1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_HEAP_HEAP_INL_H_
6 #define V8_HEAP_HEAP_INL_H_
7 
8 #include <cmath>
9 
10 #include "src/base/platform/platform.h"
11 #include "src/counters-inl.h"
12 #include "src/feedback-vector-inl.h"
13 #include "src/heap/heap.h"
14 #include "src/heap/incremental-marking-inl.h"
15 #include "src/heap/mark-compact.h"
16 #include "src/heap/object-stats.h"
17 #include "src/heap/remembered-set.h"
18 #include "src/heap/spaces-inl.h"
19 #include "src/heap/store-buffer.h"
20 #include "src/isolate.h"
21 #include "src/list-inl.h"
22 #include "src/log.h"
23 #include "src/msan.h"
24 #include "src/objects-inl.h"
25 #include "src/objects/scope-info.h"
26 
27 namespace v8 {
28 namespace internal {
29 
RetrySpace()30 AllocationSpace AllocationResult::RetrySpace() {
31   DCHECK(IsRetry());
32   return static_cast<AllocationSpace>(Smi::cast(object_)->value());
33 }
34 
ToObjectChecked()35 HeapObject* AllocationResult::ToObjectChecked() {
36   CHECK(!IsRetry());
37   return HeapObject::cast(object_);
38 }
39 
insert(HeapObject * target,int32_t size,bool was_marked_black)40 void PromotionQueue::insert(HeapObject* target, int32_t size,
41                             bool was_marked_black) {
42   if (emergency_stack_ != NULL) {
43     emergency_stack_->Add(Entry(target, size, was_marked_black));
44     return;
45   }
46 
47   if ((rear_ - 1) < limit_) {
48     RelocateQueueHead();
49     emergency_stack_->Add(Entry(target, size, was_marked_black));
50     return;
51   }
52 
53   struct Entry* entry = reinterpret_cast<struct Entry*>(--rear_);
54   entry->obj_ = target;
55   entry->size_ = size;
56   entry->was_marked_black_ = was_marked_black;
57 
58 // Assert no overflow into live objects.
59 #ifdef DEBUG
60   SemiSpace::AssertValidRange(target->GetIsolate()->heap()->new_space()->top(),
61                               reinterpret_cast<Address>(rear_));
62 #endif
63 }
64 
remove(HeapObject ** target,int32_t * size,bool * was_marked_black)65 void PromotionQueue::remove(HeapObject** target, int32_t* size,
66                             bool* was_marked_black) {
67   DCHECK(!is_empty());
68   if (front_ == rear_) {
69     Entry e = emergency_stack_->RemoveLast();
70     *target = e.obj_;
71     *size = e.size_;
72     *was_marked_black = e.was_marked_black_;
73     return;
74   }
75 
76   struct Entry* entry = reinterpret_cast<struct Entry*>(--front_);
77   *target = entry->obj_;
78   *size = entry->size_;
79   *was_marked_black = entry->was_marked_black_;
80 
81   // Assert no underflow.
82   SemiSpace::AssertValidRange(reinterpret_cast<Address>(rear_),
83                               reinterpret_cast<Address>(front_));
84 }
85 
GetHeadPage()86 Page* PromotionQueue::GetHeadPage() {
87   return Page::FromAllocationAreaAddress(reinterpret_cast<Address>(rear_));
88 }
89 
SetNewLimit(Address limit)90 void PromotionQueue::SetNewLimit(Address limit) {
91   // If we are already using an emergency stack, we can ignore it.
92   if (emergency_stack_) return;
93 
94   // If the limit is not on the same page, we can ignore it.
95   if (Page::FromAllocationAreaAddress(limit) != GetHeadPage()) return;
96 
97   limit_ = reinterpret_cast<struct Entry*>(limit);
98 
99   if (limit_ <= rear_) {
100     return;
101   }
102 
103   RelocateQueueHead();
104 }
105 
IsBelowPromotionQueue(Address to_space_top)106 bool PromotionQueue::IsBelowPromotionQueue(Address to_space_top) {
107   // If an emergency stack is used, the to-space address cannot interfere
108   // with the promotion queue.
109   if (emergency_stack_) return true;
110 
111   // If the given to-space top pointer and the head of the promotion queue
112   // are not on the same page, then the to-space objects are below the
113   // promotion queue.
114   if (GetHeadPage() != Page::FromAddress(to_space_top)) {
115     return true;
116   }
117   // If the to space top pointer is smaller or equal than the promotion
118   // queue head, then the to-space objects are below the promotion queue.
119   return reinterpret_cast<struct Entry*>(to_space_top) <= rear_;
120 }
121 
122 #define ROOT_ACCESSOR(type, name, camel_name) \
123   type* Heap::name() { return type::cast(roots_[k##camel_name##RootIndex]); }
124 ROOT_LIST(ROOT_ACCESSOR)
125 #undef ROOT_ACCESSOR
126 
127 #define STRUCT_MAP_ACCESSOR(NAME, Name, name) \
128   Map* Heap::name##_map() { return Map::cast(roots_[k##Name##MapRootIndex]); }
STRUCT_LIST(STRUCT_MAP_ACCESSOR)129 STRUCT_LIST(STRUCT_MAP_ACCESSOR)
130 #undef STRUCT_MAP_ACCESSOR
131 
132 #define STRING_ACCESSOR(name, str) \
133   String* Heap::name() { return String::cast(roots_[k##name##RootIndex]); }
134 INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
135 #undef STRING_ACCESSOR
136 
137 #define SYMBOL_ACCESSOR(name) \
138   Symbol* Heap::name() { return Symbol::cast(roots_[k##name##RootIndex]); }
139 PRIVATE_SYMBOL_LIST(SYMBOL_ACCESSOR)
140 #undef SYMBOL_ACCESSOR
141 
142 #define SYMBOL_ACCESSOR(name, description) \
143   Symbol* Heap::name() { return Symbol::cast(roots_[k##name##RootIndex]); }
144 PUBLIC_SYMBOL_LIST(SYMBOL_ACCESSOR)
145 WELL_KNOWN_SYMBOL_LIST(SYMBOL_ACCESSOR)
146 #undef SYMBOL_ACCESSOR
147 
148 #define ROOT_ACCESSOR(type, name, camel_name)                                 \
149   void Heap::set_##name(type* value) {                                        \
150     /* The deserializer makes use of the fact that these common roots are */  \
151     /* never in new space and never on a page that is being compacted.    */  \
152     DCHECK(!deserialization_complete() ||                                     \
153            RootCanBeWrittenAfterInitialization(k##camel_name##RootIndex));    \
154     DCHECK(k##camel_name##RootIndex >= kOldSpaceRoots || !InNewSpace(value)); \
155     roots_[k##camel_name##RootIndex] = value;                                 \
156   }
157 ROOT_LIST(ROOT_ACCESSOR)
158 #undef ROOT_ACCESSOR
159 
160 PagedSpace* Heap::paged_space(int idx) {
161   DCHECK_NE(idx, LO_SPACE);
162   DCHECK_NE(idx, NEW_SPACE);
163   return static_cast<PagedSpace*>(space_[idx]);
164 }
165 
space(int idx)166 Space* Heap::space(int idx) { return space_[idx]; }
167 
NewSpaceAllocationTopAddress()168 Address* Heap::NewSpaceAllocationTopAddress() {
169   return new_space_->allocation_top_address();
170 }
171 
NewSpaceAllocationLimitAddress()172 Address* Heap::NewSpaceAllocationLimitAddress() {
173   return new_space_->allocation_limit_address();
174 }
175 
OldSpaceAllocationTopAddress()176 Address* Heap::OldSpaceAllocationTopAddress() {
177   return old_space_->allocation_top_address();
178 }
179 
OldSpaceAllocationLimitAddress()180 Address* Heap::OldSpaceAllocationLimitAddress() {
181   return old_space_->allocation_limit_address();
182 }
183 
UpdateNewSpaceAllocationCounter()184 void Heap::UpdateNewSpaceAllocationCounter() {
185   new_space_allocation_counter_ = NewSpaceAllocationCounter();
186 }
187 
NewSpaceAllocationCounter()188 size_t Heap::NewSpaceAllocationCounter() {
189   return new_space_allocation_counter_ + new_space()->AllocatedSinceLastGC();
190 }
191 
192 template <>
IsOneByte(Vector<const char> str,int chars)193 bool inline Heap::IsOneByte(Vector<const char> str, int chars) {
194   // TODO(dcarney): incorporate Latin-1 check when Latin-1 is supported?
195   return chars == str.length();
196 }
197 
198 
199 template <>
IsOneByte(String * str,int chars)200 bool inline Heap::IsOneByte(String* str, int chars) {
201   return str->IsOneByteRepresentation();
202 }
203 
204 
AllocateInternalizedStringFromUtf8(Vector<const char> str,int chars,uint32_t hash_field)205 AllocationResult Heap::AllocateInternalizedStringFromUtf8(
206     Vector<const char> str, int chars, uint32_t hash_field) {
207   if (IsOneByte(str, chars)) {
208     return AllocateOneByteInternalizedString(Vector<const uint8_t>::cast(str),
209                                              hash_field);
210   }
211   return AllocateInternalizedStringImpl<false>(str, chars, hash_field);
212 }
213 
214 
215 template <typename T>
AllocateInternalizedStringImpl(T t,int chars,uint32_t hash_field)216 AllocationResult Heap::AllocateInternalizedStringImpl(T t, int chars,
217                                                       uint32_t hash_field) {
218   if (IsOneByte(t, chars)) {
219     return AllocateInternalizedStringImpl<true>(t, chars, hash_field);
220   }
221   return AllocateInternalizedStringImpl<false>(t, chars, hash_field);
222 }
223 
224 
AllocateOneByteInternalizedString(Vector<const uint8_t> str,uint32_t hash_field)225 AllocationResult Heap::AllocateOneByteInternalizedString(
226     Vector<const uint8_t> str, uint32_t hash_field) {
227   CHECK_GE(String::kMaxLength, str.length());
228   // The canonical empty_string is the only zero-length string we allow.
229   DCHECK_IMPLIES(str.length() == 0, roots_[kempty_stringRootIndex] == nullptr);
230   // Compute map and object size.
231   Map* map = one_byte_internalized_string_map();
232   int size = SeqOneByteString::SizeFor(str.length());
233 
234   // Allocate string.
235   HeapObject* result = nullptr;
236   {
237     AllocationResult allocation = AllocateRaw(size, OLD_SPACE);
238     if (!allocation.To(&result)) return allocation;
239   }
240 
241   // String maps are all immortal immovable objects.
242   result->set_map_no_write_barrier(map);
243   // Set length and hash fields of the allocated string.
244   String* answer = String::cast(result);
245   answer->set_length(str.length());
246   answer->set_hash_field(hash_field);
247 
248   DCHECK_EQ(size, answer->Size());
249 
250   // Fill in the characters.
251   MemCopy(answer->address() + SeqOneByteString::kHeaderSize, str.start(),
252           str.length());
253 
254   return answer;
255 }
256 
257 
AllocateTwoByteInternalizedString(Vector<const uc16> str,uint32_t hash_field)258 AllocationResult Heap::AllocateTwoByteInternalizedString(Vector<const uc16> str,
259                                                          uint32_t hash_field) {
260   CHECK_GE(String::kMaxLength, str.length());
261   DCHECK_NE(0, str.length());  // Use Heap::empty_string() instead.
262   // Compute map and object size.
263   Map* map = internalized_string_map();
264   int size = SeqTwoByteString::SizeFor(str.length());
265 
266   // Allocate string.
267   HeapObject* result = nullptr;
268   {
269     AllocationResult allocation = AllocateRaw(size, OLD_SPACE);
270     if (!allocation.To(&result)) return allocation;
271   }
272 
273   result->set_map(map);
274   // Set length and hash fields of the allocated string.
275   String* answer = String::cast(result);
276   answer->set_length(str.length());
277   answer->set_hash_field(hash_field);
278 
279   DCHECK_EQ(size, answer->Size());
280 
281   // Fill in the characters.
282   MemCopy(answer->address() + SeqTwoByteString::kHeaderSize, str.start(),
283           str.length() * kUC16Size);
284 
285   return answer;
286 }
287 
CopyFixedArray(FixedArray * src)288 AllocationResult Heap::CopyFixedArray(FixedArray* src) {
289   if (src->length() == 0) return src;
290   return CopyFixedArrayWithMap(src, src->map());
291 }
292 
293 
CopyFixedDoubleArray(FixedDoubleArray * src)294 AllocationResult Heap::CopyFixedDoubleArray(FixedDoubleArray* src) {
295   if (src->length() == 0) return src;
296   return CopyFixedDoubleArrayWithMap(src, src->map());
297 }
298 
299 
AllocateRaw(int size_in_bytes,AllocationSpace space,AllocationAlignment alignment)300 AllocationResult Heap::AllocateRaw(int size_in_bytes, AllocationSpace space,
301                                    AllocationAlignment alignment) {
302   DCHECK(AllowHandleAllocation::IsAllowed());
303   DCHECK(AllowHeapAllocation::IsAllowed());
304   DCHECK(gc_state_ == NOT_IN_GC);
305 #ifdef DEBUG
306   if (FLAG_gc_interval >= 0 && !always_allocate() &&
307       Heap::allocation_timeout_-- <= 0) {
308     return AllocationResult::Retry(space);
309   }
310   isolate_->counters()->objs_since_last_full()->Increment();
311   isolate_->counters()->objs_since_last_young()->Increment();
312 #endif
313 
314   bool large_object = size_in_bytes > kMaxRegularHeapObjectSize;
315   HeapObject* object = nullptr;
316   AllocationResult allocation;
317   if (NEW_SPACE == space) {
318     if (large_object) {
319       space = LO_SPACE;
320     } else {
321       allocation = new_space_->AllocateRaw(size_in_bytes, alignment);
322       if (allocation.To(&object)) {
323         OnAllocationEvent(object, size_in_bytes);
324       }
325       return allocation;
326     }
327   }
328 
329   // Here we only allocate in the old generation.
330   if (OLD_SPACE == space) {
331     if (large_object) {
332       allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
333     } else {
334       allocation = old_space_->AllocateRaw(size_in_bytes, alignment);
335     }
336   } else if (CODE_SPACE == space) {
337     if (size_in_bytes <= code_space()->AreaSize()) {
338       allocation = code_space_->AllocateRawUnaligned(size_in_bytes);
339     } else {
340       allocation = lo_space_->AllocateRaw(size_in_bytes, EXECUTABLE);
341     }
342   } else if (LO_SPACE == space) {
343     DCHECK(large_object);
344     allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
345   } else if (MAP_SPACE == space) {
346     allocation = map_space_->AllocateRawUnaligned(size_in_bytes);
347   } else {
348     // NEW_SPACE is not allowed here.
349     UNREACHABLE();
350   }
351   if (allocation.To(&object)) {
352     OnAllocationEvent(object, size_in_bytes);
353   }
354 
355   return allocation;
356 }
357 
358 
OnAllocationEvent(HeapObject * object,int size_in_bytes)359 void Heap::OnAllocationEvent(HeapObject* object, int size_in_bytes) {
360   HeapProfiler* profiler = isolate_->heap_profiler();
361   if (profiler->is_tracking_allocations()) {
362     profiler->AllocationEvent(object->address(), size_in_bytes);
363   }
364 
365   if (FLAG_verify_predictable) {
366     ++allocations_count_;
367     // Advance synthetic time by making a time request.
368     MonotonicallyIncreasingTimeInMs();
369 
370     UpdateAllocationsHash(object);
371     UpdateAllocationsHash(size_in_bytes);
372 
373     if (allocations_count_ % FLAG_dump_allocations_digest_at_alloc == 0) {
374       PrintAlloctionsHash();
375     }
376   }
377 
378   if (FLAG_trace_allocation_stack_interval > 0) {
379     if (!FLAG_verify_predictable) ++allocations_count_;
380     if (allocations_count_ % FLAG_trace_allocation_stack_interval == 0) {
381       isolate()->PrintStack(stdout, Isolate::kPrintStackConcise);
382     }
383   }
384 }
385 
386 
OnMoveEvent(HeapObject * target,HeapObject * source,int size_in_bytes)387 void Heap::OnMoveEvent(HeapObject* target, HeapObject* source,
388                        int size_in_bytes) {
389   HeapProfiler* heap_profiler = isolate_->heap_profiler();
390   if (heap_profiler->is_tracking_object_moves()) {
391     heap_profiler->ObjectMoveEvent(source->address(), target->address(),
392                                    size_in_bytes);
393   }
394   if (target->IsSharedFunctionInfo()) {
395     LOG_CODE_EVENT(isolate_, SharedFunctionInfoMoveEvent(source->address(),
396                                                          target->address()));
397   }
398 
399   if (FLAG_verify_predictable) {
400     ++allocations_count_;
401     // Advance synthetic time by making a time request.
402     MonotonicallyIncreasingTimeInMs();
403 
404     UpdateAllocationsHash(source);
405     UpdateAllocationsHash(target);
406     UpdateAllocationsHash(size_in_bytes);
407 
408     if (allocations_count_ % FLAG_dump_allocations_digest_at_alloc == 0) {
409       PrintAlloctionsHash();
410     }
411   }
412 }
413 
414 
UpdateAllocationsHash(HeapObject * object)415 void Heap::UpdateAllocationsHash(HeapObject* object) {
416   Address object_address = object->address();
417   MemoryChunk* memory_chunk = MemoryChunk::FromAddress(object_address);
418   AllocationSpace allocation_space = memory_chunk->owner()->identity();
419 
420   STATIC_ASSERT(kSpaceTagSize + kPageSizeBits <= 32);
421   uint32_t value =
422       static_cast<uint32_t>(object_address - memory_chunk->address()) |
423       (static_cast<uint32_t>(allocation_space) << kPageSizeBits);
424 
425   UpdateAllocationsHash(value);
426 }
427 
428 
UpdateAllocationsHash(uint32_t value)429 void Heap::UpdateAllocationsHash(uint32_t value) {
430   uint16_t c1 = static_cast<uint16_t>(value);
431   uint16_t c2 = static_cast<uint16_t>(value >> 16);
432   raw_allocations_hash_ =
433       StringHasher::AddCharacterCore(raw_allocations_hash_, c1);
434   raw_allocations_hash_ =
435       StringHasher::AddCharacterCore(raw_allocations_hash_, c2);
436 }
437 
438 
RegisterExternalString(String * string)439 void Heap::RegisterExternalString(String* string) {
440   external_string_table_.AddString(string);
441 }
442 
443 
FinalizeExternalString(String * string)444 void Heap::FinalizeExternalString(String* string) {
445   DCHECK(string->IsExternalString());
446   v8::String::ExternalStringResourceBase** resource_addr =
447       reinterpret_cast<v8::String::ExternalStringResourceBase**>(
448           reinterpret_cast<byte*>(string) + ExternalString::kResourceOffset -
449           kHeapObjectTag);
450 
451   // Dispose of the C++ object if it has not already been disposed.
452   if (*resource_addr != NULL) {
453     (*resource_addr)->Dispose();
454     *resource_addr = NULL;
455   }
456 }
457 
NewSpaceTop()458 Address Heap::NewSpaceTop() { return new_space_->top(); }
459 
DeoptMaybeTenuredAllocationSites()460 bool Heap::DeoptMaybeTenuredAllocationSites() {
461   return new_space_->IsAtMaximumCapacity() && maximum_size_scavenges_ == 0;
462 }
463 
InNewSpace(Object * object)464 bool Heap::InNewSpace(Object* object) {
465   // Inlined check from NewSpace::Contains.
466   bool result =
467       object->IsHeapObject() &&
468       Page::FromAddress(HeapObject::cast(object)->address())->InNewSpace();
469   DCHECK(!result ||                 // Either not in new space
470          gc_state_ != NOT_IN_GC ||  // ... or in the middle of GC
471          InToSpace(object));        // ... or in to-space (where we allocate).
472   return result;
473 }
474 
InFromSpace(Object * object)475 bool Heap::InFromSpace(Object* object) {
476   return object->IsHeapObject() &&
477          MemoryChunk::FromAddress(HeapObject::cast(object)->address())
478              ->IsFlagSet(Page::IN_FROM_SPACE);
479 }
480 
481 
InToSpace(Object * object)482 bool Heap::InToSpace(Object* object) {
483   return object->IsHeapObject() &&
484          MemoryChunk::FromAddress(HeapObject::cast(object)->address())
485              ->IsFlagSet(Page::IN_TO_SPACE);
486 }
487 
InOldSpace(Object * object)488 bool Heap::InOldSpace(Object* object) { return old_space_->Contains(object); }
489 
InNewSpaceSlow(Address address)490 bool Heap::InNewSpaceSlow(Address address) {
491   return new_space_->ContainsSlow(address);
492 }
493 
InOldSpaceSlow(Address address)494 bool Heap::InOldSpaceSlow(Address address) {
495   return old_space_->ContainsSlow(address);
496 }
497 
ShouldBePromoted(Address old_address,int object_size)498 bool Heap::ShouldBePromoted(Address old_address, int object_size) {
499   Page* page = Page::FromAddress(old_address);
500   Address age_mark = new_space_->age_mark();
501   return page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) &&
502          (!page->ContainsLimit(age_mark) || old_address < age_mark);
503 }
504 
RecordWrite(Object * object,int offset,Object * o)505 void Heap::RecordWrite(Object* object, int offset, Object* o) {
506   if (!InNewSpace(o) || !object->IsHeapObject() || InNewSpace(object)) {
507     return;
508   }
509   store_buffer()->InsertEntry(HeapObject::cast(object)->address() + offset);
510 }
511 
RecordWriteIntoCode(Code * host,RelocInfo * rinfo,Object * value)512 void Heap::RecordWriteIntoCode(Code* host, RelocInfo* rinfo, Object* value) {
513   if (InNewSpace(value)) {
514     RecordWriteIntoCodeSlow(host, rinfo, value);
515   }
516 }
517 
RecordFixedArrayElements(FixedArray * array,int offset,int length)518 void Heap::RecordFixedArrayElements(FixedArray* array, int offset, int length) {
519   if (InNewSpace(array)) return;
520   for (int i = 0; i < length; i++) {
521     if (!InNewSpace(array->get(offset + i))) continue;
522     store_buffer()->InsertEntry(
523         reinterpret_cast<Address>(array->RawFieldOfElementAt(offset + i)));
524   }
525 }
526 
store_buffer_top_address()527 Address* Heap::store_buffer_top_address() {
528   return store_buffer()->top_address();
529 }
530 
AllowedToBeMigrated(HeapObject * obj,AllocationSpace dst)531 bool Heap::AllowedToBeMigrated(HeapObject* obj, AllocationSpace dst) {
532   // Object migration is governed by the following rules:
533   //
534   // 1) Objects in new-space can be migrated to the old space
535   //    that matches their target space or they stay in new-space.
536   // 2) Objects in old-space stay in the same space when migrating.
537   // 3) Fillers (two or more words) can migrate due to left-trimming of
538   //    fixed arrays in new-space or old space.
539   // 4) Fillers (one word) can never migrate, they are skipped by
540   //    incremental marking explicitly to prevent invalid pattern.
541   //
542   // Since this function is used for debugging only, we do not place
543   // asserts here, but check everything explicitly.
544   if (obj->map() == one_pointer_filler_map()) return false;
545   InstanceType type = obj->map()->instance_type();
546   MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address());
547   AllocationSpace src = chunk->owner()->identity();
548   switch (src) {
549     case NEW_SPACE:
550       return dst == src || dst == OLD_SPACE;
551     case OLD_SPACE:
552       return dst == src &&
553              (dst == OLD_SPACE || obj->IsFiller() || obj->IsExternalString());
554     case CODE_SPACE:
555       return dst == src && type == CODE_TYPE;
556     case MAP_SPACE:
557     case LO_SPACE:
558       return false;
559   }
560   UNREACHABLE();
561   return false;
562 }
563 
CopyBlock(Address dst,Address src,int byte_size)564 void Heap::CopyBlock(Address dst, Address src, int byte_size) {
565   CopyWords(reinterpret_cast<Object**>(dst), reinterpret_cast<Object**>(src),
566             static_cast<size_t>(byte_size / kPointerSize));
567 }
568 
569 template <Heap::FindMementoMode mode>
FindAllocationMemento(HeapObject * object)570 AllocationMemento* Heap::FindAllocationMemento(HeapObject* object) {
571   Address object_address = object->address();
572   Address memento_address = object_address + object->Size();
573   Address last_memento_word_address = memento_address + kPointerSize;
574   // If the memento would be on another page, bail out immediately.
575   if (!Page::OnSamePage(object_address, last_memento_word_address)) {
576     return nullptr;
577   }
578   HeapObject* candidate = HeapObject::FromAddress(memento_address);
579   Map* candidate_map = candidate->map();
580   // This fast check may peek at an uninitialized word. However, the slow check
581   // below (memento_address == top) ensures that this is safe. Mark the word as
582   // initialized to silence MemorySanitizer warnings.
583   MSAN_MEMORY_IS_INITIALIZED(&candidate_map, sizeof(candidate_map));
584   if (candidate_map != allocation_memento_map()) {
585     return nullptr;
586   }
587 
588   // Bail out if the memento is below the age mark, which can happen when
589   // mementos survived because a page got moved within new space.
590   Page* object_page = Page::FromAddress(object_address);
591   if (object_page->IsFlagSet(Page::NEW_SPACE_BELOW_AGE_MARK)) {
592     Address age_mark =
593         reinterpret_cast<SemiSpace*>(object_page->owner())->age_mark();
594     if (!object_page->Contains(age_mark)) {
595       return nullptr;
596     }
597     // Do an exact check in the case where the age mark is on the same page.
598     if (object_address < age_mark) {
599       return nullptr;
600     }
601   }
602 
603   AllocationMemento* memento_candidate = AllocationMemento::cast(candidate);
604 
605   // Depending on what the memento is used for, we might need to perform
606   // additional checks.
607   Address top;
608   switch (mode) {
609     case Heap::kForGC:
610       return memento_candidate;
611     case Heap::kForRuntime:
612       if (memento_candidate == nullptr) return nullptr;
613       // Either the object is the last object in the new space, or there is
614       // another object of at least word size (the header map word) following
615       // it, so suffices to compare ptr and top here.
616       top = NewSpaceTop();
617       DCHECK(memento_address == top ||
618              memento_address + HeapObject::kHeaderSize <= top ||
619              !Page::OnSamePage(memento_address, top - 1));
620       if ((memento_address != top) && memento_candidate->IsValid()) {
621         return memento_candidate;
622       }
623       return nullptr;
624     default:
625       UNREACHABLE();
626   }
627   UNREACHABLE();
628   return nullptr;
629 }
630 
631 template <Heap::UpdateAllocationSiteMode mode>
UpdateAllocationSite(HeapObject * object,base::HashMap * pretenuring_feedback)632 void Heap::UpdateAllocationSite(HeapObject* object,
633                                 base::HashMap* pretenuring_feedback) {
634   DCHECK(InFromSpace(object) ||
635          (InToSpace(object) &&
636           Page::FromAddress(object->address())
637               ->IsFlagSet(Page::PAGE_NEW_NEW_PROMOTION)) ||
638          (!InNewSpace(object) &&
639           Page::FromAddress(object->address())
640               ->IsFlagSet(Page::PAGE_NEW_OLD_PROMOTION)));
641   if (!FLAG_allocation_site_pretenuring ||
642       !AllocationSite::CanTrack(object->map()->instance_type()))
643     return;
644   AllocationMemento* memento_candidate = FindAllocationMemento<kForGC>(object);
645   if (memento_candidate == nullptr) return;
646 
647   if (mode == kGlobal) {
648     DCHECK_EQ(pretenuring_feedback, global_pretenuring_feedback_);
649     // Entering global pretenuring feedback is only used in the scavenger, where
650     // we are allowed to actually touch the allocation site.
651     if (!memento_candidate->IsValid()) return;
652     AllocationSite* site = memento_candidate->GetAllocationSite();
653     DCHECK(!site->IsZombie());
654     // For inserting in the global pretenuring storage we need to first
655     // increment the memento found count on the allocation site.
656     if (site->IncrementMementoFoundCount()) {
657       global_pretenuring_feedback_->LookupOrInsert(site,
658                                                    ObjectHash(site->address()));
659     }
660   } else {
661     DCHECK_EQ(mode, kCached);
662     DCHECK_NE(pretenuring_feedback, global_pretenuring_feedback_);
663     // Entering cached feedback is used in the parallel case. We are not allowed
664     // to dereference the allocation site and rather have to postpone all checks
665     // till actually merging the data.
666     Address key = memento_candidate->GetAllocationSiteUnchecked();
667     base::HashMap::Entry* e =
668         pretenuring_feedback->LookupOrInsert(key, ObjectHash(key));
669     DCHECK(e != nullptr);
670     (*bit_cast<intptr_t*>(&e->value))++;
671   }
672 }
673 
674 
RemoveAllocationSitePretenuringFeedback(AllocationSite * site)675 void Heap::RemoveAllocationSitePretenuringFeedback(AllocationSite* site) {
676   global_pretenuring_feedback_->Remove(
677       site, static_cast<uint32_t>(bit_cast<uintptr_t>(site)));
678 }
679 
CollectGarbage(AllocationSpace space,GarbageCollectionReason gc_reason,const v8::GCCallbackFlags callbackFlags)680 bool Heap::CollectGarbage(AllocationSpace space,
681                           GarbageCollectionReason gc_reason,
682                           const v8::GCCallbackFlags callbackFlags) {
683   const char* collector_reason = NULL;
684   GarbageCollector collector = SelectGarbageCollector(space, &collector_reason);
685   return CollectGarbage(collector, gc_reason, collector_reason, callbackFlags);
686 }
687 
688 
isolate()689 Isolate* Heap::isolate() {
690   return reinterpret_cast<Isolate*>(
691       reinterpret_cast<intptr_t>(this) -
692       reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(16)->heap()) + 16);
693 }
694 
PromoteAllNewSpaceStrings()695 void Heap::ExternalStringTable::PromoteAllNewSpaceStrings() {
696   old_space_strings_.AddAll(new_space_strings_);
697   new_space_strings_.Clear();
698 }
699 
AddString(String * string)700 void Heap::ExternalStringTable::AddString(String* string) {
701   DCHECK(string->IsExternalString());
702   if (heap_->InNewSpace(string)) {
703     new_space_strings_.Add(string);
704   } else {
705     old_space_strings_.Add(string);
706   }
707 }
708 
IterateNewSpaceStrings(ObjectVisitor * v)709 void Heap::ExternalStringTable::IterateNewSpaceStrings(ObjectVisitor* v) {
710   if (!new_space_strings_.is_empty()) {
711     Object** start = &new_space_strings_[0];
712     v->VisitPointers(start, start + new_space_strings_.length());
713   }
714 }
715 
IterateAll(ObjectVisitor * v)716 void Heap::ExternalStringTable::IterateAll(ObjectVisitor* v) {
717   IterateNewSpaceStrings(v);
718   if (!old_space_strings_.is_empty()) {
719     Object** start = &old_space_strings_[0];
720     v->VisitPointers(start, start + old_space_strings_.length());
721   }
722 }
723 
724 
725 // Verify() is inline to avoid ifdef-s around its calls in release
726 // mode.
Verify()727 void Heap::ExternalStringTable::Verify() {
728 #ifdef DEBUG
729   for (int i = 0; i < new_space_strings_.length(); ++i) {
730     Object* obj = Object::cast(new_space_strings_[i]);
731     DCHECK(heap_->InNewSpace(obj));
732     DCHECK(!obj->IsTheHole(heap_->isolate()));
733   }
734   for (int i = 0; i < old_space_strings_.length(); ++i) {
735     Object* obj = Object::cast(old_space_strings_[i]);
736     DCHECK(!heap_->InNewSpace(obj));
737     DCHECK(!obj->IsTheHole(heap_->isolate()));
738   }
739 #endif
740 }
741 
742 
AddOldString(String * string)743 void Heap::ExternalStringTable::AddOldString(String* string) {
744   DCHECK(string->IsExternalString());
745   DCHECK(!heap_->InNewSpace(string));
746   old_space_strings_.Add(string);
747 }
748 
749 
ShrinkNewStrings(int position)750 void Heap::ExternalStringTable::ShrinkNewStrings(int position) {
751   new_space_strings_.Rewind(position);
752 #ifdef VERIFY_HEAP
753   if (FLAG_verify_heap) {
754     Verify();
755   }
756 #endif
757 }
758 
ClearInstanceofCache()759 void Heap::ClearInstanceofCache() { set_instanceof_cache_function(Smi::kZero); }
760 
ToBoolean(bool condition)761 Oddball* Heap::ToBoolean(bool condition) {
762   return condition ? true_value() : false_value();
763 }
764 
765 
CompletelyClearInstanceofCache()766 void Heap::CompletelyClearInstanceofCache() {
767   set_instanceof_cache_map(Smi::kZero);
768   set_instanceof_cache_function(Smi::kZero);
769 }
770 
771 
HashSeed()772 uint32_t Heap::HashSeed() {
773   uint32_t seed = static_cast<uint32_t>(hash_seed()->value());
774   DCHECK(FLAG_randomize_hashes || seed == 0);
775   return seed;
776 }
777 
778 
NextScriptId()779 int Heap::NextScriptId() {
780   int last_id = last_script_id()->value();
781   if (last_id == Smi::kMaxValue) {
782     last_id = 1;
783   } else {
784     last_id++;
785   }
786   set_last_script_id(Smi::FromInt(last_id));
787   return last_id;
788 }
789 
SetArgumentsAdaptorDeoptPCOffset(int pc_offset)790 void Heap::SetArgumentsAdaptorDeoptPCOffset(int pc_offset) {
791   DCHECK(arguments_adaptor_deopt_pc_offset() == Smi::kZero);
792   set_arguments_adaptor_deopt_pc_offset(Smi::FromInt(pc_offset));
793 }
794 
SetConstructStubCreateDeoptPCOffset(int pc_offset)795 void Heap::SetConstructStubCreateDeoptPCOffset(int pc_offset) {
796   DCHECK(construct_stub_create_deopt_pc_offset() == Smi::kZero);
797   set_construct_stub_create_deopt_pc_offset(Smi::FromInt(pc_offset));
798 }
799 
SetConstructStubInvokeDeoptPCOffset(int pc_offset)800 void Heap::SetConstructStubInvokeDeoptPCOffset(int pc_offset) {
801   DCHECK(construct_stub_invoke_deopt_pc_offset() == Smi::kZero);
802   set_construct_stub_invoke_deopt_pc_offset(Smi::FromInt(pc_offset));
803 }
804 
SetGetterStubDeoptPCOffset(int pc_offset)805 void Heap::SetGetterStubDeoptPCOffset(int pc_offset) {
806   DCHECK(getter_stub_deopt_pc_offset() == Smi::kZero);
807   set_getter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
808 }
809 
SetSetterStubDeoptPCOffset(int pc_offset)810 void Heap::SetSetterStubDeoptPCOffset(int pc_offset) {
811   DCHECK(setter_stub_deopt_pc_offset() == Smi::kZero);
812   set_setter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
813 }
814 
SetInterpreterEntryReturnPCOffset(int pc_offset)815 void Heap::SetInterpreterEntryReturnPCOffset(int pc_offset) {
816   DCHECK(interpreter_entry_return_pc_offset() == Smi::kZero);
817   set_interpreter_entry_return_pc_offset(Smi::FromInt(pc_offset));
818 }
819 
GetNextTemplateSerialNumber()820 int Heap::GetNextTemplateSerialNumber() {
821   int next_serial_number = next_template_serial_number()->value() + 1;
822   set_next_template_serial_number(Smi::FromInt(next_serial_number));
823   return next_serial_number;
824 }
825 
SetSerializedTemplates(FixedArray * templates)826 void Heap::SetSerializedTemplates(FixedArray* templates) {
827   DCHECK_EQ(empty_fixed_array(), serialized_templates());
828   DCHECK(isolate()->serializer_enabled());
829   set_serialized_templates(templates);
830 }
831 
SetSerializedGlobalProxySizes(FixedArray * sizes)832 void Heap::SetSerializedGlobalProxySizes(FixedArray* sizes) {
833   DCHECK_EQ(empty_fixed_array(), serialized_global_proxy_sizes());
834   DCHECK(isolate()->serializer_enabled());
835   set_serialized_global_proxy_sizes(sizes);
836 }
837 
CreateObjectStats()838 void Heap::CreateObjectStats() {
839   if (V8_LIKELY(FLAG_gc_stats == 0)) return;
840   if (!live_object_stats_) {
841     live_object_stats_ = new ObjectStats(this);
842   }
843   if (!dead_object_stats_) {
844     dead_object_stats_ = new ObjectStats(this);
845   }
846 }
847 
AlwaysAllocateScope(Isolate * isolate)848 AlwaysAllocateScope::AlwaysAllocateScope(Isolate* isolate)
849     : heap_(isolate->heap()) {
850   heap_->always_allocate_scope_count_.Increment(1);
851 }
852 
853 
~AlwaysAllocateScope()854 AlwaysAllocateScope::~AlwaysAllocateScope() {
855   heap_->always_allocate_scope_count_.Increment(-1);
856 }
857 
858 
VisitPointers(Object ** start,Object ** end)859 void VerifyPointersVisitor::VisitPointers(Object** start, Object** end) {
860   for (Object** current = start; current < end; current++) {
861     if ((*current)->IsHeapObject()) {
862       HeapObject* object = HeapObject::cast(*current);
863       CHECK(object->GetIsolate()->heap()->Contains(object));
864       CHECK(object->map()->IsMap());
865     } else {
866       CHECK((*current)->IsSmi());
867     }
868   }
869 }
870 
871 
VisitPointers(Object ** start,Object ** end)872 void VerifySmisVisitor::VisitPointers(Object** start, Object** end) {
873   for (Object** current = start; current < end; current++) {
874     CHECK((*current)->IsSmi());
875   }
876 }
877 }  // namespace internal
878 }  // namespace v8
879 
880 #endif  // V8_HEAP_HEAP_INL_H_
881