1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_RUNTIME_THREAD_INL_H_
18 #define ART_RUNTIME_THREAD_INL_H_
19
20 #include "thread.h"
21
22 #include "base/aborting.h"
23 #include "base/casts.h"
24 #include "base/mutex-inl.h"
25 #include "base/time_utils.h"
26 #include "jni_env_ext.h"
27 #include "managed_stack-inl.h"
28 #include "obj_ptr.h"
29 #include "thread-current-inl.h"
30 #include "thread_pool.h"
31
32 namespace art {
33
34 // Quickly access the current thread from a JNIEnv.
ThreadForEnv(JNIEnv * env)35 static inline Thread* ThreadForEnv(JNIEnv* env) {
36 JNIEnvExt* full_env(down_cast<JNIEnvExt*>(env));
37 return full_env->GetSelf();
38 }
39
AllowThreadSuspension()40 inline void Thread::AllowThreadSuspension() {
41 DCHECK_EQ(Thread::Current(), this);
42 if (UNLIKELY(TestAllFlags())) {
43 CheckSuspend();
44 }
45 // Invalidate the current thread's object pointers (ObjPtr) to catch possible moving GC bugs due
46 // to missing handles.
47 PoisonObjectPointers();
48 }
49
CheckSuspend()50 inline void Thread::CheckSuspend() {
51 DCHECK_EQ(Thread::Current(), this);
52 for (;;) {
53 if (ReadFlag(kCheckpointRequest)) {
54 RunCheckpointFunction();
55 } else if (ReadFlag(kSuspendRequest)) {
56 FullSuspendCheck();
57 } else if (ReadFlag(kEmptyCheckpointRequest)) {
58 RunEmptyCheckpoint();
59 } else {
60 break;
61 }
62 }
63 }
64
CheckEmptyCheckpointFromWeakRefAccess(BaseMutex * cond_var_mutex)65 inline void Thread::CheckEmptyCheckpointFromWeakRefAccess(BaseMutex* cond_var_mutex) {
66 Thread* self = Thread::Current();
67 DCHECK_EQ(self, this);
68 for (;;) {
69 if (ReadFlag(kEmptyCheckpointRequest)) {
70 RunEmptyCheckpoint();
71 // Check we hold only an expected mutex when accessing weak ref.
72 if (kIsDebugBuild) {
73 for (int i = kLockLevelCount - 1; i >= 0; --i) {
74 BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i));
75 if (held_mutex != nullptr &&
76 held_mutex != Locks::mutator_lock_ &&
77 held_mutex != cond_var_mutex) {
78 CHECK(Locks::IsExpectedOnWeakRefAccess(held_mutex))
79 << "Holding unexpected mutex " << held_mutex->GetName()
80 << " when accessing weak ref";
81 }
82 }
83 }
84 } else {
85 break;
86 }
87 }
88 }
89
CheckEmptyCheckpointFromMutex()90 inline void Thread::CheckEmptyCheckpointFromMutex() {
91 DCHECK_EQ(Thread::Current(), this);
92 for (;;) {
93 if (ReadFlag(kEmptyCheckpointRequest)) {
94 RunEmptyCheckpoint();
95 } else {
96 break;
97 }
98 }
99 }
100
SetState(ThreadState new_state)101 inline ThreadState Thread::SetState(ThreadState new_state) {
102 // Should only be used to change between suspended states.
103 // Cannot use this code to change into or from Runnable as changing to Runnable should
104 // fail if old_state_and_flags.suspend_request is true and changing from Runnable might
105 // miss passing an active suspend barrier.
106 DCHECK_NE(new_state, kRunnable);
107 if (kIsDebugBuild && this != Thread::Current()) {
108 std::string name;
109 GetThreadName(name);
110 LOG(FATAL) << "Thread \"" << name << "\"(" << this << " != Thread::Current()="
111 << Thread::Current() << ") changing state to " << new_state;
112 }
113 union StateAndFlags old_state_and_flags;
114 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
115 CHECK_NE(old_state_and_flags.as_struct.state, kRunnable);
116 tls32_.state_and_flags.as_struct.state = new_state;
117 return static_cast<ThreadState>(old_state_and_flags.as_struct.state);
118 }
119
IsThreadSuspensionAllowable()120 inline bool Thread::IsThreadSuspensionAllowable() const {
121 if (tls32_.no_thread_suspension != 0) {
122 return false;
123 }
124 for (int i = kLockLevelCount - 1; i >= 0; --i) {
125 if (i != kMutatorLock &&
126 i != kUserCodeSuspensionLock &&
127 GetHeldMutex(static_cast<LockLevel>(i)) != nullptr) {
128 return false;
129 }
130 }
131 // Thread autoanalysis isn't able to understand that the GetHeldMutex(...) or AssertHeld means we
132 // have the mutex meaning we need to do this hack.
133 auto is_suspending_for_user_code = [this]() NO_THREAD_SAFETY_ANALYSIS {
134 return tls32_.user_code_suspend_count != 0;
135 };
136 if (GetHeldMutex(kUserCodeSuspensionLock) != nullptr && is_suspending_for_user_code()) {
137 return false;
138 }
139 return true;
140 }
141
AssertThreadSuspensionIsAllowable(bool check_locks)142 inline void Thread::AssertThreadSuspensionIsAllowable(bool check_locks) const {
143 if (kIsDebugBuild) {
144 if (gAborting == 0) {
145 CHECK_EQ(0u, tls32_.no_thread_suspension) << tlsPtr_.last_no_thread_suspension_cause;
146 }
147 if (check_locks) {
148 bool bad_mutexes_held = false;
149 for (int i = kLockLevelCount - 1; i >= 0; --i) {
150 // We expect no locks except the mutator_lock_. User code suspension lock is OK as long as
151 // we aren't going to be held suspended due to SuspendReason::kForUserCode.
152 if (i != kMutatorLock && i != kUserCodeSuspensionLock) {
153 BaseMutex* held_mutex = GetHeldMutex(static_cast<LockLevel>(i));
154 if (held_mutex != nullptr) {
155 LOG(ERROR) << "holding \"" << held_mutex->GetName()
156 << "\" at point where thread suspension is expected";
157 bad_mutexes_held = true;
158 }
159 }
160 }
161 // Make sure that if we hold the user_code_suspension_lock_ we aren't suspending due to
162 // user_code_suspend_count which would prevent the thread from ever waking up. Thread
163 // autoanalysis isn't able to understand that the GetHeldMutex(...) or AssertHeld means we
164 // have the mutex meaning we need to do this hack.
165 auto is_suspending_for_user_code = [this]() NO_THREAD_SAFETY_ANALYSIS {
166 return tls32_.user_code_suspend_count != 0;
167 };
168 if (GetHeldMutex(kUserCodeSuspensionLock) != nullptr && is_suspending_for_user_code()) {
169 LOG(ERROR) << "suspending due to user-code while holding \""
170 << Locks::user_code_suspension_lock_->GetName() << "\"! Thread would never "
171 << "wake up.";
172 bad_mutexes_held = true;
173 }
174 if (gAborting == 0) {
175 CHECK(!bad_mutexes_held);
176 }
177 }
178 }
179 }
180
TransitionToSuspendedAndRunCheckpoints(ThreadState new_state)181 inline void Thread::TransitionToSuspendedAndRunCheckpoints(ThreadState new_state) {
182 DCHECK_NE(new_state, kRunnable);
183 DCHECK_EQ(GetState(), kRunnable);
184 union StateAndFlags old_state_and_flags;
185 union StateAndFlags new_state_and_flags;
186 while (true) {
187 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
188 if (UNLIKELY((old_state_and_flags.as_struct.flags & kCheckpointRequest) != 0)) {
189 RunCheckpointFunction();
190 continue;
191 }
192 if (UNLIKELY((old_state_and_flags.as_struct.flags & kEmptyCheckpointRequest) != 0)) {
193 RunEmptyCheckpoint();
194 continue;
195 }
196 // Change the state but keep the current flags (kCheckpointRequest is clear).
197 DCHECK_EQ((old_state_and_flags.as_struct.flags & kCheckpointRequest), 0);
198 DCHECK_EQ((old_state_and_flags.as_struct.flags & kEmptyCheckpointRequest), 0);
199 new_state_and_flags.as_struct.flags = old_state_and_flags.as_struct.flags;
200 new_state_and_flags.as_struct.state = new_state;
201
202 // CAS the value with a memory ordering.
203 bool done =
204 tls32_.state_and_flags.as_atomic_int.CompareAndSetWeakRelease(old_state_and_flags.as_int,
205 new_state_and_flags.as_int);
206 if (LIKELY(done)) {
207 break;
208 }
209 }
210 }
211
PassActiveSuspendBarriers()212 inline void Thread::PassActiveSuspendBarriers() {
213 while (true) {
214 uint16_t current_flags = tls32_.state_and_flags.as_struct.flags;
215 if (LIKELY((current_flags &
216 (kCheckpointRequest | kEmptyCheckpointRequest | kActiveSuspendBarrier)) == 0)) {
217 break;
218 } else if ((current_flags & kActiveSuspendBarrier) != 0) {
219 PassActiveSuspendBarriers(this);
220 } else {
221 // Impossible
222 LOG(FATAL) << "Fatal, thread transitioned into suspended without running the checkpoint";
223 }
224 }
225 }
226
TransitionFromRunnableToSuspended(ThreadState new_state)227 inline void Thread::TransitionFromRunnableToSuspended(ThreadState new_state) {
228 AssertThreadSuspensionIsAllowable();
229 PoisonObjectPointersIfDebug();
230 DCHECK_EQ(this, Thread::Current());
231 // Change to non-runnable state, thereby appearing suspended to the system.
232 TransitionToSuspendedAndRunCheckpoints(new_state);
233 // Mark the release of the share of the mutator_lock_.
234 Locks::mutator_lock_->TransitionFromRunnableToSuspended(this);
235 // Once suspended - check the active suspend barrier flag
236 PassActiveSuspendBarriers();
237 }
238
TransitionFromSuspendedToRunnable()239 inline ThreadState Thread::TransitionFromSuspendedToRunnable() {
240 union StateAndFlags old_state_and_flags;
241 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
242 int16_t old_state = old_state_and_flags.as_struct.state;
243 DCHECK_NE(static_cast<ThreadState>(old_state), kRunnable);
244 do {
245 Locks::mutator_lock_->AssertNotHeld(this); // Otherwise we starve GC..
246 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
247 DCHECK_EQ(old_state_and_flags.as_struct.state, old_state);
248 if (LIKELY(old_state_and_flags.as_struct.flags == 0)) {
249 // Optimize for the return from native code case - this is the fast path.
250 // Atomically change from suspended to runnable if no suspend request pending.
251 union StateAndFlags new_state_and_flags;
252 new_state_and_flags.as_int = old_state_and_flags.as_int;
253 new_state_and_flags.as_struct.state = kRunnable;
254 // CAS the value with a memory barrier.
255 if (LIKELY(tls32_.state_and_flags.as_atomic_int.CompareAndSetWeakAcquire(
256 old_state_and_flags.as_int,
257 new_state_and_flags.as_int))) {
258 // Mark the acquisition of a share of the mutator_lock_.
259 Locks::mutator_lock_->TransitionFromSuspendedToRunnable(this);
260 break;
261 }
262 } else if ((old_state_and_flags.as_struct.flags & kActiveSuspendBarrier) != 0) {
263 PassActiveSuspendBarriers(this);
264 } else if ((old_state_and_flags.as_struct.flags &
265 (kCheckpointRequest | kEmptyCheckpointRequest)) != 0) {
266 // Impossible
267 LOG(FATAL) << "Transitioning to runnable with checkpoint flag, "
268 << " flags=" << old_state_and_flags.as_struct.flags
269 << " state=" << old_state_and_flags.as_struct.state;
270 } else if ((old_state_and_flags.as_struct.flags & kSuspendRequest) != 0) {
271 // Wait while our suspend count is non-zero.
272
273 // We pass null to the MutexLock as we may be in a situation where the
274 // runtime is shutting down. Guarding ourselves from that situation
275 // requires to take the shutdown lock, which is undesirable here.
276 Thread* thread_to_pass = nullptr;
277 if (kIsDebugBuild && !IsDaemon()) {
278 // We know we can make our debug locking checks on non-daemon threads,
279 // so re-enable them on debug builds.
280 thread_to_pass = this;
281 }
282 MutexLock mu(thread_to_pass, *Locks::thread_suspend_count_lock_);
283 ScopedTransitioningToRunnable scoped_transitioning_to_runnable(this);
284 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
285 DCHECK_EQ(old_state_and_flags.as_struct.state, old_state);
286 while ((old_state_and_flags.as_struct.flags & kSuspendRequest) != 0) {
287 // Re-check when Thread::resume_cond_ is notified.
288 Thread::resume_cond_->Wait(thread_to_pass);
289 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
290 DCHECK_EQ(old_state_and_flags.as_struct.state, old_state);
291 }
292 DCHECK_EQ(GetSuspendCount(), 0);
293 }
294 } while (true);
295 // Run the flip function, if set.
296 Closure* flip_func = GetFlipFunction();
297 if (flip_func != nullptr) {
298 flip_func->Run(this);
299 }
300 return static_cast<ThreadState>(old_state);
301 }
302
AllocTlab(size_t bytes)303 inline mirror::Object* Thread::AllocTlab(size_t bytes) {
304 DCHECK_GE(TlabSize(), bytes);
305 ++tlsPtr_.thread_local_objects;
306 mirror::Object* ret = reinterpret_cast<mirror::Object*>(tlsPtr_.thread_local_pos);
307 tlsPtr_.thread_local_pos += bytes;
308 return ret;
309 }
310
PushOnThreadLocalAllocationStack(mirror::Object * obj)311 inline bool Thread::PushOnThreadLocalAllocationStack(mirror::Object* obj) {
312 DCHECK_LE(tlsPtr_.thread_local_alloc_stack_top, tlsPtr_.thread_local_alloc_stack_end);
313 if (tlsPtr_.thread_local_alloc_stack_top < tlsPtr_.thread_local_alloc_stack_end) {
314 // There's room.
315 DCHECK_LE(reinterpret_cast<uint8_t*>(tlsPtr_.thread_local_alloc_stack_top) +
316 sizeof(StackReference<mirror::Object>),
317 reinterpret_cast<uint8_t*>(tlsPtr_.thread_local_alloc_stack_end));
318 DCHECK(tlsPtr_.thread_local_alloc_stack_top->AsMirrorPtr() == nullptr);
319 tlsPtr_.thread_local_alloc_stack_top->Assign(obj);
320 ++tlsPtr_.thread_local_alloc_stack_top;
321 return true;
322 }
323 return false;
324 }
325
SetThreadLocalAllocationStack(StackReference<mirror::Object> * start,StackReference<mirror::Object> * end)326 inline void Thread::SetThreadLocalAllocationStack(StackReference<mirror::Object>* start,
327 StackReference<mirror::Object>* end) {
328 DCHECK(Thread::Current() == this) << "Should be called by self";
329 DCHECK(start != nullptr);
330 DCHECK(end != nullptr);
331 DCHECK_ALIGNED(start, sizeof(StackReference<mirror::Object>));
332 DCHECK_ALIGNED(end, sizeof(StackReference<mirror::Object>));
333 DCHECK_LT(start, end);
334 tlsPtr_.thread_local_alloc_stack_end = end;
335 tlsPtr_.thread_local_alloc_stack_top = start;
336 }
337
RevokeThreadLocalAllocationStack()338 inline void Thread::RevokeThreadLocalAllocationStack() {
339 if (kIsDebugBuild) {
340 // Note: self is not necessarily equal to this thread since thread may be suspended.
341 Thread* self = Thread::Current();
342 DCHECK(this == self || IsSuspended() || GetState() == kWaitingPerformingGc)
343 << GetState() << " thread " << this << " self " << self;
344 }
345 tlsPtr_.thread_local_alloc_stack_end = nullptr;
346 tlsPtr_.thread_local_alloc_stack_top = nullptr;
347 }
348
PoisonObjectPointersIfDebug()349 inline void Thread::PoisonObjectPointersIfDebug() {
350 if (kObjPtrPoisoning) {
351 Thread::Current()->PoisonObjectPointers();
352 }
353 }
354
ModifySuspendCount(Thread * self,int delta,AtomicInteger * suspend_barrier,SuspendReason reason)355 inline bool Thread::ModifySuspendCount(Thread* self,
356 int delta,
357 AtomicInteger* suspend_barrier,
358 SuspendReason reason) {
359 if (delta > 0 && ((kUseReadBarrier && this != self) || suspend_barrier != nullptr)) {
360 // When delta > 0 (requesting a suspend), ModifySuspendCountInternal() may fail either if
361 // active_suspend_barriers is full or we are in the middle of a thread flip. Retry in a loop.
362 while (true) {
363 if (LIKELY(ModifySuspendCountInternal(self, delta, suspend_barrier, reason))) {
364 return true;
365 } else {
366 // Failure means the list of active_suspend_barriers is full or we are in the middle of a
367 // thread flip, we should release the thread_suspend_count_lock_ (to avoid deadlock) and
368 // wait till the target thread has executed or Thread::PassActiveSuspendBarriers() or the
369 // flip function. Note that we could not simply wait for the thread to change to a suspended
370 // state, because it might need to run checkpoint function before the state change or
371 // resumes from the resume_cond_, which also needs thread_suspend_count_lock_.
372 //
373 // The list of active_suspend_barriers is very unlikely to be full since more than
374 // kMaxSuspendBarriers threads need to execute SuspendAllInternal() simultaneously, and
375 // target thread stays in kRunnable in the mean time.
376 Locks::thread_suspend_count_lock_->ExclusiveUnlock(self);
377 NanoSleep(100000);
378 Locks::thread_suspend_count_lock_->ExclusiveLock(self);
379 }
380 }
381 } else {
382 return ModifySuspendCountInternal(self, delta, suspend_barrier, reason);
383 }
384 }
385
PushShadowFrame(ShadowFrame * new_top_frame)386 inline ShadowFrame* Thread::PushShadowFrame(ShadowFrame* new_top_frame) {
387 return tlsPtr_.managed_stack.PushShadowFrame(new_top_frame);
388 }
389
PopShadowFrame()390 inline ShadowFrame* Thread::PopShadowFrame() {
391 return tlsPtr_.managed_stack.PopShadowFrame();
392 }
393
394 } // namespace art
395
396 #endif // ART_RUNTIME_THREAD_INL_H_
397