1 // Copyright 2015, VIXL authors
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 //   * Redistributions of source code must retain the above copyright notice,
8 //     this list of conditions and the following disclaimer.
9 //   * Redistributions in binary form must reproduce the above copyright notice,
10 //     this list of conditions and the following disclaimer in the documentation
11 //     and/or other materials provided with the distribution.
12 //   * Neither the name of ARM Limited nor the names of its contributors may be
13 //     used to endorse or promote products derived from this software without
14 //     specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27 #include <cctype>
28 
29 #include "macro-assembler-aarch64.h"
30 
31 namespace vixl {
32 namespace aarch64 {
33 
34 
Release()35 void Pool::Release() {
36   if (--monitor_ == 0) {
37     // Ensure the pool has not been blocked for too long.
38     VIXL_ASSERT(masm_->GetCursorOffset() < checkpoint_);
39   }
40 }
41 
42 
SetNextCheckpoint(ptrdiff_t checkpoint)43 void Pool::SetNextCheckpoint(ptrdiff_t checkpoint) {
44   masm_->checkpoint_ = std::min(masm_->checkpoint_, checkpoint);
45   checkpoint_ = checkpoint;
46 }
47 
48 
LiteralPool(MacroAssembler * masm)49 LiteralPool::LiteralPool(MacroAssembler* masm)
50     : Pool(masm),
51       size_(0),
52       first_use_(-1),
53       recommended_checkpoint_(kNoCheckpointRequired) {}
54 
55 
~LiteralPool()56 LiteralPool::~LiteralPool() {
57   VIXL_ASSERT(IsEmpty());
58   VIXL_ASSERT(!IsBlocked());
59   for (std::vector<RawLiteral*>::iterator it = deleted_on_destruction_.begin();
60        it != deleted_on_destruction_.end();
61        it++) {
62     delete *it;
63   }
64 }
65 
66 
Reset()67 void LiteralPool::Reset() {
68   std::vector<RawLiteral *>::iterator it, end;
69   for (it = entries_.begin(), end = entries_.end(); it != end; ++it) {
70     RawLiteral* literal = *it;
71     if (literal->deletion_policy_ == RawLiteral::kDeletedOnPlacementByPool) {
72       delete literal;
73     }
74   }
75   entries_.clear();
76   size_ = 0;
77   first_use_ = -1;
78   Pool::Reset();
79   recommended_checkpoint_ = kNoCheckpointRequired;
80 }
81 
82 
CheckEmitFor(size_t amount,EmitOption option)83 void LiteralPool::CheckEmitFor(size_t amount, EmitOption option) {
84   if (IsEmpty() || IsBlocked()) return;
85 
86   ptrdiff_t distance = masm_->GetCursorOffset() + amount - first_use_;
87   if (distance >= kRecommendedLiteralPoolRange) {
88     Emit(option);
89   }
90 }
91 
92 
CheckEmitForBranch(size_t range)93 void LiteralPool::CheckEmitForBranch(size_t range) {
94   if (IsEmpty() || IsBlocked()) return;
95   if (GetMaxSize() >= range) Emit();
96 }
97 
98 // We use a subclass to access the protected `ExactAssemblyScope` constructor
99 // giving us control over the pools. This allows us to use this scope within
100 // code emitting pools without creating a circular dependency.
101 // We keep the constructor private to restrict usage of this helper class.
102 class ExactAssemblyScopeWithoutPoolsCheck : public ExactAssemblyScope {
103  private:
ExactAssemblyScopeWithoutPoolsCheck(MacroAssembler * masm,size_t size)104   ExactAssemblyScopeWithoutPoolsCheck(MacroAssembler* masm, size_t size)
105       : ExactAssemblyScope(masm,
106                            size,
107                            ExactAssemblyScope::kExactSize,
108                            ExactAssemblyScope::kIgnorePools) {}
109 
110   friend void LiteralPool::Emit(LiteralPool::EmitOption);
111   friend void VeneerPool::Emit(VeneerPool::EmitOption, size_t);
112 };
113 
114 
Emit(EmitOption option)115 void LiteralPool::Emit(EmitOption option) {
116   // There is an issue if we are asked to emit a blocked or empty pool.
117   VIXL_ASSERT(!IsBlocked());
118   VIXL_ASSERT(!IsEmpty());
119 
120   size_t pool_size = GetSize();
121   size_t emit_size = pool_size;
122   if (option == kBranchRequired) emit_size += kInstructionSize;
123   Label end_of_pool;
124 
125   VIXL_ASSERT(emit_size % kInstructionSize == 0);
126   {
127     CodeBufferCheckScope guard(masm_,
128                                emit_size,
129                                CodeBufferCheckScope::kCheck,
130                                CodeBufferCheckScope::kExactSize);
131 #ifdef VIXL_DEBUG
132     // Also explicitly disallow usage of the `MacroAssembler` here.
133     masm_->SetAllowMacroInstructions(false);
134 #endif
135     if (option == kBranchRequired) {
136       ExactAssemblyScopeWithoutPoolsCheck guard(masm_, kInstructionSize);
137       masm_->b(&end_of_pool);
138     }
139 
140     {
141       // Marker indicating the size of the literal pool in 32-bit words.
142       VIXL_ASSERT((pool_size % kWRegSizeInBytes) == 0);
143       ExactAssemblyScopeWithoutPoolsCheck guard(masm_, kInstructionSize);
144       masm_->ldr(xzr, static_cast<int>(pool_size / kWRegSizeInBytes));
145     }
146 
147     // Now populate the literal pool.
148     std::vector<RawLiteral *>::iterator it, end;
149     for (it = entries_.begin(), end = entries_.end(); it != end; ++it) {
150       VIXL_ASSERT((*it)->IsUsed());
151       masm_->place(*it);
152     }
153 
154     if (option == kBranchRequired) masm_->bind(&end_of_pool);
155 #ifdef VIXL_DEBUG
156     masm_->SetAllowMacroInstructions(true);
157 #endif
158   }
159 
160   Reset();
161 }
162 
163 
AddEntry(RawLiteral * literal)164 void LiteralPool::AddEntry(RawLiteral* literal) {
165   // A literal must be registered immediately before its first use. Here we
166   // cannot control that it is its first use, but we check no code has been
167   // emitted since its last use.
168   VIXL_ASSERT(masm_->GetCursorOffset() == literal->GetLastUse());
169 
170   UpdateFirstUse(masm_->GetCursorOffset());
171   VIXL_ASSERT(masm_->GetCursorOffset() >= first_use_);
172   entries_.push_back(literal);
173   size_ += literal->GetSize();
174 }
175 
176 
UpdateFirstUse(ptrdiff_t use_position)177 void LiteralPool::UpdateFirstUse(ptrdiff_t use_position) {
178   first_use_ = std::min(first_use_, use_position);
179   if (first_use_ == -1) {
180     first_use_ = use_position;
181     SetNextRecommendedCheckpoint(GetNextRecommendedCheckpoint());
182     SetNextCheckpoint(first_use_ + Instruction::kLoadLiteralRange);
183   } else {
184     VIXL_ASSERT(use_position > first_use_);
185   }
186 }
187 
188 
Reset()189 void VeneerPool::Reset() {
190   Pool::Reset();
191   unresolved_branches_.Reset();
192 }
193 
194 
Release()195 void VeneerPool::Release() {
196   if (--monitor_ == 0) {
197     VIXL_ASSERT(IsEmpty() ||
198                 masm_->GetCursorOffset() <
199                     unresolved_branches_.GetFirstLimit());
200   }
201 }
202 
203 
RegisterUnresolvedBranch(ptrdiff_t branch_pos,Label * label,ImmBranchType branch_type)204 void VeneerPool::RegisterUnresolvedBranch(ptrdiff_t branch_pos,
205                                           Label* label,
206                                           ImmBranchType branch_type) {
207   VIXL_ASSERT(!label->IsBound());
208   BranchInfo branch_info = BranchInfo(branch_pos, label, branch_type);
209   unresolved_branches_.insert(branch_info);
210   UpdateNextCheckPoint();
211   // TODO: In debug mode register the label with the assembler to make sure it
212   // is bound with masm Bind and not asm bind.
213 }
214 
215 
DeleteUnresolvedBranchInfoForLabel(Label * label)216 void VeneerPool::DeleteUnresolvedBranchInfoForLabel(Label* label) {
217   if (IsEmpty()) {
218     VIXL_ASSERT(checkpoint_ == kNoCheckpointRequired);
219     return;
220   }
221 
222   if (label->IsLinked()) {
223     Label::LabelLinksIterator links_it(label);
224     for (; !links_it.Done(); links_it.Advance()) {
225       ptrdiff_t link_offset = *links_it.Current();
226       Instruction* link = masm_->GetInstructionAt(link_offset);
227 
228       // ADR instructions are not handled.
229       if (BranchTypeUsesVeneers(link->GetBranchType())) {
230         BranchInfo branch_info(link_offset, label, link->GetBranchType());
231         unresolved_branches_.erase(branch_info);
232       }
233     }
234   }
235 
236   UpdateNextCheckPoint();
237 }
238 
239 
ShouldEmitVeneer(int64_t first_unreacheable_pc,size_t amount)240 bool VeneerPool::ShouldEmitVeneer(int64_t first_unreacheable_pc,
241                                   size_t amount) {
242   ptrdiff_t offset =
243       kPoolNonVeneerCodeSize + amount + GetMaxSize() + GetOtherPoolsMaxSize();
244   return (masm_->GetCursorOffset() + offset) > first_unreacheable_pc;
245 }
246 
247 
CheckEmitFor(size_t amount,EmitOption option)248 void VeneerPool::CheckEmitFor(size_t amount, EmitOption option) {
249   if (IsEmpty()) return;
250 
251   VIXL_ASSERT(masm_->GetCursorOffset() + kPoolNonVeneerCodeSize <
252               unresolved_branches_.GetFirstLimit());
253 
254   if (IsBlocked()) return;
255 
256   if (ShouldEmitVeneers(amount)) {
257     Emit(option, amount);
258   } else {
259     UpdateNextCheckPoint();
260   }
261 }
262 
263 
Emit(EmitOption option,size_t amount)264 void VeneerPool::Emit(EmitOption option, size_t amount) {
265   // There is an issue if we are asked to emit a blocked or empty pool.
266   VIXL_ASSERT(!IsBlocked());
267   VIXL_ASSERT(!IsEmpty());
268 
269   Label end;
270   if (option == kBranchRequired) {
271     ExactAssemblyScopeWithoutPoolsCheck guard(masm_, kInstructionSize);
272     masm_->b(&end);
273   }
274 
275   // We want to avoid generating veneer pools too often, so generate veneers for
276   // branches that don't immediately require a veneer but will soon go out of
277   // range.
278   static const size_t kVeneerEmissionMargin = 1 * KBytes;
279 
280   for (BranchInfoSetIterator it(&unresolved_branches_); !it.Done();) {
281     BranchInfo* branch_info = it.Current();
282     if (ShouldEmitVeneer(branch_info->first_unreacheable_pc_,
283                          amount + kVeneerEmissionMargin)) {
284       CodeBufferCheckScope scope(masm_,
285                                  kVeneerCodeSize,
286                                  CodeBufferCheckScope::kCheck,
287                                  CodeBufferCheckScope::kExactSize);
288       ptrdiff_t branch_pos = branch_info->pc_offset_;
289       Instruction* branch = masm_->GetInstructionAt(branch_pos);
290       Label* label = branch_info->label_;
291 
292       // Patch the branch to point to the current position, and emit a branch
293       // to the label.
294       Instruction* veneer = masm_->GetCursorAddress<Instruction*>();
295       branch->SetImmPCOffsetTarget(veneer);
296       {
297         ExactAssemblyScopeWithoutPoolsCheck guard(masm_, kInstructionSize);
298         masm_->b(label);
299       }
300 
301       // Update the label. The branch patched does not point to it any longer.
302       label->DeleteLink(branch_pos);
303 
304       it.DeleteCurrentAndAdvance();
305     } else {
306       it.AdvanceToNextType();
307     }
308   }
309 
310   UpdateNextCheckPoint();
311 
312   masm_->bind(&end);
313 }
314 
315 
MacroAssembler(PositionIndependentCodeOption pic)316 MacroAssembler::MacroAssembler(PositionIndependentCodeOption pic)
317     : Assembler(pic),
318 #ifdef VIXL_DEBUG
319       allow_macro_instructions_(true),
320 #endif
321       generate_simulator_code_(VIXL_AARCH64_GENERATE_SIMULATOR_CODE),
322       sp_(sp),
323       tmp_list_(ip0, ip1),
324       fptmp_list_(d31),
325       current_scratch_scope_(NULL),
326       literal_pool_(this),
327       veneer_pool_(this),
328       recommended_checkpoint_(Pool::kNoCheckpointRequired) {
329   checkpoint_ = GetNextCheckPoint();
330 #ifndef VIXL_DEBUG
331   USE(allow_macro_instructions_);
332 #endif
333 }
334 
335 
MacroAssembler(size_t capacity,PositionIndependentCodeOption pic)336 MacroAssembler::MacroAssembler(size_t capacity,
337                                PositionIndependentCodeOption pic)
338     : Assembler(capacity, pic),
339 #ifdef VIXL_DEBUG
340       allow_macro_instructions_(true),
341 #endif
342       generate_simulator_code_(VIXL_AARCH64_GENERATE_SIMULATOR_CODE),
343       sp_(sp),
344       tmp_list_(ip0, ip1),
345       fptmp_list_(d31),
346       current_scratch_scope_(NULL),
347       literal_pool_(this),
348       veneer_pool_(this),
349       recommended_checkpoint_(Pool::kNoCheckpointRequired) {
350   checkpoint_ = GetNextCheckPoint();
351 }
352 
353 
MacroAssembler(byte * buffer,size_t capacity,PositionIndependentCodeOption pic)354 MacroAssembler::MacroAssembler(byte* buffer,
355                                size_t capacity,
356                                PositionIndependentCodeOption pic)
357     : Assembler(buffer, capacity, pic),
358 #ifdef VIXL_DEBUG
359       allow_macro_instructions_(true),
360 #endif
361       generate_simulator_code_(VIXL_AARCH64_GENERATE_SIMULATOR_CODE),
362       sp_(sp),
363       tmp_list_(ip0, ip1),
364       fptmp_list_(d31),
365       current_scratch_scope_(NULL),
366       literal_pool_(this),
367       veneer_pool_(this),
368       recommended_checkpoint_(Pool::kNoCheckpointRequired) {
369   checkpoint_ = GetNextCheckPoint();
370 }
371 
372 
~MacroAssembler()373 MacroAssembler::~MacroAssembler() {}
374 
375 
Reset()376 void MacroAssembler::Reset() {
377   Assembler::Reset();
378 
379   VIXL_ASSERT(!literal_pool_.IsBlocked());
380   literal_pool_.Reset();
381   veneer_pool_.Reset();
382 
383   checkpoint_ = GetNextCheckPoint();
384 }
385 
386 
FinalizeCode(FinalizeOption option)387 void MacroAssembler::FinalizeCode(FinalizeOption option) {
388   if (!literal_pool_.IsEmpty()) {
389     // The user may decide to emit more code after Finalize, emit a branch if
390     // that's the case.
391     literal_pool_.Emit(option == kUnreachable ? Pool::kNoBranchRequired
392                                               : Pool::kBranchRequired);
393   }
394   VIXL_ASSERT(veneer_pool_.IsEmpty());
395 
396   Assembler::FinalizeCode();
397 }
398 
399 
CheckEmitFor(size_t amount)400 void MacroAssembler::CheckEmitFor(size_t amount) {
401   CheckEmitPoolsFor(amount);
402   GetBuffer()->EnsureSpaceFor(amount);
403 }
404 
405 
CheckEmitPoolsFor(size_t amount)406 void MacroAssembler::CheckEmitPoolsFor(size_t amount) {
407   literal_pool_.CheckEmitFor(amount);
408   veneer_pool_.CheckEmitFor(amount);
409   checkpoint_ = GetNextCheckPoint();
410 }
411 
412 
MoveImmediateHelper(MacroAssembler * masm,const Register & rd,uint64_t imm)413 int MacroAssembler::MoveImmediateHelper(MacroAssembler* masm,
414                                         const Register& rd,
415                                         uint64_t imm) {
416   bool emit_code = (masm != NULL);
417   VIXL_ASSERT(IsUint32(imm) || IsInt32(imm) || rd.Is64Bits());
418   // The worst case for size is mov 64-bit immediate to sp:
419   //  * up to 4 instructions to materialise the constant
420   //  * 1 instruction to move to sp
421   MacroEmissionCheckScope guard(masm);
422 
423   // Immediates on Aarch64 can be produced using an initial value, and zero to
424   // three move keep operations.
425   //
426   // Initial values can be generated with:
427   //  1. 64-bit move zero (movz).
428   //  2. 32-bit move inverted (movn).
429   //  3. 64-bit move inverted.
430   //  4. 32-bit orr immediate.
431   //  5. 64-bit orr immediate.
432   // Move-keep may then be used to modify each of the 16-bit half words.
433   //
434   // The code below supports all five initial value generators, and
435   // applying move-keep operations to move-zero and move-inverted initial
436   // values.
437 
438   // Try to move the immediate in one instruction, and if that fails, switch to
439   // using multiple instructions.
440   if (OneInstrMoveImmediateHelper(masm, rd, imm)) {
441     return 1;
442   } else {
443     int instruction_count = 0;
444     unsigned reg_size = rd.GetSizeInBits();
445 
446     // Generic immediate case. Imm will be represented by
447     //   [imm3, imm2, imm1, imm0], where each imm is 16 bits.
448     // A move-zero or move-inverted is generated for the first non-zero or
449     // non-0xffff immX, and a move-keep for subsequent non-zero immX.
450 
451     uint64_t ignored_halfword = 0;
452     bool invert_move = false;
453     // If the number of 0xffff halfwords is greater than the number of 0x0000
454     // halfwords, it's more efficient to use move-inverted.
455     if (CountClearHalfWords(~imm, reg_size) >
456         CountClearHalfWords(imm, reg_size)) {
457       ignored_halfword = 0xffff;
458       invert_move = true;
459     }
460 
461     // Mov instructions can't move values into the stack pointer, so set up a
462     // temporary register, if needed.
463     UseScratchRegisterScope temps;
464     Register temp;
465     if (emit_code) {
466       temps.Open(masm);
467       temp = rd.IsSP() ? temps.AcquireSameSizeAs(rd) : rd;
468     }
469 
470     // Iterate through the halfwords. Use movn/movz for the first non-ignored
471     // halfword, and movk for subsequent halfwords.
472     VIXL_ASSERT((reg_size % 16) == 0);
473     bool first_mov_done = false;
474     for (unsigned i = 0; i < (reg_size / 16); i++) {
475       uint64_t imm16 = (imm >> (16 * i)) & 0xffff;
476       if (imm16 != ignored_halfword) {
477         if (!first_mov_done) {
478           if (invert_move) {
479             if (emit_code) masm->movn(temp, ~imm16 & 0xffff, 16 * i);
480             instruction_count++;
481           } else {
482             if (emit_code) masm->movz(temp, imm16, 16 * i);
483             instruction_count++;
484           }
485           first_mov_done = true;
486         } else {
487           // Construct a wider constant.
488           if (emit_code) masm->movk(temp, imm16, 16 * i);
489           instruction_count++;
490         }
491       }
492     }
493 
494     VIXL_ASSERT(first_mov_done);
495 
496     // Move the temporary if the original destination register was the stack
497     // pointer.
498     if (rd.IsSP()) {
499       if (emit_code) masm->mov(rd, temp);
500       instruction_count++;
501     }
502     return instruction_count;
503   }
504 }
505 
506 
OneInstrMoveImmediateHelper(MacroAssembler * masm,const Register & dst,int64_t imm)507 bool MacroAssembler::OneInstrMoveImmediateHelper(MacroAssembler* masm,
508                                                  const Register& dst,
509                                                  int64_t imm) {
510   bool emit_code = masm != NULL;
511   unsigned n, imm_s, imm_r;
512   int reg_size = dst.GetSizeInBits();
513 
514   if (IsImmMovz(imm, reg_size) && !dst.IsSP()) {
515     // Immediate can be represented in a move zero instruction. Movz can't write
516     // to the stack pointer.
517     if (emit_code) {
518       masm->movz(dst, imm);
519     }
520     return true;
521   } else if (IsImmMovn(imm, reg_size) && !dst.IsSP()) {
522     // Immediate can be represented in a move negative instruction. Movn can't
523     // write to the stack pointer.
524     if (emit_code) {
525       masm->movn(dst, dst.Is64Bits() ? ~imm : (~imm & kWRegMask));
526     }
527     return true;
528   } else if (IsImmLogical(imm, reg_size, &n, &imm_s, &imm_r)) {
529     // Immediate can be represented in a logical orr instruction.
530     VIXL_ASSERT(!dst.IsZero());
531     if (emit_code) {
532       masm->LogicalImmediate(dst,
533                              AppropriateZeroRegFor(dst),
534                              n,
535                              imm_s,
536                              imm_r,
537                              ORR);
538     }
539     return true;
540   }
541   return false;
542 }
543 
544 
B(Label * label,BranchType type,Register reg,int bit)545 void MacroAssembler::B(Label* label, BranchType type, Register reg, int bit) {
546   VIXL_ASSERT((reg.Is(NoReg) || (type >= kBranchTypeFirstUsingReg)) &&
547               ((bit == -1) || (type >= kBranchTypeFirstUsingBit)));
548   if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
549     B(static_cast<Condition>(type), label);
550   } else {
551     switch (type) {
552       case always:
553         B(label);
554         break;
555       case never:
556         break;
557       case reg_zero:
558         Cbz(reg, label);
559         break;
560       case reg_not_zero:
561         Cbnz(reg, label);
562         break;
563       case reg_bit_clear:
564         Tbz(reg, bit, label);
565         break;
566       case reg_bit_set:
567         Tbnz(reg, bit, label);
568         break;
569       default:
570         VIXL_UNREACHABLE();
571     }
572   }
573 }
574 
575 
B(Label * label)576 void MacroAssembler::B(Label* label) {
577   // We don't need to check the size of the literal pool, because the size of
578   // the literal pool is already bounded by the literal range, which is smaller
579   // than the range of this branch.
580   VIXL_ASSERT(Instruction::GetImmBranchForwardRange(UncondBranchType) >
581               Instruction::kLoadLiteralRange);
582   SingleEmissionCheckScope guard(this);
583   b(label);
584 }
585 
586 
B(Label * label,Condition cond)587 void MacroAssembler::B(Label* label, Condition cond) {
588   // We don't need to check the size of the literal pool, because the size of
589   // the literal pool is already bounded by the literal range, which is smaller
590   // than the range of this branch.
591   VIXL_ASSERT(Instruction::GetImmBranchForwardRange(CondBranchType) >
592               Instruction::kLoadLiteralRange);
593   VIXL_ASSERT(allow_macro_instructions_);
594   VIXL_ASSERT((cond != al) && (cond != nv));
595   EmissionCheckScope guard(this, 2 * kInstructionSize);
596 
597   if (label->IsBound() && LabelIsOutOfRange(label, CondBranchType)) {
598     Label done;
599     b(&done, InvertCondition(cond));
600     b(label);
601     bind(&done);
602   } else {
603     if (!label->IsBound()) {
604       veneer_pool_.RegisterUnresolvedBranch(GetCursorOffset(),
605                                             label,
606                                             CondBranchType);
607     }
608     b(label, cond);
609   }
610 }
611 
612 
Cbnz(const Register & rt,Label * label)613 void MacroAssembler::Cbnz(const Register& rt, Label* label) {
614   // We don't need to check the size of the literal pool, because the size of
615   // the literal pool is already bounded by the literal range, which is smaller
616   // than the range of this branch.
617   VIXL_ASSERT(Instruction::GetImmBranchForwardRange(CompareBranchType) >
618               Instruction::kLoadLiteralRange);
619   VIXL_ASSERT(allow_macro_instructions_);
620   VIXL_ASSERT(!rt.IsZero());
621   EmissionCheckScope guard(this, 2 * kInstructionSize);
622 
623   if (label->IsBound() && LabelIsOutOfRange(label, CondBranchType)) {
624     Label done;
625     cbz(rt, &done);
626     b(label);
627     bind(&done);
628   } else {
629     if (!label->IsBound()) {
630       veneer_pool_.RegisterUnresolvedBranch(GetCursorOffset(),
631                                             label,
632                                             CompareBranchType);
633     }
634     cbnz(rt, label);
635   }
636 }
637 
638 
Cbz(const Register & rt,Label * label)639 void MacroAssembler::Cbz(const Register& rt, Label* label) {
640   // We don't need to check the size of the literal pool, because the size of
641   // the literal pool is already bounded by the literal range, which is smaller
642   // than the range of this branch.
643   VIXL_ASSERT(Instruction::GetImmBranchForwardRange(CompareBranchType) >
644               Instruction::kLoadLiteralRange);
645   VIXL_ASSERT(allow_macro_instructions_);
646   VIXL_ASSERT(!rt.IsZero());
647   EmissionCheckScope guard(this, 2 * kInstructionSize);
648 
649   if (label->IsBound() && LabelIsOutOfRange(label, CondBranchType)) {
650     Label done;
651     cbnz(rt, &done);
652     b(label);
653     bind(&done);
654   } else {
655     if (!label->IsBound()) {
656       veneer_pool_.RegisterUnresolvedBranch(GetCursorOffset(),
657                                             label,
658                                             CompareBranchType);
659     }
660     cbz(rt, label);
661   }
662 }
663 
664 
Tbnz(const Register & rt,unsigned bit_pos,Label * label)665 void MacroAssembler::Tbnz(const Register& rt, unsigned bit_pos, Label* label) {
666   // This is to avoid a situation where emitting a veneer for a TBZ/TBNZ branch
667   // can become impossible because we emit the literal pool first.
668   literal_pool_.CheckEmitForBranch(
669       Instruction::GetImmBranchForwardRange(TestBranchType));
670   VIXL_ASSERT(allow_macro_instructions_);
671   VIXL_ASSERT(!rt.IsZero());
672   EmissionCheckScope guard(this, 2 * kInstructionSize);
673 
674   if (label->IsBound() && LabelIsOutOfRange(label, TestBranchType)) {
675     Label done;
676     tbz(rt, bit_pos, &done);
677     b(label);
678     bind(&done);
679   } else {
680     if (!label->IsBound()) {
681       veneer_pool_.RegisterUnresolvedBranch(GetCursorOffset(),
682                                             label,
683                                             TestBranchType);
684     }
685     tbnz(rt, bit_pos, label);
686   }
687 }
688 
689 
Tbz(const Register & rt,unsigned bit_pos,Label * label)690 void MacroAssembler::Tbz(const Register& rt, unsigned bit_pos, Label* label) {
691   // This is to avoid a situation where emitting a veneer for a TBZ/TBNZ branch
692   // can become impossible because we emit the literal pool first.
693   literal_pool_.CheckEmitForBranch(
694       Instruction::GetImmBranchForwardRange(TestBranchType));
695   VIXL_ASSERT(allow_macro_instructions_);
696   VIXL_ASSERT(!rt.IsZero());
697   EmissionCheckScope guard(this, 2 * kInstructionSize);
698 
699   if (label->IsBound() && LabelIsOutOfRange(label, TestBranchType)) {
700     Label done;
701     tbnz(rt, bit_pos, &done);
702     b(label);
703     bind(&done);
704   } else {
705     if (!label->IsBound()) {
706       veneer_pool_.RegisterUnresolvedBranch(GetCursorOffset(),
707                                             label,
708                                             TestBranchType);
709     }
710     tbz(rt, bit_pos, label);
711   }
712 }
713 
714 
Bind(Label * label)715 void MacroAssembler::Bind(Label* label) {
716   VIXL_ASSERT(allow_macro_instructions_);
717   veneer_pool_.DeleteUnresolvedBranchInfoForLabel(label);
718   bind(label);
719 }
720 
721 
722 // Bind a label to a specified offset from the start of the buffer.
BindToOffset(Label * label,ptrdiff_t offset)723 void MacroAssembler::BindToOffset(Label* label, ptrdiff_t offset) {
724   VIXL_ASSERT(allow_macro_instructions_);
725   veneer_pool_.DeleteUnresolvedBranchInfoForLabel(label);
726   Assembler::BindToOffset(label, offset);
727 }
728 
729 
And(const Register & rd,const Register & rn,const Operand & operand)730 void MacroAssembler::And(const Register& rd,
731                          const Register& rn,
732                          const Operand& operand) {
733   VIXL_ASSERT(allow_macro_instructions_);
734   LogicalMacro(rd, rn, operand, AND);
735 }
736 
737 
Ands(const Register & rd,const Register & rn,const Operand & operand)738 void MacroAssembler::Ands(const Register& rd,
739                           const Register& rn,
740                           const Operand& operand) {
741   VIXL_ASSERT(allow_macro_instructions_);
742   LogicalMacro(rd, rn, operand, ANDS);
743 }
744 
745 
Tst(const Register & rn,const Operand & operand)746 void MacroAssembler::Tst(const Register& rn, const Operand& operand) {
747   VIXL_ASSERT(allow_macro_instructions_);
748   Ands(AppropriateZeroRegFor(rn), rn, operand);
749 }
750 
751 
Bic(const Register & rd,const Register & rn,const Operand & operand)752 void MacroAssembler::Bic(const Register& rd,
753                          const Register& rn,
754                          const Operand& operand) {
755   VIXL_ASSERT(allow_macro_instructions_);
756   LogicalMacro(rd, rn, operand, BIC);
757 }
758 
759 
Bics(const Register & rd,const Register & rn,const Operand & operand)760 void MacroAssembler::Bics(const Register& rd,
761                           const Register& rn,
762                           const Operand& operand) {
763   VIXL_ASSERT(allow_macro_instructions_);
764   LogicalMacro(rd, rn, operand, BICS);
765 }
766 
767 
Orr(const Register & rd,const Register & rn,const Operand & operand)768 void MacroAssembler::Orr(const Register& rd,
769                          const Register& rn,
770                          const Operand& operand) {
771   VIXL_ASSERT(allow_macro_instructions_);
772   LogicalMacro(rd, rn, operand, ORR);
773 }
774 
775 
Orn(const Register & rd,const Register & rn,const Operand & operand)776 void MacroAssembler::Orn(const Register& rd,
777                          const Register& rn,
778                          const Operand& operand) {
779   VIXL_ASSERT(allow_macro_instructions_);
780   LogicalMacro(rd, rn, operand, ORN);
781 }
782 
783 
Eor(const Register & rd,const Register & rn,const Operand & operand)784 void MacroAssembler::Eor(const Register& rd,
785                          const Register& rn,
786                          const Operand& operand) {
787   VIXL_ASSERT(allow_macro_instructions_);
788   LogicalMacro(rd, rn, operand, EOR);
789 }
790 
791 
Eon(const Register & rd,const Register & rn,const Operand & operand)792 void MacroAssembler::Eon(const Register& rd,
793                          const Register& rn,
794                          const Operand& operand) {
795   VIXL_ASSERT(allow_macro_instructions_);
796   LogicalMacro(rd, rn, operand, EON);
797 }
798 
799 
LogicalMacro(const Register & rd,const Register & rn,const Operand & operand,LogicalOp op)800 void MacroAssembler::LogicalMacro(const Register& rd,
801                                   const Register& rn,
802                                   const Operand& operand,
803                                   LogicalOp op) {
804   // The worst case for size is logical immediate to sp:
805   //  * up to 4 instructions to materialise the constant
806   //  * 1 instruction to do the operation
807   //  * 1 instruction to move to sp
808   MacroEmissionCheckScope guard(this);
809   UseScratchRegisterScope temps(this);
810 
811   if (operand.IsImmediate()) {
812     uint64_t immediate = operand.GetImmediate();
813     unsigned reg_size = rd.GetSizeInBits();
814 
815     // If the operation is NOT, invert the operation and immediate.
816     if ((op & NOT) == NOT) {
817       op = static_cast<LogicalOp>(op & ~NOT);
818       immediate = ~immediate;
819     }
820 
821     // Ignore the top 32 bits of an immediate if we're moving to a W register.
822     if (rd.Is32Bits()) {
823       // Check that the top 32 bits are consistent.
824       VIXL_ASSERT(((immediate >> kWRegSize) == 0) ||
825                   ((immediate >> kWRegSize) == 0xffffffff));
826       immediate &= kWRegMask;
827     }
828 
829     VIXL_ASSERT(rd.Is64Bits() || IsUint32(immediate));
830 
831     // Special cases for all set or all clear immediates.
832     if (immediate == 0) {
833       switch (op) {
834         case AND:
835           Mov(rd, 0);
836           return;
837         case ORR:
838           VIXL_FALLTHROUGH();
839         case EOR:
840           Mov(rd, rn);
841           return;
842         case ANDS:
843           VIXL_FALLTHROUGH();
844         case BICS:
845           break;
846         default:
847           VIXL_UNREACHABLE();
848       }
849     } else if ((rd.Is64Bits() && (immediate == UINT64_C(0xffffffffffffffff))) ||
850                (rd.Is32Bits() && (immediate == UINT64_C(0x00000000ffffffff)))) {
851       switch (op) {
852         case AND:
853           Mov(rd, rn);
854           return;
855         case ORR:
856           Mov(rd, immediate);
857           return;
858         case EOR:
859           Mvn(rd, rn);
860           return;
861         case ANDS:
862           VIXL_FALLTHROUGH();
863         case BICS:
864           break;
865         default:
866           VIXL_UNREACHABLE();
867       }
868     }
869 
870     unsigned n, imm_s, imm_r;
871     if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
872       // Immediate can be encoded in the instruction.
873       LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
874     } else {
875       // Immediate can't be encoded: synthesize using move immediate.
876       Register temp = temps.AcquireSameSizeAs(rn);
877 
878       // If the left-hand input is the stack pointer, we can't pre-shift the
879       // immediate, as the encoding won't allow the subsequent post shift.
880       PreShiftImmMode mode = rn.IsSP() ? kNoShift : kAnyShift;
881       Operand imm_operand = MoveImmediateForShiftedOp(temp, immediate, mode);
882 
883       if (rd.Is(sp)) {
884         // If rd is the stack pointer we cannot use it as the destination
885         // register so we use the temp register as an intermediate again.
886         Logical(temp, rn, imm_operand, op);
887         Mov(sp, temp);
888       } else {
889         Logical(rd, rn, imm_operand, op);
890       }
891     }
892   } else if (operand.IsExtendedRegister()) {
893     VIXL_ASSERT(operand.GetRegister().GetSizeInBits() <= rd.GetSizeInBits());
894     // Add/sub extended supports shift <= 4. We want to support exactly the
895     // same modes here.
896     VIXL_ASSERT(operand.GetShiftAmount() <= 4);
897     VIXL_ASSERT(
898         operand.GetRegister().Is64Bits() ||
899         ((operand.GetExtend() != UXTX) && (operand.GetExtend() != SXTX)));
900 
901     temps.Exclude(operand.GetRegister());
902     Register temp = temps.AcquireSameSizeAs(rn);
903     EmitExtendShift(temp,
904                     operand.GetRegister(),
905                     operand.GetExtend(),
906                     operand.GetShiftAmount());
907     Logical(rd, rn, Operand(temp), op);
908   } else {
909     // The operand can be encoded in the instruction.
910     VIXL_ASSERT(operand.IsShiftedRegister());
911     Logical(rd, rn, operand, op);
912   }
913 }
914 
915 
Mov(const Register & rd,const Operand & operand,DiscardMoveMode discard_mode)916 void MacroAssembler::Mov(const Register& rd,
917                          const Operand& operand,
918                          DiscardMoveMode discard_mode) {
919   VIXL_ASSERT(allow_macro_instructions_);
920   // The worst case for size is mov immediate with up to 4 instructions.
921   MacroEmissionCheckScope guard(this);
922 
923   if (operand.IsImmediate()) {
924     // Call the macro assembler for generic immediates.
925     Mov(rd, operand.GetImmediate());
926   } else if (operand.IsShiftedRegister() && (operand.GetShiftAmount() != 0)) {
927     // Emit a shift instruction if moving a shifted register. This operation
928     // could also be achieved using an orr instruction (like orn used by Mvn),
929     // but using a shift instruction makes the disassembly clearer.
930     EmitShift(rd,
931               operand.GetRegister(),
932               operand.GetShift(),
933               operand.GetShiftAmount());
934   } else if (operand.IsExtendedRegister()) {
935     // Emit an extend instruction if moving an extended register. This handles
936     // extend with post-shift operations, too.
937     EmitExtendShift(rd,
938                     operand.GetRegister(),
939                     operand.GetExtend(),
940                     operand.GetShiftAmount());
941   } else {
942     Mov(rd, operand.GetRegister(), discard_mode);
943   }
944 }
945 
946 
Movi16bitHelper(const VRegister & vd,uint64_t imm)947 void MacroAssembler::Movi16bitHelper(const VRegister& vd, uint64_t imm) {
948   VIXL_ASSERT(IsUint16(imm));
949   int byte1 = (imm & 0xff);
950   int byte2 = ((imm >> 8) & 0xff);
951   if (byte1 == byte2) {
952     movi(vd.Is64Bits() ? vd.V8B() : vd.V16B(), byte1);
953   } else if (byte1 == 0) {
954     movi(vd, byte2, LSL, 8);
955   } else if (byte2 == 0) {
956     movi(vd, byte1);
957   } else if (byte1 == 0xff) {
958     mvni(vd, ~byte2 & 0xff, LSL, 8);
959   } else if (byte2 == 0xff) {
960     mvni(vd, ~byte1 & 0xff);
961   } else {
962     UseScratchRegisterScope temps(this);
963     Register temp = temps.AcquireW();
964     movz(temp, imm);
965     dup(vd, temp);
966   }
967 }
968 
969 
Movi32bitHelper(const VRegister & vd,uint64_t imm)970 void MacroAssembler::Movi32bitHelper(const VRegister& vd, uint64_t imm) {
971   VIXL_ASSERT(IsUint32(imm));
972 
973   uint8_t bytes[sizeof(imm)];
974   memcpy(bytes, &imm, sizeof(imm));
975 
976   // All bytes are either 0x00 or 0xff.
977   {
978     bool all0orff = true;
979     for (int i = 0; i < 4; ++i) {
980       if ((bytes[i] != 0) && (bytes[i] != 0xff)) {
981         all0orff = false;
982         break;
983       }
984     }
985 
986     if (all0orff == true) {
987       movi(vd.Is64Bits() ? vd.V1D() : vd.V2D(), ((imm << 32) | imm));
988       return;
989     }
990   }
991 
992   // Of the 4 bytes, only one byte is non-zero.
993   for (int i = 0; i < 4; i++) {
994     if ((imm & (0xff << (i * 8))) == imm) {
995       movi(vd, bytes[i], LSL, i * 8);
996       return;
997     }
998   }
999 
1000   // Of the 4 bytes, only one byte is not 0xff.
1001   for (int i = 0; i < 4; i++) {
1002     uint32_t mask = ~(0xff << (i * 8));
1003     if ((imm & mask) == mask) {
1004       mvni(vd, ~bytes[i] & 0xff, LSL, i * 8);
1005       return;
1006     }
1007   }
1008 
1009   // Immediate is of the form 0x00MMFFFF.
1010   if ((imm & 0xff00ffff) == 0x0000ffff) {
1011     movi(vd, bytes[2], MSL, 16);
1012     return;
1013   }
1014 
1015   // Immediate is of the form 0x0000MMFF.
1016   if ((imm & 0xffff00ff) == 0x000000ff) {
1017     movi(vd, bytes[1], MSL, 8);
1018     return;
1019   }
1020 
1021   // Immediate is of the form 0xFFMM0000.
1022   if ((imm & 0xff00ffff) == 0xff000000) {
1023     mvni(vd, ~bytes[2] & 0xff, MSL, 16);
1024     return;
1025   }
1026   // Immediate is of the form 0xFFFFMM00.
1027   if ((imm & 0xffff00ff) == 0xffff0000) {
1028     mvni(vd, ~bytes[1] & 0xff, MSL, 8);
1029     return;
1030   }
1031 
1032   // Top and bottom 16-bits are equal.
1033   if (((imm >> 16) & 0xffff) == (imm & 0xffff)) {
1034     Movi16bitHelper(vd.Is64Bits() ? vd.V4H() : vd.V8H(), imm & 0xffff);
1035     return;
1036   }
1037 
1038   // Default case.
1039   {
1040     UseScratchRegisterScope temps(this);
1041     Register temp = temps.AcquireW();
1042     Mov(temp, imm);
1043     dup(vd, temp);
1044   }
1045 }
1046 
1047 
Movi64bitHelper(const VRegister & vd,uint64_t imm)1048 void MacroAssembler::Movi64bitHelper(const VRegister& vd, uint64_t imm) {
1049   // All bytes are either 0x00 or 0xff.
1050   {
1051     bool all0orff = true;
1052     for (int i = 0; i < 8; ++i) {
1053       int byteval = (imm >> (i * 8)) & 0xff;
1054       if (byteval != 0 && byteval != 0xff) {
1055         all0orff = false;
1056         break;
1057       }
1058     }
1059     if (all0orff == true) {
1060       movi(vd, imm);
1061       return;
1062     }
1063   }
1064 
1065   // Top and bottom 32-bits are equal.
1066   if (((imm >> 32) & 0xffffffff) == (imm & 0xffffffff)) {
1067     Movi32bitHelper(vd.Is64Bits() ? vd.V2S() : vd.V4S(), imm & 0xffffffff);
1068     return;
1069   }
1070 
1071   // Default case.
1072   {
1073     UseScratchRegisterScope temps(this);
1074     Register temp = temps.AcquireX();
1075     Mov(temp, imm);
1076     if (vd.Is1D()) {
1077       mov(vd.D(), 0, temp);
1078     } else {
1079       dup(vd.V2D(), temp);
1080     }
1081   }
1082 }
1083 
1084 
Movi(const VRegister & vd,uint64_t imm,Shift shift,int shift_amount)1085 void MacroAssembler::Movi(const VRegister& vd,
1086                           uint64_t imm,
1087                           Shift shift,
1088                           int shift_amount) {
1089   VIXL_ASSERT(allow_macro_instructions_);
1090   MacroEmissionCheckScope guard(this);
1091   if (shift_amount != 0 || shift != LSL) {
1092     movi(vd, imm, shift, shift_amount);
1093   } else if (vd.Is8B() || vd.Is16B()) {
1094     // 8-bit immediate.
1095     VIXL_ASSERT(IsUint8(imm));
1096     movi(vd, imm);
1097   } else if (vd.Is4H() || vd.Is8H()) {
1098     // 16-bit immediate.
1099     Movi16bitHelper(vd, imm);
1100   } else if (vd.Is2S() || vd.Is4S()) {
1101     // 32-bit immediate.
1102     Movi32bitHelper(vd, imm);
1103   } else {
1104     // 64-bit immediate.
1105     Movi64bitHelper(vd, imm);
1106   }
1107 }
1108 
1109 
Movi(const VRegister & vd,uint64_t hi,uint64_t lo)1110 void MacroAssembler::Movi(const VRegister& vd, uint64_t hi, uint64_t lo) {
1111   // TODO: Move 128-bit values in a more efficient way.
1112   VIXL_ASSERT(vd.Is128Bits());
1113   UseScratchRegisterScope temps(this);
1114   Movi(vd.V2D(), lo);
1115   Register temp = temps.AcquireX();
1116   Mov(temp, hi);
1117   Ins(vd.V2D(), 1, temp);
1118 }
1119 
1120 
Mvn(const Register & rd,const Operand & operand)1121 void MacroAssembler::Mvn(const Register& rd, const Operand& operand) {
1122   VIXL_ASSERT(allow_macro_instructions_);
1123   // The worst case for size is mvn immediate with up to 4 instructions.
1124   MacroEmissionCheckScope guard(this);
1125 
1126   if (operand.IsImmediate()) {
1127     // Call the macro assembler for generic immediates.
1128     Mvn(rd, operand.GetImmediate());
1129   } else if (operand.IsExtendedRegister()) {
1130     UseScratchRegisterScope temps(this);
1131     temps.Exclude(operand.GetRegister());
1132 
1133     // Emit two instructions for the extend case. This differs from Mov, as
1134     // the extend and invert can't be achieved in one instruction.
1135     Register temp = temps.AcquireSameSizeAs(rd);
1136     EmitExtendShift(temp,
1137                     operand.GetRegister(),
1138                     operand.GetExtend(),
1139                     operand.GetShiftAmount());
1140     mvn(rd, Operand(temp));
1141   } else {
1142     // Otherwise, register and shifted register cases can be handled by the
1143     // assembler directly, using orn.
1144     mvn(rd, operand);
1145   }
1146 }
1147 
1148 
Mov(const Register & rd,uint64_t imm)1149 void MacroAssembler::Mov(const Register& rd, uint64_t imm) {
1150   VIXL_ASSERT(allow_macro_instructions_);
1151   MoveImmediateHelper(this, rd, imm);
1152 }
1153 
1154 
Ccmp(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond)1155 void MacroAssembler::Ccmp(const Register& rn,
1156                           const Operand& operand,
1157                           StatusFlags nzcv,
1158                           Condition cond) {
1159   VIXL_ASSERT(allow_macro_instructions_);
1160   if (operand.IsImmediate() && (operand.GetImmediate() < 0)) {
1161     ConditionalCompareMacro(rn, -operand.GetImmediate(), nzcv, cond, CCMN);
1162   } else {
1163     ConditionalCompareMacro(rn, operand, nzcv, cond, CCMP);
1164   }
1165 }
1166 
1167 
Ccmn(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond)1168 void MacroAssembler::Ccmn(const Register& rn,
1169                           const Operand& operand,
1170                           StatusFlags nzcv,
1171                           Condition cond) {
1172   VIXL_ASSERT(allow_macro_instructions_);
1173   if (operand.IsImmediate() && (operand.GetImmediate() < 0)) {
1174     ConditionalCompareMacro(rn, -operand.GetImmediate(), nzcv, cond, CCMP);
1175   } else {
1176     ConditionalCompareMacro(rn, operand, nzcv, cond, CCMN);
1177   }
1178 }
1179 
1180 
ConditionalCompareMacro(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond,ConditionalCompareOp op)1181 void MacroAssembler::ConditionalCompareMacro(const Register& rn,
1182                                              const Operand& operand,
1183                                              StatusFlags nzcv,
1184                                              Condition cond,
1185                                              ConditionalCompareOp op) {
1186   VIXL_ASSERT((cond != al) && (cond != nv));
1187   // The worst case for size is ccmp immediate:
1188   //  * up to 4 instructions to materialise the constant
1189   //  * 1 instruction for ccmp
1190   MacroEmissionCheckScope guard(this);
1191 
1192   if ((operand.IsShiftedRegister() && (operand.GetShiftAmount() == 0)) ||
1193       (operand.IsImmediate() &&
1194        IsImmConditionalCompare(operand.GetImmediate()))) {
1195     // The immediate can be encoded in the instruction, or the operand is an
1196     // unshifted register: call the assembler.
1197     ConditionalCompare(rn, operand, nzcv, cond, op);
1198   } else {
1199     UseScratchRegisterScope temps(this);
1200     // The operand isn't directly supported by the instruction: perform the
1201     // operation on a temporary register.
1202     Register temp = temps.AcquireSameSizeAs(rn);
1203     Mov(temp, operand);
1204     ConditionalCompare(rn, temp, nzcv, cond, op);
1205   }
1206 }
1207 
1208 
CselHelper(MacroAssembler * masm,const Register & rd,Operand left,Operand right,Condition cond,bool * should_synthesise_left,bool * should_synthesise_right)1209 void MacroAssembler::CselHelper(MacroAssembler* masm,
1210                                 const Register& rd,
1211                                 Operand left,
1212                                 Operand right,
1213                                 Condition cond,
1214                                 bool* should_synthesise_left,
1215                                 bool* should_synthesise_right) {
1216   bool emit_code = (masm != NULL);
1217 
1218   VIXL_ASSERT(!emit_code || masm->allow_macro_instructions_);
1219   VIXL_ASSERT((cond != al) && (cond != nv));
1220   VIXL_ASSERT(!rd.IsZero() && !rd.IsSP());
1221   VIXL_ASSERT(left.IsImmediate() || !left.GetRegister().IsSP());
1222   VIXL_ASSERT(right.IsImmediate() || !right.GetRegister().IsSP());
1223 
1224   if (should_synthesise_left != NULL) *should_synthesise_left = false;
1225   if (should_synthesise_right != NULL) *should_synthesise_right = false;
1226 
1227   // The worst case for size occurs when the inputs are two non encodable
1228   // constants:
1229   //  * up to 4 instructions to materialise the left constant
1230   //  * up to 4 instructions to materialise the right constant
1231   //  * 1 instruction for csel
1232   EmissionCheckScope guard(masm, 9 * kInstructionSize);
1233   UseScratchRegisterScope temps;
1234   if (masm != NULL) {
1235     temps.Open(masm);
1236   }
1237 
1238   // Try to handle cases where both inputs are immediates.
1239   bool left_is_immediate = left.IsImmediate() || left.IsZero();
1240   bool right_is_immediate = right.IsImmediate() || right.IsZero();
1241   if (left_is_immediate && right_is_immediate &&
1242       CselSubHelperTwoImmediates(masm,
1243                                  rd,
1244                                  left.GetEquivalentImmediate(),
1245                                  right.GetEquivalentImmediate(),
1246                                  cond,
1247                                  should_synthesise_left,
1248                                  should_synthesise_right)) {
1249     return;
1250   }
1251 
1252   // Handle cases where one of the two inputs is -1, 0, or 1.
1253   bool left_is_small_immediate =
1254       left_is_immediate && ((-1 <= left.GetEquivalentImmediate()) &&
1255                             (left.GetEquivalentImmediate() <= 1));
1256   bool right_is_small_immediate =
1257       right_is_immediate && ((-1 <= right.GetEquivalentImmediate()) &&
1258                              (right.GetEquivalentImmediate() <= 1));
1259   if (right_is_small_immediate || left_is_small_immediate) {
1260     bool swapped_inputs = false;
1261     if (!right_is_small_immediate) {
1262       std::swap(left, right);
1263       cond = InvertCondition(cond);
1264       swapped_inputs = true;
1265     }
1266     CselSubHelperRightSmallImmediate(masm,
1267                                      &temps,
1268                                      rd,
1269                                      left,
1270                                      right,
1271                                      cond,
1272                                      swapped_inputs ? should_synthesise_right
1273                                                     : should_synthesise_left);
1274     return;
1275   }
1276 
1277   // Otherwise both inputs need to be available in registers. Synthesise them
1278   // if necessary and emit the `csel`.
1279   if (!left.IsPlainRegister()) {
1280     if (emit_code) {
1281       Register temp = temps.AcquireSameSizeAs(rd);
1282       masm->Mov(temp, left);
1283       left = temp;
1284     }
1285     if (should_synthesise_left != NULL) *should_synthesise_left = true;
1286   }
1287   if (!right.IsPlainRegister()) {
1288     if (emit_code) {
1289       Register temp = temps.AcquireSameSizeAs(rd);
1290       masm->Mov(temp, right);
1291       right = temp;
1292     }
1293     if (should_synthesise_right != NULL) *should_synthesise_right = true;
1294   }
1295   if (emit_code) {
1296     VIXL_ASSERT(left.IsPlainRegister() && right.IsPlainRegister());
1297     if (left.GetRegister().Is(right.GetRegister())) {
1298       masm->Mov(rd, left.GetRegister());
1299     } else {
1300       masm->csel(rd, left.GetRegister(), right.GetRegister(), cond);
1301     }
1302   }
1303 }
1304 
1305 
CselSubHelperTwoImmediates(MacroAssembler * masm,const Register & rd,int64_t left,int64_t right,Condition cond,bool * should_synthesise_left,bool * should_synthesise_right)1306 bool MacroAssembler::CselSubHelperTwoImmediates(MacroAssembler* masm,
1307                                                 const Register& rd,
1308                                                 int64_t left,
1309                                                 int64_t right,
1310                                                 Condition cond,
1311                                                 bool* should_synthesise_left,
1312                                                 bool* should_synthesise_right) {
1313   bool emit_code = (masm != NULL);
1314   if (should_synthesise_left != NULL) *should_synthesise_left = false;
1315   if (should_synthesise_right != NULL) *should_synthesise_right = false;
1316 
1317   if (left == right) {
1318     if (emit_code) masm->Mov(rd, left);
1319     return true;
1320   } else if (left == -right) {
1321     if (should_synthesise_right != NULL) *should_synthesise_right = true;
1322     if (emit_code) {
1323       masm->Mov(rd, right);
1324       masm->Cneg(rd, rd, cond);
1325     }
1326     return true;
1327   }
1328 
1329   if (CselSubHelperTwoOrderedImmediates(masm, rd, left, right, cond)) {
1330     return true;
1331   } else {
1332     std::swap(left, right);
1333     if (CselSubHelperTwoOrderedImmediates(masm,
1334                                           rd,
1335                                           left,
1336                                           right,
1337                                           InvertCondition(cond))) {
1338       return true;
1339     }
1340   }
1341 
1342   // TODO: Handle more situations. For example handle `csel rd, #5, #6, cond`
1343   // with `cinc`.
1344   return false;
1345 }
1346 
1347 
CselSubHelperTwoOrderedImmediates(MacroAssembler * masm,const Register & rd,int64_t left,int64_t right,Condition cond)1348 bool MacroAssembler::CselSubHelperTwoOrderedImmediates(MacroAssembler* masm,
1349                                                        const Register& rd,
1350                                                        int64_t left,
1351                                                        int64_t right,
1352                                                        Condition cond) {
1353   bool emit_code = (masm != NULL);
1354 
1355   if ((left == 1) && (right == 0)) {
1356     if (emit_code) masm->cset(rd, cond);
1357     return true;
1358   } else if ((left == -1) && (right == 0)) {
1359     if (emit_code) masm->csetm(rd, cond);
1360     return true;
1361   }
1362   return false;
1363 }
1364 
1365 
CselSubHelperRightSmallImmediate(MacroAssembler * masm,UseScratchRegisterScope * temps,const Register & rd,const Operand & left,const Operand & right,Condition cond,bool * should_synthesise_left)1366 void MacroAssembler::CselSubHelperRightSmallImmediate(
1367     MacroAssembler* masm,
1368     UseScratchRegisterScope* temps,
1369     const Register& rd,
1370     const Operand& left,
1371     const Operand& right,
1372     Condition cond,
1373     bool* should_synthesise_left) {
1374   bool emit_code = (masm != NULL);
1375   VIXL_ASSERT((right.IsImmediate() || right.IsZero()) &&
1376               (-1 <= right.GetEquivalentImmediate()) &&
1377               (right.GetEquivalentImmediate() <= 1));
1378   Register left_register;
1379 
1380   if (left.IsPlainRegister()) {
1381     left_register = left.GetRegister();
1382   } else {
1383     if (emit_code) {
1384       left_register = temps->AcquireSameSizeAs(rd);
1385       masm->Mov(left_register, left);
1386     }
1387     if (should_synthesise_left != NULL) *should_synthesise_left = true;
1388   }
1389   if (emit_code) {
1390     int64_t imm = right.GetEquivalentImmediate();
1391     Register zr = AppropriateZeroRegFor(rd);
1392     if (imm == 0) {
1393       masm->csel(rd, left_register, zr, cond);
1394     } else if (imm == 1) {
1395       masm->csinc(rd, left_register, zr, cond);
1396     } else {
1397       VIXL_ASSERT(imm == -1);
1398       masm->csinv(rd, left_register, zr, cond);
1399     }
1400   }
1401 }
1402 
1403 
Add(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S)1404 void MacroAssembler::Add(const Register& rd,
1405                          const Register& rn,
1406                          const Operand& operand,
1407                          FlagsUpdate S) {
1408   VIXL_ASSERT(allow_macro_instructions_);
1409   if (operand.IsImmediate() && (operand.GetImmediate() < 0) &&
1410       IsImmAddSub(-operand.GetImmediate())) {
1411     AddSubMacro(rd, rn, -operand.GetImmediate(), S, SUB);
1412   } else {
1413     AddSubMacro(rd, rn, operand, S, ADD);
1414   }
1415 }
1416 
1417 
Adds(const Register & rd,const Register & rn,const Operand & operand)1418 void MacroAssembler::Adds(const Register& rd,
1419                           const Register& rn,
1420                           const Operand& operand) {
1421   Add(rd, rn, operand, SetFlags);
1422 }
1423 
1424 
Sub(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S)1425 void MacroAssembler::Sub(const Register& rd,
1426                          const Register& rn,
1427                          const Operand& operand,
1428                          FlagsUpdate S) {
1429   VIXL_ASSERT(allow_macro_instructions_);
1430   if (operand.IsImmediate() && (operand.GetImmediate() < 0) &&
1431       IsImmAddSub(-operand.GetImmediate())) {
1432     AddSubMacro(rd, rn, -operand.GetImmediate(), S, ADD);
1433   } else {
1434     AddSubMacro(rd, rn, operand, S, SUB);
1435   }
1436 }
1437 
1438 
Subs(const Register & rd,const Register & rn,const Operand & operand)1439 void MacroAssembler::Subs(const Register& rd,
1440                           const Register& rn,
1441                           const Operand& operand) {
1442   Sub(rd, rn, operand, SetFlags);
1443 }
1444 
1445 
Cmn(const Register & rn,const Operand & operand)1446 void MacroAssembler::Cmn(const Register& rn, const Operand& operand) {
1447   VIXL_ASSERT(allow_macro_instructions_);
1448   Adds(AppropriateZeroRegFor(rn), rn, operand);
1449 }
1450 
1451 
Cmp(const Register & rn,const Operand & operand)1452 void MacroAssembler::Cmp(const Register& rn, const Operand& operand) {
1453   VIXL_ASSERT(allow_macro_instructions_);
1454   Subs(AppropriateZeroRegFor(rn), rn, operand);
1455 }
1456 
1457 
Fcmp(const FPRegister & fn,double value,FPTrapFlags trap)1458 void MacroAssembler::Fcmp(const FPRegister& fn,
1459                           double value,
1460                           FPTrapFlags trap) {
1461   VIXL_ASSERT(allow_macro_instructions_);
1462   // The worst case for size is:
1463   //  * 1 to materialise the constant, using literal pool if necessary
1464   //  * 1 instruction for fcmp{e}
1465   MacroEmissionCheckScope guard(this);
1466   if (value != 0.0) {
1467     UseScratchRegisterScope temps(this);
1468     FPRegister tmp = temps.AcquireSameSizeAs(fn);
1469     Fmov(tmp, value);
1470     FPCompareMacro(fn, tmp, trap);
1471   } else {
1472     FPCompareMacro(fn, value, trap);
1473   }
1474 }
1475 
1476 
Fcmpe(const FPRegister & fn,double value)1477 void MacroAssembler::Fcmpe(const FPRegister& fn, double value) {
1478   Fcmp(fn, value, EnableTrap);
1479 }
1480 
1481 
Fmov(VRegister vd,double imm)1482 void MacroAssembler::Fmov(VRegister vd, double imm) {
1483   VIXL_ASSERT(allow_macro_instructions_);
1484   // Floating point immediates are loaded through the literal pool.
1485   MacroEmissionCheckScope guard(this);
1486 
1487   if (vd.Is1S() || vd.Is2S() || vd.Is4S()) {
1488     Fmov(vd, static_cast<float>(imm));
1489     return;
1490   }
1491 
1492   VIXL_ASSERT(vd.Is1D() || vd.Is2D());
1493   if (IsImmFP64(imm)) {
1494     fmov(vd, imm);
1495   } else {
1496     uint64_t rawbits = DoubleToRawbits(imm);
1497     if (vd.IsScalar()) {
1498       if (rawbits == 0) {
1499         fmov(vd, xzr);
1500       } else {
1501         ldr(vd,
1502             new Literal<double>(imm,
1503                                 &literal_pool_,
1504                                 RawLiteral::kDeletedOnPlacementByPool));
1505       }
1506     } else {
1507       // TODO: consider NEON support for load literal.
1508       Movi(vd, rawbits);
1509     }
1510   }
1511 }
1512 
1513 
Fmov(VRegister vd,float imm)1514 void MacroAssembler::Fmov(VRegister vd, float imm) {
1515   VIXL_ASSERT(allow_macro_instructions_);
1516   // Floating point immediates are loaded through the literal pool.
1517   MacroEmissionCheckScope guard(this);
1518 
1519   if (vd.Is1D() || vd.Is2D()) {
1520     Fmov(vd, static_cast<double>(imm));
1521     return;
1522   }
1523 
1524   VIXL_ASSERT(vd.Is1S() || vd.Is2S() || vd.Is4S());
1525   if (IsImmFP32(imm)) {
1526     fmov(vd, imm);
1527   } else {
1528     uint32_t rawbits = FloatToRawbits(imm);
1529     if (vd.IsScalar()) {
1530       if (rawbits == 0) {
1531         fmov(vd, wzr);
1532       } else {
1533         ldr(vd,
1534             new Literal<float>(imm,
1535                                &literal_pool_,
1536                                RawLiteral::kDeletedOnPlacementByPool));
1537       }
1538     } else {
1539       // TODO: consider NEON support for load literal.
1540       Movi(vd, rawbits);
1541     }
1542   }
1543 }
1544 
1545 
Neg(const Register & rd,const Operand & operand)1546 void MacroAssembler::Neg(const Register& rd, const Operand& operand) {
1547   VIXL_ASSERT(allow_macro_instructions_);
1548   if (operand.IsImmediate()) {
1549     Mov(rd, -operand.GetImmediate());
1550   } else {
1551     Sub(rd, AppropriateZeroRegFor(rd), operand);
1552   }
1553 }
1554 
1555 
Negs(const Register & rd,const Operand & operand)1556 void MacroAssembler::Negs(const Register& rd, const Operand& operand) {
1557   VIXL_ASSERT(allow_macro_instructions_);
1558   Subs(rd, AppropriateZeroRegFor(rd), operand);
1559 }
1560 
1561 
TryOneInstrMoveImmediate(const Register & dst,int64_t imm)1562 bool MacroAssembler::TryOneInstrMoveImmediate(const Register& dst,
1563                                               int64_t imm) {
1564   return OneInstrMoveImmediateHelper(this, dst, imm);
1565 }
1566 
1567 
MoveImmediateForShiftedOp(const Register & dst,int64_t imm,PreShiftImmMode mode)1568 Operand MacroAssembler::MoveImmediateForShiftedOp(const Register& dst,
1569                                                   int64_t imm,
1570                                                   PreShiftImmMode mode) {
1571   int reg_size = dst.GetSizeInBits();
1572 
1573   // Encode the immediate in a single move instruction, if possible.
1574   if (TryOneInstrMoveImmediate(dst, imm)) {
1575     // The move was successful; nothing to do here.
1576   } else {
1577     // Pre-shift the immediate to the least-significant bits of the register.
1578     int shift_low = CountTrailingZeros(imm, reg_size);
1579     if (mode == kLimitShiftForSP) {
1580       // When applied to the stack pointer, the subsequent arithmetic operation
1581       // can use the extend form to shift left by a maximum of four bits. Right
1582       // shifts are not allowed, so we filter them out later before the new
1583       // immediate is tested.
1584       shift_low = std::min(shift_low, 4);
1585     }
1586     int64_t imm_low = imm >> shift_low;
1587 
1588     // Pre-shift the immediate to the most-significant bits of the register,
1589     // inserting set bits in the least-significant bits.
1590     int shift_high = CountLeadingZeros(imm, reg_size);
1591     int64_t imm_high = (imm << shift_high) | ((INT64_C(1) << shift_high) - 1);
1592 
1593     if ((mode != kNoShift) && TryOneInstrMoveImmediate(dst, imm_low)) {
1594       // The new immediate has been moved into the destination's low bits:
1595       // return a new leftward-shifting operand.
1596       return Operand(dst, LSL, shift_low);
1597     } else if ((mode == kAnyShift) && TryOneInstrMoveImmediate(dst, imm_high)) {
1598       // The new immediate has been moved into the destination's high bits:
1599       // return a new rightward-shifting operand.
1600       return Operand(dst, LSR, shift_high);
1601     } else {
1602       Mov(dst, imm);
1603     }
1604   }
1605   return Operand(dst);
1606 }
1607 
1608 
Move(const GenericOperand & dst,const GenericOperand & src)1609 void MacroAssembler::Move(const GenericOperand& dst,
1610                           const GenericOperand& src) {
1611   if (dst.Equals(src)) {
1612     return;
1613   }
1614 
1615   VIXL_ASSERT(dst.IsValid() && src.IsValid());
1616 
1617   // The sizes of the operands must match exactly.
1618   VIXL_ASSERT(dst.GetSizeInBits() == src.GetSizeInBits());
1619   VIXL_ASSERT(dst.GetSizeInBits() <= kXRegSize);
1620   int operand_size = static_cast<int>(dst.GetSizeInBits());
1621 
1622   if (dst.IsCPURegister() && src.IsCPURegister()) {
1623     CPURegister dst_reg = dst.GetCPURegister();
1624     CPURegister src_reg = src.GetCPURegister();
1625     if (dst_reg.IsRegister() && src_reg.IsRegister()) {
1626       Mov(Register(dst_reg), Register(src_reg));
1627     } else if (dst_reg.IsVRegister() && src_reg.IsVRegister()) {
1628       Fmov(VRegister(dst_reg), VRegister(src_reg));
1629     } else {
1630       if (dst_reg.IsRegister()) {
1631         Fmov(Register(dst_reg), VRegister(src_reg));
1632       } else {
1633         Fmov(VRegister(dst_reg), Register(src_reg));
1634       }
1635     }
1636     return;
1637   }
1638 
1639   if (dst.IsMemOperand() && src.IsMemOperand()) {
1640     UseScratchRegisterScope temps(this);
1641     CPURegister temp = temps.AcquireCPURegisterOfSize(operand_size);
1642     Ldr(temp, src.GetMemOperand());
1643     Str(temp, dst.GetMemOperand());
1644     return;
1645   }
1646 
1647   if (dst.IsCPURegister()) {
1648     Ldr(dst.GetCPURegister(), src.GetMemOperand());
1649   } else {
1650     Str(src.GetCPURegister(), dst.GetMemOperand());
1651   }
1652 }
1653 
1654 
ComputeAddress(const Register & dst,const MemOperand & mem_op)1655 void MacroAssembler::ComputeAddress(const Register& dst,
1656                                     const MemOperand& mem_op) {
1657   // We cannot handle pre-indexing or post-indexing.
1658   VIXL_ASSERT(mem_op.GetAddrMode() == Offset);
1659   Register base = mem_op.GetBaseRegister();
1660   if (mem_op.IsImmediateOffset()) {
1661     Add(dst, base, mem_op.GetOffset());
1662   } else {
1663     VIXL_ASSERT(mem_op.IsRegisterOffset());
1664     Register reg_offset = mem_op.GetRegisterOffset();
1665     Shift shift = mem_op.GetShift();
1666     Extend extend = mem_op.GetExtend();
1667     if (shift == NO_SHIFT) {
1668       VIXL_ASSERT(extend != NO_EXTEND);
1669       Add(dst, base, Operand(reg_offset, extend, mem_op.GetShiftAmount()));
1670     } else {
1671       VIXL_ASSERT(extend == NO_EXTEND);
1672       Add(dst, base, Operand(reg_offset, shift, mem_op.GetShiftAmount()));
1673     }
1674   }
1675 }
1676 
1677 
AddSubMacro(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubOp op)1678 void MacroAssembler::AddSubMacro(const Register& rd,
1679                                  const Register& rn,
1680                                  const Operand& operand,
1681                                  FlagsUpdate S,
1682                                  AddSubOp op) {
1683   // Worst case is add/sub immediate:
1684   //  * up to 4 instructions to materialise the constant
1685   //  * 1 instruction for add/sub
1686   MacroEmissionCheckScope guard(this);
1687 
1688   if (operand.IsZero() && rd.Is(rn) && rd.Is64Bits() && rn.Is64Bits() &&
1689       (S == LeaveFlags)) {
1690     // The instruction would be a nop. Avoid generating useless code.
1691     return;
1692   }
1693 
1694   if ((operand.IsImmediate() && !IsImmAddSub(operand.GetImmediate())) ||
1695       (rn.IsZero() && !operand.IsShiftedRegister()) ||
1696       (operand.IsShiftedRegister() && (operand.GetShift() == ROR))) {
1697     UseScratchRegisterScope temps(this);
1698     Register temp = temps.AcquireSameSizeAs(rn);
1699     if (operand.IsImmediate()) {
1700       PreShiftImmMode mode = kAnyShift;
1701 
1702       // If the destination or source register is the stack pointer, we can
1703       // only pre-shift the immediate right by values supported in the add/sub
1704       // extend encoding.
1705       if (rd.IsSP()) {
1706         // If the destination is SP and flags will be set, we can't pre-shift
1707         // the immediate at all.
1708         mode = (S == SetFlags) ? kNoShift : kLimitShiftForSP;
1709       } else if (rn.IsSP()) {
1710         mode = kLimitShiftForSP;
1711       }
1712 
1713       Operand imm_operand =
1714           MoveImmediateForShiftedOp(temp, operand.GetImmediate(), mode);
1715       AddSub(rd, rn, imm_operand, S, op);
1716     } else {
1717       Mov(temp, operand);
1718       AddSub(rd, rn, temp, S, op);
1719     }
1720   } else {
1721     AddSub(rd, rn, operand, S, op);
1722   }
1723 }
1724 
1725 
Adc(const Register & rd,const Register & rn,const Operand & operand)1726 void MacroAssembler::Adc(const Register& rd,
1727                          const Register& rn,
1728                          const Operand& operand) {
1729   VIXL_ASSERT(allow_macro_instructions_);
1730   AddSubWithCarryMacro(rd, rn, operand, LeaveFlags, ADC);
1731 }
1732 
1733 
Adcs(const Register & rd,const Register & rn,const Operand & operand)1734 void MacroAssembler::Adcs(const Register& rd,
1735                           const Register& rn,
1736                           const Operand& operand) {
1737   VIXL_ASSERT(allow_macro_instructions_);
1738   AddSubWithCarryMacro(rd, rn, operand, SetFlags, ADC);
1739 }
1740 
1741 
Sbc(const Register & rd,const Register & rn,const Operand & operand)1742 void MacroAssembler::Sbc(const Register& rd,
1743                          const Register& rn,
1744                          const Operand& operand) {
1745   VIXL_ASSERT(allow_macro_instructions_);
1746   AddSubWithCarryMacro(rd, rn, operand, LeaveFlags, SBC);
1747 }
1748 
1749 
Sbcs(const Register & rd,const Register & rn,const Operand & operand)1750 void MacroAssembler::Sbcs(const Register& rd,
1751                           const Register& rn,
1752                           const Operand& operand) {
1753   VIXL_ASSERT(allow_macro_instructions_);
1754   AddSubWithCarryMacro(rd, rn, operand, SetFlags, SBC);
1755 }
1756 
1757 
Ngc(const Register & rd,const Operand & operand)1758 void MacroAssembler::Ngc(const Register& rd, const Operand& operand) {
1759   VIXL_ASSERT(allow_macro_instructions_);
1760   Register zr = AppropriateZeroRegFor(rd);
1761   Sbc(rd, zr, operand);
1762 }
1763 
1764 
Ngcs(const Register & rd,const Operand & operand)1765 void MacroAssembler::Ngcs(const Register& rd, const Operand& operand) {
1766   VIXL_ASSERT(allow_macro_instructions_);
1767   Register zr = AppropriateZeroRegFor(rd);
1768   Sbcs(rd, zr, operand);
1769 }
1770 
1771 
AddSubWithCarryMacro(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubWithCarryOp op)1772 void MacroAssembler::AddSubWithCarryMacro(const Register& rd,
1773                                           const Register& rn,
1774                                           const Operand& operand,
1775                                           FlagsUpdate S,
1776                                           AddSubWithCarryOp op) {
1777   VIXL_ASSERT(rd.GetSizeInBits() == rn.GetSizeInBits());
1778   // Worst case is addc/subc immediate:
1779   //  * up to 4 instructions to materialise the constant
1780   //  * 1 instruction for add/sub
1781   MacroEmissionCheckScope guard(this);
1782   UseScratchRegisterScope temps(this);
1783 
1784   if (operand.IsImmediate() ||
1785       (operand.IsShiftedRegister() && (operand.GetShift() == ROR))) {
1786     // Add/sub with carry (immediate or ROR shifted register.)
1787     Register temp = temps.AcquireSameSizeAs(rn);
1788     Mov(temp, operand);
1789     AddSubWithCarry(rd, rn, Operand(temp), S, op);
1790   } else if (operand.IsShiftedRegister() && (operand.GetShiftAmount() != 0)) {
1791     // Add/sub with carry (shifted register).
1792     VIXL_ASSERT(operand.GetRegister().GetSizeInBits() == rd.GetSizeInBits());
1793     VIXL_ASSERT(operand.GetShift() != ROR);
1794     VIXL_ASSERT(
1795         IsUintN(rd.GetSizeInBits() == kXRegSize ? kXRegSizeLog2 : kWRegSizeLog2,
1796                 operand.GetShiftAmount()));
1797     temps.Exclude(operand.GetRegister());
1798     Register temp = temps.AcquireSameSizeAs(rn);
1799     EmitShift(temp,
1800               operand.GetRegister(),
1801               operand.GetShift(),
1802               operand.GetShiftAmount());
1803     AddSubWithCarry(rd, rn, Operand(temp), S, op);
1804   } else if (operand.IsExtendedRegister()) {
1805     // Add/sub with carry (extended register).
1806     VIXL_ASSERT(operand.GetRegister().GetSizeInBits() <= rd.GetSizeInBits());
1807     // Add/sub extended supports a shift <= 4. We want to support exactly the
1808     // same modes.
1809     VIXL_ASSERT(operand.GetShiftAmount() <= 4);
1810     VIXL_ASSERT(
1811         operand.GetRegister().Is64Bits() ||
1812         ((operand.GetExtend() != UXTX) && (operand.GetExtend() != SXTX)));
1813     temps.Exclude(operand.GetRegister());
1814     Register temp = temps.AcquireSameSizeAs(rn);
1815     EmitExtendShift(temp,
1816                     operand.GetRegister(),
1817                     operand.GetExtend(),
1818                     operand.GetShiftAmount());
1819     AddSubWithCarry(rd, rn, Operand(temp), S, op);
1820   } else {
1821     // The addressing mode is directly supported by the instruction.
1822     AddSubWithCarry(rd, rn, operand, S, op);
1823   }
1824 }
1825 
1826 
1827 #define DEFINE_FUNCTION(FN, REGTYPE, REG, OP)                          \
1828   void MacroAssembler::FN(const REGTYPE REG, const MemOperand& addr) { \
1829     VIXL_ASSERT(allow_macro_instructions_);                            \
1830     LoadStoreMacro(REG, addr, OP);                                     \
1831   }
LS_MACRO_LIST(DEFINE_FUNCTION)1832 LS_MACRO_LIST(DEFINE_FUNCTION)
1833 #undef DEFINE_FUNCTION
1834 
1835 
1836 void MacroAssembler::LoadStoreMacro(const CPURegister& rt,
1837                                     const MemOperand& addr,
1838                                     LoadStoreOp op) {
1839   // Worst case is ldr/str pre/post index:
1840   //  * 1 instruction for ldr/str
1841   //  * up to 4 instructions to materialise the constant
1842   //  * 1 instruction to update the base
1843   MacroEmissionCheckScope guard(this);
1844 
1845   int64_t offset = addr.GetOffset();
1846   unsigned access_size = CalcLSDataSize(op);
1847 
1848   // Check if an immediate offset fits in the immediate field of the
1849   // appropriate instruction. If not, emit two instructions to perform
1850   // the operation.
1851   if (addr.IsImmediateOffset() && !IsImmLSScaled(offset, access_size) &&
1852       !IsImmLSUnscaled(offset)) {
1853     // Immediate offset that can't be encoded using unsigned or unscaled
1854     // addressing modes.
1855     UseScratchRegisterScope temps(this);
1856     Register temp = temps.AcquireSameSizeAs(addr.GetBaseRegister());
1857     Mov(temp, addr.GetOffset());
1858     LoadStore(rt, MemOperand(addr.GetBaseRegister(), temp), op);
1859   } else if (addr.IsPostIndex() && !IsImmLSUnscaled(offset)) {
1860     // Post-index beyond unscaled addressing range.
1861     LoadStore(rt, MemOperand(addr.GetBaseRegister()), op);
1862     Add(addr.GetBaseRegister(), addr.GetBaseRegister(), Operand(offset));
1863   } else if (addr.IsPreIndex() && !IsImmLSUnscaled(offset)) {
1864     // Pre-index beyond unscaled addressing range.
1865     Add(addr.GetBaseRegister(), addr.GetBaseRegister(), Operand(offset));
1866     LoadStore(rt, MemOperand(addr.GetBaseRegister()), op);
1867   } else {
1868     // Encodable in one load/store instruction.
1869     LoadStore(rt, addr, op);
1870   }
1871 }
1872 
1873 
1874 #define DEFINE_FUNCTION(FN, REGTYPE, REG, REG2, OP) \
1875   void MacroAssembler::FN(const REGTYPE REG,        \
1876                           const REGTYPE REG2,       \
1877                           const MemOperand& addr) { \
1878     VIXL_ASSERT(allow_macro_instructions_);         \
1879     LoadStorePairMacro(REG, REG2, addr, OP);        \
1880   }
LSPAIR_MACRO_LIST(DEFINE_FUNCTION)1881 LSPAIR_MACRO_LIST(DEFINE_FUNCTION)
1882 #undef DEFINE_FUNCTION
1883 
1884 void MacroAssembler::LoadStorePairMacro(const CPURegister& rt,
1885                                         const CPURegister& rt2,
1886                                         const MemOperand& addr,
1887                                         LoadStorePairOp op) {
1888   // TODO(all): Should we support register offset for load-store-pair?
1889   VIXL_ASSERT(!addr.IsRegisterOffset());
1890   // Worst case is ldp/stp immediate:
1891   //  * 1 instruction for ldp/stp
1892   //  * up to 4 instructions to materialise the constant
1893   //  * 1 instruction to update the base
1894   MacroEmissionCheckScope guard(this);
1895 
1896   int64_t offset = addr.GetOffset();
1897   unsigned access_size = CalcLSPairDataSize(op);
1898 
1899   // Check if the offset fits in the immediate field of the appropriate
1900   // instruction. If not, emit two instructions to perform the operation.
1901   if (IsImmLSPair(offset, access_size)) {
1902     // Encodable in one load/store pair instruction.
1903     LoadStorePair(rt, rt2, addr, op);
1904   } else {
1905     Register base = addr.GetBaseRegister();
1906     if (addr.IsImmediateOffset()) {
1907       UseScratchRegisterScope temps(this);
1908       Register temp = temps.AcquireSameSizeAs(base);
1909       Add(temp, base, offset);
1910       LoadStorePair(rt, rt2, MemOperand(temp), op);
1911     } else if (addr.IsPostIndex()) {
1912       LoadStorePair(rt, rt2, MemOperand(base), op);
1913       Add(base, base, offset);
1914     } else {
1915       VIXL_ASSERT(addr.IsPreIndex());
1916       Add(base, base, offset);
1917       LoadStorePair(rt, rt2, MemOperand(base), op);
1918     }
1919   }
1920 }
1921 
1922 
Prfm(PrefetchOperation op,const MemOperand & addr)1923 void MacroAssembler::Prfm(PrefetchOperation op, const MemOperand& addr) {
1924   MacroEmissionCheckScope guard(this);
1925 
1926   // There are no pre- or post-index modes for prfm.
1927   VIXL_ASSERT(addr.IsImmediateOffset() || addr.IsRegisterOffset());
1928 
1929   // The access size is implicitly 8 bytes for all prefetch operations.
1930   unsigned size = kXRegSizeInBytesLog2;
1931 
1932   // Check if an immediate offset fits in the immediate field of the
1933   // appropriate instruction. If not, emit two instructions to perform
1934   // the operation.
1935   if (addr.IsImmediateOffset() && !IsImmLSScaled(addr.GetOffset(), size) &&
1936       !IsImmLSUnscaled(addr.GetOffset())) {
1937     // Immediate offset that can't be encoded using unsigned or unscaled
1938     // addressing modes.
1939     UseScratchRegisterScope temps(this);
1940     Register temp = temps.AcquireSameSizeAs(addr.GetBaseRegister());
1941     Mov(temp, addr.GetOffset());
1942     Prefetch(op, MemOperand(addr.GetBaseRegister(), temp));
1943   } else {
1944     // Simple register-offsets are encodable in one instruction.
1945     Prefetch(op, addr);
1946   }
1947 }
1948 
1949 
Push(const CPURegister & src0,const CPURegister & src1,const CPURegister & src2,const CPURegister & src3)1950 void MacroAssembler::Push(const CPURegister& src0,
1951                           const CPURegister& src1,
1952                           const CPURegister& src2,
1953                           const CPURegister& src3) {
1954   VIXL_ASSERT(allow_macro_instructions_);
1955   VIXL_ASSERT(AreSameSizeAndType(src0, src1, src2, src3));
1956   VIXL_ASSERT(src0.IsValid());
1957 
1958   int count = 1 + src1.IsValid() + src2.IsValid() + src3.IsValid();
1959   int size = src0.GetSizeInBytes();
1960 
1961   PrepareForPush(count, size);
1962   PushHelper(count, size, src0, src1, src2, src3);
1963 }
1964 
1965 
Pop(const CPURegister & dst0,const CPURegister & dst1,const CPURegister & dst2,const CPURegister & dst3)1966 void MacroAssembler::Pop(const CPURegister& dst0,
1967                          const CPURegister& dst1,
1968                          const CPURegister& dst2,
1969                          const CPURegister& dst3) {
1970   // It is not valid to pop into the same register more than once in one
1971   // instruction, not even into the zero register.
1972   VIXL_ASSERT(allow_macro_instructions_);
1973   VIXL_ASSERT(!AreAliased(dst0, dst1, dst2, dst3));
1974   VIXL_ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3));
1975   VIXL_ASSERT(dst0.IsValid());
1976 
1977   int count = 1 + dst1.IsValid() + dst2.IsValid() + dst3.IsValid();
1978   int size = dst0.GetSizeInBytes();
1979 
1980   PrepareForPop(count, size);
1981   PopHelper(count, size, dst0, dst1, dst2, dst3);
1982 }
1983 
1984 
PushCPURegList(CPURegList registers)1985 void MacroAssembler::PushCPURegList(CPURegList registers) {
1986   VIXL_ASSERT(!registers.Overlaps(*GetScratchRegisterList()));
1987   VIXL_ASSERT(!registers.Overlaps(*GetScratchFPRegisterList()));
1988   VIXL_ASSERT(allow_macro_instructions_);
1989 
1990   int reg_size = registers.GetRegisterSizeInBytes();
1991   PrepareForPush(registers.GetCount(), reg_size);
1992 
1993   // Bump the stack pointer and store two registers at the bottom.
1994   int size = registers.GetTotalSizeInBytes();
1995   const CPURegister& bottom_0 = registers.PopLowestIndex();
1996   const CPURegister& bottom_1 = registers.PopLowestIndex();
1997   if (bottom_0.IsValid() && bottom_1.IsValid()) {
1998     Stp(bottom_0, bottom_1, MemOperand(StackPointer(), -size, PreIndex));
1999   } else if (bottom_0.IsValid()) {
2000     Str(bottom_0, MemOperand(StackPointer(), -size, PreIndex));
2001   }
2002 
2003   int offset = 2 * reg_size;
2004   while (!registers.IsEmpty()) {
2005     const CPURegister& src0 = registers.PopLowestIndex();
2006     const CPURegister& src1 = registers.PopLowestIndex();
2007     if (src1.IsValid()) {
2008       Stp(src0, src1, MemOperand(StackPointer(), offset));
2009     } else {
2010       Str(src0, MemOperand(StackPointer(), offset));
2011     }
2012     offset += 2 * reg_size;
2013   }
2014 }
2015 
2016 
PopCPURegList(CPURegList registers)2017 void MacroAssembler::PopCPURegList(CPURegList registers) {
2018   VIXL_ASSERT(!registers.Overlaps(*GetScratchRegisterList()));
2019   VIXL_ASSERT(!registers.Overlaps(*GetScratchFPRegisterList()));
2020   VIXL_ASSERT(allow_macro_instructions_);
2021 
2022   int reg_size = registers.GetRegisterSizeInBytes();
2023   PrepareForPop(registers.GetCount(), reg_size);
2024 
2025 
2026   int size = registers.GetTotalSizeInBytes();
2027   const CPURegister& bottom_0 = registers.PopLowestIndex();
2028   const CPURegister& bottom_1 = registers.PopLowestIndex();
2029 
2030   int offset = 2 * reg_size;
2031   while (!registers.IsEmpty()) {
2032     const CPURegister& dst0 = registers.PopLowestIndex();
2033     const CPURegister& dst1 = registers.PopLowestIndex();
2034     if (dst1.IsValid()) {
2035       Ldp(dst0, dst1, MemOperand(StackPointer(), offset));
2036     } else {
2037       Ldr(dst0, MemOperand(StackPointer(), offset));
2038     }
2039     offset += 2 * reg_size;
2040   }
2041 
2042   // Load the two registers at the bottom and drop the stack pointer.
2043   if (bottom_0.IsValid() && bottom_1.IsValid()) {
2044     Ldp(bottom_0, bottom_1, MemOperand(StackPointer(), size, PostIndex));
2045   } else if (bottom_0.IsValid()) {
2046     Ldr(bottom_0, MemOperand(StackPointer(), size, PostIndex));
2047   }
2048 }
2049 
2050 
PushMultipleTimes(int count,Register src)2051 void MacroAssembler::PushMultipleTimes(int count, Register src) {
2052   VIXL_ASSERT(allow_macro_instructions_);
2053   int size = src.GetSizeInBytes();
2054 
2055   PrepareForPush(count, size);
2056   // Push up to four registers at a time if possible because if the current
2057   // stack pointer is sp and the register size is 32, registers must be pushed
2058   // in blocks of four in order to maintain the 16-byte alignment for sp.
2059   while (count >= 4) {
2060     PushHelper(4, size, src, src, src, src);
2061     count -= 4;
2062   }
2063   if (count >= 2) {
2064     PushHelper(2, size, src, src, NoReg, NoReg);
2065     count -= 2;
2066   }
2067   if (count == 1) {
2068     PushHelper(1, size, src, NoReg, NoReg, NoReg);
2069     count -= 1;
2070   }
2071   VIXL_ASSERT(count == 0);
2072 }
2073 
2074 
PushHelper(int count,int size,const CPURegister & src0,const CPURegister & src1,const CPURegister & src2,const CPURegister & src3)2075 void MacroAssembler::PushHelper(int count,
2076                                 int size,
2077                                 const CPURegister& src0,
2078                                 const CPURegister& src1,
2079                                 const CPURegister& src2,
2080                                 const CPURegister& src3) {
2081   // Ensure that we don't unintentionally modify scratch or debug registers.
2082   // Worst case for size is 2 stp.
2083   ExactAssemblyScope scope(this,
2084                            2 * kInstructionSize,
2085                            ExactAssemblyScope::kMaximumSize);
2086 
2087   VIXL_ASSERT(AreSameSizeAndType(src0, src1, src2, src3));
2088   VIXL_ASSERT(size == src0.GetSizeInBytes());
2089 
2090   // When pushing multiple registers, the store order is chosen such that
2091   // Push(a, b) is equivalent to Push(a) followed by Push(b).
2092   switch (count) {
2093     case 1:
2094       VIXL_ASSERT(src1.IsNone() && src2.IsNone() && src3.IsNone());
2095       str(src0, MemOperand(StackPointer(), -1 * size, PreIndex));
2096       break;
2097     case 2:
2098       VIXL_ASSERT(src2.IsNone() && src3.IsNone());
2099       stp(src1, src0, MemOperand(StackPointer(), -2 * size, PreIndex));
2100       break;
2101     case 3:
2102       VIXL_ASSERT(src3.IsNone());
2103       stp(src2, src1, MemOperand(StackPointer(), -3 * size, PreIndex));
2104       str(src0, MemOperand(StackPointer(), 2 * size));
2105       break;
2106     case 4:
2107       // Skip over 4 * size, then fill in the gap. This allows four W registers
2108       // to be pushed using sp, whilst maintaining 16-byte alignment for sp at
2109       // all times.
2110       stp(src3, src2, MemOperand(StackPointer(), -4 * size, PreIndex));
2111       stp(src1, src0, MemOperand(StackPointer(), 2 * size));
2112       break;
2113     default:
2114       VIXL_UNREACHABLE();
2115   }
2116 }
2117 
2118 
PopHelper(int count,int size,const CPURegister & dst0,const CPURegister & dst1,const CPURegister & dst2,const CPURegister & dst3)2119 void MacroAssembler::PopHelper(int count,
2120                                int size,
2121                                const CPURegister& dst0,
2122                                const CPURegister& dst1,
2123                                const CPURegister& dst2,
2124                                const CPURegister& dst3) {
2125   // Ensure that we don't unintentionally modify scratch or debug registers.
2126   // Worst case for size is 2 ldp.
2127   ExactAssemblyScope scope(this,
2128                            2 * kInstructionSize,
2129                            ExactAssemblyScope::kMaximumSize);
2130 
2131   VIXL_ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3));
2132   VIXL_ASSERT(size == dst0.GetSizeInBytes());
2133 
2134   // When popping multiple registers, the load order is chosen such that
2135   // Pop(a, b) is equivalent to Pop(a) followed by Pop(b).
2136   switch (count) {
2137     case 1:
2138       VIXL_ASSERT(dst1.IsNone() && dst2.IsNone() && dst3.IsNone());
2139       ldr(dst0, MemOperand(StackPointer(), 1 * size, PostIndex));
2140       break;
2141     case 2:
2142       VIXL_ASSERT(dst2.IsNone() && dst3.IsNone());
2143       ldp(dst0, dst1, MemOperand(StackPointer(), 2 * size, PostIndex));
2144       break;
2145     case 3:
2146       VIXL_ASSERT(dst3.IsNone());
2147       ldr(dst2, MemOperand(StackPointer(), 2 * size));
2148       ldp(dst0, dst1, MemOperand(StackPointer(), 3 * size, PostIndex));
2149       break;
2150     case 4:
2151       // Load the higher addresses first, then load the lower addresses and skip
2152       // the whole block in the second instruction. This allows four W registers
2153       // to be popped using sp, whilst maintaining 16-byte alignment for sp at
2154       // all times.
2155       ldp(dst2, dst3, MemOperand(StackPointer(), 2 * size));
2156       ldp(dst0, dst1, MemOperand(StackPointer(), 4 * size, PostIndex));
2157       break;
2158     default:
2159       VIXL_UNREACHABLE();
2160   }
2161 }
2162 
2163 
PrepareForPush(int count,int size)2164 void MacroAssembler::PrepareForPush(int count, int size) {
2165   if (sp.Is(StackPointer())) {
2166     // If the current stack pointer is sp, then it must be aligned to 16 bytes
2167     // on entry and the total size of the specified registers must also be a
2168     // multiple of 16 bytes.
2169     VIXL_ASSERT((count * size) % 16 == 0);
2170   } else {
2171     // Even if the current stack pointer is not the system stack pointer (sp),
2172     // the system stack pointer will still be modified in order to comply with
2173     // ABI rules about accessing memory below the system stack pointer.
2174     BumpSystemStackPointer(count * size);
2175   }
2176 }
2177 
2178 
PrepareForPop(int count,int size)2179 void MacroAssembler::PrepareForPop(int count, int size) {
2180   USE(count, size);
2181   if (sp.Is(StackPointer())) {
2182     // If the current stack pointer is sp, then it must be aligned to 16 bytes
2183     // on entry and the total size of the specified registers must also be a
2184     // multiple of 16 bytes.
2185     VIXL_ASSERT((count * size) % 16 == 0);
2186   }
2187 }
2188 
Poke(const Register & src,const Operand & offset)2189 void MacroAssembler::Poke(const Register& src, const Operand& offset) {
2190   VIXL_ASSERT(allow_macro_instructions_);
2191   if (offset.IsImmediate()) {
2192     VIXL_ASSERT(offset.GetImmediate() >= 0);
2193   }
2194 
2195   Str(src, MemOperand(StackPointer(), offset));
2196 }
2197 
2198 
Peek(const Register & dst,const Operand & offset)2199 void MacroAssembler::Peek(const Register& dst, const Operand& offset) {
2200   VIXL_ASSERT(allow_macro_instructions_);
2201   if (offset.IsImmediate()) {
2202     VIXL_ASSERT(offset.GetImmediate() >= 0);
2203   }
2204 
2205   Ldr(dst, MemOperand(StackPointer(), offset));
2206 }
2207 
2208 
Claim(const Operand & size)2209 void MacroAssembler::Claim(const Operand& size) {
2210   VIXL_ASSERT(allow_macro_instructions_);
2211 
2212   if (size.IsZero()) {
2213     return;
2214   }
2215 
2216   if (size.IsImmediate()) {
2217     VIXL_ASSERT(size.GetImmediate() > 0);
2218     if (sp.Is(StackPointer())) {
2219       VIXL_ASSERT((size.GetImmediate() % 16) == 0);
2220     }
2221   }
2222 
2223   if (!sp.Is(StackPointer())) {
2224     BumpSystemStackPointer(size);
2225   }
2226 
2227   Sub(StackPointer(), StackPointer(), size);
2228 }
2229 
2230 
Drop(const Operand & size)2231 void MacroAssembler::Drop(const Operand& size) {
2232   VIXL_ASSERT(allow_macro_instructions_);
2233 
2234   if (size.IsZero()) {
2235     return;
2236   }
2237 
2238   if (size.IsImmediate()) {
2239     VIXL_ASSERT(size.GetImmediate() > 0);
2240     if (sp.Is(StackPointer())) {
2241       VIXL_ASSERT((size.GetImmediate() % 16) == 0);
2242     }
2243   }
2244 
2245   Add(StackPointer(), StackPointer(), size);
2246 }
2247 
2248 
PushCalleeSavedRegisters()2249 void MacroAssembler::PushCalleeSavedRegisters() {
2250   // Ensure that the macro-assembler doesn't use any scratch registers.
2251   // 10 stp will be emitted.
2252   // TODO(all): Should we use GetCalleeSaved and SavedFP.
2253   ExactAssemblyScope scope(this, 10 * kInstructionSize);
2254 
2255   // This method must not be called unless the current stack pointer is sp.
2256   VIXL_ASSERT(sp.Is(StackPointer()));
2257 
2258   MemOperand tos(sp, -2 * static_cast<int>(kXRegSizeInBytes), PreIndex);
2259 
2260   stp(x29, x30, tos);
2261   stp(x27, x28, tos);
2262   stp(x25, x26, tos);
2263   stp(x23, x24, tos);
2264   stp(x21, x22, tos);
2265   stp(x19, x20, tos);
2266 
2267   stp(d14, d15, tos);
2268   stp(d12, d13, tos);
2269   stp(d10, d11, tos);
2270   stp(d8, d9, tos);
2271 }
2272 
2273 
PopCalleeSavedRegisters()2274 void MacroAssembler::PopCalleeSavedRegisters() {
2275   // Ensure that the macro-assembler doesn't use any scratch registers.
2276   // 10 ldp will be emitted.
2277   // TODO(all): Should we use GetCalleeSaved and SavedFP.
2278   ExactAssemblyScope scope(this, 10 * kInstructionSize);
2279 
2280   // This method must not be called unless the current stack pointer is sp.
2281   VIXL_ASSERT(sp.Is(StackPointer()));
2282 
2283   MemOperand tos(sp, 2 * kXRegSizeInBytes, PostIndex);
2284 
2285   ldp(d8, d9, tos);
2286   ldp(d10, d11, tos);
2287   ldp(d12, d13, tos);
2288   ldp(d14, d15, tos);
2289 
2290   ldp(x19, x20, tos);
2291   ldp(x21, x22, tos);
2292   ldp(x23, x24, tos);
2293   ldp(x25, x26, tos);
2294   ldp(x27, x28, tos);
2295   ldp(x29, x30, tos);
2296 }
2297 
LoadCPURegList(CPURegList registers,const MemOperand & src)2298 void MacroAssembler::LoadCPURegList(CPURegList registers,
2299                                     const MemOperand& src) {
2300   LoadStoreCPURegListHelper(kLoad, registers, src);
2301 }
2302 
StoreCPURegList(CPURegList registers,const MemOperand & dst)2303 void MacroAssembler::StoreCPURegList(CPURegList registers,
2304                                      const MemOperand& dst) {
2305   LoadStoreCPURegListHelper(kStore, registers, dst);
2306 }
2307 
2308 
LoadStoreCPURegListHelper(LoadStoreCPURegListAction op,CPURegList registers,const MemOperand & mem)2309 void MacroAssembler::LoadStoreCPURegListHelper(LoadStoreCPURegListAction op,
2310                                                CPURegList registers,
2311                                                const MemOperand& mem) {
2312   // We do not handle pre-indexing or post-indexing.
2313   VIXL_ASSERT(!(mem.IsPreIndex() || mem.IsPostIndex()));
2314   VIXL_ASSERT(!registers.Overlaps(tmp_list_));
2315   VIXL_ASSERT(!registers.Overlaps(fptmp_list_));
2316   VIXL_ASSERT(!registers.IncludesAliasOf(sp));
2317 
2318   UseScratchRegisterScope temps(this);
2319 
2320   MemOperand loc = BaseMemOperandForLoadStoreCPURegList(registers, mem, &temps);
2321   const int reg_size = registers.GetRegisterSizeInBytes();
2322 
2323   VIXL_ASSERT(IsPowerOf2(reg_size));
2324 
2325   // Since we are operating on register pairs, we would like to align on double
2326   // the standard size; on the other hand, we don't want to insert an extra
2327   // operation, which will happen if the number of registers is even. Note that
2328   // the alignment of the base pointer is unknown here, but we assume that it
2329   // is more likely to be aligned.
2330   if (((loc.GetOffset() & (2 * reg_size - 1)) != 0) &&
2331       ((registers.GetCount() % 2) != 0)) {
2332     if (op == kStore) {
2333       Str(registers.PopLowestIndex(), loc);
2334     } else {
2335       VIXL_ASSERT(op == kLoad);
2336       Ldr(registers.PopLowestIndex(), loc);
2337     }
2338     loc.AddOffset(reg_size);
2339   }
2340   while (registers.GetCount() >= 2) {
2341     const CPURegister& dst0 = registers.PopLowestIndex();
2342     const CPURegister& dst1 = registers.PopLowestIndex();
2343     if (op == kStore) {
2344       Stp(dst0, dst1, loc);
2345     } else {
2346       VIXL_ASSERT(op == kLoad);
2347       Ldp(dst0, dst1, loc);
2348     }
2349     loc.AddOffset(2 * reg_size);
2350   }
2351   if (!registers.IsEmpty()) {
2352     if (op == kStore) {
2353       Str(registers.PopLowestIndex(), loc);
2354     } else {
2355       VIXL_ASSERT(op == kLoad);
2356       Ldr(registers.PopLowestIndex(), loc);
2357     }
2358   }
2359 }
2360 
BaseMemOperandForLoadStoreCPURegList(const CPURegList & registers,const MemOperand & mem,UseScratchRegisterScope * scratch_scope)2361 MemOperand MacroAssembler::BaseMemOperandForLoadStoreCPURegList(
2362     const CPURegList& registers,
2363     const MemOperand& mem,
2364     UseScratchRegisterScope* scratch_scope) {
2365   // If necessary, pre-compute the base address for the accesses.
2366   if (mem.IsRegisterOffset()) {
2367     Register reg_base = scratch_scope->AcquireX();
2368     ComputeAddress(reg_base, mem);
2369     return MemOperand(reg_base);
2370 
2371   } else if (mem.IsImmediateOffset()) {
2372     int reg_size = registers.GetRegisterSizeInBytes();
2373     int total_size = registers.GetTotalSizeInBytes();
2374     int64_t min_offset = mem.GetOffset();
2375     int64_t max_offset =
2376         mem.GetOffset() + std::max(0, total_size - 2 * reg_size);
2377     if ((registers.GetCount() >= 2) &&
2378         (!Assembler::IsImmLSPair(min_offset, WhichPowerOf2(reg_size)) ||
2379          !Assembler::IsImmLSPair(max_offset, WhichPowerOf2(reg_size)))) {
2380       Register reg_base = scratch_scope->AcquireX();
2381       ComputeAddress(reg_base, mem);
2382       return MemOperand(reg_base);
2383     }
2384   }
2385 
2386   return mem;
2387 }
2388 
BumpSystemStackPointer(const Operand & space)2389 void MacroAssembler::BumpSystemStackPointer(const Operand& space) {
2390   VIXL_ASSERT(!sp.Is(StackPointer()));
2391   // TODO: Several callers rely on this not using scratch registers, so we use
2392   // the assembler directly here. However, this means that large immediate
2393   // values of 'space' cannot be handled.
2394   ExactAssemblyScope scope(this, kInstructionSize);
2395   sub(sp, StackPointer(), space);
2396 }
2397 
2398 
2399 // TODO(all): Fix printf for NEON registers, and resolve whether we should be
2400 // using FPRegister or VRegister here.
2401 
2402 // This is the main Printf implementation. All callee-saved registers are
2403 // preserved, but NZCV and the caller-saved registers may be clobbered.
PrintfNoPreserve(const char * format,const CPURegister & arg0,const CPURegister & arg1,const CPURegister & arg2,const CPURegister & arg3)2404 void MacroAssembler::PrintfNoPreserve(const char* format,
2405                                       const CPURegister& arg0,
2406                                       const CPURegister& arg1,
2407                                       const CPURegister& arg2,
2408                                       const CPURegister& arg3) {
2409   // We cannot handle a caller-saved stack pointer. It doesn't make much sense
2410   // in most cases anyway, so this restriction shouldn't be too serious.
2411   VIXL_ASSERT(!kCallerSaved.IncludesAliasOf(StackPointer()));
2412 
2413   // The provided arguments, and their proper PCS registers.
2414   CPURegister args[kPrintfMaxArgCount] = {arg0, arg1, arg2, arg3};
2415   CPURegister pcs[kPrintfMaxArgCount];
2416 
2417   int arg_count = kPrintfMaxArgCount;
2418 
2419   // The PCS varargs registers for printf. Note that x0 is used for the printf
2420   // format string.
2421   static const CPURegList kPCSVarargs =
2422       CPURegList(CPURegister::kRegister, kXRegSize, 1, arg_count);
2423   static const CPURegList kPCSVarargsFP =
2424       CPURegList(CPURegister::kVRegister, kDRegSize, 0, arg_count - 1);
2425 
2426   // We can use caller-saved registers as scratch values, except for the
2427   // arguments and the PCS registers where they might need to go.
2428   UseScratchRegisterScope temps(this);
2429   temps.Include(kCallerSaved);
2430   temps.Include(kCallerSavedV);
2431   temps.Exclude(kPCSVarargs);
2432   temps.Exclude(kPCSVarargsFP);
2433   temps.Exclude(arg0, arg1, arg2, arg3);
2434 
2435   // Copies of the arg lists that we can iterate through.
2436   CPURegList pcs_varargs = kPCSVarargs;
2437   CPURegList pcs_varargs_fp = kPCSVarargsFP;
2438 
2439   // Place the arguments. There are lots of clever tricks and optimizations we
2440   // could use here, but Printf is a debug tool so instead we just try to keep
2441   // it simple: Move each input that isn't already in the right place to a
2442   // scratch register, then move everything back.
2443   for (unsigned i = 0; i < kPrintfMaxArgCount; i++) {
2444     // Work out the proper PCS register for this argument.
2445     if (args[i].IsRegister()) {
2446       pcs[i] = pcs_varargs.PopLowestIndex().X();
2447       // We might only need a W register here. We need to know the size of the
2448       // argument so we can properly encode it for the simulator call.
2449       if (args[i].Is32Bits()) pcs[i] = pcs[i].W();
2450     } else if (args[i].IsVRegister()) {
2451       // In C, floats are always cast to doubles for varargs calls.
2452       pcs[i] = pcs_varargs_fp.PopLowestIndex().D();
2453     } else {
2454       VIXL_ASSERT(args[i].IsNone());
2455       arg_count = i;
2456       break;
2457     }
2458 
2459     // If the argument is already in the right place, leave it where it is.
2460     if (args[i].Aliases(pcs[i])) continue;
2461 
2462     // Otherwise, if the argument is in a PCS argument register, allocate an
2463     // appropriate scratch register and then move it out of the way.
2464     if (kPCSVarargs.IncludesAliasOf(args[i]) ||
2465         kPCSVarargsFP.IncludesAliasOf(args[i])) {
2466       if (args[i].IsRegister()) {
2467         Register old_arg = Register(args[i]);
2468         Register new_arg = temps.AcquireSameSizeAs(old_arg);
2469         Mov(new_arg, old_arg);
2470         args[i] = new_arg;
2471       } else {
2472         FPRegister old_arg = FPRegister(args[i]);
2473         FPRegister new_arg = temps.AcquireSameSizeAs(old_arg);
2474         Fmov(new_arg, old_arg);
2475         args[i] = new_arg;
2476       }
2477     }
2478   }
2479 
2480   // Do a second pass to move values into their final positions and perform any
2481   // conversions that may be required.
2482   for (int i = 0; i < arg_count; i++) {
2483     VIXL_ASSERT(pcs[i].GetType() == args[i].GetType());
2484     if (pcs[i].IsRegister()) {
2485       Mov(Register(pcs[i]), Register(args[i]), kDiscardForSameWReg);
2486     } else {
2487       VIXL_ASSERT(pcs[i].IsVRegister());
2488       if (pcs[i].GetSizeInBits() == args[i].GetSizeInBits()) {
2489         Fmov(FPRegister(pcs[i]), FPRegister(args[i]));
2490       } else {
2491         Fcvt(FPRegister(pcs[i]), FPRegister(args[i]));
2492       }
2493     }
2494   }
2495 
2496   // Load the format string into x0, as per the procedure-call standard.
2497   //
2498   // To make the code as portable as possible, the format string is encoded
2499   // directly in the instruction stream. It might be cleaner to encode it in a
2500   // literal pool, but since Printf is usually used for debugging, it is
2501   // beneficial for it to be minimally dependent on other features.
2502   temps.Exclude(x0);
2503   Label format_address;
2504   Adr(x0, &format_address);
2505 
2506   // Emit the format string directly in the instruction stream.
2507   {
2508     BlockPoolsScope scope(this);
2509     // Data emitted:
2510     //   branch
2511     //   strlen(format) + 1 (includes null termination)
2512     //   padding to next instruction
2513     //   unreachable
2514     EmissionCheckScope guard(this,
2515                              AlignUp(strlen(format) + 1, kInstructionSize) +
2516                                  2 * kInstructionSize);
2517     Label after_data;
2518     B(&after_data);
2519     Bind(&format_address);
2520     EmitString(format);
2521     Unreachable();
2522     Bind(&after_data);
2523   }
2524 
2525   // We don't pass any arguments on the stack, but we still need to align the C
2526   // stack pointer to a 16-byte boundary for PCS compliance.
2527   if (!sp.Is(StackPointer())) {
2528     Bic(sp, StackPointer(), 0xf);
2529   }
2530 
2531   // Actually call printf. This part needs special handling for the simulator,
2532   // since the system printf function will use a different instruction set and
2533   // the procedure-call standard will not be compatible.
2534   if (generate_simulator_code_) {
2535     ExactAssemblyScope scope(this, kPrintfLength);
2536     hlt(kPrintfOpcode);
2537     dc32(arg_count);  // kPrintfArgCountOffset
2538 
2539     // Determine the argument pattern.
2540     uint32_t arg_pattern_list = 0;
2541     for (int i = 0; i < arg_count; i++) {
2542       uint32_t arg_pattern;
2543       if (pcs[i].IsRegister()) {
2544         arg_pattern = pcs[i].Is32Bits() ? kPrintfArgW : kPrintfArgX;
2545       } else {
2546         VIXL_ASSERT(pcs[i].Is64Bits());
2547         arg_pattern = kPrintfArgD;
2548       }
2549       VIXL_ASSERT(arg_pattern < (1 << kPrintfArgPatternBits));
2550       arg_pattern_list |= (arg_pattern << (kPrintfArgPatternBits * i));
2551     }
2552     dc32(arg_pattern_list);  // kPrintfArgPatternListOffset
2553   } else {
2554     Register tmp = temps.AcquireX();
2555     Mov(tmp, reinterpret_cast<uintptr_t>(printf));
2556     Blr(tmp);
2557   }
2558 }
2559 
2560 
Printf(const char * format,CPURegister arg0,CPURegister arg1,CPURegister arg2,CPURegister arg3)2561 void MacroAssembler::Printf(const char* format,
2562                             CPURegister arg0,
2563                             CPURegister arg1,
2564                             CPURegister arg2,
2565                             CPURegister arg3) {
2566   // We can only print sp if it is the current stack pointer.
2567   if (!sp.Is(StackPointer())) {
2568     VIXL_ASSERT(!sp.Aliases(arg0));
2569     VIXL_ASSERT(!sp.Aliases(arg1));
2570     VIXL_ASSERT(!sp.Aliases(arg2));
2571     VIXL_ASSERT(!sp.Aliases(arg3));
2572   }
2573 
2574   // Make sure that the macro assembler doesn't try to use any of our arguments
2575   // as scratch registers.
2576   UseScratchRegisterScope exclude_all(this);
2577   exclude_all.ExcludeAll();
2578 
2579   // Preserve all caller-saved registers as well as NZCV.
2580   // If sp is the stack pointer, PushCPURegList asserts that the size of each
2581   // list is a multiple of 16 bytes.
2582   PushCPURegList(kCallerSaved);
2583   PushCPURegList(kCallerSavedV);
2584 
2585   {
2586     UseScratchRegisterScope temps(this);
2587     // We can use caller-saved registers as scratch values (except for argN).
2588     temps.Include(kCallerSaved);
2589     temps.Include(kCallerSavedV);
2590     temps.Exclude(arg0, arg1, arg2, arg3);
2591 
2592     // If any of the arguments are the current stack pointer, allocate a new
2593     // register for them, and adjust the value to compensate for pushing the
2594     // caller-saved registers.
2595     bool arg0_sp = StackPointer().Aliases(arg0);
2596     bool arg1_sp = StackPointer().Aliases(arg1);
2597     bool arg2_sp = StackPointer().Aliases(arg2);
2598     bool arg3_sp = StackPointer().Aliases(arg3);
2599     if (arg0_sp || arg1_sp || arg2_sp || arg3_sp) {
2600       // Allocate a register to hold the original stack pointer value, to pass
2601       // to PrintfNoPreserve as an argument.
2602       Register arg_sp = temps.AcquireX();
2603       Add(arg_sp,
2604           StackPointer(),
2605           kCallerSaved.GetTotalSizeInBytes() +
2606               kCallerSavedV.GetTotalSizeInBytes());
2607       if (arg0_sp) arg0 = Register(arg_sp.GetCode(), arg0.GetSizeInBits());
2608       if (arg1_sp) arg1 = Register(arg_sp.GetCode(), arg1.GetSizeInBits());
2609       if (arg2_sp) arg2 = Register(arg_sp.GetCode(), arg2.GetSizeInBits());
2610       if (arg3_sp) arg3 = Register(arg_sp.GetCode(), arg3.GetSizeInBits());
2611     }
2612 
2613     // Preserve NZCV.
2614     Register tmp = temps.AcquireX();
2615     Mrs(tmp, NZCV);
2616     Push(tmp, xzr);
2617     temps.Release(tmp);
2618 
2619     PrintfNoPreserve(format, arg0, arg1, arg2, arg3);
2620 
2621     // Restore NZCV.
2622     tmp = temps.AcquireX();
2623     Pop(xzr, tmp);
2624     Msr(NZCV, tmp);
2625     temps.Release(tmp);
2626   }
2627 
2628   PopCPURegList(kCallerSavedV);
2629   PopCPURegList(kCallerSaved);
2630 }
2631 
Trace(TraceParameters parameters,TraceCommand command)2632 void MacroAssembler::Trace(TraceParameters parameters, TraceCommand command) {
2633   VIXL_ASSERT(allow_macro_instructions_);
2634 
2635   if (generate_simulator_code_) {
2636     // The arguments to the trace pseudo instruction need to be contiguous in
2637     // memory, so make sure we don't try to emit a literal pool.
2638     ExactAssemblyScope scope(this, kTraceLength);
2639 
2640     Label start;
2641     bind(&start);
2642 
2643     // Refer to simulator-aarch64.h for a description of the marker and its
2644     // arguments.
2645     hlt(kTraceOpcode);
2646 
2647     VIXL_ASSERT(GetSizeOfCodeGeneratedSince(&start) == kTraceParamsOffset);
2648     dc32(parameters);
2649 
2650     VIXL_ASSERT(GetSizeOfCodeGeneratedSince(&start) == kTraceCommandOffset);
2651     dc32(command);
2652   } else {
2653     // Emit nothing on real hardware.
2654     USE(parameters, command);
2655   }
2656 }
2657 
2658 
Log(TraceParameters parameters)2659 void MacroAssembler::Log(TraceParameters parameters) {
2660   VIXL_ASSERT(allow_macro_instructions_);
2661 
2662   if (generate_simulator_code_) {
2663     // The arguments to the log pseudo instruction need to be contiguous in
2664     // memory, so make sure we don't try to emit a literal pool.
2665     ExactAssemblyScope scope(this, kLogLength);
2666 
2667     Label start;
2668     bind(&start);
2669 
2670     // Refer to simulator-aarch64.h for a description of the marker and its
2671     // arguments.
2672     hlt(kLogOpcode);
2673 
2674     VIXL_ASSERT(GetSizeOfCodeGeneratedSince(&start) == kLogParamsOffset);
2675     dc32(parameters);
2676   } else {
2677     // Emit nothing on real hardware.
2678     USE(parameters);
2679   }
2680 }
2681 
2682 
EnableInstrumentation()2683 void MacroAssembler::EnableInstrumentation() {
2684   VIXL_ASSERT(!isprint(InstrumentStateEnable));
2685   ExactAssemblyScope scope(this, kInstructionSize);
2686   movn(xzr, InstrumentStateEnable);
2687 }
2688 
2689 
DisableInstrumentation()2690 void MacroAssembler::DisableInstrumentation() {
2691   VIXL_ASSERT(!isprint(InstrumentStateDisable));
2692   ExactAssemblyScope scope(this, kInstructionSize);
2693   movn(xzr, InstrumentStateDisable);
2694 }
2695 
2696 
AnnotateInstrumentation(const char * marker_name)2697 void MacroAssembler::AnnotateInstrumentation(const char* marker_name) {
2698   VIXL_ASSERT(strlen(marker_name) == 2);
2699 
2700   // We allow only printable characters in the marker names. Unprintable
2701   // characters are reserved for controlling features of the instrumentation.
2702   VIXL_ASSERT(isprint(marker_name[0]) && isprint(marker_name[1]));
2703 
2704   ExactAssemblyScope scope(this, kInstructionSize);
2705   movn(xzr, (marker_name[1] << 8) | marker_name[0]);
2706 }
2707 
2708 
Open(MacroAssembler * masm)2709 void UseScratchRegisterScope::Open(MacroAssembler* masm) {
2710   VIXL_ASSERT(masm_ == NULL);
2711   VIXL_ASSERT(masm != NULL);
2712   masm_ = masm;
2713 
2714   CPURegList* available = masm->GetScratchRegisterList();
2715   CPURegList* available_fp = masm->GetScratchFPRegisterList();
2716   old_available_ = available->GetList();
2717   old_availablefp_ = available_fp->GetList();
2718   VIXL_ASSERT(available->GetType() == CPURegister::kRegister);
2719   VIXL_ASSERT(available_fp->GetType() == CPURegister::kVRegister);
2720 
2721   parent_ = masm->GetCurrentScratchRegisterScope();
2722   masm->SetCurrentScratchRegisterScope(this);
2723 }
2724 
2725 
Close()2726 void UseScratchRegisterScope::Close() {
2727   if (masm_ != NULL) {
2728     // Ensure that scopes nest perfectly, and do not outlive their parents.
2729     // This is a run-time check because the order of destruction of objects in
2730     // the _same_ scope is implementation-defined, and is likely to change in
2731     // optimised builds.
2732     VIXL_CHECK(masm_->GetCurrentScratchRegisterScope() == this);
2733     masm_->SetCurrentScratchRegisterScope(parent_);
2734 
2735     masm_->GetScratchRegisterList()->SetList(old_available_);
2736     masm_->GetScratchFPRegisterList()->SetList(old_availablefp_);
2737 
2738     masm_ = NULL;
2739   }
2740 }
2741 
2742 
IsAvailable(const CPURegister & reg) const2743 bool UseScratchRegisterScope::IsAvailable(const CPURegister& reg) const {
2744   return masm_->GetScratchRegisterList()->IncludesAliasOf(reg) ||
2745          masm_->GetScratchFPRegisterList()->IncludesAliasOf(reg);
2746 }
2747 
2748 
AcquireRegisterOfSize(int size_in_bits)2749 Register UseScratchRegisterScope::AcquireRegisterOfSize(int size_in_bits) {
2750   int code = AcquireNextAvailable(masm_->GetScratchRegisterList()).GetCode();
2751   return Register(code, size_in_bits);
2752 }
2753 
2754 
AcquireVRegisterOfSize(int size_in_bits)2755 FPRegister UseScratchRegisterScope::AcquireVRegisterOfSize(int size_in_bits) {
2756   int code = AcquireNextAvailable(masm_->GetScratchFPRegisterList()).GetCode();
2757   return FPRegister(code, size_in_bits);
2758 }
2759 
2760 
Release(const CPURegister & reg)2761 void UseScratchRegisterScope::Release(const CPURegister& reg) {
2762   VIXL_ASSERT(masm_ != NULL);
2763   if (reg.IsRegister()) {
2764     ReleaseByCode(masm_->GetScratchRegisterList(), reg.GetCode());
2765   } else if (reg.IsVRegister()) {
2766     ReleaseByCode(masm_->GetScratchFPRegisterList(), reg.GetCode());
2767   } else {
2768     VIXL_ASSERT(reg.IsNone());
2769   }
2770 }
2771 
2772 
Include(const CPURegList & list)2773 void UseScratchRegisterScope::Include(const CPURegList& list) {
2774   VIXL_ASSERT(masm_ != NULL);
2775   if (list.GetType() == CPURegister::kRegister) {
2776     // Make sure that neither sp nor xzr are included the list.
2777     IncludeByRegList(masm_->GetScratchRegisterList(),
2778                      list.GetList() & ~(xzr.GetBit() | sp.GetBit()));
2779   } else {
2780     VIXL_ASSERT(list.GetType() == CPURegister::kVRegister);
2781     IncludeByRegList(masm_->GetScratchFPRegisterList(), list.GetList());
2782   }
2783 }
2784 
2785 
Include(const Register & reg1,const Register & reg2,const Register & reg3,const Register & reg4)2786 void UseScratchRegisterScope::Include(const Register& reg1,
2787                                       const Register& reg2,
2788                                       const Register& reg3,
2789                                       const Register& reg4) {
2790   VIXL_ASSERT(masm_ != NULL);
2791   RegList include =
2792       reg1.GetBit() | reg2.GetBit() | reg3.GetBit() | reg4.GetBit();
2793   // Make sure that neither sp nor xzr are included the list.
2794   include &= ~(xzr.GetBit() | sp.GetBit());
2795 
2796   IncludeByRegList(masm_->GetScratchRegisterList(), include);
2797 }
2798 
2799 
Include(const FPRegister & reg1,const FPRegister & reg2,const FPRegister & reg3,const FPRegister & reg4)2800 void UseScratchRegisterScope::Include(const FPRegister& reg1,
2801                                       const FPRegister& reg2,
2802                                       const FPRegister& reg3,
2803                                       const FPRegister& reg4) {
2804   RegList include =
2805       reg1.GetBit() | reg2.GetBit() | reg3.GetBit() | reg4.GetBit();
2806   IncludeByRegList(masm_->GetScratchFPRegisterList(), include);
2807 }
2808 
2809 
Exclude(const CPURegList & list)2810 void UseScratchRegisterScope::Exclude(const CPURegList& list) {
2811   if (list.GetType() == CPURegister::kRegister) {
2812     ExcludeByRegList(masm_->GetScratchRegisterList(), list.GetList());
2813   } else {
2814     VIXL_ASSERT(list.GetType() == CPURegister::kVRegister);
2815     ExcludeByRegList(masm_->GetScratchFPRegisterList(), list.GetList());
2816   }
2817 }
2818 
2819 
Exclude(const Register & reg1,const Register & reg2,const Register & reg3,const Register & reg4)2820 void UseScratchRegisterScope::Exclude(const Register& reg1,
2821                                       const Register& reg2,
2822                                       const Register& reg3,
2823                                       const Register& reg4) {
2824   RegList exclude =
2825       reg1.GetBit() | reg2.GetBit() | reg3.GetBit() | reg4.GetBit();
2826   ExcludeByRegList(masm_->GetScratchRegisterList(), exclude);
2827 }
2828 
2829 
Exclude(const FPRegister & reg1,const FPRegister & reg2,const FPRegister & reg3,const FPRegister & reg4)2830 void UseScratchRegisterScope::Exclude(const FPRegister& reg1,
2831                                       const FPRegister& reg2,
2832                                       const FPRegister& reg3,
2833                                       const FPRegister& reg4) {
2834   RegList excludefp =
2835       reg1.GetBit() | reg2.GetBit() | reg3.GetBit() | reg4.GetBit();
2836   ExcludeByRegList(masm_->GetScratchFPRegisterList(), excludefp);
2837 }
2838 
2839 
Exclude(const CPURegister & reg1,const CPURegister & reg2,const CPURegister & reg3,const CPURegister & reg4)2840 void UseScratchRegisterScope::Exclude(const CPURegister& reg1,
2841                                       const CPURegister& reg2,
2842                                       const CPURegister& reg3,
2843                                       const CPURegister& reg4) {
2844   RegList exclude = 0;
2845   RegList excludefp = 0;
2846 
2847   const CPURegister regs[] = {reg1, reg2, reg3, reg4};
2848 
2849   for (unsigned i = 0; i < (sizeof(regs) / sizeof(regs[0])); i++) {
2850     if (regs[i].IsRegister()) {
2851       exclude |= regs[i].GetBit();
2852     } else if (regs[i].IsFPRegister()) {
2853       excludefp |= regs[i].GetBit();
2854     } else {
2855       VIXL_ASSERT(regs[i].IsNone());
2856     }
2857   }
2858 
2859   ExcludeByRegList(masm_->GetScratchRegisterList(), exclude);
2860   ExcludeByRegList(masm_->GetScratchFPRegisterList(), excludefp);
2861 }
2862 
2863 
ExcludeAll()2864 void UseScratchRegisterScope::ExcludeAll() {
2865   ExcludeByRegList(masm_->GetScratchRegisterList(),
2866                    masm_->GetScratchRegisterList()->GetList());
2867   ExcludeByRegList(masm_->GetScratchFPRegisterList(),
2868                    masm_->GetScratchFPRegisterList()->GetList());
2869 }
2870 
2871 
AcquireNextAvailable(CPURegList * available)2872 CPURegister UseScratchRegisterScope::AcquireNextAvailable(
2873     CPURegList* available) {
2874   VIXL_CHECK(!available->IsEmpty());
2875   CPURegister result = available->PopLowestIndex();
2876   VIXL_ASSERT(!AreAliased(result, xzr, sp));
2877   return result;
2878 }
2879 
2880 
ReleaseByCode(CPURegList * available,int code)2881 void UseScratchRegisterScope::ReleaseByCode(CPURegList* available, int code) {
2882   ReleaseByRegList(available, static_cast<RegList>(1) << code);
2883 }
2884 
2885 
ReleaseByRegList(CPURegList * available,RegList regs)2886 void UseScratchRegisterScope::ReleaseByRegList(CPURegList* available,
2887                                                RegList regs) {
2888   available->SetList(available->GetList() | regs);
2889 }
2890 
2891 
IncludeByRegList(CPURegList * available,RegList regs)2892 void UseScratchRegisterScope::IncludeByRegList(CPURegList* available,
2893                                                RegList regs) {
2894   available->SetList(available->GetList() | regs);
2895 }
2896 
2897 
ExcludeByRegList(CPURegList * available,RegList exclude)2898 void UseScratchRegisterScope::ExcludeByRegList(CPURegList* available,
2899                                                RegList exclude) {
2900   available->SetList(available->GetList() & ~exclude);
2901 }
2902 
2903 }  // namespace aarch64
2904 }  // namespace vixl
2905