1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "inliner.h"
18
19 #include "art_method-inl.h"
20 #include "base/enums.h"
21 #include "builder.h"
22 #include "class_linker.h"
23 #include "constant_folding.h"
24 #include "data_type-inl.h"
25 #include "dead_code_elimination.h"
26 #include "dex/inline_method_analyser.h"
27 #include "dex/verification_results.h"
28 #include "dex/verified_method.h"
29 #include "driver/compiler_driver-inl.h"
30 #include "driver/compiler_options.h"
31 #include "driver/dex_compilation_unit.h"
32 #include "instruction_simplifier.h"
33 #include "intrinsics.h"
34 #include "jit/jit.h"
35 #include "jit/jit_code_cache.h"
36 #include "mirror/class_loader.h"
37 #include "mirror/dex_cache.h"
38 #include "nodes.h"
39 #include "optimizing_compiler.h"
40 #include "reference_type_propagation.h"
41 #include "register_allocator_linear_scan.h"
42 #include "scoped_thread_state_change-inl.h"
43 #include "sharpening.h"
44 #include "ssa_builder.h"
45 #include "ssa_phi_elimination.h"
46 #include "thread.h"
47
48 namespace art {
49
50 // Instruction limit to control memory.
51 static constexpr size_t kMaximumNumberOfTotalInstructions = 1024;
52
53 // Maximum number of instructions for considering a method small,
54 // which we will always try to inline if the other non-instruction limits
55 // are not reached.
56 static constexpr size_t kMaximumNumberOfInstructionsForSmallMethod = 3;
57
58 // Limit the number of dex registers that we accumulate while inlining
59 // to avoid creating large amount of nested environments.
60 static constexpr size_t kMaximumNumberOfCumulatedDexRegisters = 32;
61
62 // Limit recursive call inlining, which do not benefit from too
63 // much inlining compared to code locality.
64 static constexpr size_t kMaximumNumberOfRecursiveCalls = 4;
65
66 // Controls the use of inline caches in AOT mode.
67 static constexpr bool kUseAOTInlineCaches = true;
68
69 // We check for line numbers to make sure the DepthString implementation
70 // aligns the output nicely.
71 #define LOG_INTERNAL(msg) \
72 static_assert(__LINE__ > 10, "Unhandled line number"); \
73 static_assert(__LINE__ < 10000, "Unhandled line number"); \
74 VLOG(compiler) << DepthString(__LINE__) << msg
75
76 #define LOG_TRY() LOG_INTERNAL("Try inlinining call: ")
77 #define LOG_NOTE() LOG_INTERNAL("Note: ")
78 #define LOG_SUCCESS() LOG_INTERNAL("Success: ")
79 #define LOG_FAIL(stats_ptr, stat) MaybeRecordStat(stats_ptr, stat); LOG_INTERNAL("Fail: ")
80 #define LOG_FAIL_NO_STAT() LOG_INTERNAL("Fail: ")
81
DepthString(int line) const82 std::string HInliner::DepthString(int line) const {
83 std::string value;
84 // Indent according to the inlining depth.
85 size_t count = depth_;
86 // Line numbers get printed in the log, so add a space if the log's line is less
87 // than 1000, and two if less than 100. 10 cannot be reached as it's the copyright.
88 if (!kIsTargetBuild) {
89 if (line < 100) {
90 value += " ";
91 }
92 if (line < 1000) {
93 value += " ";
94 }
95 // Safeguard if this file reaches more than 10000 lines.
96 DCHECK_LT(line, 10000);
97 }
98 for (size_t i = 0; i < count; ++i) {
99 value += " ";
100 }
101 return value;
102 }
103
CountNumberOfInstructions(HGraph * graph)104 static size_t CountNumberOfInstructions(HGraph* graph) {
105 size_t number_of_instructions = 0;
106 for (HBasicBlock* block : graph->GetReversePostOrderSkipEntryBlock()) {
107 for (HInstructionIterator instr_it(block->GetInstructions());
108 !instr_it.Done();
109 instr_it.Advance()) {
110 ++number_of_instructions;
111 }
112 }
113 return number_of_instructions;
114 }
115
UpdateInliningBudget()116 void HInliner::UpdateInliningBudget() {
117 if (total_number_of_instructions_ >= kMaximumNumberOfTotalInstructions) {
118 // Always try to inline small methods.
119 inlining_budget_ = kMaximumNumberOfInstructionsForSmallMethod;
120 } else {
121 inlining_budget_ = std::max(
122 kMaximumNumberOfInstructionsForSmallMethod,
123 kMaximumNumberOfTotalInstructions - total_number_of_instructions_);
124 }
125 }
126
Run()127 void HInliner::Run() {
128 if (graph_->IsDebuggable()) {
129 // For simplicity, we currently never inline when the graph is debuggable. This avoids
130 // doing some logic in the runtime to discover if a method could have been inlined.
131 return;
132 }
133
134 // Initialize the number of instructions for the method being compiled. Recursive calls
135 // to HInliner::Run have already updated the instruction count.
136 if (outermost_graph_ == graph_) {
137 total_number_of_instructions_ = CountNumberOfInstructions(graph_);
138 }
139
140 UpdateInliningBudget();
141 DCHECK_NE(total_number_of_instructions_, 0u);
142 DCHECK_NE(inlining_budget_, 0u);
143
144 // If we're compiling with a core image (which is only used for
145 // test purposes), honor inlining directives in method names:
146 // - if a method's name contains the substring "$inline$", ensure
147 // that this method is actually inlined;
148 // - if a method's name contains the substring "$noinline$", do not
149 // inline that method.
150 // We limit this to AOT compilation, as the JIT may or may not inline
151 // depending on the state of classes at runtime.
152 const bool honor_inlining_directives =
153 IsCompilingWithCoreImage() && Runtime::Current()->IsAotCompiler();
154
155 // Keep a copy of all blocks when starting the visit.
156 ArenaVector<HBasicBlock*> blocks = graph_->GetReversePostOrder();
157 DCHECK(!blocks.empty());
158 // Because we are changing the graph when inlining,
159 // we just iterate over the blocks of the outer method.
160 // This avoids doing the inlining work again on the inlined blocks.
161 for (HBasicBlock* block : blocks) {
162 for (HInstruction* instruction = block->GetFirstInstruction(); instruction != nullptr;) {
163 HInstruction* next = instruction->GetNext();
164 HInvoke* call = instruction->AsInvoke();
165 // As long as the call is not intrinsified, it is worth trying to inline.
166 if (call != nullptr && call->GetIntrinsic() == Intrinsics::kNone) {
167 if (honor_inlining_directives) {
168 // Debugging case: directives in method names control or assert on inlining.
169 std::string callee_name = outer_compilation_unit_.GetDexFile()->PrettyMethod(
170 call->GetDexMethodIndex(), /* with_signature */ false);
171 // Tests prevent inlining by having $noinline$ in their method names.
172 if (callee_name.find("$noinline$") == std::string::npos) {
173 if (!TryInline(call)) {
174 bool should_have_inlined = (callee_name.find("$inline$") != std::string::npos);
175 CHECK(!should_have_inlined) << "Could not inline " << callee_name;
176 }
177 }
178 } else {
179 // Normal case: try to inline.
180 TryInline(call);
181 }
182 }
183 instruction = next;
184 }
185 }
186 }
187
IsMethodOrDeclaringClassFinal(ArtMethod * method)188 static bool IsMethodOrDeclaringClassFinal(ArtMethod* method)
189 REQUIRES_SHARED(Locks::mutator_lock_) {
190 return method->IsFinal() || method->GetDeclaringClass()->IsFinal();
191 }
192
193 /**
194 * Given the `resolved_method` looked up in the dex cache, try to find
195 * the actual runtime target of an interface or virtual call.
196 * Return nullptr if the runtime target cannot be proven.
197 */
FindVirtualOrInterfaceTarget(HInvoke * invoke,ArtMethod * resolved_method)198 static ArtMethod* FindVirtualOrInterfaceTarget(HInvoke* invoke, ArtMethod* resolved_method)
199 REQUIRES_SHARED(Locks::mutator_lock_) {
200 if (IsMethodOrDeclaringClassFinal(resolved_method)) {
201 // No need to lookup further, the resolved method will be the target.
202 return resolved_method;
203 }
204
205 HInstruction* receiver = invoke->InputAt(0);
206 if (receiver->IsNullCheck()) {
207 // Due to multiple levels of inlining within the same pass, it might be that
208 // null check does not have the reference type of the actual receiver.
209 receiver = receiver->InputAt(0);
210 }
211 ReferenceTypeInfo info = receiver->GetReferenceTypeInfo();
212 DCHECK(info.IsValid()) << "Invalid RTI for " << receiver->DebugName();
213 if (!info.IsExact()) {
214 // We currently only support inlining with known receivers.
215 // TODO: Remove this check, we should be able to inline final methods
216 // on unknown receivers.
217 return nullptr;
218 } else if (info.GetTypeHandle()->IsInterface()) {
219 // Statically knowing that the receiver has an interface type cannot
220 // help us find what is the target method.
221 return nullptr;
222 } else if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(info.GetTypeHandle().Get())) {
223 // The method that we're trying to call is not in the receiver's class or super classes.
224 return nullptr;
225 } else if (info.GetTypeHandle()->IsErroneous()) {
226 // If the type is erroneous, do not go further, as we are going to query the vtable or
227 // imt table, that we can only safely do on non-erroneous classes.
228 return nullptr;
229 }
230
231 ClassLinker* cl = Runtime::Current()->GetClassLinker();
232 PointerSize pointer_size = cl->GetImagePointerSize();
233 if (invoke->IsInvokeInterface()) {
234 resolved_method = info.GetTypeHandle()->FindVirtualMethodForInterface(
235 resolved_method, pointer_size);
236 } else {
237 DCHECK(invoke->IsInvokeVirtual());
238 resolved_method = info.GetTypeHandle()->FindVirtualMethodForVirtual(
239 resolved_method, pointer_size);
240 }
241
242 if (resolved_method == nullptr) {
243 // The information we had on the receiver was not enough to find
244 // the target method. Since we check above the exact type of the receiver,
245 // the only reason this can happen is an IncompatibleClassChangeError.
246 return nullptr;
247 } else if (!resolved_method->IsInvokable()) {
248 // The information we had on the receiver was not enough to find
249 // the target method. Since we check above the exact type of the receiver,
250 // the only reason this can happen is an IncompatibleClassChangeError.
251 return nullptr;
252 } else if (IsMethodOrDeclaringClassFinal(resolved_method)) {
253 // A final method has to be the target method.
254 return resolved_method;
255 } else if (info.IsExact()) {
256 // If we found a method and the receiver's concrete type is statically
257 // known, we know for sure the target.
258 return resolved_method;
259 } else {
260 // Even if we did find a method, the receiver type was not enough to
261 // statically find the runtime target.
262 return nullptr;
263 }
264 }
265
FindMethodIndexIn(ArtMethod * method,const DexFile & dex_file,uint32_t name_and_signature_index)266 static uint32_t FindMethodIndexIn(ArtMethod* method,
267 const DexFile& dex_file,
268 uint32_t name_and_signature_index)
269 REQUIRES_SHARED(Locks::mutator_lock_) {
270 if (IsSameDexFile(*method->GetDexFile(), dex_file)) {
271 return method->GetDexMethodIndex();
272 } else {
273 return method->FindDexMethodIndexInOtherDexFile(dex_file, name_and_signature_index);
274 }
275 }
276
FindClassIndexIn(mirror::Class * cls,const DexCompilationUnit & compilation_unit)277 static dex::TypeIndex FindClassIndexIn(mirror::Class* cls,
278 const DexCompilationUnit& compilation_unit)
279 REQUIRES_SHARED(Locks::mutator_lock_) {
280 const DexFile& dex_file = *compilation_unit.GetDexFile();
281 dex::TypeIndex index;
282 if (cls->GetDexCache() == nullptr) {
283 DCHECK(cls->IsArrayClass()) << cls->PrettyClass();
284 index = cls->FindTypeIndexInOtherDexFile(dex_file);
285 } else if (!cls->GetDexTypeIndex().IsValid()) {
286 DCHECK(cls->IsProxyClass()) << cls->PrettyClass();
287 // TODO: deal with proxy classes.
288 } else if (IsSameDexFile(cls->GetDexFile(), dex_file)) {
289 DCHECK_EQ(cls->GetDexCache(), compilation_unit.GetDexCache().Get());
290 index = cls->GetDexTypeIndex();
291 } else {
292 index = cls->FindTypeIndexInOtherDexFile(dex_file);
293 // We cannot guarantee the entry will resolve to the same class,
294 // as there may be different class loaders. So only return the index if it's
295 // the right class already resolved with the class loader.
296 if (index.IsValid()) {
297 ObjPtr<mirror::Class> resolved = compilation_unit.GetClassLinker()->LookupResolvedType(
298 index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get());
299 if (resolved != cls) {
300 index = dex::TypeIndex::Invalid();
301 }
302 }
303 }
304
305 return index;
306 }
307
308 class ScopedProfilingInfoInlineUse {
309 public:
ScopedProfilingInfoInlineUse(ArtMethod * method,Thread * self)310 explicit ScopedProfilingInfoInlineUse(ArtMethod* method, Thread* self)
311 : method_(method),
312 self_(self),
313 // Fetch the profiling info ahead of using it. If it's null when fetching,
314 // we should not call JitCodeCache::DoneInlining.
315 profiling_info_(
316 Runtime::Current()->GetJit()->GetCodeCache()->NotifyCompilerUse(method, self)) {
317 }
318
~ScopedProfilingInfoInlineUse()319 ~ScopedProfilingInfoInlineUse() {
320 if (profiling_info_ != nullptr) {
321 PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
322 DCHECK_EQ(profiling_info_, method_->GetProfilingInfo(pointer_size));
323 Runtime::Current()->GetJit()->GetCodeCache()->DoneCompilerUse(method_, self_);
324 }
325 }
326
GetProfilingInfo() const327 ProfilingInfo* GetProfilingInfo() const { return profiling_info_; }
328
329 private:
330 ArtMethod* const method_;
331 Thread* const self_;
332 ProfilingInfo* const profiling_info_;
333 };
334
GetInlineCacheType(const Handle<mirror::ObjectArray<mirror::Class>> & classes)335 HInliner::InlineCacheType HInliner::GetInlineCacheType(
336 const Handle<mirror::ObjectArray<mirror::Class>>& classes)
337 REQUIRES_SHARED(Locks::mutator_lock_) {
338 uint8_t number_of_types = 0;
339 for (; number_of_types < InlineCache::kIndividualCacheSize; ++number_of_types) {
340 if (classes->Get(number_of_types) == nullptr) {
341 break;
342 }
343 }
344
345 if (number_of_types == 0) {
346 return kInlineCacheUninitialized;
347 } else if (number_of_types == 1) {
348 return kInlineCacheMonomorphic;
349 } else if (number_of_types == InlineCache::kIndividualCacheSize) {
350 return kInlineCacheMegamorphic;
351 } else {
352 return kInlineCachePolymorphic;
353 }
354 }
355
GetMonomorphicType(Handle<mirror::ObjectArray<mirror::Class>> classes)356 static mirror::Class* GetMonomorphicType(Handle<mirror::ObjectArray<mirror::Class>> classes)
357 REQUIRES_SHARED(Locks::mutator_lock_) {
358 DCHECK(classes->Get(0) != nullptr);
359 return classes->Get(0);
360 }
361
TryCHADevirtualization(ArtMethod * resolved_method)362 ArtMethod* HInliner::TryCHADevirtualization(ArtMethod* resolved_method) {
363 if (!resolved_method->HasSingleImplementation()) {
364 return nullptr;
365 }
366 if (Runtime::Current()->IsAotCompiler()) {
367 // No CHA-based devirtulization for AOT compiler (yet).
368 return nullptr;
369 }
370 if (outermost_graph_->IsCompilingOsr()) {
371 // We do not support HDeoptimize in OSR methods.
372 return nullptr;
373 }
374 PointerSize pointer_size = caller_compilation_unit_.GetClassLinker()->GetImagePointerSize();
375 ArtMethod* single_impl = resolved_method->GetSingleImplementation(pointer_size);
376 if (single_impl == nullptr) {
377 return nullptr;
378 }
379 if (single_impl->IsProxyMethod()) {
380 // Proxy method is a generic invoker that's not worth
381 // devirtualizing/inlining. It also causes issues when the proxy
382 // method is in another dex file if we try to rewrite invoke-interface to
383 // invoke-virtual because a proxy method doesn't have a real dex file.
384 return nullptr;
385 }
386 if (!single_impl->GetDeclaringClass()->IsResolved()) {
387 // There's a race with the class loading, which updates the CHA info
388 // before setting the class to resolved. So we just bail for this
389 // rare occurence.
390 return nullptr;
391 }
392 return single_impl;
393 }
394
IsMethodUnverified(CompilerDriver * const compiler_driver,ArtMethod * method)395 static bool IsMethodUnverified(CompilerDriver* const compiler_driver, ArtMethod* method)
396 REQUIRES_SHARED(Locks::mutator_lock_) {
397 if (!method->GetDeclaringClass()->IsVerified()) {
398 if (Runtime::Current()->UseJitCompilation()) {
399 // We're at runtime, we know this is cold code if the class
400 // is not verified, so don't bother analyzing.
401 return true;
402 }
403 uint16_t class_def_idx = method->GetDeclaringClass()->GetDexClassDefIndex();
404 if (!compiler_driver->IsMethodVerifiedWithoutFailures(
405 method->GetDexMethodIndex(), class_def_idx, *method->GetDexFile())) {
406 // Method has soft or hard failures, don't analyze.
407 return true;
408 }
409 }
410 return false;
411 }
412
AlwaysThrows(CompilerDriver * const compiler_driver,ArtMethod * method)413 static bool AlwaysThrows(CompilerDriver* const compiler_driver, ArtMethod* method)
414 REQUIRES_SHARED(Locks::mutator_lock_) {
415 DCHECK(method != nullptr);
416 // Skip non-compilable and unverified methods.
417 if (!method->IsCompilable() || IsMethodUnverified(compiler_driver, method)) {
418 return false;
419 }
420 // Skip native methods, methods with try blocks, and methods that are too large.
421 CodeItemDataAccessor accessor(method->DexInstructionData());
422 if (!accessor.HasCodeItem() ||
423 accessor.TriesSize() != 0 ||
424 accessor.InsnsSizeInCodeUnits() > kMaximumNumberOfTotalInstructions) {
425 return false;
426 }
427 // Scan for exits.
428 bool throw_seen = false;
429 for (const DexInstructionPcPair& pair : accessor) {
430 switch (pair.Inst().Opcode()) {
431 case Instruction::RETURN:
432 case Instruction::RETURN_VOID:
433 case Instruction::RETURN_WIDE:
434 case Instruction::RETURN_OBJECT:
435 case Instruction::RETURN_VOID_NO_BARRIER:
436 return false; // found regular control flow back
437 case Instruction::THROW:
438 throw_seen = true;
439 break;
440 default:
441 break;
442 }
443 }
444 return throw_seen;
445 }
446
TryInline(HInvoke * invoke_instruction)447 bool HInliner::TryInline(HInvoke* invoke_instruction) {
448 if (invoke_instruction->IsInvokeUnresolved() ||
449 invoke_instruction->IsInvokePolymorphic()) {
450 return false; // Don't bother to move further if we know the method is unresolved or an
451 // invoke-polymorphic.
452 }
453
454 ScopedObjectAccess soa(Thread::Current());
455 uint32_t method_index = invoke_instruction->GetDexMethodIndex();
456 const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
457 LOG_TRY() << caller_dex_file.PrettyMethod(method_index);
458
459 ArtMethod* resolved_method = invoke_instruction->GetResolvedMethod();
460 if (resolved_method == nullptr) {
461 DCHECK(invoke_instruction->IsInvokeStaticOrDirect());
462 DCHECK(invoke_instruction->AsInvokeStaticOrDirect()->IsStringInit());
463 LOG_FAIL_NO_STAT() << "Not inlining a String.<init> method";
464 return false;
465 }
466 ArtMethod* actual_method = nullptr;
467
468 if (invoke_instruction->IsInvokeStaticOrDirect()) {
469 actual_method = resolved_method;
470 } else {
471 // Check if we can statically find the method.
472 actual_method = FindVirtualOrInterfaceTarget(invoke_instruction, resolved_method);
473 }
474
475 bool cha_devirtualize = false;
476 if (actual_method == nullptr) {
477 ArtMethod* method = TryCHADevirtualization(resolved_method);
478 if (method != nullptr) {
479 cha_devirtualize = true;
480 actual_method = method;
481 LOG_NOTE() << "Try CHA-based inlining of " << actual_method->PrettyMethod();
482 }
483 }
484
485 if (actual_method != nullptr) {
486 // Single target.
487 bool result = TryInlineAndReplace(invoke_instruction,
488 actual_method,
489 ReferenceTypeInfo::CreateInvalid(),
490 /* do_rtp */ true,
491 cha_devirtualize);
492 if (result) {
493 // Successfully inlined.
494 if (!invoke_instruction->IsInvokeStaticOrDirect()) {
495 if (cha_devirtualize) {
496 // Add dependency due to devirtualization. We've assumed resolved_method
497 // has single implementation.
498 outermost_graph_->AddCHASingleImplementationDependency(resolved_method);
499 MaybeRecordStat(stats_, MethodCompilationStat::kCHAInline);
500 } else {
501 MaybeRecordStat(stats_, MethodCompilationStat::kInlinedInvokeVirtualOrInterface);
502 }
503 }
504 } else if (!cha_devirtualize && AlwaysThrows(compiler_driver_, actual_method)) {
505 // Set always throws property for non-inlined method call with single target
506 // (unless it was obtained through CHA, because that would imply we have
507 // to add the CHA dependency, which seems not worth it).
508 invoke_instruction->SetAlwaysThrows(true);
509 }
510 return result;
511 }
512 DCHECK(!invoke_instruction->IsInvokeStaticOrDirect());
513
514 // Try using inline caches.
515 return TryInlineFromInlineCache(caller_dex_file, invoke_instruction, resolved_method);
516 }
517
AllocateInlineCacheHolder(const DexCompilationUnit & compilation_unit,StackHandleScope<1> * hs)518 static Handle<mirror::ObjectArray<mirror::Class>> AllocateInlineCacheHolder(
519 const DexCompilationUnit& compilation_unit,
520 StackHandleScope<1>* hs)
521 REQUIRES_SHARED(Locks::mutator_lock_) {
522 Thread* self = Thread::Current();
523 ClassLinker* class_linker = compilation_unit.GetClassLinker();
524 Handle<mirror::ObjectArray<mirror::Class>> inline_cache = hs->NewHandle(
525 mirror::ObjectArray<mirror::Class>::Alloc(
526 self,
527 class_linker->GetClassRoot(ClassLinker::kClassArrayClass),
528 InlineCache::kIndividualCacheSize));
529 if (inline_cache == nullptr) {
530 // We got an OOME. Just clear the exception, and don't inline.
531 DCHECK(self->IsExceptionPending());
532 self->ClearException();
533 VLOG(compiler) << "Out of memory in the compiler when trying to inline";
534 }
535 return inline_cache;
536 }
537
UseOnlyPolymorphicInliningWithNoDeopt()538 bool HInliner::UseOnlyPolymorphicInliningWithNoDeopt() {
539 // If we are compiling AOT or OSR, pretend the call using inline caches is polymorphic and
540 // do not generate a deopt.
541 //
542 // For AOT:
543 // Generating a deopt does not ensure that we will actually capture the new types;
544 // and the danger is that we could be stuck in a loop with "forever" deoptimizations.
545 // Take for example the following scenario:
546 // - we capture the inline cache in one run
547 // - the next run, we deoptimize because we miss a type check, but the method
548 // never becomes hot again
549 // In this case, the inline cache will not be updated in the profile and the AOT code
550 // will keep deoptimizing.
551 // Another scenario is if we use profile compilation for a process which is not allowed
552 // to JIT (e.g. system server). If we deoptimize we will run interpreted code for the
553 // rest of the lifetime.
554 // TODO(calin):
555 // This is a compromise because we will most likely never update the inline cache
556 // in the profile (unless there's another reason to deopt). So we might be stuck with
557 // a sub-optimal inline cache.
558 // We could be smarter when capturing inline caches to mitigate this.
559 // (e.g. by having different thresholds for new and old methods).
560 //
561 // For OSR:
562 // We may come from the interpreter and it may have seen different receiver types.
563 return Runtime::Current()->IsAotCompiler() || outermost_graph_->IsCompilingOsr();
564 }
TryInlineFromInlineCache(const DexFile & caller_dex_file,HInvoke * invoke_instruction,ArtMethod * resolved_method)565 bool HInliner::TryInlineFromInlineCache(const DexFile& caller_dex_file,
566 HInvoke* invoke_instruction,
567 ArtMethod* resolved_method)
568 REQUIRES_SHARED(Locks::mutator_lock_) {
569 if (Runtime::Current()->IsAotCompiler() && !kUseAOTInlineCaches) {
570 return false;
571 }
572
573 StackHandleScope<1> hs(Thread::Current());
574 Handle<mirror::ObjectArray<mirror::Class>> inline_cache;
575 InlineCacheType inline_cache_type = Runtime::Current()->IsAotCompiler()
576 ? GetInlineCacheAOT(caller_dex_file, invoke_instruction, &hs, &inline_cache)
577 : GetInlineCacheJIT(invoke_instruction, &hs, &inline_cache);
578
579 switch (inline_cache_type) {
580 case kInlineCacheNoData: {
581 LOG_FAIL_NO_STAT()
582 << "Interface or virtual call to "
583 << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex())
584 << " could not be statically determined";
585 return false;
586 }
587
588 case kInlineCacheUninitialized: {
589 LOG_FAIL_NO_STAT()
590 << "Interface or virtual call to "
591 << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex())
592 << " is not hit and not inlined";
593 return false;
594 }
595
596 case kInlineCacheMonomorphic: {
597 MaybeRecordStat(stats_, MethodCompilationStat::kMonomorphicCall);
598 if (UseOnlyPolymorphicInliningWithNoDeopt()) {
599 return TryInlinePolymorphicCall(invoke_instruction, resolved_method, inline_cache);
600 } else {
601 return TryInlineMonomorphicCall(invoke_instruction, resolved_method, inline_cache);
602 }
603 }
604
605 case kInlineCachePolymorphic: {
606 MaybeRecordStat(stats_, MethodCompilationStat::kPolymorphicCall);
607 return TryInlinePolymorphicCall(invoke_instruction, resolved_method, inline_cache);
608 }
609
610 case kInlineCacheMegamorphic: {
611 LOG_FAIL_NO_STAT()
612 << "Interface or virtual call to "
613 << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex())
614 << " is megamorphic and not inlined";
615 MaybeRecordStat(stats_, MethodCompilationStat::kMegamorphicCall);
616 return false;
617 }
618
619 case kInlineCacheMissingTypes: {
620 LOG_FAIL_NO_STAT()
621 << "Interface or virtual call to "
622 << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex())
623 << " is missing types and not inlined";
624 return false;
625 }
626 }
627 UNREACHABLE();
628 }
629
GetInlineCacheJIT(HInvoke * invoke_instruction,StackHandleScope<1> * hs,Handle<mirror::ObjectArray<mirror::Class>> * inline_cache)630 HInliner::InlineCacheType HInliner::GetInlineCacheJIT(
631 HInvoke* invoke_instruction,
632 StackHandleScope<1>* hs,
633 /*out*/Handle<mirror::ObjectArray<mirror::Class>>* inline_cache)
634 REQUIRES_SHARED(Locks::mutator_lock_) {
635 DCHECK(Runtime::Current()->UseJitCompilation());
636
637 ArtMethod* caller = graph_->GetArtMethod();
638 // Under JIT, we should always know the caller.
639 DCHECK(caller != nullptr);
640 ScopedProfilingInfoInlineUse spiis(caller, Thread::Current());
641 ProfilingInfo* profiling_info = spiis.GetProfilingInfo();
642
643 if (profiling_info == nullptr) {
644 return kInlineCacheNoData;
645 }
646
647 *inline_cache = AllocateInlineCacheHolder(caller_compilation_unit_, hs);
648 if (inline_cache->Get() == nullptr) {
649 // We can't extract any data if we failed to allocate;
650 return kInlineCacheNoData;
651 } else {
652 Runtime::Current()->GetJit()->GetCodeCache()->CopyInlineCacheInto(
653 *profiling_info->GetInlineCache(invoke_instruction->GetDexPc()),
654 *inline_cache);
655 return GetInlineCacheType(*inline_cache);
656 }
657 }
658
GetInlineCacheAOT(const DexFile & caller_dex_file,HInvoke * invoke_instruction,StackHandleScope<1> * hs,Handle<mirror::ObjectArray<mirror::Class>> * inline_cache)659 HInliner::InlineCacheType HInliner::GetInlineCacheAOT(
660 const DexFile& caller_dex_file,
661 HInvoke* invoke_instruction,
662 StackHandleScope<1>* hs,
663 /*out*/Handle<mirror::ObjectArray<mirror::Class>>* inline_cache)
664 REQUIRES_SHARED(Locks::mutator_lock_) {
665 DCHECK(Runtime::Current()->IsAotCompiler());
666 const ProfileCompilationInfo* pci = compiler_driver_->GetProfileCompilationInfo();
667 if (pci == nullptr) {
668 return kInlineCacheNoData;
669 }
670
671 std::unique_ptr<ProfileCompilationInfo::OfflineProfileMethodInfo> offline_profile =
672 pci->GetMethod(caller_dex_file.GetLocation(),
673 caller_dex_file.GetLocationChecksum(),
674 caller_compilation_unit_.GetDexMethodIndex());
675 if (offline_profile == nullptr) {
676 return kInlineCacheNoData; // no profile information for this invocation.
677 }
678
679 *inline_cache = AllocateInlineCacheHolder(caller_compilation_unit_, hs);
680 if (inline_cache == nullptr) {
681 // We can't extract any data if we failed to allocate;
682 return kInlineCacheNoData;
683 } else {
684 return ExtractClassesFromOfflineProfile(invoke_instruction,
685 *(offline_profile.get()),
686 *inline_cache);
687 }
688 }
689
ExtractClassesFromOfflineProfile(const HInvoke * invoke_instruction,const ProfileCompilationInfo::OfflineProfileMethodInfo & offline_profile,Handle<mirror::ObjectArray<mirror::Class>> inline_cache)690 HInliner::InlineCacheType HInliner::ExtractClassesFromOfflineProfile(
691 const HInvoke* invoke_instruction,
692 const ProfileCompilationInfo::OfflineProfileMethodInfo& offline_profile,
693 /*out*/Handle<mirror::ObjectArray<mirror::Class>> inline_cache)
694 REQUIRES_SHARED(Locks::mutator_lock_) {
695 const auto it = offline_profile.inline_caches->find(invoke_instruction->GetDexPc());
696 if (it == offline_profile.inline_caches->end()) {
697 return kInlineCacheUninitialized;
698 }
699
700 const ProfileCompilationInfo::DexPcData& dex_pc_data = it->second;
701
702 if (dex_pc_data.is_missing_types) {
703 return kInlineCacheMissingTypes;
704 }
705 if (dex_pc_data.is_megamorphic) {
706 return kInlineCacheMegamorphic;
707 }
708
709 DCHECK_LE(dex_pc_data.classes.size(), InlineCache::kIndividualCacheSize);
710 Thread* self = Thread::Current();
711 // We need to resolve the class relative to the containing dex file.
712 // So first, build a mapping from the index of dex file in the profile to
713 // its dex cache. This will avoid repeating the lookup when walking over
714 // the inline cache types.
715 std::vector<ObjPtr<mirror::DexCache>> dex_profile_index_to_dex_cache(
716 offline_profile.dex_references.size());
717 for (size_t i = 0; i < offline_profile.dex_references.size(); i++) {
718 bool found = false;
719 for (const DexFile* dex_file : compiler_driver_->GetDexFilesForOatFile()) {
720 if (offline_profile.dex_references[i].MatchesDex(dex_file)) {
721 dex_profile_index_to_dex_cache[i] =
722 caller_compilation_unit_.GetClassLinker()->FindDexCache(self, *dex_file);
723 found = true;
724 }
725 }
726 if (!found) {
727 VLOG(compiler) << "Could not find profiled dex file: "
728 << offline_profile.dex_references[i].dex_location;
729 return kInlineCacheMissingTypes;
730 }
731 }
732
733 // Walk over the classes and resolve them. If we cannot find a type we return
734 // kInlineCacheMissingTypes.
735 int ic_index = 0;
736 for (const ProfileCompilationInfo::ClassReference& class_ref : dex_pc_data.classes) {
737 ObjPtr<mirror::DexCache> dex_cache =
738 dex_profile_index_to_dex_cache[class_ref.dex_profile_index];
739 DCHECK(dex_cache != nullptr);
740
741 if (!dex_cache->GetDexFile()->IsTypeIndexValid(class_ref.type_index)) {
742 VLOG(compiler) << "Profile data corrupt: type index " << class_ref.type_index
743 << "is invalid in location" << dex_cache->GetDexFile()->GetLocation();
744 return kInlineCacheNoData;
745 }
746 ObjPtr<mirror::Class> clazz = caller_compilation_unit_.GetClassLinker()->LookupResolvedType(
747 class_ref.type_index,
748 dex_cache,
749 caller_compilation_unit_.GetClassLoader().Get());
750 if (clazz != nullptr) {
751 inline_cache->Set(ic_index++, clazz);
752 } else {
753 VLOG(compiler) << "Could not resolve class from inline cache in AOT mode "
754 << caller_compilation_unit_.GetDexFile()->PrettyMethod(
755 invoke_instruction->GetDexMethodIndex()) << " : "
756 << caller_compilation_unit_
757 .GetDexFile()->StringByTypeIdx(class_ref.type_index);
758 return kInlineCacheMissingTypes;
759 }
760 }
761 return GetInlineCacheType(inline_cache);
762 }
763
BuildGetReceiverClass(ClassLinker * class_linker,HInstruction * receiver,uint32_t dex_pc) const764 HInstanceFieldGet* HInliner::BuildGetReceiverClass(ClassLinker* class_linker,
765 HInstruction* receiver,
766 uint32_t dex_pc) const {
767 ArtField* field = class_linker->GetClassRoot(ClassLinker::kJavaLangObject)->GetInstanceField(0);
768 DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_");
769 HInstanceFieldGet* result = new (graph_->GetAllocator()) HInstanceFieldGet(
770 receiver,
771 field,
772 DataType::Type::kReference,
773 field->GetOffset(),
774 field->IsVolatile(),
775 field->GetDexFieldIndex(),
776 field->GetDeclaringClass()->GetDexClassDefIndex(),
777 *field->GetDexFile(),
778 dex_pc);
779 // The class of a field is effectively final, and does not have any memory dependencies.
780 result->SetSideEffects(SideEffects::None());
781 return result;
782 }
783
ResolveMethodFromInlineCache(Handle<mirror::Class> klass,ArtMethod * resolved_method,HInstruction * invoke_instruction,PointerSize pointer_size)784 static ArtMethod* ResolveMethodFromInlineCache(Handle<mirror::Class> klass,
785 ArtMethod* resolved_method,
786 HInstruction* invoke_instruction,
787 PointerSize pointer_size)
788 REQUIRES_SHARED(Locks::mutator_lock_) {
789 if (Runtime::Current()->IsAotCompiler()) {
790 // We can get unrelated types when working with profiles (corruption,
791 // systme updates, or anyone can write to it). So first check if the class
792 // actually implements the declaring class of the method that is being
793 // called in bytecode.
794 // Note: the lookup methods used below require to have assignable types.
795 if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(klass.Get())) {
796 return nullptr;
797 }
798 }
799
800 if (invoke_instruction->IsInvokeInterface()) {
801 resolved_method = klass->FindVirtualMethodForInterface(resolved_method, pointer_size);
802 } else {
803 DCHECK(invoke_instruction->IsInvokeVirtual());
804 resolved_method = klass->FindVirtualMethodForVirtual(resolved_method, pointer_size);
805 }
806 DCHECK(resolved_method != nullptr);
807 return resolved_method;
808 }
809
TryInlineMonomorphicCall(HInvoke * invoke_instruction,ArtMethod * resolved_method,Handle<mirror::ObjectArray<mirror::Class>> classes)810 bool HInliner::TryInlineMonomorphicCall(HInvoke* invoke_instruction,
811 ArtMethod* resolved_method,
812 Handle<mirror::ObjectArray<mirror::Class>> classes) {
813 DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface())
814 << invoke_instruction->DebugName();
815
816 dex::TypeIndex class_index = FindClassIndexIn(
817 GetMonomorphicType(classes), caller_compilation_unit_);
818 if (!class_index.IsValid()) {
819 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCache)
820 << "Call to " << ArtMethod::PrettyMethod(resolved_method)
821 << " from inline cache is not inlined because its class is not"
822 << " accessible to the caller";
823 return false;
824 }
825
826 ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
827 PointerSize pointer_size = class_linker->GetImagePointerSize();
828 Handle<mirror::Class> monomorphic_type = handles_->NewHandle(GetMonomorphicType(classes));
829 resolved_method = ResolveMethodFromInlineCache(
830 monomorphic_type, resolved_method, invoke_instruction, pointer_size);
831
832 LOG_NOTE() << "Try inline monomorphic call to " << resolved_method->PrettyMethod();
833 if (resolved_method == nullptr) {
834 // Bogus AOT profile, bail.
835 DCHECK(Runtime::Current()->IsAotCompiler());
836 return false;
837 }
838
839 HInstruction* receiver = invoke_instruction->InputAt(0);
840 HInstruction* cursor = invoke_instruction->GetPrevious();
841 HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
842 if (!TryInlineAndReplace(invoke_instruction,
843 resolved_method,
844 ReferenceTypeInfo::Create(monomorphic_type, /* is_exact */ true),
845 /* do_rtp */ false,
846 /* cha_devirtualize */ false)) {
847 return false;
848 }
849
850 // We successfully inlined, now add a guard.
851 AddTypeGuard(receiver,
852 cursor,
853 bb_cursor,
854 class_index,
855 monomorphic_type,
856 invoke_instruction,
857 /* with_deoptimization */ true);
858
859 // Run type propagation to get the guard typed, and eventually propagate the
860 // type of the receiver.
861 ReferenceTypePropagation rtp_fixup(graph_,
862 outer_compilation_unit_.GetClassLoader(),
863 outer_compilation_unit_.GetDexCache(),
864 handles_,
865 /* is_first_run */ false);
866 rtp_fixup.Run();
867
868 MaybeRecordStat(stats_, MethodCompilationStat::kInlinedMonomorphicCall);
869 return true;
870 }
871
AddCHAGuard(HInstruction * invoke_instruction,uint32_t dex_pc,HInstruction * cursor,HBasicBlock * bb_cursor)872 void HInliner::AddCHAGuard(HInstruction* invoke_instruction,
873 uint32_t dex_pc,
874 HInstruction* cursor,
875 HBasicBlock* bb_cursor) {
876 HShouldDeoptimizeFlag* deopt_flag = new (graph_->GetAllocator())
877 HShouldDeoptimizeFlag(graph_->GetAllocator(), dex_pc);
878 HInstruction* compare = new (graph_->GetAllocator()) HNotEqual(
879 deopt_flag, graph_->GetIntConstant(0, dex_pc));
880 HInstruction* deopt = new (graph_->GetAllocator()) HDeoptimize(
881 graph_->GetAllocator(), compare, DeoptimizationKind::kCHA, dex_pc);
882
883 if (cursor != nullptr) {
884 bb_cursor->InsertInstructionAfter(deopt_flag, cursor);
885 } else {
886 bb_cursor->InsertInstructionBefore(deopt_flag, bb_cursor->GetFirstInstruction());
887 }
888 bb_cursor->InsertInstructionAfter(compare, deopt_flag);
889 bb_cursor->InsertInstructionAfter(deopt, compare);
890
891 // Add receiver as input to aid CHA guard optimization later.
892 deopt_flag->AddInput(invoke_instruction->InputAt(0));
893 DCHECK_EQ(deopt_flag->InputCount(), 1u);
894 deopt->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
895 outermost_graph_->IncrementNumberOfCHAGuards();
896 }
897
AddTypeGuard(HInstruction * receiver,HInstruction * cursor,HBasicBlock * bb_cursor,dex::TypeIndex class_index,Handle<mirror::Class> klass,HInstruction * invoke_instruction,bool with_deoptimization)898 HInstruction* HInliner::AddTypeGuard(HInstruction* receiver,
899 HInstruction* cursor,
900 HBasicBlock* bb_cursor,
901 dex::TypeIndex class_index,
902 Handle<mirror::Class> klass,
903 HInstruction* invoke_instruction,
904 bool with_deoptimization) {
905 ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
906 HInstanceFieldGet* receiver_class = BuildGetReceiverClass(
907 class_linker, receiver, invoke_instruction->GetDexPc());
908 if (cursor != nullptr) {
909 bb_cursor->InsertInstructionAfter(receiver_class, cursor);
910 } else {
911 bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction());
912 }
913
914 const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
915 bool is_referrer;
916 ArtMethod* outermost_art_method = outermost_graph_->GetArtMethod();
917 if (outermost_art_method == nullptr) {
918 DCHECK(Runtime::Current()->IsAotCompiler());
919 // We are in AOT mode and we don't have an ART method to determine
920 // if the inlined method belongs to the referrer. Assume it doesn't.
921 is_referrer = false;
922 } else {
923 is_referrer = klass.Get() == outermost_art_method->GetDeclaringClass();
924 }
925
926 // Note that we will just compare the classes, so we don't need Java semantics access checks.
927 // Note that the type index and the dex file are relative to the method this type guard is
928 // inlined into.
929 HLoadClass* load_class = new (graph_->GetAllocator()) HLoadClass(graph_->GetCurrentMethod(),
930 class_index,
931 caller_dex_file,
932 klass,
933 is_referrer,
934 invoke_instruction->GetDexPc(),
935 /* needs_access_check */ false);
936 HLoadClass::LoadKind kind = HSharpening::ComputeLoadClassKind(
937 load_class, codegen_, compiler_driver_, caller_compilation_unit_);
938 DCHECK(kind != HLoadClass::LoadKind::kInvalid)
939 << "We should always be able to reference a class for inline caches";
940 // Load kind must be set before inserting the instruction into the graph.
941 load_class->SetLoadKind(kind);
942 bb_cursor->InsertInstructionAfter(load_class, receiver_class);
943 // In AOT mode, we will most likely load the class from BSS, which will involve a call
944 // to the runtime. In this case, the load instruction will need an environment so copy
945 // it from the invoke instruction.
946 if (load_class->NeedsEnvironment()) {
947 DCHECK(Runtime::Current()->IsAotCompiler());
948 load_class->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
949 }
950
951 HNotEqual* compare = new (graph_->GetAllocator()) HNotEqual(load_class, receiver_class);
952 bb_cursor->InsertInstructionAfter(compare, load_class);
953 if (with_deoptimization) {
954 HDeoptimize* deoptimize = new (graph_->GetAllocator()) HDeoptimize(
955 graph_->GetAllocator(),
956 compare,
957 receiver,
958 Runtime::Current()->IsAotCompiler()
959 ? DeoptimizationKind::kAotInlineCache
960 : DeoptimizationKind::kJitInlineCache,
961 invoke_instruction->GetDexPc());
962 bb_cursor->InsertInstructionAfter(deoptimize, compare);
963 deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
964 DCHECK_EQ(invoke_instruction->InputAt(0), receiver);
965 receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize);
966 deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo());
967 }
968 return compare;
969 }
970
TryInlinePolymorphicCall(HInvoke * invoke_instruction,ArtMethod * resolved_method,Handle<mirror::ObjectArray<mirror::Class>> classes)971 bool HInliner::TryInlinePolymorphicCall(HInvoke* invoke_instruction,
972 ArtMethod* resolved_method,
973 Handle<mirror::ObjectArray<mirror::Class>> classes) {
974 DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface())
975 << invoke_instruction->DebugName();
976
977 if (TryInlinePolymorphicCallToSameTarget(invoke_instruction, resolved_method, classes)) {
978 return true;
979 }
980
981 ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
982 PointerSize pointer_size = class_linker->GetImagePointerSize();
983
984 bool all_targets_inlined = true;
985 bool one_target_inlined = false;
986 for (size_t i = 0; i < InlineCache::kIndividualCacheSize; ++i) {
987 if (classes->Get(i) == nullptr) {
988 break;
989 }
990 ArtMethod* method = nullptr;
991
992 Handle<mirror::Class> handle = handles_->NewHandle(classes->Get(i));
993 method = ResolveMethodFromInlineCache(
994 handle, resolved_method, invoke_instruction, pointer_size);
995 if (method == nullptr) {
996 DCHECK(Runtime::Current()->IsAotCompiler());
997 // AOT profile is bogus. This loop expects to iterate over all entries,
998 // so just just continue.
999 all_targets_inlined = false;
1000 continue;
1001 }
1002
1003 HInstruction* receiver = invoke_instruction->InputAt(0);
1004 HInstruction* cursor = invoke_instruction->GetPrevious();
1005 HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
1006
1007 dex::TypeIndex class_index = FindClassIndexIn(handle.Get(), caller_compilation_unit_);
1008 HInstruction* return_replacement = nullptr;
1009 LOG_NOTE() << "Try inline polymorphic call to " << method->PrettyMethod();
1010 if (!class_index.IsValid() ||
1011 !TryBuildAndInline(invoke_instruction,
1012 method,
1013 ReferenceTypeInfo::Create(handle, /* is_exact */ true),
1014 &return_replacement)) {
1015 all_targets_inlined = false;
1016 } else {
1017 one_target_inlined = true;
1018
1019 LOG_SUCCESS() << "Polymorphic call to " << ArtMethod::PrettyMethod(resolved_method)
1020 << " has inlined " << ArtMethod::PrettyMethod(method);
1021
1022 // If we have inlined all targets before, and this receiver is the last seen,
1023 // we deoptimize instead of keeping the original invoke instruction.
1024 bool deoptimize = !UseOnlyPolymorphicInliningWithNoDeopt() &&
1025 all_targets_inlined &&
1026 (i != InlineCache::kIndividualCacheSize - 1) &&
1027 (classes->Get(i + 1) == nullptr);
1028
1029 HInstruction* compare = AddTypeGuard(receiver,
1030 cursor,
1031 bb_cursor,
1032 class_index,
1033 handle,
1034 invoke_instruction,
1035 deoptimize);
1036 if (deoptimize) {
1037 if (return_replacement != nullptr) {
1038 invoke_instruction->ReplaceWith(return_replacement);
1039 }
1040 invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction);
1041 // Because the inline cache data can be populated concurrently, we force the end of the
1042 // iteration. Otherwise, we could see a new receiver type.
1043 break;
1044 } else {
1045 CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction);
1046 }
1047 }
1048 }
1049
1050 if (!one_target_inlined) {
1051 LOG_FAIL_NO_STAT()
1052 << "Call to " << ArtMethod::PrettyMethod(resolved_method)
1053 << " from inline cache is not inlined because none"
1054 << " of its targets could be inlined";
1055 return false;
1056 }
1057
1058 MaybeRecordStat(stats_, MethodCompilationStat::kInlinedPolymorphicCall);
1059
1060 // Run type propagation to get the guards typed.
1061 ReferenceTypePropagation rtp_fixup(graph_,
1062 outer_compilation_unit_.GetClassLoader(),
1063 outer_compilation_unit_.GetDexCache(),
1064 handles_,
1065 /* is_first_run */ false);
1066 rtp_fixup.Run();
1067 return true;
1068 }
1069
CreateDiamondPatternForPolymorphicInline(HInstruction * compare,HInstruction * return_replacement,HInstruction * invoke_instruction)1070 void HInliner::CreateDiamondPatternForPolymorphicInline(HInstruction* compare,
1071 HInstruction* return_replacement,
1072 HInstruction* invoke_instruction) {
1073 uint32_t dex_pc = invoke_instruction->GetDexPc();
1074 HBasicBlock* cursor_block = compare->GetBlock();
1075 HBasicBlock* original_invoke_block = invoke_instruction->GetBlock();
1076 ArenaAllocator* allocator = graph_->GetAllocator();
1077
1078 // Spit the block after the compare: `cursor_block` will now be the start of the diamond,
1079 // and the returned block is the start of the then branch (that could contain multiple blocks).
1080 HBasicBlock* then = cursor_block->SplitAfterForInlining(compare);
1081
1082 // Split the block containing the invoke before and after the invoke. The returned block
1083 // of the split before will contain the invoke and will be the otherwise branch of
1084 // the diamond. The returned block of the split after will be the merge block
1085 // of the diamond.
1086 HBasicBlock* end_then = invoke_instruction->GetBlock();
1087 HBasicBlock* otherwise = end_then->SplitBeforeForInlining(invoke_instruction);
1088 HBasicBlock* merge = otherwise->SplitAfterForInlining(invoke_instruction);
1089
1090 // If the methods we are inlining return a value, we create a phi in the merge block
1091 // that will have the `invoke_instruction and the `return_replacement` as inputs.
1092 if (return_replacement != nullptr) {
1093 HPhi* phi = new (allocator) HPhi(
1094 allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke_instruction->GetType()), dex_pc);
1095 merge->AddPhi(phi);
1096 invoke_instruction->ReplaceWith(phi);
1097 phi->AddInput(return_replacement);
1098 phi->AddInput(invoke_instruction);
1099 }
1100
1101 // Add the control flow instructions.
1102 otherwise->AddInstruction(new (allocator) HGoto(dex_pc));
1103 end_then->AddInstruction(new (allocator) HGoto(dex_pc));
1104 cursor_block->AddInstruction(new (allocator) HIf(compare, dex_pc));
1105
1106 // Add the newly created blocks to the graph.
1107 graph_->AddBlock(then);
1108 graph_->AddBlock(otherwise);
1109 graph_->AddBlock(merge);
1110
1111 // Set up successor (and implictly predecessor) relations.
1112 cursor_block->AddSuccessor(otherwise);
1113 cursor_block->AddSuccessor(then);
1114 end_then->AddSuccessor(merge);
1115 otherwise->AddSuccessor(merge);
1116
1117 // Set up dominance information.
1118 then->SetDominator(cursor_block);
1119 cursor_block->AddDominatedBlock(then);
1120 otherwise->SetDominator(cursor_block);
1121 cursor_block->AddDominatedBlock(otherwise);
1122 merge->SetDominator(cursor_block);
1123 cursor_block->AddDominatedBlock(merge);
1124
1125 // Update the revert post order.
1126 size_t index = IndexOfElement(graph_->reverse_post_order_, cursor_block);
1127 MakeRoomFor(&graph_->reverse_post_order_, 1, index);
1128 graph_->reverse_post_order_[++index] = then;
1129 index = IndexOfElement(graph_->reverse_post_order_, end_then);
1130 MakeRoomFor(&graph_->reverse_post_order_, 2, index);
1131 graph_->reverse_post_order_[++index] = otherwise;
1132 graph_->reverse_post_order_[++index] = merge;
1133
1134
1135 graph_->UpdateLoopAndTryInformationOfNewBlock(
1136 then, original_invoke_block, /* replace_if_back_edge */ false);
1137 graph_->UpdateLoopAndTryInformationOfNewBlock(
1138 otherwise, original_invoke_block, /* replace_if_back_edge */ false);
1139
1140 // In case the original invoke location was a back edge, we need to update
1141 // the loop to now have the merge block as a back edge.
1142 graph_->UpdateLoopAndTryInformationOfNewBlock(
1143 merge, original_invoke_block, /* replace_if_back_edge */ true);
1144 }
1145
TryInlinePolymorphicCallToSameTarget(HInvoke * invoke_instruction,ArtMethod * resolved_method,Handle<mirror::ObjectArray<mirror::Class>> classes)1146 bool HInliner::TryInlinePolymorphicCallToSameTarget(
1147 HInvoke* invoke_instruction,
1148 ArtMethod* resolved_method,
1149 Handle<mirror::ObjectArray<mirror::Class>> classes) {
1150 // This optimization only works under JIT for now.
1151 if (!Runtime::Current()->UseJitCompilation()) {
1152 return false;
1153 }
1154
1155 ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
1156 PointerSize pointer_size = class_linker->GetImagePointerSize();
1157
1158 DCHECK(resolved_method != nullptr);
1159 ArtMethod* actual_method = nullptr;
1160 size_t method_index = invoke_instruction->IsInvokeVirtual()
1161 ? invoke_instruction->AsInvokeVirtual()->GetVTableIndex()
1162 : invoke_instruction->AsInvokeInterface()->GetImtIndex();
1163
1164 // Check whether we are actually calling the same method among
1165 // the different types seen.
1166 for (size_t i = 0; i < InlineCache::kIndividualCacheSize; ++i) {
1167 if (classes->Get(i) == nullptr) {
1168 break;
1169 }
1170 ArtMethod* new_method = nullptr;
1171 if (invoke_instruction->IsInvokeInterface()) {
1172 new_method = classes->Get(i)->GetImt(pointer_size)->Get(
1173 method_index, pointer_size);
1174 if (new_method->IsRuntimeMethod()) {
1175 // Bail out as soon as we see a conflict trampoline in one of the target's
1176 // interface table.
1177 return false;
1178 }
1179 } else {
1180 DCHECK(invoke_instruction->IsInvokeVirtual());
1181 new_method = classes->Get(i)->GetEmbeddedVTableEntry(method_index, pointer_size);
1182 }
1183 DCHECK(new_method != nullptr);
1184 if (actual_method == nullptr) {
1185 actual_method = new_method;
1186 } else if (actual_method != new_method) {
1187 // Different methods, bailout.
1188 return false;
1189 }
1190 }
1191
1192 HInstruction* receiver = invoke_instruction->InputAt(0);
1193 HInstruction* cursor = invoke_instruction->GetPrevious();
1194 HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
1195
1196 HInstruction* return_replacement = nullptr;
1197 if (!TryBuildAndInline(invoke_instruction,
1198 actual_method,
1199 ReferenceTypeInfo::CreateInvalid(),
1200 &return_replacement)) {
1201 return false;
1202 }
1203
1204 // We successfully inlined, now add a guard.
1205 HInstanceFieldGet* receiver_class = BuildGetReceiverClass(
1206 class_linker, receiver, invoke_instruction->GetDexPc());
1207
1208 DataType::Type type = Is64BitInstructionSet(graph_->GetInstructionSet())
1209 ? DataType::Type::kInt64
1210 : DataType::Type::kInt32;
1211 HClassTableGet* class_table_get = new (graph_->GetAllocator()) HClassTableGet(
1212 receiver_class,
1213 type,
1214 invoke_instruction->IsInvokeVirtual() ? HClassTableGet::TableKind::kVTable
1215 : HClassTableGet::TableKind::kIMTable,
1216 method_index,
1217 invoke_instruction->GetDexPc());
1218
1219 HConstant* constant;
1220 if (type == DataType::Type::kInt64) {
1221 constant = graph_->GetLongConstant(
1222 reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc());
1223 } else {
1224 constant = graph_->GetIntConstant(
1225 reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc());
1226 }
1227
1228 HNotEqual* compare = new (graph_->GetAllocator()) HNotEqual(class_table_get, constant);
1229 if (cursor != nullptr) {
1230 bb_cursor->InsertInstructionAfter(receiver_class, cursor);
1231 } else {
1232 bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction());
1233 }
1234 bb_cursor->InsertInstructionAfter(class_table_get, receiver_class);
1235 bb_cursor->InsertInstructionAfter(compare, class_table_get);
1236
1237 if (outermost_graph_->IsCompilingOsr()) {
1238 CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction);
1239 } else {
1240 HDeoptimize* deoptimize = new (graph_->GetAllocator()) HDeoptimize(
1241 graph_->GetAllocator(),
1242 compare,
1243 receiver,
1244 DeoptimizationKind::kJitSameTarget,
1245 invoke_instruction->GetDexPc());
1246 bb_cursor->InsertInstructionAfter(deoptimize, compare);
1247 deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
1248 if (return_replacement != nullptr) {
1249 invoke_instruction->ReplaceWith(return_replacement);
1250 }
1251 receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize);
1252 invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction);
1253 deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo());
1254 }
1255
1256 // Run type propagation to get the guard typed.
1257 ReferenceTypePropagation rtp_fixup(graph_,
1258 outer_compilation_unit_.GetClassLoader(),
1259 outer_compilation_unit_.GetDexCache(),
1260 handles_,
1261 /* is_first_run */ false);
1262 rtp_fixup.Run();
1263
1264 MaybeRecordStat(stats_, MethodCompilationStat::kInlinedPolymorphicCall);
1265
1266 LOG_SUCCESS() << "Inlined same polymorphic target " << actual_method->PrettyMethod();
1267 return true;
1268 }
1269
TryInlineAndReplace(HInvoke * invoke_instruction,ArtMethod * method,ReferenceTypeInfo receiver_type,bool do_rtp,bool cha_devirtualize)1270 bool HInliner::TryInlineAndReplace(HInvoke* invoke_instruction,
1271 ArtMethod* method,
1272 ReferenceTypeInfo receiver_type,
1273 bool do_rtp,
1274 bool cha_devirtualize) {
1275 DCHECK(!invoke_instruction->IsIntrinsic());
1276 HInstruction* return_replacement = nullptr;
1277 uint32_t dex_pc = invoke_instruction->GetDexPc();
1278 HInstruction* cursor = invoke_instruction->GetPrevious();
1279 HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
1280 bool should_remove_invoke_instruction = false;
1281
1282 // If invoke_instruction is devirtualized to a different method, give intrinsics
1283 // another chance before we try to inline it.
1284 bool wrong_invoke_type = false;
1285 if (invoke_instruction->GetResolvedMethod() != method &&
1286 IntrinsicsRecognizer::Recognize(invoke_instruction, method, &wrong_invoke_type)) {
1287 MaybeRecordStat(stats_, MethodCompilationStat::kIntrinsicRecognized);
1288 if (invoke_instruction->IsInvokeInterface()) {
1289 // We don't intrinsify an invoke-interface directly.
1290 // Replace the invoke-interface with an invoke-virtual.
1291 HInvokeVirtual* new_invoke = new (graph_->GetAllocator()) HInvokeVirtual(
1292 graph_->GetAllocator(),
1293 invoke_instruction->GetNumberOfArguments(),
1294 invoke_instruction->GetType(),
1295 invoke_instruction->GetDexPc(),
1296 invoke_instruction->GetDexMethodIndex(), // Use interface method's dex method index.
1297 method,
1298 method->GetMethodIndex());
1299 HInputsRef inputs = invoke_instruction->GetInputs();
1300 for (size_t index = 0; index != inputs.size(); ++index) {
1301 new_invoke->SetArgumentAt(index, inputs[index]);
1302 }
1303 invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction);
1304 new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
1305 if (invoke_instruction->GetType() == DataType::Type::kReference) {
1306 new_invoke->SetReferenceTypeInfo(invoke_instruction->GetReferenceTypeInfo());
1307 }
1308 // Run intrinsic recognizer again to set new_invoke's intrinsic.
1309 IntrinsicsRecognizer::Recognize(new_invoke, method, &wrong_invoke_type);
1310 DCHECK_NE(new_invoke->GetIntrinsic(), Intrinsics::kNone);
1311 return_replacement = new_invoke;
1312 // invoke_instruction is replaced with new_invoke.
1313 should_remove_invoke_instruction = true;
1314 } else {
1315 // invoke_instruction is intrinsified and stays.
1316 }
1317 } else if (!TryBuildAndInline(invoke_instruction, method, receiver_type, &return_replacement)) {
1318 if (invoke_instruction->IsInvokeInterface()) {
1319 DCHECK(!method->IsProxyMethod());
1320 // Turn an invoke-interface into an invoke-virtual. An invoke-virtual is always
1321 // better than an invoke-interface because:
1322 // 1) In the best case, the interface call has one more indirection (to fetch the IMT).
1323 // 2) We will not go to the conflict trampoline with an invoke-virtual.
1324 // TODO: Consider sharpening once it is not dependent on the compiler driver.
1325
1326 if (method->IsDefault() && !method->IsCopied()) {
1327 // Changing to invoke-virtual cannot be done on an original default method
1328 // since it's not in any vtable. Devirtualization by exact type/inline-cache
1329 // always uses a method in the iftable which is never an original default
1330 // method.
1331 // On the other hand, inlining an original default method by CHA is fine.
1332 DCHECK(cha_devirtualize);
1333 return false;
1334 }
1335
1336 const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
1337 uint32_t dex_method_index = FindMethodIndexIn(
1338 method, caller_dex_file, invoke_instruction->GetDexMethodIndex());
1339 if (dex_method_index == dex::kDexNoIndex) {
1340 return false;
1341 }
1342 HInvokeVirtual* new_invoke = new (graph_->GetAllocator()) HInvokeVirtual(
1343 graph_->GetAllocator(),
1344 invoke_instruction->GetNumberOfArguments(),
1345 invoke_instruction->GetType(),
1346 invoke_instruction->GetDexPc(),
1347 dex_method_index,
1348 method,
1349 method->GetMethodIndex());
1350 HInputsRef inputs = invoke_instruction->GetInputs();
1351 for (size_t index = 0; index != inputs.size(); ++index) {
1352 new_invoke->SetArgumentAt(index, inputs[index]);
1353 }
1354 invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction);
1355 new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
1356 if (invoke_instruction->GetType() == DataType::Type::kReference) {
1357 new_invoke->SetReferenceTypeInfo(invoke_instruction->GetReferenceTypeInfo());
1358 }
1359 return_replacement = new_invoke;
1360 // invoke_instruction is replaced with new_invoke.
1361 should_remove_invoke_instruction = true;
1362 } else {
1363 // TODO: Consider sharpening an invoke virtual once it is not dependent on the
1364 // compiler driver.
1365 return false;
1366 }
1367 } else {
1368 // invoke_instruction is inlined.
1369 should_remove_invoke_instruction = true;
1370 }
1371
1372 if (cha_devirtualize) {
1373 AddCHAGuard(invoke_instruction, dex_pc, cursor, bb_cursor);
1374 }
1375 if (return_replacement != nullptr) {
1376 invoke_instruction->ReplaceWith(return_replacement);
1377 }
1378 if (should_remove_invoke_instruction) {
1379 invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction);
1380 }
1381 FixUpReturnReferenceType(method, return_replacement);
1382 if (do_rtp && ReturnTypeMoreSpecific(invoke_instruction, return_replacement)) {
1383 // Actual return value has a more specific type than the method's declared
1384 // return type. Run RTP again on the outer graph to propagate it.
1385 ReferenceTypePropagation(graph_,
1386 outer_compilation_unit_.GetClassLoader(),
1387 outer_compilation_unit_.GetDexCache(),
1388 handles_,
1389 /* is_first_run */ false).Run();
1390 }
1391 return true;
1392 }
1393
CountRecursiveCallsOf(ArtMethod * method) const1394 size_t HInliner::CountRecursiveCallsOf(ArtMethod* method) const {
1395 const HInliner* current = this;
1396 size_t count = 0;
1397 do {
1398 if (current->graph_->GetArtMethod() == method) {
1399 ++count;
1400 }
1401 current = current->parent_;
1402 } while (current != nullptr);
1403 return count;
1404 }
1405
TryBuildAndInline(HInvoke * invoke_instruction,ArtMethod * method,ReferenceTypeInfo receiver_type,HInstruction ** return_replacement)1406 bool HInliner::TryBuildAndInline(HInvoke* invoke_instruction,
1407 ArtMethod* method,
1408 ReferenceTypeInfo receiver_type,
1409 HInstruction** return_replacement) {
1410 if (method->IsProxyMethod()) {
1411 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedProxy)
1412 << "Method " << method->PrettyMethod()
1413 << " is not inlined because of unimplemented inline support for proxy methods.";
1414 return false;
1415 }
1416
1417 if (CountRecursiveCallsOf(method) > kMaximumNumberOfRecursiveCalls) {
1418 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedRecursiveBudget)
1419 << "Method "
1420 << method->PrettyMethod()
1421 << " is not inlined because it has reached its recursive call budget.";
1422 return false;
1423 }
1424
1425 // Check whether we're allowed to inline. The outermost compilation unit is the relevant
1426 // dex file here (though the transitivity of an inline chain would allow checking the calller).
1427 if (!compiler_driver_->MayInline(method->GetDexFile(),
1428 outer_compilation_unit_.GetDexFile())) {
1429 if (TryPatternSubstitution(invoke_instruction, method, return_replacement)) {
1430 LOG_SUCCESS() << "Successfully replaced pattern of invoke "
1431 << method->PrettyMethod();
1432 MaybeRecordStat(stats_, MethodCompilationStat::kReplacedInvokeWithSimplePattern);
1433 return true;
1434 }
1435 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedWont)
1436 << "Won't inline " << method->PrettyMethod() << " in "
1437 << outer_compilation_unit_.GetDexFile()->GetLocation() << " ("
1438 << caller_compilation_unit_.GetDexFile()->GetLocation() << ") from "
1439 << method->GetDexFile()->GetLocation();
1440 return false;
1441 }
1442
1443 bool same_dex_file = IsSameDexFile(*outer_compilation_unit_.GetDexFile(), *method->GetDexFile());
1444
1445 CodeItemDataAccessor accessor(method->DexInstructionData());
1446
1447 if (!accessor.HasCodeItem()) {
1448 LOG_FAIL_NO_STAT()
1449 << "Method " << method->PrettyMethod() << " is not inlined because it is native";
1450 return false;
1451 }
1452
1453 size_t inline_max_code_units = compiler_driver_->GetCompilerOptions().GetInlineMaxCodeUnits();
1454 if (accessor.InsnsSizeInCodeUnits() > inline_max_code_units) {
1455 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedCodeItem)
1456 << "Method " << method->PrettyMethod()
1457 << " is not inlined because its code item is too big: "
1458 << accessor.InsnsSizeInCodeUnits()
1459 << " > "
1460 << inline_max_code_units;
1461 return false;
1462 }
1463
1464 if (accessor.TriesSize() != 0) {
1465 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedTryCatch)
1466 << "Method " << method->PrettyMethod() << " is not inlined because of try block";
1467 return false;
1468 }
1469
1470 if (!method->IsCompilable()) {
1471 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNotVerified)
1472 << "Method " << method->PrettyMethod()
1473 << " has soft failures un-handled by the compiler, so it cannot be inlined";
1474 return false;
1475 }
1476
1477 if (IsMethodUnverified(compiler_driver_, method)) {
1478 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNotVerified)
1479 << "Method " << method->PrettyMethod()
1480 << " couldn't be verified, so it cannot be inlined";
1481 return false;
1482 }
1483
1484 if (invoke_instruction->IsInvokeStaticOrDirect() &&
1485 invoke_instruction->AsInvokeStaticOrDirect()->IsStaticWithImplicitClinitCheck()) {
1486 // Case of a static method that cannot be inlined because it implicitly
1487 // requires an initialization check of its declaring class.
1488 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCache)
1489 << "Method " << method->PrettyMethod()
1490 << " is not inlined because it is static and requires a clinit"
1491 << " check that cannot be emitted due to Dex cache limitations";
1492 return false;
1493 }
1494
1495 if (!TryBuildAndInlineHelper(
1496 invoke_instruction, method, receiver_type, same_dex_file, return_replacement)) {
1497 return false;
1498 }
1499
1500 LOG_SUCCESS() << method->PrettyMethod();
1501 MaybeRecordStat(stats_, MethodCompilationStat::kInlinedInvoke);
1502 return true;
1503 }
1504
GetInvokeInputForArgVRegIndex(HInvoke * invoke_instruction,size_t arg_vreg_index)1505 static HInstruction* GetInvokeInputForArgVRegIndex(HInvoke* invoke_instruction,
1506 size_t arg_vreg_index)
1507 REQUIRES_SHARED(Locks::mutator_lock_) {
1508 size_t input_index = 0;
1509 for (size_t i = 0; i < arg_vreg_index; ++i, ++input_index) {
1510 DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments());
1511 if (DataType::Is64BitType(invoke_instruction->InputAt(input_index)->GetType())) {
1512 ++i;
1513 DCHECK_NE(i, arg_vreg_index);
1514 }
1515 }
1516 DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments());
1517 return invoke_instruction->InputAt(input_index);
1518 }
1519
1520 // Try to recognize known simple patterns and replace invoke call with appropriate instructions.
TryPatternSubstitution(HInvoke * invoke_instruction,ArtMethod * resolved_method,HInstruction ** return_replacement)1521 bool HInliner::TryPatternSubstitution(HInvoke* invoke_instruction,
1522 ArtMethod* resolved_method,
1523 HInstruction** return_replacement) {
1524 InlineMethod inline_method;
1525 if (!InlineMethodAnalyser::AnalyseMethodCode(resolved_method, &inline_method)) {
1526 return false;
1527 }
1528
1529 switch (inline_method.opcode) {
1530 case kInlineOpNop:
1531 DCHECK_EQ(invoke_instruction->GetType(), DataType::Type::kVoid);
1532 *return_replacement = nullptr;
1533 break;
1534 case kInlineOpReturnArg:
1535 *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction,
1536 inline_method.d.return_data.arg);
1537 break;
1538 case kInlineOpNonWideConst:
1539 if (resolved_method->GetShorty()[0] == 'L') {
1540 DCHECK_EQ(inline_method.d.data, 0u);
1541 *return_replacement = graph_->GetNullConstant();
1542 } else {
1543 *return_replacement = graph_->GetIntConstant(static_cast<int32_t>(inline_method.d.data));
1544 }
1545 break;
1546 case kInlineOpIGet: {
1547 const InlineIGetIPutData& data = inline_method.d.ifield_data;
1548 if (data.method_is_static || data.object_arg != 0u) {
1549 // TODO: Needs null check.
1550 return false;
1551 }
1552 HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg);
1553 HInstanceFieldGet* iget = CreateInstanceFieldGet(data.field_idx, resolved_method, obj);
1554 DCHECK_EQ(iget->GetFieldOffset().Uint32Value(), data.field_offset);
1555 DCHECK_EQ(iget->IsVolatile() ? 1u : 0u, data.is_volatile);
1556 invoke_instruction->GetBlock()->InsertInstructionBefore(iget, invoke_instruction);
1557 *return_replacement = iget;
1558 break;
1559 }
1560 case kInlineOpIPut: {
1561 const InlineIGetIPutData& data = inline_method.d.ifield_data;
1562 if (data.method_is_static || data.object_arg != 0u) {
1563 // TODO: Needs null check.
1564 return false;
1565 }
1566 HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg);
1567 HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, data.src_arg);
1568 HInstanceFieldSet* iput = CreateInstanceFieldSet(data.field_idx, resolved_method, obj, value);
1569 DCHECK_EQ(iput->GetFieldOffset().Uint32Value(), data.field_offset);
1570 DCHECK_EQ(iput->IsVolatile() ? 1u : 0u, data.is_volatile);
1571 invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction);
1572 if (data.return_arg_plus1 != 0u) {
1573 size_t return_arg = data.return_arg_plus1 - 1u;
1574 *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction, return_arg);
1575 }
1576 break;
1577 }
1578 case kInlineOpConstructor: {
1579 const InlineConstructorData& data = inline_method.d.constructor_data;
1580 // Get the indexes to arrays for easier processing.
1581 uint16_t iput_field_indexes[] = {
1582 data.iput0_field_index, data.iput1_field_index, data.iput2_field_index
1583 };
1584 uint16_t iput_args[] = { data.iput0_arg, data.iput1_arg, data.iput2_arg };
1585 static_assert(arraysize(iput_args) == arraysize(iput_field_indexes), "Size mismatch");
1586 // Count valid field indexes.
1587 size_t number_of_iputs = 0u;
1588 while (number_of_iputs != arraysize(iput_field_indexes) &&
1589 iput_field_indexes[number_of_iputs] != DexFile::kDexNoIndex16) {
1590 // Check that there are no duplicate valid field indexes.
1591 DCHECK_EQ(0, std::count(iput_field_indexes + number_of_iputs + 1,
1592 iput_field_indexes + arraysize(iput_field_indexes),
1593 iput_field_indexes[number_of_iputs]));
1594 ++number_of_iputs;
1595 }
1596 // Check that there are no valid field indexes in the rest of the array.
1597 DCHECK_EQ(0, std::count_if(iput_field_indexes + number_of_iputs,
1598 iput_field_indexes + arraysize(iput_field_indexes),
1599 [](uint16_t index) { return index != DexFile::kDexNoIndex16; }));
1600
1601 // Create HInstanceFieldSet for each IPUT that stores non-zero data.
1602 HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, /* this */ 0u);
1603 bool needs_constructor_barrier = false;
1604 for (size_t i = 0; i != number_of_iputs; ++i) {
1605 HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, iput_args[i]);
1606 if (!value->IsConstant() || !value->AsConstant()->IsZeroBitPattern()) {
1607 uint16_t field_index = iput_field_indexes[i];
1608 bool is_final;
1609 HInstanceFieldSet* iput =
1610 CreateInstanceFieldSet(field_index, resolved_method, obj, value, &is_final);
1611 invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction);
1612
1613 // Check whether the field is final. If it is, we need to add a barrier.
1614 if (is_final) {
1615 needs_constructor_barrier = true;
1616 }
1617 }
1618 }
1619 if (needs_constructor_barrier) {
1620 // See CompilerDriver::RequiresConstructorBarrier for more details.
1621 DCHECK(obj != nullptr) << "only non-static methods can have a constructor fence";
1622
1623 HConstructorFence* constructor_fence =
1624 new (graph_->GetAllocator()) HConstructorFence(obj, kNoDexPc, graph_->GetAllocator());
1625 invoke_instruction->GetBlock()->InsertInstructionBefore(constructor_fence,
1626 invoke_instruction);
1627 }
1628 *return_replacement = nullptr;
1629 break;
1630 }
1631 default:
1632 LOG(FATAL) << "UNREACHABLE";
1633 UNREACHABLE();
1634 }
1635 return true;
1636 }
1637
CreateInstanceFieldGet(uint32_t field_index,ArtMethod * referrer,HInstruction * obj)1638 HInstanceFieldGet* HInliner::CreateInstanceFieldGet(uint32_t field_index,
1639 ArtMethod* referrer,
1640 HInstruction* obj)
1641 REQUIRES_SHARED(Locks::mutator_lock_) {
1642 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1643 ArtField* resolved_field =
1644 class_linker->LookupResolvedField(field_index, referrer, /* is_static */ false);
1645 DCHECK(resolved_field != nullptr);
1646 HInstanceFieldGet* iget = new (graph_->GetAllocator()) HInstanceFieldGet(
1647 obj,
1648 resolved_field,
1649 DataType::FromShorty(resolved_field->GetTypeDescriptor()[0]),
1650 resolved_field->GetOffset(),
1651 resolved_field->IsVolatile(),
1652 field_index,
1653 resolved_field->GetDeclaringClass()->GetDexClassDefIndex(),
1654 *referrer->GetDexFile(),
1655 // Read barrier generates a runtime call in slow path and we need a valid
1656 // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537.
1657 /* dex_pc */ 0);
1658 if (iget->GetType() == DataType::Type::kReference) {
1659 // Use the same dex_cache that we used for field lookup as the hint_dex_cache.
1660 Handle<mirror::DexCache> dex_cache = handles_->NewHandle(referrer->GetDexCache());
1661 ReferenceTypePropagation rtp(graph_,
1662 outer_compilation_unit_.GetClassLoader(),
1663 dex_cache,
1664 handles_,
1665 /* is_first_run */ false);
1666 rtp.Visit(iget);
1667 }
1668 return iget;
1669 }
1670
CreateInstanceFieldSet(uint32_t field_index,ArtMethod * referrer,HInstruction * obj,HInstruction * value,bool * is_final)1671 HInstanceFieldSet* HInliner::CreateInstanceFieldSet(uint32_t field_index,
1672 ArtMethod* referrer,
1673 HInstruction* obj,
1674 HInstruction* value,
1675 bool* is_final)
1676 REQUIRES_SHARED(Locks::mutator_lock_) {
1677 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1678 ArtField* resolved_field =
1679 class_linker->LookupResolvedField(field_index, referrer, /* is_static */ false);
1680 DCHECK(resolved_field != nullptr);
1681 if (is_final != nullptr) {
1682 // This information is needed only for constructors.
1683 DCHECK(referrer->IsConstructor());
1684 *is_final = resolved_field->IsFinal();
1685 }
1686 HInstanceFieldSet* iput = new (graph_->GetAllocator()) HInstanceFieldSet(
1687 obj,
1688 value,
1689 resolved_field,
1690 DataType::FromShorty(resolved_field->GetTypeDescriptor()[0]),
1691 resolved_field->GetOffset(),
1692 resolved_field->IsVolatile(),
1693 field_index,
1694 resolved_field->GetDeclaringClass()->GetDexClassDefIndex(),
1695 *referrer->GetDexFile(),
1696 // Read barrier generates a runtime call in slow path and we need a valid
1697 // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537.
1698 /* dex_pc */ 0);
1699 return iput;
1700 }
1701
1702 template <typename T>
NewHandleIfDifferent(T * object,Handle<T> hint,VariableSizedHandleScope * handles)1703 static inline Handle<T> NewHandleIfDifferent(T* object,
1704 Handle<T> hint,
1705 VariableSizedHandleScope* handles)
1706 REQUIRES_SHARED(Locks::mutator_lock_) {
1707 return (object != hint.Get()) ? handles->NewHandle(object) : hint;
1708 }
1709
TryBuildAndInlineHelper(HInvoke * invoke_instruction,ArtMethod * resolved_method,ReferenceTypeInfo receiver_type,bool same_dex_file,HInstruction ** return_replacement)1710 bool HInliner::TryBuildAndInlineHelper(HInvoke* invoke_instruction,
1711 ArtMethod* resolved_method,
1712 ReferenceTypeInfo receiver_type,
1713 bool same_dex_file,
1714 HInstruction** return_replacement) {
1715 DCHECK(!(resolved_method->IsStatic() && receiver_type.IsValid()));
1716 ScopedObjectAccess soa(Thread::Current());
1717 const DexFile::CodeItem* code_item = resolved_method->GetCodeItem();
1718 const DexFile& callee_dex_file = *resolved_method->GetDexFile();
1719 uint32_t method_index = resolved_method->GetDexMethodIndex();
1720 CodeItemDebugInfoAccessor code_item_accessor(resolved_method->DexInstructionDebugInfo());
1721 ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
1722 Handle<mirror::DexCache> dex_cache = NewHandleIfDifferent(resolved_method->GetDexCache(),
1723 caller_compilation_unit_.GetDexCache(),
1724 handles_);
1725 Handle<mirror::ClassLoader> class_loader =
1726 NewHandleIfDifferent(resolved_method->GetDeclaringClass()->GetClassLoader(),
1727 caller_compilation_unit_.GetClassLoader(),
1728 handles_);
1729
1730 DexCompilationUnit dex_compilation_unit(
1731 class_loader,
1732 class_linker,
1733 callee_dex_file,
1734 code_item,
1735 resolved_method->GetDeclaringClass()->GetDexClassDefIndex(),
1736 method_index,
1737 resolved_method->GetAccessFlags(),
1738 /* verified_method */ nullptr,
1739 dex_cache);
1740
1741 InvokeType invoke_type = invoke_instruction->GetInvokeType();
1742 if (invoke_type == kInterface) {
1743 // We have statically resolved the dispatch. To please the class linker
1744 // at runtime, we change this call as if it was a virtual call.
1745 invoke_type = kVirtual;
1746 }
1747
1748 const int32_t caller_instruction_counter = graph_->GetCurrentInstructionId();
1749 HGraph* callee_graph = new (graph_->GetAllocator()) HGraph(
1750 graph_->GetAllocator(),
1751 graph_->GetArenaStack(),
1752 callee_dex_file,
1753 method_index,
1754 compiler_driver_->GetInstructionSet(),
1755 invoke_type,
1756 graph_->IsDebuggable(),
1757 /* osr */ false,
1758 caller_instruction_counter);
1759 callee_graph->SetArtMethod(resolved_method);
1760
1761 // When they are needed, allocate `inline_stats_` on the Arena instead
1762 // of on the stack, as Clang might produce a stack frame too large
1763 // for this function, that would not fit the requirements of the
1764 // `-Wframe-larger-than` option.
1765 if (stats_ != nullptr) {
1766 // Reuse one object for all inline attempts from this caller to keep Arena memory usage low.
1767 if (inline_stats_ == nullptr) {
1768 void* storage = graph_->GetAllocator()->Alloc<OptimizingCompilerStats>(kArenaAllocMisc);
1769 inline_stats_ = new (storage) OptimizingCompilerStats;
1770 } else {
1771 inline_stats_->Reset();
1772 }
1773 }
1774 HGraphBuilder builder(callee_graph,
1775 code_item_accessor,
1776 &dex_compilation_unit,
1777 &outer_compilation_unit_,
1778 compiler_driver_,
1779 codegen_,
1780 inline_stats_,
1781 resolved_method->GetQuickenedInfo(),
1782 handles_);
1783
1784 if (builder.BuildGraph() != kAnalysisSuccess) {
1785 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedCannotBuild)
1786 << "Method " << callee_dex_file.PrettyMethod(method_index)
1787 << " could not be built, so cannot be inlined";
1788 return false;
1789 }
1790
1791 if (!RegisterAllocator::CanAllocateRegistersFor(*callee_graph,
1792 compiler_driver_->GetInstructionSet())) {
1793 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedRegisterAllocator)
1794 << "Method " << callee_dex_file.PrettyMethod(method_index)
1795 << " cannot be inlined because of the register allocator";
1796 return false;
1797 }
1798
1799 size_t parameter_index = 0;
1800 bool run_rtp = false;
1801 for (HInstructionIterator instructions(callee_graph->GetEntryBlock()->GetInstructions());
1802 !instructions.Done();
1803 instructions.Advance()) {
1804 HInstruction* current = instructions.Current();
1805 if (current->IsParameterValue()) {
1806 HInstruction* argument = invoke_instruction->InputAt(parameter_index);
1807 if (argument->IsNullConstant()) {
1808 current->ReplaceWith(callee_graph->GetNullConstant());
1809 } else if (argument->IsIntConstant()) {
1810 current->ReplaceWith(callee_graph->GetIntConstant(argument->AsIntConstant()->GetValue()));
1811 } else if (argument->IsLongConstant()) {
1812 current->ReplaceWith(callee_graph->GetLongConstant(argument->AsLongConstant()->GetValue()));
1813 } else if (argument->IsFloatConstant()) {
1814 current->ReplaceWith(
1815 callee_graph->GetFloatConstant(argument->AsFloatConstant()->GetValue()));
1816 } else if (argument->IsDoubleConstant()) {
1817 current->ReplaceWith(
1818 callee_graph->GetDoubleConstant(argument->AsDoubleConstant()->GetValue()));
1819 } else if (argument->GetType() == DataType::Type::kReference) {
1820 if (!resolved_method->IsStatic() && parameter_index == 0 && receiver_type.IsValid()) {
1821 run_rtp = true;
1822 current->SetReferenceTypeInfo(receiver_type);
1823 } else {
1824 current->SetReferenceTypeInfo(argument->GetReferenceTypeInfo());
1825 }
1826 current->AsParameterValue()->SetCanBeNull(argument->CanBeNull());
1827 }
1828 ++parameter_index;
1829 }
1830 }
1831
1832 // We have replaced formal arguments with actual arguments. If actual types
1833 // are more specific than the declared ones, run RTP again on the inner graph.
1834 if (run_rtp || ArgumentTypesMoreSpecific(invoke_instruction, resolved_method)) {
1835 ReferenceTypePropagation(callee_graph,
1836 outer_compilation_unit_.GetClassLoader(),
1837 dex_compilation_unit.GetDexCache(),
1838 handles_,
1839 /* is_first_run */ false).Run();
1840 }
1841
1842 RunOptimizations(callee_graph, code_item, dex_compilation_unit);
1843
1844 HBasicBlock* exit_block = callee_graph->GetExitBlock();
1845 if (exit_block == nullptr) {
1846 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInfiniteLoop)
1847 << "Method " << callee_dex_file.PrettyMethod(method_index)
1848 << " could not be inlined because it has an infinite loop";
1849 return false;
1850 }
1851
1852 bool has_one_return = false;
1853 for (HBasicBlock* predecessor : exit_block->GetPredecessors()) {
1854 if (predecessor->GetLastInstruction()->IsThrow()) {
1855 if (invoke_instruction->GetBlock()->IsTryBlock()) {
1856 // TODO(ngeoffray): Support adding HTryBoundary in Hgraph::InlineInto.
1857 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedTryCatch)
1858 << "Method " << callee_dex_file.PrettyMethod(method_index)
1859 << " could not be inlined because one branch always throws and"
1860 << " caller is in a try/catch block";
1861 return false;
1862 } else if (graph_->GetExitBlock() == nullptr) {
1863 // TODO(ngeoffray): Support adding HExit in the caller graph.
1864 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInfiniteLoop)
1865 << "Method " << callee_dex_file.PrettyMethod(method_index)
1866 << " could not be inlined because one branch always throws and"
1867 << " caller does not have an exit block";
1868 return false;
1869 } else if (graph_->HasIrreducibleLoops()) {
1870 // TODO(ngeoffray): Support re-computing loop information to graphs with
1871 // irreducible loops?
1872 VLOG(compiler) << "Method " << callee_dex_file.PrettyMethod(method_index)
1873 << " could not be inlined because one branch always throws and"
1874 << " caller has irreducible loops";
1875 return false;
1876 }
1877 } else {
1878 has_one_return = true;
1879 }
1880 }
1881
1882 if (!has_one_return) {
1883 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedAlwaysThrows)
1884 << "Method " << callee_dex_file.PrettyMethod(method_index)
1885 << " could not be inlined because it always throws";
1886 return false;
1887 }
1888
1889 size_t number_of_instructions = 0;
1890 // Skip the entry block, it does not contain instructions that prevent inlining.
1891 for (HBasicBlock* block : callee_graph->GetReversePostOrderSkipEntryBlock()) {
1892 if (block->IsLoopHeader()) {
1893 if (block->GetLoopInformation()->IsIrreducible()) {
1894 // Don't inline methods with irreducible loops, they could prevent some
1895 // optimizations to run.
1896 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedIrreducibleLoop)
1897 << "Method " << callee_dex_file.PrettyMethod(method_index)
1898 << " could not be inlined because it contains an irreducible loop";
1899 return false;
1900 }
1901 if (!block->GetLoopInformation()->HasExitEdge()) {
1902 // Don't inline methods with loops without exit, since they cause the
1903 // loop information to be computed incorrectly when updating after
1904 // inlining.
1905 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedLoopWithoutExit)
1906 << "Method " << callee_dex_file.PrettyMethod(method_index)
1907 << " could not be inlined because it contains a loop with no exit";
1908 return false;
1909 }
1910 }
1911
1912 for (HInstructionIterator instr_it(block->GetInstructions());
1913 !instr_it.Done();
1914 instr_it.Advance()) {
1915 if (++number_of_instructions >= inlining_budget_) {
1916 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInstructionBudget)
1917 << "Method " << callee_dex_file.PrettyMethod(method_index)
1918 << " is not inlined because the outer method has reached"
1919 << " its instruction budget limit.";
1920 return false;
1921 }
1922 HInstruction* current = instr_it.Current();
1923 if (current->NeedsEnvironment() &&
1924 (total_number_of_dex_registers_ >= kMaximumNumberOfCumulatedDexRegisters)) {
1925 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedEnvironmentBudget)
1926 << "Method " << callee_dex_file.PrettyMethod(method_index)
1927 << " is not inlined because its caller has reached"
1928 << " its environment budget limit.";
1929 return false;
1930 }
1931
1932 if (current->NeedsEnvironment() &&
1933 !CanEncodeInlinedMethodInStackMap(*caller_compilation_unit_.GetDexFile(),
1934 resolved_method)) {
1935 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedStackMaps)
1936 << "Method " << callee_dex_file.PrettyMethod(method_index)
1937 << " could not be inlined because " << current->DebugName()
1938 << " needs an environment, is in a different dex file"
1939 << ", and cannot be encoded in the stack maps.";
1940 return false;
1941 }
1942
1943 if (!same_dex_file && current->NeedsDexCacheOfDeclaringClass()) {
1944 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCache)
1945 << "Method " << callee_dex_file.PrettyMethod(method_index)
1946 << " could not be inlined because " << current->DebugName()
1947 << " it is in a different dex file and requires access to the dex cache";
1948 return false;
1949 }
1950
1951 if (current->IsUnresolvedStaticFieldGet() ||
1952 current->IsUnresolvedInstanceFieldGet() ||
1953 current->IsUnresolvedStaticFieldSet() ||
1954 current->IsUnresolvedInstanceFieldSet()) {
1955 // Entrypoint for unresolved fields does not handle inlined frames.
1956 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedUnresolvedEntrypoint)
1957 << "Method " << callee_dex_file.PrettyMethod(method_index)
1958 << " could not be inlined because it is using an unresolved"
1959 << " entrypoint";
1960 return false;
1961 }
1962 }
1963 }
1964 DCHECK_EQ(caller_instruction_counter, graph_->GetCurrentInstructionId())
1965 << "No instructions can be added to the outer graph while inner graph is being built";
1966
1967 // Inline the callee graph inside the caller graph.
1968 const int32_t callee_instruction_counter = callee_graph->GetCurrentInstructionId();
1969 graph_->SetCurrentInstructionId(callee_instruction_counter);
1970 *return_replacement = callee_graph->InlineInto(graph_, invoke_instruction);
1971 // Update our budget for other inlining attempts in `caller_graph`.
1972 total_number_of_instructions_ += number_of_instructions;
1973 UpdateInliningBudget();
1974
1975 DCHECK_EQ(callee_instruction_counter, callee_graph->GetCurrentInstructionId())
1976 << "No instructions can be added to the inner graph during inlining into the outer graph";
1977
1978 if (stats_ != nullptr) {
1979 DCHECK(inline_stats_ != nullptr);
1980 inline_stats_->AddTo(stats_);
1981 }
1982
1983 return true;
1984 }
1985
RunOptimizations(HGraph * callee_graph,const DexFile::CodeItem * code_item,const DexCompilationUnit & dex_compilation_unit)1986 void HInliner::RunOptimizations(HGraph* callee_graph,
1987 const DexFile::CodeItem* code_item,
1988 const DexCompilationUnit& dex_compilation_unit) {
1989 // Note: if the outermost_graph_ is being compiled OSR, we should not run any
1990 // optimization that could lead to a HDeoptimize. The following optimizations do not.
1991 HDeadCodeElimination dce(callee_graph, inline_stats_, "dead_code_elimination$inliner");
1992 HConstantFolding fold(callee_graph, "constant_folding$inliner");
1993 HSharpening sharpening(callee_graph, codegen_, compiler_driver_);
1994 InstructionSimplifier simplify(callee_graph, codegen_, compiler_driver_, inline_stats_);
1995 IntrinsicsRecognizer intrinsics(callee_graph, inline_stats_);
1996
1997 HOptimization* optimizations[] = {
1998 &intrinsics,
1999 &sharpening,
2000 &simplify,
2001 &fold,
2002 &dce,
2003 };
2004
2005 for (size_t i = 0; i < arraysize(optimizations); ++i) {
2006 HOptimization* optimization = optimizations[i];
2007 optimization->Run();
2008 }
2009
2010 // Bail early for pathological cases on the environment (for example recursive calls,
2011 // or too large environment).
2012 if (total_number_of_dex_registers_ >= kMaximumNumberOfCumulatedDexRegisters) {
2013 LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod()
2014 << " will not be inlined because the outer method has reached"
2015 << " its environment budget limit.";
2016 return;
2017 }
2018
2019 // Bail early if we know we already are over the limit.
2020 size_t number_of_instructions = CountNumberOfInstructions(callee_graph);
2021 if (number_of_instructions > inlining_budget_) {
2022 LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod()
2023 << " will not be inlined because the outer method has reached"
2024 << " its instruction budget limit. " << number_of_instructions;
2025 return;
2026 }
2027
2028 CodeItemDataAccessor accessor(callee_graph->GetDexFile(), code_item);
2029 HInliner inliner(callee_graph,
2030 outermost_graph_,
2031 codegen_,
2032 outer_compilation_unit_,
2033 dex_compilation_unit,
2034 compiler_driver_,
2035 handles_,
2036 inline_stats_,
2037 total_number_of_dex_registers_ + accessor.RegistersSize(),
2038 total_number_of_instructions_ + number_of_instructions,
2039 this,
2040 depth_ + 1);
2041 inliner.Run();
2042 }
2043
IsReferenceTypeRefinement(ReferenceTypeInfo declared_rti,bool declared_can_be_null,HInstruction * actual_obj)2044 static bool IsReferenceTypeRefinement(ReferenceTypeInfo declared_rti,
2045 bool declared_can_be_null,
2046 HInstruction* actual_obj)
2047 REQUIRES_SHARED(Locks::mutator_lock_) {
2048 if (declared_can_be_null && !actual_obj->CanBeNull()) {
2049 return true;
2050 }
2051
2052 ReferenceTypeInfo actual_rti = actual_obj->GetReferenceTypeInfo();
2053 return (actual_rti.IsExact() && !declared_rti.IsExact()) ||
2054 declared_rti.IsStrictSupertypeOf(actual_rti);
2055 }
2056
GetClassRTI(ObjPtr<mirror::Class> klass)2057 ReferenceTypeInfo HInliner::GetClassRTI(ObjPtr<mirror::Class> klass) {
2058 return ReferenceTypePropagation::IsAdmissible(klass)
2059 ? ReferenceTypeInfo::Create(handles_->NewHandle(klass))
2060 : graph_->GetInexactObjectRti();
2061 }
2062
ArgumentTypesMoreSpecific(HInvoke * invoke_instruction,ArtMethod * resolved_method)2063 bool HInliner::ArgumentTypesMoreSpecific(HInvoke* invoke_instruction, ArtMethod* resolved_method) {
2064 // If this is an instance call, test whether the type of the `this` argument
2065 // is more specific than the class which declares the method.
2066 if (!resolved_method->IsStatic()) {
2067 if (IsReferenceTypeRefinement(GetClassRTI(resolved_method->GetDeclaringClass()),
2068 /* declared_can_be_null */ false,
2069 invoke_instruction->InputAt(0u))) {
2070 return true;
2071 }
2072 }
2073
2074 // Iterate over the list of parameter types and test whether any of the
2075 // actual inputs has a more specific reference type than the type declared in
2076 // the signature.
2077 const DexFile::TypeList* param_list = resolved_method->GetParameterTypeList();
2078 for (size_t param_idx = 0,
2079 input_idx = resolved_method->IsStatic() ? 0 : 1,
2080 e = (param_list == nullptr ? 0 : param_list->Size());
2081 param_idx < e;
2082 ++param_idx, ++input_idx) {
2083 HInstruction* input = invoke_instruction->InputAt(input_idx);
2084 if (input->GetType() == DataType::Type::kReference) {
2085 ObjPtr<mirror::Class> param_cls = resolved_method->LookupResolvedClassFromTypeIndex(
2086 param_list->GetTypeItem(param_idx).type_idx_);
2087 if (IsReferenceTypeRefinement(GetClassRTI(param_cls),
2088 /* declared_can_be_null */ true,
2089 input)) {
2090 return true;
2091 }
2092 }
2093 }
2094
2095 return false;
2096 }
2097
ReturnTypeMoreSpecific(HInvoke * invoke_instruction,HInstruction * return_replacement)2098 bool HInliner::ReturnTypeMoreSpecific(HInvoke* invoke_instruction,
2099 HInstruction* return_replacement) {
2100 // Check the integrity of reference types and run another type propagation if needed.
2101 if (return_replacement != nullptr) {
2102 if (return_replacement->GetType() == DataType::Type::kReference) {
2103 // Test if the return type is a refinement of the declared return type.
2104 if (IsReferenceTypeRefinement(invoke_instruction->GetReferenceTypeInfo(),
2105 /* declared_can_be_null */ true,
2106 return_replacement)) {
2107 return true;
2108 } else if (return_replacement->IsInstanceFieldGet()) {
2109 HInstanceFieldGet* field_get = return_replacement->AsInstanceFieldGet();
2110 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2111 if (field_get->GetFieldInfo().GetField() ==
2112 class_linker->GetClassRoot(ClassLinker::kJavaLangObject)->GetInstanceField(0)) {
2113 return true;
2114 }
2115 }
2116 } else if (return_replacement->IsInstanceOf()) {
2117 // Inlining InstanceOf into an If may put a tighter bound on reference types.
2118 return true;
2119 }
2120 }
2121
2122 return false;
2123 }
2124
FixUpReturnReferenceType(ArtMethod * resolved_method,HInstruction * return_replacement)2125 void HInliner::FixUpReturnReferenceType(ArtMethod* resolved_method,
2126 HInstruction* return_replacement) {
2127 if (return_replacement != nullptr) {
2128 if (return_replacement->GetType() == DataType::Type::kReference) {
2129 if (!return_replacement->GetReferenceTypeInfo().IsValid()) {
2130 // Make sure that we have a valid type for the return. We may get an invalid one when
2131 // we inline invokes with multiple branches and create a Phi for the result.
2132 // TODO: we could be more precise by merging the phi inputs but that requires
2133 // some functionality from the reference type propagation.
2134 DCHECK(return_replacement->IsPhi());
2135 ObjPtr<mirror::Class> cls = resolved_method->LookupResolvedReturnType();
2136 return_replacement->SetReferenceTypeInfo(GetClassRTI(cls));
2137 }
2138 }
2139 }
2140 }
2141
2142 } // namespace art
2143