // if frame count is changed after track creation
7539 if (mActiveTracks.size() > 0) {
7540 status = INVALID_OPERATION;
7541 } else {
7542 reconfig = true;
7543 }
7544 }
7545 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
7546 // forward device change to effects that have requested to be
7547 // aware of attached audio device.
7548 for (size_t i = 0; i < mEffectChains.size(); i++) {
7549 mEffectChains[i]->setDevice_l(value);
7550 }
7551
7552 // store input device and output device but do not forward output device to audio HAL.
7553 // Note that status is ignored by the caller for output device
7554 // (see AudioFlinger::setParameters()
7555 if (audio_is_output_devices(value)) {
7556 mOutDevice = value;
7557 status = BAD_VALUE;
7558 } else {
7559 mInDevice = value;
7560 if (value != AUDIO_DEVICE_NONE) {
7561 mPrevInDevice = value;
7562 }
7563 checkBtNrec_l();
7564 }
7565 }
7566 if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
7567 mAudioSource != (audio_source_t)value) {
7568 // forward device change to effects that have requested to be
7569 // aware of attached audio device.
7570 for (size_t i = 0; i < mEffectChains.size(); i++) {
7571 mEffectChains[i]->setAudioSource_l((audio_source_t)value);
7572 }
7573 mAudioSource = (audio_source_t)value;
7574 }
7575
7576 if (status == NO_ERROR) {
7577 status = mInput->stream->setParameters(keyValuePair);
7578 if (status == INVALID_OPERATION) {
7579 inputStandBy();
7580 status = mInput->stream->setParameters(keyValuePair);
7581 }
7582 if (reconfig) {
7583 if (status == BAD_VALUE) {
7584 uint32_t sRate;
7585 audio_channel_mask_t channelMask;
7586 audio_format_t format;
7587 if (mInput->stream->getAudioProperties(&sRate, &channelMask, &format) == OK &&
7588 audio_is_linear_pcm(format) && audio_is_linear_pcm(reqFormat) &&
7589 sRate <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate) &&
7590 audio_channel_count_from_in_mask(channelMask) <= FCC_8) {
7591 status = NO_ERROR;
7592 }
7593 }
7594 if (status == NO_ERROR) {
7595 readInputParameters_l();
7596 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7597 }
7598 }
7599 }
7600
7601 return reconfig;
7602 }
7603
getParameters(const String8 & keys)7604 String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
7605 {
7606 Mutex::Autolock _l(mLock);
7607 if (initCheck() == NO_ERROR) {
7608 String8 out_s8;
7609 if (mInput->stream->getParameters(keys, &out_s8) == OK) {
7610 return out_s8;
7611 }
7612 }
7613 return String8();
7614 }
7615
ioConfigChanged(audio_io_config_event event,pid_t pid)7616 void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
7617 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
7618
7619 desc->mIoHandle = mId;
7620
7621 switch (event) {
7622 case AUDIO_INPUT_OPENED:
7623 case AUDIO_INPUT_REGISTERED:
7624 case AUDIO_INPUT_CONFIG_CHANGED:
7625 desc->mPatch = mPatch;
7626 desc->mChannelMask = mChannelMask;
7627 desc->mSamplingRate = mSampleRate;
7628 desc->mFormat = mFormat;
7629 desc->mFrameCount = mFrameCount;
7630 desc->mFrameCountHAL = mFrameCount;
7631 desc->mLatency = 0;
7632 break;
7633
7634 case AUDIO_INPUT_CLOSED:
7635 default:
7636 break;
7637 }
7638 mAudioFlinger->ioConfigChanged(event, desc, pid);
7639 }
7640
readInputParameters_l()7641 void AudioFlinger::RecordThread::readInputParameters_l()
7642 {
7643 status_t result = mInput->stream->getAudioProperties(&mSampleRate, &mChannelMask, &mHALFormat);
7644 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving audio properties from HAL: %d", result);
7645 mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
7646 LOG_ALWAYS_FATAL_IF(mChannelCount > FCC_8, "HAL channel count %d > %d", mChannelCount, FCC_8);
7647 mFormat = mHALFormat;
7648 LOG_ALWAYS_FATAL_IF(!audio_is_linear_pcm(mFormat), "HAL format %#x is not linear pcm", mFormat);
7649 result = mInput->stream->getFrameSize(&mFrameSize);
7650 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving frame size from HAL: %d", result);
7651 result = mInput->stream->getBufferSize(&mBufferSize);
7652 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving buffer size from HAL: %d", result);
7653 mFrameCount = mBufferSize / mFrameSize;
7654 ALOGV("%p RecordThread params: mChannelCount=%u, mFormat=%#x, mFrameSize=%lld, "
7655 "mBufferSize=%lld, mFrameCount=%lld",
7656 this, mChannelCount, mFormat, (long long)mFrameSize, (long long)mBufferSize,
7657 (long long)mFrameCount);
7658 // This is the formula for calculating the temporary buffer size.
7659 // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
7660 // 1 full output buffer, regardless of the alignment of the available input.
7661 // The value is somewhat arbitrary, and could probably be even larger.
7662 // A larger value should allow more old data to be read after a track calls start(),
7663 // without increasing latency.
7664 //
7665 // Note this is independent of the maximum downsampling ratio permitted for capture.
7666 mRsmpInFrames = mFrameCount * 7;
7667 mRsmpInFramesP2 = roundup(mRsmpInFrames);
7668 free(mRsmpInBuffer);
7669 mRsmpInBuffer = NULL;
7670
7671 // TODO optimize audio capture buffer sizes ...
7672 // Here we calculate the size of the sliding buffer used as a source
7673 // for resampling. mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
7674 // For current HAL frame counts, this is usually 2048 = 40 ms. It would
7675 // be better to have it derived from the pipe depth in the long term.
7676 // The current value is higher than necessary. However it should not add to latency.
7677
7678 // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
7679 mRsmpInFramesOA = mRsmpInFramesP2 + mFrameCount - 1;
7680 (void)posix_memalign(&mRsmpInBuffer, 32, mRsmpInFramesOA * mFrameSize);
7681 // if posix_memalign fails, will segv here.
7682 memset(mRsmpInBuffer, 0, mRsmpInFramesOA * mFrameSize);
7683
7684 // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
7685 // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
7686 }
7687
getInputFramesLost()7688 uint32_t AudioFlinger::RecordThread::getInputFramesLost()
7689 {
7690 Mutex::Autolock _l(mLock);
7691 uint32_t result;
7692 if (initCheck() == NO_ERROR && mInput->stream->getInputFramesLost(&result) == OK) {
7693 return result;
7694 }
7695 return 0;
7696 }
7697
7698 // hasAudioSession_l() must be called with ThreadBase::mLock held
hasAudioSession_l(audio_session_t sessionId) const7699 uint32_t AudioFlinger::RecordThread::hasAudioSession_l(audio_session_t sessionId) const
7700 {
7701 uint32_t result = 0;
7702 if (getEffectChain_l(sessionId) != 0) {
7703 result = EFFECT_SESSION;
7704 }
7705
7706 for (size_t i = 0; i < mTracks.size(); ++i) {
7707 if (sessionId == mTracks[i]->sessionId()) {
7708 result |= TRACK_SESSION;
7709 if (mTracks[i]->isFastTrack()) {
7710 result |= FAST_SESSION;
7711 }
7712 break;
7713 }
7714 }
7715
7716 return result;
7717 }
7718
sessionIds() const7719 KeyedVector<audio_session_t, bool> AudioFlinger::RecordThread::sessionIds() const
7720 {
7721 KeyedVector<audio_session_t, bool> ids;
7722 Mutex::Autolock _l(mLock);
7723 for (size_t j = 0; j < mTracks.size(); ++j) {
7724 sp<RecordThread::RecordTrack> track = mTracks[j];
7725 audio_session_t sessionId = track->sessionId();
7726 if (ids.indexOfKey(sessionId) < 0) {
7727 ids.add(sessionId, true);
7728 }
7729 }
7730 return ids;
7731 }
7732
clearInput()7733 AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
7734 {
7735 Mutex::Autolock _l(mLock);
7736 AudioStreamIn *input = mInput;
7737 mInput = NULL;
7738 return input;
7739 }
7740
7741 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const7742 sp<StreamHalInterface> AudioFlinger::RecordThread::stream() const
7743 {
7744 if (mInput == NULL) {
7745 return NULL;
7746 }
7747 return mInput->stream;
7748 }
7749
addEffectChain_l(const sp<EffectChain> & chain)7750 status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
7751 {
7752 // only one chain per input thread
7753 if (mEffectChains.size() != 0) {
7754 ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
7755 return INVALID_OPERATION;
7756 }
7757 ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
7758 chain->setThread(this);
7759 chain->setInBuffer(NULL);
7760 chain->setOutBuffer(NULL);
7761
7762 checkSuspendOnAddEffectChain_l(chain);
7763
7764 // make sure enabled pre processing effects state is communicated to the HAL as we
7765 // just moved them to a new input stream.
7766 chain->syncHalEffectsState();
7767
7768 mEffectChains.add(chain);
7769
7770 return NO_ERROR;
7771 }
7772
removeEffectChain_l(const sp<EffectChain> & chain)7773 size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
7774 {
7775 ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
7776 ALOGW_IF(mEffectChains.size() != 1,
7777 "removeEffectChain_l() %p invalid chain size %zu on thread %p",
7778 chain.get(), mEffectChains.size(), this);
7779 if (mEffectChains.size() == 1) {
7780 mEffectChains.removeAt(0);
7781 }
7782 return 0;
7783 }
7784
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)7785 status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
7786 audio_patch_handle_t *handle)
7787 {
7788 status_t status = NO_ERROR;
7789
7790 // store new device and send to effects
7791 mInDevice = patch->sources[0].ext.device.type;
7792 mPatch = *patch;
7793 for (size_t i = 0; i < mEffectChains.size(); i++) {
7794 mEffectChains[i]->setDevice_l(mInDevice);
7795 }
7796
7797 checkBtNrec_l();
7798
7799 // store new source and send to effects
7800 if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
7801 mAudioSource = patch->sinks[0].ext.mix.usecase.source;
7802 for (size_t i = 0; i < mEffectChains.size(); i++) {
7803 mEffectChains[i]->setAudioSource_l(mAudioSource);
7804 }
7805 }
7806
7807 if (mInput->audioHwDev->supportsAudioPatches()) {
7808 sp<DeviceHalInterface> hwDevice = mInput->audioHwDev->hwDevice();
7809 status = hwDevice->createAudioPatch(patch->num_sources,
7810 patch->sources,
7811 patch->num_sinks,
7812 patch->sinks,
7813 handle);
7814 } else {
7815 char *address;
7816 if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
7817 address = audio_device_address_to_parameter(
7818 patch->sources[0].ext.device.type,
7819 patch->sources[0].ext.device.address);
7820 } else {
7821 address = (char *)calloc(1, 1);
7822 }
7823 AudioParameter param = AudioParameter(String8(address));
7824 free(address);
7825 param.addInt(String8(AudioParameter::keyRouting),
7826 (int)patch->sources[0].ext.device.type);
7827 param.addInt(String8(AudioParameter::keyInputSource),
7828 (int)patch->sinks[0].ext.mix.usecase.source);
7829 status = mInput->stream->setParameters(param.toString());
7830 *handle = AUDIO_PATCH_HANDLE_NONE;
7831 }
7832
7833 if (mInDevice != mPrevInDevice) {
7834 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7835 mPrevInDevice = mInDevice;
7836 }
7837
7838 return status;
7839 }
7840
releaseAudioPatch_l(const audio_patch_handle_t handle)7841 status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
7842 {
7843 status_t status = NO_ERROR;
7844
7845 mInDevice = AUDIO_DEVICE_NONE;
7846
7847 if (mInput->audioHwDev->supportsAudioPatches()) {
7848 sp<DeviceHalInterface> hwDevice = mInput->audioHwDev->hwDevice();
7849 status = hwDevice->releaseAudioPatch(handle);
7850 } else {
7851 AudioParameter param;
7852 param.addInt(String8(AudioParameter::keyRouting), 0);
7853 status = mInput->stream->setParameters(param.toString());
7854 }
7855 return status;
7856 }
7857
addPatchRecord(const sp<PatchRecord> & record)7858 void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
7859 {
7860 Mutex::Autolock _l(mLock);
7861 mTracks.add(record);
7862 }
7863
deletePatchRecord(const sp<PatchRecord> & record)7864 void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
7865 {
7866 Mutex::Autolock _l(mLock);
7867 destroyTrack_l(record);
7868 }
7869
getAudioPortConfig(struct audio_port_config * config)7870 void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
7871 {
7872 ThreadBase::getAudioPortConfig(config);
7873 config->role = AUDIO_PORT_ROLE_SINK;
7874 config->ext.mix.hw_module = mInput->audioHwDev->handle();
7875 config->ext.mix.usecase.source = mAudioSource;
7876 }
7877
7878 // ----------------------------------------------------------------------------
7879 // Mmap
7880 // ----------------------------------------------------------------------------
7881
MmapThreadHandle(const sp<MmapThread> & thread)7882 AudioFlinger::MmapThreadHandle::MmapThreadHandle(const sp<MmapThread>& thread)
7883 : mThread(thread)
7884 {
7885 assert(thread != 0); // thread must start non-null and stay non-null
7886 }
7887
~MmapThreadHandle()7888 AudioFlinger::MmapThreadHandle::~MmapThreadHandle()
7889 {
7890 mThread->disconnect();
7891 }
7892
createMmapBuffer(int32_t minSizeFrames,struct audio_mmap_buffer_info * info)7893 status_t AudioFlinger::MmapThreadHandle::createMmapBuffer(int32_t minSizeFrames,
7894 struct audio_mmap_buffer_info *info)
7895 {
7896 return mThread->createMmapBuffer(minSizeFrames, info);
7897 }
7898
getMmapPosition(struct audio_mmap_position * position)7899 status_t AudioFlinger::MmapThreadHandle::getMmapPosition(struct audio_mmap_position *position)
7900 {
7901 return mThread->getMmapPosition(position);
7902 }
7903
start(const AudioClient & client,audio_port_handle_t * handle)7904 status_t AudioFlinger::MmapThreadHandle::start(const AudioClient& client,
7905 audio_port_handle_t *handle)
7906
7907 {
7908 return mThread->start(client, handle);
7909 }
7910
stop(audio_port_handle_t handle)7911 status_t AudioFlinger::MmapThreadHandle::stop(audio_port_handle_t handle)
7912 {
7913 return mThread->stop(handle);
7914 }
7915
standby()7916 status_t AudioFlinger::MmapThreadHandle::standby()
7917 {
7918 return mThread->standby();
7919 }
7920
7921
MmapThread(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,AudioHwDevice * hwDev,sp<StreamHalInterface> stream,audio_devices_t outDevice,audio_devices_t inDevice,bool systemReady)7922 AudioFlinger::MmapThread::MmapThread(
7923 const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
7924 AudioHwDevice *hwDev, sp<StreamHalInterface> stream,
7925 audio_devices_t outDevice, audio_devices_t inDevice, bool systemReady)
7926 : ThreadBase(audioFlinger, id, outDevice, inDevice, MMAP, systemReady),
7927 mSessionId(AUDIO_SESSION_NONE),
7928 mDeviceId(AUDIO_PORT_HANDLE_NONE), mPortId(AUDIO_PORT_HANDLE_NONE),
7929 mHalStream(stream), mHalDevice(hwDev->hwDevice()), mAudioHwDev(hwDev),
7930 mActiveTracks(&this->mLocalLog),
7931 mHalVolFloat(-1.0f), // Initialize to illegal value so it always gets set properly later.
7932 mNoCallbackWarningCount(0)
7933 {
7934 mStandby = true;
7935 readHalParameters_l();
7936 }
7937
~MmapThread()7938 AudioFlinger::MmapThread::~MmapThread()
7939 {
7940 releaseWakeLock_l();
7941 }
7942
onFirstRef()7943 void AudioFlinger::MmapThread::onFirstRef()
7944 {
7945 run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
7946 }
7947
disconnect()7948 void AudioFlinger::MmapThread::disconnect()
7949 {
7950 ActiveTracks<MmapTrack> activeTracks;
7951 {
7952 Mutex::Autolock _l(mLock);
7953 for (const sp<MmapTrack> &t : mActiveTracks) {
7954 activeTracks.add(t);
7955 }
7956 }
7957 for (const sp<MmapTrack> &t : activeTracks) {
7958 stop(t->portId());
7959 }
7960 // This will decrement references and may cause the destruction of this thread.
7961 if (isOutput()) {
7962 AudioSystem::releaseOutput(mId, streamType(), mSessionId);
7963 } else {
7964 AudioSystem::releaseInput(mPortId);
7965 }
7966 }
7967
7968
configure(const audio_attributes_t * attr,audio_stream_type_t streamType __unused,audio_session_t sessionId,const sp<MmapStreamCallback> & callback,audio_port_handle_t deviceId,audio_port_handle_t portId)7969 void AudioFlinger::MmapThread::configure(const audio_attributes_t *attr,
7970 audio_stream_type_t streamType __unused,
7971 audio_session_t sessionId,
7972 const sp<MmapStreamCallback>& callback,
7973 audio_port_handle_t deviceId,
7974 audio_port_handle_t portId)
7975 {
7976 mAttr = *attr;
7977 mSessionId = sessionId;
7978 mCallback = callback;
7979 mDeviceId = deviceId;
7980 mPortId = portId;
7981 }
7982
createMmapBuffer(int32_t minSizeFrames,struct audio_mmap_buffer_info * info)7983 status_t AudioFlinger::MmapThread::createMmapBuffer(int32_t minSizeFrames,
7984 struct audio_mmap_buffer_info *info)
7985 {
7986 if (mHalStream == 0) {
7987 return NO_INIT;
7988 }
7989 mStandby = true;
7990 acquireWakeLock();
7991 return mHalStream->createMmapBuffer(minSizeFrames, info);
7992 }
7993
getMmapPosition(struct audio_mmap_position * position)7994 status_t AudioFlinger::MmapThread::getMmapPosition(struct audio_mmap_position *position)
7995 {
7996 if (mHalStream == 0) {
7997 return NO_INIT;
7998 }
7999 return mHalStream->getMmapPosition(position);
8000 }
8001
exitStandby()8002 status_t AudioFlinger::MmapThread::exitStandby()
8003 {
8004 status_t ret = mHalStream->start();
8005 if (ret != NO_ERROR) {
8006 ALOGE("%s: error mHalStream->start() = %d for first track", __FUNCTION__, ret);
8007 return ret;
8008 }
8009 mStandby = false;
8010 return NO_ERROR;
8011 }
8012
start(const AudioClient & client,audio_port_handle_t * handle)8013 status_t AudioFlinger::MmapThread::start(const AudioClient& client,
8014 audio_port_handle_t *handle)
8015 {
8016 ALOGV("%s clientUid %d mStandby %d mPortId %d *handle %d", __FUNCTION__,
8017 client.clientUid, mStandby, mPortId, *handle);
8018 if (mHalStream == 0) {
8019 return NO_INIT;
8020 }
8021
8022 status_t ret;
8023
8024 if (*handle == mPortId) {
8025 // for the first track, reuse portId and session allocated when the stream was opened
8026 return exitStandby();
8027 }
8028
8029 audio_port_handle_t portId = AUDIO_PORT_HANDLE_NONE;
8030
8031 audio_io_handle_t io = mId;
8032 if (isOutput()) {
8033 audio_config_t config = AUDIO_CONFIG_INITIALIZER;
8034 config.sample_rate = mSampleRate;
8035 config.channel_mask = mChannelMask;
8036 config.format = mFormat;
8037 audio_stream_type_t stream = streamType();
8038 audio_output_flags_t flags =
8039 (audio_output_flags_t)(AUDIO_OUTPUT_FLAG_MMAP_NOIRQ | AUDIO_OUTPUT_FLAG_DIRECT);
8040 audio_port_handle_t deviceId = mDeviceId;
8041 ret = AudioSystem::getOutputForAttr(&mAttr, &io,
8042 mSessionId,
8043 &stream,
8044 client.clientPid,
8045 client.clientUid,
8046 &config,
8047 flags,
8048 &deviceId,
8049 &portId);
8050 } else {
8051 audio_config_base_t config;
8052 config.sample_rate = mSampleRate;
8053 config.channel_mask = mChannelMask;
8054 config.format = mFormat;
8055 audio_port_handle_t deviceId = mDeviceId;
8056 ret = AudioSystem::getInputForAttr(&mAttr, &io,
8057 mSessionId,
8058 client.clientPid,
8059 client.clientUid,
8060 client.packageName,
8061 &config,
8062 AUDIO_INPUT_FLAG_MMAP_NOIRQ,
8063 &deviceId,
8064 &portId);
8065 }
8066 // APM should not chose a different input or output stream for the same set of attributes
8067 // and audo configuration
8068 if (ret != NO_ERROR || io != mId) {
8069 ALOGE("%s: error getting output or input from APM (error %d, io %d expected io %d)",
8070 __FUNCTION__, ret, io, mId);
8071 return BAD_VALUE;
8072 }
8073
8074 bool silenced = false;
8075 if (isOutput()) {
8076 ret = AudioSystem::startOutput(mId, streamType(), mSessionId);
8077 } else {
8078 ret = AudioSystem::startInput(portId, &silenced);
8079 }
8080
8081 Mutex::Autolock _l(mLock);
8082 // abort if start is rejected by audio policy manager
8083 if (ret != NO_ERROR) {
8084 ALOGE("%s: error start rejected by AudioPolicyManager = %d", __FUNCTION__, ret);
8085 if (mActiveTracks.size() != 0) {
8086 mLock.unlock();
8087 if (isOutput()) {
8088 AudioSystem::releaseOutput(mId, streamType(), mSessionId);
8089 } else {
8090 AudioSystem::releaseInput(portId);
8091 }
8092 mLock.lock();
8093 } else {
8094 mHalStream->stop();
8095 }
8096 return PERMISSION_DENIED;
8097 }
8098
8099 if (isOutput()) {
8100 // force volume update when a new track is added
8101 mHalVolFloat = -1.0f;
8102 } else if (!silenced) {
8103 for (const sp<MmapTrack> &track : mActiveTracks) {
8104 if (track->isSilenced_l() && track->uid() != client.clientUid)
8105 track->invalidate();
8106 }
8107 }
8108
8109 // Given that MmapThread::mAttr is mutable, should a MmapTrack have attributes ?
8110 sp<MmapTrack> track = new MmapTrack(this, mAttr, mSampleRate, mFormat, mChannelMask, mSessionId,
8111 client.clientUid, client.clientPid, portId);
8112
8113 track->setSilenced_l(silenced);
8114 mActiveTracks.add(track);
8115 sp<EffectChain> chain = getEffectChain_l(mSessionId);
8116 if (chain != 0) {
8117 chain->setStrategy(AudioSystem::getStrategyForStream(streamType()));
8118 chain->incTrackCnt();
8119 chain->incActiveTrackCnt();
8120 }
8121
8122 *handle = portId;
8123 broadcast_l();
8124
8125 ALOGV("%s DONE handle %d stream %p", __FUNCTION__, *handle, mHalStream.get());
8126
8127 return NO_ERROR;
8128 }
8129
stop(audio_port_handle_t handle)8130 status_t AudioFlinger::MmapThread::stop(audio_port_handle_t handle)
8131 {
8132 ALOGV("%s handle %d", __FUNCTION__, handle);
8133
8134 if (mHalStream == 0) {
8135 return NO_INIT;
8136 }
8137
8138 if (handle == mPortId) {
8139 mHalStream->stop();
8140 return NO_ERROR;
8141 }
8142
8143 Mutex::Autolock _l(mLock);
8144
8145 sp<MmapTrack> track;
8146 for (const sp<MmapTrack> &t : mActiveTracks) {
8147 if (handle == t->portId()) {
8148 track = t;
8149 break;
8150 }
8151 }
8152 if (track == 0) {
8153 return BAD_VALUE;
8154 }
8155
8156 mActiveTracks.remove(track);
8157
8158 mLock.unlock();
8159 if (isOutput()) {
8160 AudioSystem::stopOutput(mId, streamType(), track->sessionId());
8161 AudioSystem::releaseOutput(mId, streamType(), track->sessionId());
8162 } else {
8163 AudioSystem::stopInput(track->portId());
8164 AudioSystem::releaseInput(track->portId());
8165 }
8166 mLock.lock();
8167
8168 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
8169 if (chain != 0) {
8170 chain->decActiveTrackCnt();
8171 chain->decTrackCnt();
8172 }
8173
8174 broadcast_l();
8175
8176 return NO_ERROR;
8177 }
8178
standby()8179 status_t AudioFlinger::MmapThread::standby()
8180 {
8181 ALOGV("%s", __FUNCTION__);
8182
8183 if (mHalStream == 0) {
8184 return NO_INIT;
8185 }
8186 if (mActiveTracks.size() != 0) {
8187 return INVALID_OPERATION;
8188 }
8189 mHalStream->standby();
8190 mStandby = true;
8191 releaseWakeLock();
8192 return NO_ERROR;
8193 }
8194
8195
readHalParameters_l()8196 void AudioFlinger::MmapThread::readHalParameters_l()
8197 {
8198 status_t result = mHalStream->getAudioProperties(&mSampleRate, &mChannelMask, &mHALFormat);
8199 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving audio properties from HAL: %d", result);
8200 mFormat = mHALFormat;
8201 LOG_ALWAYS_FATAL_IF(!audio_is_linear_pcm(mFormat), "HAL format %#x is not linear pcm", mFormat);
8202 result = mHalStream->getFrameSize(&mFrameSize);
8203 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving frame size from HAL: %d", result);
8204 result = mHalStream->getBufferSize(&mBufferSize);
8205 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving buffer size from HAL: %d", result);
8206 mFrameCount = mBufferSize / mFrameSize;
8207 }
8208
threadLoop()8209 bool AudioFlinger::MmapThread::threadLoop()
8210 {
8211 checkSilentMode_l();
8212
8213 const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
8214
8215 while (!exitPending())
8216 {
8217 Mutex::Autolock _l(mLock);
8218 Vector< sp<EffectChain> > effectChains;
8219
8220 if (mSignalPending) {
8221 // A signal was raised while we were unlocked
8222 mSignalPending = false;
8223 } else {
8224 if (mConfigEvents.isEmpty()) {
8225 // we're about to wait, flush the binder command buffer
8226 IPCThreadState::self()->flushCommands();
8227
8228 if (exitPending()) {
8229 break;
8230 }
8231
8232 // wait until we have something to do...
8233 ALOGV("%s going to sleep", myName.string());
8234 mWaitWorkCV.wait(mLock);
8235 ALOGV("%s waking up", myName.string());
8236
8237 checkSilentMode_l();
8238
8239 continue;
8240 }
8241 }
8242
8243 processConfigEvents_l();
8244
8245 processVolume_l();
8246
8247 checkInvalidTracks_l();
8248
8249 mActiveTracks.updatePowerState(this);
8250
8251 updateMetadata_l();
8252
8253 lockEffectChains_l(effectChains);
8254 for (size_t i = 0; i < effectChains.size(); i ++) {
8255 effectChains[i]->process_l();
8256 }
8257 // enable changes in effect chain
8258 unlockEffectChains(effectChains);
8259 // Effect chains will be actually deleted here if they were removed from
8260 // mEffectChains list during mixing or effects processing
8261 }
8262
8263 threadLoop_exit();
8264
8265 if (!mStandby) {
8266 threadLoop_standby();
8267 mStandby = true;
8268 }
8269
8270 ALOGV("Thread %p type %d exiting", this, mType);
8271 return false;
8272 }
8273
8274 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)8275 bool AudioFlinger::MmapThread::checkForNewParameter_l(const String8& keyValuePair,
8276 status_t& status)
8277 {
8278 AudioParameter param = AudioParameter(keyValuePair);
8279 int value;
8280 bool sendToHal = true;
8281 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
8282 audio_devices_t device = (audio_devices_t)value;
8283 // forward device change to effects that have requested to be
8284 // aware of attached audio device.
8285 if (device != AUDIO_DEVICE_NONE) {
8286 for (size_t i = 0; i < mEffectChains.size(); i++) {
8287 mEffectChains[i]->setDevice_l(device);
8288 }
8289 }
8290 if (audio_is_output_devices(device)) {
8291 mOutDevice = device;
8292 if (!isOutput()) {
8293 sendToHal = false;
8294 }
8295 } else {
8296 mInDevice = device;
8297 if (device != AUDIO_DEVICE_NONE) {
8298 mPrevInDevice = value;
8299 }
8300 // TODO: implement and call checkBtNrec_l();
8301 }
8302 }
8303 if (sendToHal) {
8304 status = mHalStream->setParameters(keyValuePair);
8305 } else {
8306 status = NO_ERROR;
8307 }
8308
8309 return false;
8310 }
8311
getParameters(const String8 & keys)8312 String8 AudioFlinger::MmapThread::getParameters(const String8& keys)
8313 {
8314 Mutex::Autolock _l(mLock);
8315 String8 out_s8;
8316 if (initCheck() == NO_ERROR && mHalStream->getParameters(keys, &out_s8) == OK) {
8317 return out_s8;
8318 }
8319 return String8();
8320 }
8321
ioConfigChanged(audio_io_config_event event,pid_t pid)8322 void AudioFlinger::MmapThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
8323 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
8324
8325 desc->mIoHandle = mId;
8326
8327 switch (event) {
8328 case AUDIO_INPUT_OPENED:
8329 case AUDIO_INPUT_REGISTERED:
8330 case AUDIO_INPUT_CONFIG_CHANGED:
8331 case AUDIO_OUTPUT_OPENED:
8332 case AUDIO_OUTPUT_REGISTERED:
8333 case AUDIO_OUTPUT_CONFIG_CHANGED:
8334 desc->mPatch = mPatch;
8335 desc->mChannelMask = mChannelMask;
8336 desc->mSamplingRate = mSampleRate;
8337 desc->mFormat = mFormat;
8338 desc->mFrameCount = mFrameCount;
8339 desc->mFrameCountHAL = mFrameCount;
8340 desc->mLatency = 0;
8341 break;
8342
8343 case AUDIO_INPUT_CLOSED:
8344 case AUDIO_OUTPUT_CLOSED:
8345 default:
8346 break;
8347 }
8348 mAudioFlinger->ioConfigChanged(event, desc, pid);
8349 }
8350
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)8351 status_t AudioFlinger::MmapThread::createAudioPatch_l(const struct audio_patch *patch,
8352 audio_patch_handle_t *handle)
8353 {
8354 status_t status = NO_ERROR;
8355
8356 // store new device and send to effects
8357 audio_devices_t type = AUDIO_DEVICE_NONE;
8358 audio_port_handle_t deviceId;
8359 if (isOutput()) {
8360 for (unsigned int i = 0; i < patch->num_sinks; i++) {
8361 type |= patch->sinks[i].ext.device.type;
8362 }
8363 deviceId = patch->sinks[0].id;
8364 } else {
8365 type = patch->sources[0].ext.device.type;
8366 deviceId = patch->sources[0].id;
8367 }
8368
8369 for (size_t i = 0; i < mEffectChains.size(); i++) {
8370 mEffectChains[i]->setDevice_l(type);
8371 }
8372
8373 if (isOutput()) {
8374 mOutDevice = type;
8375 } else {
8376 mInDevice = type;
8377 // store new source and send to effects
8378 if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
8379 mAudioSource = patch->sinks[0].ext.mix.usecase.source;
8380 for (size_t i = 0; i < mEffectChains.size(); i++) {
8381 mEffectChains[i]->setAudioSource_l(mAudioSource);
8382 }
8383 }
8384 }
8385
8386 if (mAudioHwDev->supportsAudioPatches()) {
8387 status = mHalDevice->createAudioPatch(patch->num_sources,
8388 patch->sources,
8389 patch->num_sinks,
8390 patch->sinks,
8391 handle);
8392 } else {
8393 char *address;
8394 if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
8395 //FIXME: we only support address on first sink with HAL version < 3.0
8396 address = audio_device_address_to_parameter(
8397 patch->sinks[0].ext.device.type,
8398 patch->sinks[0].ext.device.address);
8399 } else {
8400 address = (char *)calloc(1, 1);
8401 }
8402 AudioParameter param = AudioParameter(String8(address));
8403 free(address);
8404 param.addInt(String8(AudioParameter::keyRouting), (int)type);
8405 if (!isOutput()) {
8406 param.addInt(String8(AudioParameter::keyInputSource),
8407 (int)patch->sinks[0].ext.mix.usecase.source);
8408 }
8409 status = mHalStream->setParameters(param.toString());
8410 *handle = AUDIO_PATCH_HANDLE_NONE;
8411 }
8412
8413 if (isOutput() && mPrevOutDevice != mOutDevice) {
8414 mPrevOutDevice = type;
8415 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
8416 sp<MmapStreamCallback> callback = mCallback.promote();
8417 if (mDeviceId != deviceId && callback != 0) {
8418 mLock.unlock();
8419 callback->onRoutingChanged(deviceId);
8420 mLock.lock();
8421 }
8422 mDeviceId = deviceId;
8423 }
8424 if (!isOutput() && mPrevInDevice != mInDevice) {
8425 mPrevInDevice = type;
8426 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
8427 sp<MmapStreamCallback> callback = mCallback.promote();
8428 if (mDeviceId != deviceId && callback != 0) {
8429 mLock.unlock();
8430 callback->onRoutingChanged(deviceId);
8431 mLock.lock();
8432 }
8433 mDeviceId = deviceId;
8434 }
8435 return status;
8436 }
8437
releaseAudioPatch_l(const audio_patch_handle_t handle)8438 status_t AudioFlinger::MmapThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
8439 {
8440 status_t status = NO_ERROR;
8441
8442 mInDevice = AUDIO_DEVICE_NONE;
8443
8444 bool supportsAudioPatches = mHalDevice->supportsAudioPatches(&supportsAudioPatches) == OK ?
8445 supportsAudioPatches : false;
8446
8447 if (supportsAudioPatches) {
8448 status = mHalDevice->releaseAudioPatch(handle);
8449 } else {
8450 AudioParameter param;
8451 param.addInt(String8(AudioParameter::keyRouting), 0);
8452 status = mHalStream->setParameters(param.toString());
8453 }
8454 return status;
8455 }
8456
getAudioPortConfig(struct audio_port_config * config)8457 void AudioFlinger::MmapThread::getAudioPortConfig(struct audio_port_config *config)
8458 {
8459 ThreadBase::getAudioPortConfig(config);
8460 if (isOutput()) {
8461 config->role = AUDIO_PORT_ROLE_SOURCE;
8462 config->ext.mix.hw_module = mAudioHwDev->handle();
8463 config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
8464 } else {
8465 config->role = AUDIO_PORT_ROLE_SINK;
8466 config->ext.mix.hw_module = mAudioHwDev->handle();
8467 config->ext.mix.usecase.source = mAudioSource;
8468 }
8469 }
8470
addEffectChain_l(const sp<EffectChain> & chain)8471 status_t AudioFlinger::MmapThread::addEffectChain_l(const sp<EffectChain>& chain)
8472 {
8473 audio_session_t session = chain->sessionId();
8474
8475 ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
8476 // Attach all tracks with same session ID to this chain.
8477 // indicate all active tracks in the chain
8478 for (const sp<MmapTrack> &track : mActiveTracks) {
8479 if (session == track->sessionId()) {
8480 chain->incTrackCnt();
8481 chain->incActiveTrackCnt();
8482 }
8483 }
8484
8485 chain->setThread(this);
8486 chain->setInBuffer(nullptr);
8487 chain->setOutBuffer(nullptr);
8488 chain->syncHalEffectsState();
8489
8490 mEffectChains.add(chain);
8491 checkSuspendOnAddEffectChain_l(chain);
8492 return NO_ERROR;
8493 }
8494
removeEffectChain_l(const sp<EffectChain> & chain)8495 size_t AudioFlinger::MmapThread::removeEffectChain_l(const sp<EffectChain>& chain)
8496 {
8497 audio_session_t session = chain->sessionId();
8498
8499 ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
8500
8501 for (size_t i = 0; i < mEffectChains.size(); i++) {
8502 if (chain == mEffectChains[i]) {
8503 mEffectChains.removeAt(i);
8504 // detach all active tracks from the chain
8505 // detach all tracks with same session ID from this chain
8506 for (const sp<MmapTrack> &track : mActiveTracks) {
8507 if (session == track->sessionId()) {
8508 chain->decActiveTrackCnt();
8509 chain->decTrackCnt();
8510 }
8511 }
8512 break;
8513 }
8514 }
8515 return mEffectChains.size();
8516 }
8517
8518 // hasAudioSession_l() must be called with ThreadBase::mLock held
hasAudioSession_l(audio_session_t sessionId) const8519 uint32_t AudioFlinger::MmapThread::hasAudioSession_l(audio_session_t sessionId) const
8520 {
8521 uint32_t result = 0;
8522 if (getEffectChain_l(sessionId) != 0) {
8523 result = EFFECT_SESSION;
8524 }
8525
8526 for (size_t i = 0; i < mActiveTracks.size(); i++) {
8527 sp<MmapTrack> track = mActiveTracks[i];
8528 if (sessionId == track->sessionId()) {
8529 result |= TRACK_SESSION;
8530 if (track->isFastTrack()) {
8531 result |= FAST_SESSION;
8532 }
8533 break;
8534 }
8535 }
8536
8537 return result;
8538 }
8539
threadLoop_standby()8540 void AudioFlinger::MmapThread::threadLoop_standby()
8541 {
8542 mHalStream->standby();
8543 }
8544
threadLoop_exit()8545 void AudioFlinger::MmapThread::threadLoop_exit()
8546 {
8547 // Do not call callback->onTearDown() because it is redundant for thread exit
8548 // and because it can cause a recursive mutex lock on stop().
8549 }
8550
setSyncEvent(const sp<SyncEvent> & event __unused)8551 status_t AudioFlinger::MmapThread::setSyncEvent(const sp<SyncEvent>& event __unused)
8552 {
8553 return BAD_VALUE;
8554 }
8555
isValidSyncEvent(const sp<SyncEvent> & event __unused) const8556 bool AudioFlinger::MmapThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
8557 {
8558 return false;
8559 }
8560
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)8561 status_t AudioFlinger::MmapThread::checkEffectCompatibility_l(
8562 const effect_descriptor_t *desc, audio_session_t sessionId)
8563 {
8564 // No global effect sessions on mmap threads
8565 if (sessionId == AUDIO_SESSION_OUTPUT_MIX || sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
8566 ALOGW("checkEffectCompatibility_l(): global effect %s on record thread %s",
8567 desc->name, mThreadName);
8568 return BAD_VALUE;
8569 }
8570
8571 if (!isOutput() && ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC)) {
8572 ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on capture mmap thread",
8573 desc->name);
8574 return BAD_VALUE;
8575 }
8576 if (isOutput() && ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
8577 ALOGW("checkEffectCompatibility_l(): pre processing effect %s created on playback mmap "
8578 "thread", desc->name);
8579 return BAD_VALUE;
8580 }
8581
8582 // Only allow effects without processing load or latency
8583 if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) != EFFECT_FLAG_NO_PROCESS) {
8584 return BAD_VALUE;
8585 }
8586
8587 return NO_ERROR;
8588
8589 }
8590
checkInvalidTracks_l()8591 void AudioFlinger::MmapThread::checkInvalidTracks_l()
8592 {
8593 for (const sp<MmapTrack> &track : mActiveTracks) {
8594 if (track->isInvalid()) {
8595 sp<MmapStreamCallback> callback = mCallback.promote();
8596 if (callback != 0) {
8597 mLock.unlock();
8598 callback->onTearDown(track->portId());
8599 mLock.lock();
8600 } else if (mNoCallbackWarningCount < kMaxNoCallbackWarnings) {
8601 ALOGW("Could not notify MMAP stream tear down: no onTearDown callback!");
8602 mNoCallbackWarningCount++;
8603 }
8604 }
8605 }
8606 }
8607
dump(int fd,const Vector<String16> & args)8608 void AudioFlinger::MmapThread::dump(int fd, const Vector<String16>& args)
8609 {
8610 dumpInternals(fd, args);
8611 dumpTracks(fd, args);
8612 dumpEffectChains(fd, args);
8613 dprintf(fd, " Local log:\n");
8614 mLocalLog.dump(fd, " " /* prefix */, 40 /* lines */);
8615 }
8616
dumpInternals(int fd,const Vector<String16> & args)8617 void AudioFlinger::MmapThread::dumpInternals(int fd, const Vector<String16>& args)
8618 {
8619 dumpBase(fd, args);
8620
8621 dprintf(fd, " Attributes: content type %d usage %d source %d\n",
8622 mAttr.content_type, mAttr.usage, mAttr.source);
8623 dprintf(fd, " Session: %d port Id: %d\n", mSessionId, mPortId);
8624 if (mActiveTracks.size() == 0) {
8625 dprintf(fd, " No active clients\n");
8626 }
8627 }
8628
dumpTracks(int fd,const Vector<String16> & args __unused)8629 void AudioFlinger::MmapThread::dumpTracks(int fd, const Vector<String16>& args __unused)
8630 {
8631 String8 result;
8632 size_t numtracks = mActiveTracks.size();
8633 dprintf(fd, " %zu Tracks\n", numtracks);
8634 const char *prefix = " ";
8635 if (numtracks) {
8636 result.append(prefix);
8637 MmapTrack::appendDumpHeader(result);
8638 for (size_t i = 0; i < numtracks ; ++i) {
8639 sp<MmapTrack> track = mActiveTracks[i];
8640 result.append(prefix);
8641 track->appendDump(result, true /* active */);
8642 }
8643 } else {
8644 dprintf(fd, "\n");
8645 }
8646 write(fd, result.string(), result.size());
8647 }
8648
MmapPlaybackThread(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,AudioHwDevice * hwDev,AudioStreamOut * output,audio_devices_t outDevice,audio_devices_t inDevice,bool systemReady)8649 AudioFlinger::MmapPlaybackThread::MmapPlaybackThread(
8650 const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
8651 AudioHwDevice *hwDev, AudioStreamOut *output,
8652 audio_devices_t outDevice, audio_devices_t inDevice, bool systemReady)
8653 : MmapThread(audioFlinger, id, hwDev, output->stream, outDevice, inDevice, systemReady),
8654 mStreamType(AUDIO_STREAM_MUSIC),
8655 mStreamVolume(1.0),
8656 mStreamMute(false),
8657 mOutput(output)
8658 {
8659 snprintf(mThreadName, kThreadNameLength, "AudioMmapOut_%X", id);
8660 mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
8661 mMasterVolume = audioFlinger->masterVolume_l();
8662 mMasterMute = audioFlinger->masterMute_l();
8663 if (mAudioHwDev) {
8664 if (mAudioHwDev->canSetMasterVolume()) {
8665 mMasterVolume = 1.0;
8666 }
8667
8668 if (mAudioHwDev->canSetMasterMute()) {
8669 mMasterMute = false;
8670 }
8671 }
8672 }
8673
configure(const audio_attributes_t * attr,audio_stream_type_t streamType,audio_session_t sessionId,const sp<MmapStreamCallback> & callback,audio_port_handle_t deviceId,audio_port_handle_t portId)8674 void AudioFlinger::MmapPlaybackThread::configure(const audio_attributes_t *attr,
8675 audio_stream_type_t streamType,
8676 audio_session_t sessionId,
8677 const sp<MmapStreamCallback>& callback,
8678 audio_port_handle_t deviceId,
8679 audio_port_handle_t portId)
8680 {
8681 MmapThread::configure(attr, streamType, sessionId, callback, deviceId, portId);
8682 mStreamType = streamType;
8683 }
8684
clearOutput()8685 AudioStreamOut* AudioFlinger::MmapPlaybackThread::clearOutput()
8686 {
8687 Mutex::Autolock _l(mLock);
8688 AudioStreamOut *output = mOutput;
8689 mOutput = NULL;
8690 return output;
8691 }
8692
setMasterVolume(float value)8693 void AudioFlinger::MmapPlaybackThread::setMasterVolume(float value)
8694 {
8695 Mutex::Autolock _l(mLock);
8696 // Don't apply master volume in SW if our HAL can do it for us.
8697 if (mAudioHwDev &&
8698 mAudioHwDev->canSetMasterVolume()) {
8699 mMasterVolume = 1.0;
8700 } else {
8701 mMasterVolume = value;
8702 }
8703 }
8704
setMasterMute(bool muted)8705 void AudioFlinger::MmapPlaybackThread::setMasterMute(bool muted)
8706 {
8707 Mutex::Autolock _l(mLock);
8708 // Don't apply master mute in SW if our HAL can do it for us.
8709 if (mAudioHwDev && mAudioHwDev->canSetMasterMute()) {
8710 mMasterMute = false;
8711 } else {
8712 mMasterMute = muted;
8713 }
8714 }
8715
setStreamVolume(audio_stream_type_t stream,float value)8716 void AudioFlinger::MmapPlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
8717 {
8718 Mutex::Autolock _l(mLock);
8719 if (stream == mStreamType) {
8720 mStreamVolume = value;
8721 broadcast_l();
8722 }
8723 }
8724
streamVolume(audio_stream_type_t stream) const8725 float AudioFlinger::MmapPlaybackThread::streamVolume(audio_stream_type_t stream) const
8726 {
8727 Mutex::Autolock _l(mLock);
8728 if (stream == mStreamType) {
8729 return mStreamVolume;
8730 }
8731 return 0.0f;
8732 }
8733
setStreamMute(audio_stream_type_t stream,bool muted)8734 void AudioFlinger::MmapPlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
8735 {
8736 Mutex::Autolock _l(mLock);
8737 if (stream == mStreamType) {
8738 mStreamMute= muted;
8739 broadcast_l();
8740 }
8741 }
8742
invalidateTracks(audio_stream_type_t streamType)8743 void AudioFlinger::MmapPlaybackThread::invalidateTracks(audio_stream_type_t streamType)
8744 {
8745 Mutex::Autolock _l(mLock);
8746 if (streamType == mStreamType) {
8747 for (const sp<MmapTrack> &track : mActiveTracks) {
8748 track->invalidate();
8749 }
8750 broadcast_l();
8751 }
8752 }
8753
processVolume_l()8754 void AudioFlinger::MmapPlaybackThread::processVolume_l()
8755 {
8756 float volume;
8757
8758 if (mMasterMute || mStreamMute) {
8759 volume = 0;
8760 } else {
8761 volume = mMasterVolume * mStreamVolume;
8762 }
8763
8764 if (volume != mHalVolFloat) {
8765
8766 // Convert volumes from float to 8.24
8767 uint32_t vol = (uint32_t)(volume * (1 << 24));
8768
8769 // Delegate volume control to effect in track effect chain if needed
8770 // only one effect chain can be present on DirectOutputThread, so if
8771 // there is one, the track is connected to it
8772 if (!mEffectChains.isEmpty()) {
8773 mEffectChains[0]->setVolume_l(&vol, &vol);
8774 volume = (float)vol / (1 << 24);
8775 }
8776 // Try to use HW volume control and fall back to SW control if not implemented
8777 if (mOutput->stream->setVolume(volume, volume) == NO_ERROR) {
8778 mHalVolFloat = volume; // HW volume control worked, so update value.
8779 mNoCallbackWarningCount = 0;
8780 } else {
8781 sp<MmapStreamCallback> callback = mCallback.promote();
8782 if (callback != 0) {
8783 int channelCount;
8784 if (isOutput()) {
8785 channelCount = audio_channel_count_from_out_mask(mChannelMask);
8786 } else {
8787 channelCount = audio_channel_count_from_in_mask(mChannelMask);
8788 }
8789 Vector<float> values;
8790 for (int i = 0; i < channelCount; i++) {
8791 values.add(volume);
8792 }
8793 mHalVolFloat = volume; // SW volume control worked, so update value.
8794 mNoCallbackWarningCount = 0;
8795 mLock.unlock();
8796 callback->onVolumeChanged(mChannelMask, values);
8797 mLock.lock();
8798 } else {
8799 if (mNoCallbackWarningCount < kMaxNoCallbackWarnings) {
8800 ALOGW("Could not set MMAP stream volume: no volume callback!");
8801 mNoCallbackWarningCount++;
8802 }
8803 }
8804 }
8805 }
8806 }
8807
updateMetadata_l()8808 void AudioFlinger::MmapPlaybackThread::updateMetadata_l()
8809 {
8810 if (mOutput == nullptr || mOutput->stream == nullptr ||
8811 !mActiveTracks.readAndClearHasChanged()) {
8812 return;
8813 }
8814 StreamOutHalInterface::SourceMetadata metadata;
8815 for (const sp<MmapTrack> &track : mActiveTracks) {
8816 // No track is invalid as this is called after prepareTrack_l in the same critical section
8817 metadata.tracks.push_back({
8818 .usage = track->attributes().usage,
8819 .content_type = track->attributes().content_type,
8820 .gain = mHalVolFloat, // TODO: propagate from aaudio pre-mix volume
8821 });
8822 }
8823 mOutput->stream->updateSourceMetadata(metadata);
8824 }
8825
checkSilentMode_l()8826 void AudioFlinger::MmapPlaybackThread::checkSilentMode_l()
8827 {
8828 if (!mMasterMute) {
8829 char value[PROPERTY_VALUE_MAX];
8830 if (property_get("ro.audio.silent", value, "0") > 0) {
8831 char *endptr;
8832 unsigned long ul = strtoul(value, &endptr, 0);
8833 if (*endptr == '\0' && ul != 0) {
8834 ALOGD("Silence is golden");
8835 // The setprop command will not allow a property to be changed after
8836 // the first time it is set, so we don't have to worry about un-muting.
8837 setMasterMute_l(true);
8838 }
8839 }
8840 }
8841 }
8842
dumpInternals(int fd,const Vector<String16> & args)8843 void AudioFlinger::MmapPlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
8844 {
8845 MmapThread::dumpInternals(fd, args);
8846
8847 dprintf(fd, " Stream type: %d Stream volume: %f HAL volume: %f Stream mute %d\n",
8848 mStreamType, mStreamVolume, mHalVolFloat, mStreamMute);
8849 dprintf(fd, " Master volume: %f Master mute %d\n", mMasterVolume, mMasterMute);
8850 }
8851
MmapCaptureThread(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,AudioHwDevice * hwDev,AudioStreamIn * input,audio_devices_t outDevice,audio_devices_t inDevice,bool systemReady)8852 AudioFlinger::MmapCaptureThread::MmapCaptureThread(
8853 const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
8854 AudioHwDevice *hwDev, AudioStreamIn *input,
8855 audio_devices_t outDevice, audio_devices_t inDevice, bool systemReady)
8856 : MmapThread(audioFlinger, id, hwDev, input->stream, outDevice, inDevice, systemReady),
8857 mInput(input)
8858 {
8859 snprintf(mThreadName, kThreadNameLength, "AudioMmapIn_%X", id);
8860 mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
8861 }
8862
exitStandby()8863 status_t AudioFlinger::MmapCaptureThread::exitStandby()
8864 {
8865 mInput->stream->setGain(1.0f);
8866 return MmapThread::exitStandby();
8867 }
8868
clearInput()8869 AudioFlinger::AudioStreamIn* AudioFlinger::MmapCaptureThread::clearInput()
8870 {
8871 Mutex::Autolock _l(mLock);
8872 AudioStreamIn *input = mInput;
8873 mInput = NULL;
8874 return input;
8875 }
8876
8877
processVolume_l()8878 void AudioFlinger::MmapCaptureThread::processVolume_l()
8879 {
8880 bool changed = false;
8881 bool silenced = false;
8882
8883 sp<MmapStreamCallback> callback = mCallback.promote();
8884 if (callback == 0) {
8885 if (mNoCallbackWarningCount < kMaxNoCallbackWarnings) {
8886 ALOGW("Could not set MMAP stream silenced: no onStreamSilenced callback!");
8887 mNoCallbackWarningCount++;
8888 }
8889 }
8890
8891 // After a change occurred in track silenced state, mute capture in audio DSP if at least one
8892 // track is silenced and unmute otherwise
8893 for (size_t i = 0; i < mActiveTracks.size() && !silenced; i++) {
8894 if (!mActiveTracks[i]->getAndSetSilencedNotified_l()) {
8895 changed = true;
8896 silenced = mActiveTracks[i]->isSilenced_l();
8897 }
8898 }
8899
8900 if (changed) {
8901 mInput->stream->setGain(silenced ? 0.0f: 1.0f);
8902 }
8903 }
8904
updateMetadata_l()8905 void AudioFlinger::MmapCaptureThread::updateMetadata_l()
8906 {
8907 if (mInput == nullptr || mInput->stream == nullptr ||
8908 !mActiveTracks.readAndClearHasChanged()) {
8909 return;
8910 }
8911 StreamInHalInterface::SinkMetadata metadata;
8912 for (const sp<MmapTrack> &track : mActiveTracks) {
8913 // No track is invalid as this is called after prepareTrack_l in the same critical section
8914 metadata.tracks.push_back({
8915 .source = track->attributes().source,
8916 .gain = 1, // capture tracks do not have volumes
8917 });
8918 }
8919 mInput->stream->updateSinkMetadata(metadata);
8920 }
8921
setRecordSilenced(uid_t uid,bool silenced)8922 void AudioFlinger::MmapCaptureThread::setRecordSilenced(uid_t uid, bool silenced)
8923 {
8924 Mutex::Autolock _l(mLock);
8925 for (size_t i = 0; i < mActiveTracks.size() ; i++) {
8926 if (mActiveTracks[i]->uid() == uid) {
8927 mActiveTracks[i]->setSilenced_l(silenced);
8928 broadcast_l();
8929 }
8930 }
8931 }
8932
8933 } // namespace android
8934