1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_ARM64_ASSEMBLER_ARM64_INL_H_
6 #define V8_ARM64_ASSEMBLER_ARM64_INL_H_
7 
8 #include "src/arm64/assembler-arm64.h"
9 #include "src/assembler.h"
10 #include "src/debug/debug.h"
11 #include "src/objects-inl.h"
12 
13 namespace v8 {
14 namespace internal {
15 
16 
SupportsCrankshaft()17 bool CpuFeatures::SupportsCrankshaft() { return true; }
18 
SupportsSimd128()19 bool CpuFeatures::SupportsSimd128() { return false; }
20 
apply(intptr_t delta)21 void RelocInfo::apply(intptr_t delta) {
22   // On arm64 only internal references need extra work.
23   DCHECK(RelocInfo::IsInternalReference(rmode_));
24 
25   // Absolute code pointer inside code object moves with the code object.
26   intptr_t* p = reinterpret_cast<intptr_t*>(pc_);
27   *p += delta;  // Relocate entry.
28 }
29 
code()30 inline int CPURegister::code() const {
31   DCHECK(IsValid());
32   return reg_code;
33 }
34 
35 
type()36 inline CPURegister::RegisterType CPURegister::type() const {
37   DCHECK(IsValidOrNone());
38   return reg_type;
39 }
40 
41 
Bit()42 inline RegList CPURegister::Bit() const {
43   DCHECK(static_cast<size_t>(reg_code) < (sizeof(RegList) * kBitsPerByte));
44   return IsValid() ? 1UL << reg_code : 0;
45 }
46 
47 
SizeInBits()48 inline int CPURegister::SizeInBits() const {
49   DCHECK(IsValid());
50   return reg_size;
51 }
52 
53 
SizeInBytes()54 inline int CPURegister::SizeInBytes() const {
55   DCHECK(IsValid());
56   DCHECK(SizeInBits() % 8 == 0);
57   return reg_size / 8;
58 }
59 
60 
Is32Bits()61 inline bool CPURegister::Is32Bits() const {
62   DCHECK(IsValid());
63   return reg_size == 32;
64 }
65 
66 
Is64Bits()67 inline bool CPURegister::Is64Bits() const {
68   DCHECK(IsValid());
69   return reg_size == 64;
70 }
71 
72 
IsValid()73 inline bool CPURegister::IsValid() const {
74   if (IsValidRegister() || IsValidFPRegister()) {
75     DCHECK(!IsNone());
76     return true;
77   } else {
78     DCHECK(IsNone());
79     return false;
80   }
81 }
82 
83 
IsValidRegister()84 inline bool CPURegister::IsValidRegister() const {
85   return IsRegister() &&
86          ((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits)) &&
87          ((reg_code < kNumberOfRegisters) || (reg_code == kSPRegInternalCode));
88 }
89 
90 
IsValidFPRegister()91 inline bool CPURegister::IsValidFPRegister() const {
92   return IsFPRegister() &&
93          ((reg_size == kSRegSizeInBits) || (reg_size == kDRegSizeInBits)) &&
94          (reg_code < kNumberOfFPRegisters);
95 }
96 
97 
IsNone()98 inline bool CPURegister::IsNone() const {
99   // kNoRegister types should always have size 0 and code 0.
100   DCHECK((reg_type != kNoRegister) || (reg_code == 0));
101   DCHECK((reg_type != kNoRegister) || (reg_size == 0));
102 
103   return reg_type == kNoRegister;
104 }
105 
106 
Is(const CPURegister & other)107 inline bool CPURegister::Is(const CPURegister& other) const {
108   DCHECK(IsValidOrNone() && other.IsValidOrNone());
109   return Aliases(other) && (reg_size == other.reg_size);
110 }
111 
112 
Aliases(const CPURegister & other)113 inline bool CPURegister::Aliases(const CPURegister& other) const {
114   DCHECK(IsValidOrNone() && other.IsValidOrNone());
115   return (reg_code == other.reg_code) && (reg_type == other.reg_type);
116 }
117 
118 
IsRegister()119 inline bool CPURegister::IsRegister() const {
120   return reg_type == kRegister;
121 }
122 
123 
IsFPRegister()124 inline bool CPURegister::IsFPRegister() const {
125   return reg_type == kFPRegister;
126 }
127 
128 
IsSameSizeAndType(const CPURegister & other)129 inline bool CPURegister::IsSameSizeAndType(const CPURegister& other) const {
130   return (reg_size == other.reg_size) && (reg_type == other.reg_type);
131 }
132 
133 
IsValidOrNone()134 inline bool CPURegister::IsValidOrNone() const {
135   return IsValid() || IsNone();
136 }
137 
138 
IsZero()139 inline bool CPURegister::IsZero() const {
140   DCHECK(IsValid());
141   return IsRegister() && (reg_code == kZeroRegCode);
142 }
143 
144 
IsSP()145 inline bool CPURegister::IsSP() const {
146   DCHECK(IsValid());
147   return IsRegister() && (reg_code == kSPRegInternalCode);
148 }
149 
150 
Combine(const CPURegList & other)151 inline void CPURegList::Combine(const CPURegList& other) {
152   DCHECK(IsValid());
153   DCHECK(other.type() == type_);
154   DCHECK(other.RegisterSizeInBits() == size_);
155   list_ |= other.list();
156 }
157 
158 
Remove(const CPURegList & other)159 inline void CPURegList::Remove(const CPURegList& other) {
160   DCHECK(IsValid());
161   if (other.type() == type_) {
162     list_ &= ~other.list();
163   }
164 }
165 
166 
Combine(const CPURegister & other)167 inline void CPURegList::Combine(const CPURegister& other) {
168   DCHECK(other.type() == type_);
169   DCHECK(other.SizeInBits() == size_);
170   Combine(other.code());
171 }
172 
173 
Remove(const CPURegister & other1,const CPURegister & other2,const CPURegister & other3,const CPURegister & other4)174 inline void CPURegList::Remove(const CPURegister& other1,
175                                const CPURegister& other2,
176                                const CPURegister& other3,
177                                const CPURegister& other4) {
178   if (!other1.IsNone() && (other1.type() == type_)) Remove(other1.code());
179   if (!other2.IsNone() && (other2.type() == type_)) Remove(other2.code());
180   if (!other3.IsNone() && (other3.type() == type_)) Remove(other3.code());
181   if (!other4.IsNone() && (other4.type() == type_)) Remove(other4.code());
182 }
183 
184 
Combine(int code)185 inline void CPURegList::Combine(int code) {
186   DCHECK(IsValid());
187   DCHECK(CPURegister::Create(code, size_, type_).IsValid());
188   list_ |= (1UL << code);
189 }
190 
191 
Remove(int code)192 inline void CPURegList::Remove(int code) {
193   DCHECK(IsValid());
194   DCHECK(CPURegister::Create(code, size_, type_).IsValid());
195   list_ &= ~(1UL << code);
196 }
197 
198 
XRegFromCode(unsigned code)199 inline Register Register::XRegFromCode(unsigned code) {
200   if (code == kSPRegInternalCode) {
201     return csp;
202   } else {
203     DCHECK(code < kNumberOfRegisters);
204     return Register::Create(code, kXRegSizeInBits);
205   }
206 }
207 
208 
WRegFromCode(unsigned code)209 inline Register Register::WRegFromCode(unsigned code) {
210   if (code == kSPRegInternalCode) {
211     return wcsp;
212   } else {
213     DCHECK(code < kNumberOfRegisters);
214     return Register::Create(code, kWRegSizeInBits);
215   }
216 }
217 
218 
SRegFromCode(unsigned code)219 inline FPRegister FPRegister::SRegFromCode(unsigned code) {
220   DCHECK(code < kNumberOfFPRegisters);
221   return FPRegister::Create(code, kSRegSizeInBits);
222 }
223 
224 
DRegFromCode(unsigned code)225 inline FPRegister FPRegister::DRegFromCode(unsigned code) {
226   DCHECK(code < kNumberOfFPRegisters);
227   return FPRegister::Create(code, kDRegSizeInBits);
228 }
229 
230 
W()231 inline Register CPURegister::W() const {
232   DCHECK(IsValidRegister());
233   return Register::WRegFromCode(reg_code);
234 }
235 
236 
X()237 inline Register CPURegister::X() const {
238   DCHECK(IsValidRegister());
239   return Register::XRegFromCode(reg_code);
240 }
241 
242 
S()243 inline FPRegister CPURegister::S() const {
244   DCHECK(IsValidFPRegister());
245   return FPRegister::SRegFromCode(reg_code);
246 }
247 
248 
D()249 inline FPRegister CPURegister::D() const {
250   DCHECK(IsValidFPRegister());
251   return FPRegister::DRegFromCode(reg_code);
252 }
253 
254 
255 // Immediate.
256 // Default initializer is for int types
257 template<typename T>
258 struct ImmediateInitializer {
259   static const bool kIsIntType = true;
rmode_forImmediateInitializer260   static inline RelocInfo::Mode rmode_for(T) {
261     return sizeof(T) == 8 ? RelocInfo::NONE64 : RelocInfo::NONE32;
262   }
immediate_forImmediateInitializer263   static inline int64_t immediate_for(T t) {
264     STATIC_ASSERT(sizeof(T) <= 8);
265     return t;
266   }
267 };
268 
269 
270 template<>
271 struct ImmediateInitializer<Smi*> {
272   static const bool kIsIntType = false;
273   static inline RelocInfo::Mode rmode_for(Smi* t) {
274     return RelocInfo::NONE64;
275   }
276   static inline int64_t immediate_for(Smi* t) {;
277     return reinterpret_cast<int64_t>(t);
278   }
279 };
280 
281 
282 template<>
283 struct ImmediateInitializer<ExternalReference> {
284   static const bool kIsIntType = false;
285   static inline RelocInfo::Mode rmode_for(ExternalReference t) {
286     return RelocInfo::EXTERNAL_REFERENCE;
287   }
288   static inline int64_t immediate_for(ExternalReference t) {;
289     return reinterpret_cast<int64_t>(t.address());
290   }
291 };
292 
293 
294 template<typename T>
295 Immediate::Immediate(Handle<T> value) {
296   InitializeHandle(value);
297 }
298 
299 
300 template<typename T>
301 Immediate::Immediate(T t)
302     : value_(ImmediateInitializer<T>::immediate_for(t)),
303       rmode_(ImmediateInitializer<T>::rmode_for(t)) {}
304 
305 
306 template<typename T>
307 Immediate::Immediate(T t, RelocInfo::Mode rmode)
308     : value_(ImmediateInitializer<T>::immediate_for(t)),
309       rmode_(rmode) {
310   STATIC_ASSERT(ImmediateInitializer<T>::kIsIntType);
311 }
312 
313 
314 // Operand.
315 template<typename T>
316 Operand::Operand(Handle<T> value) : immediate_(value), reg_(NoReg) {}
317 
318 
319 template<typename T>
320 Operand::Operand(T t) : immediate_(t), reg_(NoReg) {}
321 
322 
323 template<typename T>
324 Operand::Operand(T t, RelocInfo::Mode rmode)
325     : immediate_(t, rmode),
326       reg_(NoReg) {}
327 
328 
329 Operand::Operand(Register reg, Shift shift, unsigned shift_amount)
330     : immediate_(0),
331       reg_(reg),
332       shift_(shift),
333       extend_(NO_EXTEND),
334       shift_amount_(shift_amount) {
335   DCHECK(reg.Is64Bits() || (shift_amount < kWRegSizeInBits));
336   DCHECK(reg.Is32Bits() || (shift_amount < kXRegSizeInBits));
337   DCHECK(!reg.IsSP());
338 }
339 
340 
341 Operand::Operand(Register reg, Extend extend, unsigned shift_amount)
342     : immediate_(0),
343       reg_(reg),
344       shift_(NO_SHIFT),
345       extend_(extend),
346       shift_amount_(shift_amount) {
347   DCHECK(reg.IsValid());
348   DCHECK(shift_amount <= 4);
349   DCHECK(!reg.IsSP());
350 
351   // Extend modes SXTX and UXTX require a 64-bit register.
352   DCHECK(reg.Is64Bits() || ((extend != SXTX) && (extend != UXTX)));
353 }
354 
355 
356 bool Operand::IsImmediate() const {
357   return reg_.Is(NoReg);
358 }
359 
360 
361 bool Operand::IsShiftedRegister() const {
362   return reg_.IsValid() && (shift_ != NO_SHIFT);
363 }
364 
365 
366 bool Operand::IsExtendedRegister() const {
367   return reg_.IsValid() && (extend_ != NO_EXTEND);
368 }
369 
370 
371 bool Operand::IsZero() const {
372   if (IsImmediate()) {
373     return ImmediateValue() == 0;
374   } else {
375     return reg().IsZero();
376   }
377 }
378 
379 
380 Operand Operand::ToExtendedRegister() const {
381   DCHECK(IsShiftedRegister());
382   DCHECK((shift_ == LSL) && (shift_amount_ <= 4));
383   return Operand(reg_, reg_.Is64Bits() ? UXTX : UXTW, shift_amount_);
384 }
385 
386 
387 Immediate Operand::immediate() const {
388   DCHECK(IsImmediate());
389   return immediate_;
390 }
391 
392 
393 int64_t Operand::ImmediateValue() const {
394   DCHECK(IsImmediate());
395   return immediate_.value();
396 }
397 
398 
399 Register Operand::reg() const {
400   DCHECK(IsShiftedRegister() || IsExtendedRegister());
401   return reg_;
402 }
403 
404 
405 Shift Operand::shift() const {
406   DCHECK(IsShiftedRegister());
407   return shift_;
408 }
409 
410 
411 Extend Operand::extend() const {
412   DCHECK(IsExtendedRegister());
413   return extend_;
414 }
415 
416 
417 unsigned Operand::shift_amount() const {
418   DCHECK(IsShiftedRegister() || IsExtendedRegister());
419   return shift_amount_;
420 }
421 
422 
423 Operand Operand::UntagSmi(Register smi) {
424   STATIC_ASSERT(kXRegSizeInBits == static_cast<unsigned>(kSmiShift +
425                                                          kSmiValueSize));
426   DCHECK(smi.Is64Bits());
427   return Operand(smi, ASR, kSmiShift);
428 }
429 
430 
431 Operand Operand::UntagSmiAndScale(Register smi, int scale) {
432   STATIC_ASSERT(kXRegSizeInBits == static_cast<unsigned>(kSmiShift +
433                                                          kSmiValueSize));
434   DCHECK(smi.Is64Bits());
435   DCHECK((scale >= 0) && (scale <= (64 - kSmiValueSize)));
436   if (scale > kSmiShift) {
437     return Operand(smi, LSL, scale - kSmiShift);
438   } else if (scale < kSmiShift) {
439     return Operand(smi, ASR, kSmiShift - scale);
440   }
441   return Operand(smi);
442 }
443 
444 
445 MemOperand::MemOperand()
446   : base_(NoReg), regoffset_(NoReg), offset_(0), addrmode_(Offset),
447     shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) {
448 }
449 
450 
451 MemOperand::MemOperand(Register base, int64_t offset, AddrMode addrmode)
452   : base_(base), regoffset_(NoReg), offset_(offset), addrmode_(addrmode),
453     shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) {
454   DCHECK(base.Is64Bits() && !base.IsZero());
455 }
456 
457 
458 MemOperand::MemOperand(Register base,
459                        Register regoffset,
460                        Extend extend,
461                        unsigned shift_amount)
462   : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
463     shift_(NO_SHIFT), extend_(extend), shift_amount_(shift_amount) {
464   DCHECK(base.Is64Bits() && !base.IsZero());
465   DCHECK(!regoffset.IsSP());
466   DCHECK((extend == UXTW) || (extend == SXTW) || (extend == SXTX));
467 
468   // SXTX extend mode requires a 64-bit offset register.
469   DCHECK(regoffset.Is64Bits() || (extend != SXTX));
470 }
471 
472 
473 MemOperand::MemOperand(Register base,
474                        Register regoffset,
475                        Shift shift,
476                        unsigned shift_amount)
477   : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
478     shift_(shift), extend_(NO_EXTEND), shift_amount_(shift_amount) {
479   DCHECK(base.Is64Bits() && !base.IsZero());
480   DCHECK(regoffset.Is64Bits() && !regoffset.IsSP());
481   DCHECK(shift == LSL);
482 }
483 
484 
485 MemOperand::MemOperand(Register base, const Operand& offset, AddrMode addrmode)
486   : base_(base), addrmode_(addrmode) {
487   DCHECK(base.Is64Bits() && !base.IsZero());
488 
489   if (offset.IsImmediate()) {
490     offset_ = offset.ImmediateValue();
491 
492     regoffset_ = NoReg;
493   } else if (offset.IsShiftedRegister()) {
494     DCHECK(addrmode == Offset);
495 
496     regoffset_ = offset.reg();
497     shift_ = offset.shift();
498     shift_amount_ = offset.shift_amount();
499 
500     extend_ = NO_EXTEND;
501     offset_ = 0;
502 
503     // These assertions match those in the shifted-register constructor.
504     DCHECK(regoffset_.Is64Bits() && !regoffset_.IsSP());
505     DCHECK(shift_ == LSL);
506   } else {
507     DCHECK(offset.IsExtendedRegister());
508     DCHECK(addrmode == Offset);
509 
510     regoffset_ = offset.reg();
511     extend_ = offset.extend();
512     shift_amount_ = offset.shift_amount();
513 
514     shift_ = NO_SHIFT;
515     offset_ = 0;
516 
517     // These assertions match those in the extended-register constructor.
518     DCHECK(!regoffset_.IsSP());
519     DCHECK((extend_ == UXTW) || (extend_ == SXTW) || (extend_ == SXTX));
520     DCHECK((regoffset_.Is64Bits() || (extend_ != SXTX)));
521   }
522 }
523 
524 bool MemOperand::IsImmediateOffset() const {
525   return (addrmode_ == Offset) && regoffset_.Is(NoReg);
526 }
527 
528 
529 bool MemOperand::IsRegisterOffset() const {
530   return (addrmode_ == Offset) && !regoffset_.Is(NoReg);
531 }
532 
533 
534 bool MemOperand::IsPreIndex() const {
535   return addrmode_ == PreIndex;
536 }
537 
538 
539 bool MemOperand::IsPostIndex() const {
540   return addrmode_ == PostIndex;
541 }
542 
543 Operand MemOperand::OffsetAsOperand() const {
544   if (IsImmediateOffset()) {
545     return offset();
546   } else {
547     DCHECK(IsRegisterOffset());
548     if (extend() == NO_EXTEND) {
549       return Operand(regoffset(), shift(), shift_amount());
550     } else {
551       return Operand(regoffset(), extend(), shift_amount());
552     }
553   }
554 }
555 
556 
557 void Assembler::Unreachable() {
558 #ifdef USE_SIMULATOR
559   debug("UNREACHABLE", __LINE__, BREAK);
560 #else
561   // Crash by branching to 0. lr now points near the fault.
562   Emit(BLR | Rn(xzr));
563 #endif
564 }
565 
566 
567 Address Assembler::target_pointer_address_at(Address pc) {
568   Instruction* instr = reinterpret_cast<Instruction*>(pc);
569   DCHECK(instr->IsLdrLiteralX());
570   return reinterpret_cast<Address>(instr->ImmPCOffsetTarget());
571 }
572 
573 
574 // Read/Modify the code target address in the branch/call instruction at pc.
575 Address Assembler::target_address_at(Address pc, Address constant_pool) {
576   return Memory::Address_at(target_pointer_address_at(pc));
577 }
578 
579 
580 Address Assembler::target_address_at(Address pc, Code* code) {
581   Address constant_pool = code ? code->constant_pool() : NULL;
582   return target_address_at(pc, constant_pool);
583 }
584 
585 
586 Address Assembler::target_address_from_return_address(Address pc) {
587   // Returns the address of the call target from the return address that will
588   // be returned to after a call.
589   // Call sequence on ARM64 is:
590   //  ldr ip0, #... @ load from literal pool
591   //  blr ip0
592   Address candidate = pc - 2 * kInstructionSize;
593   Instruction* instr = reinterpret_cast<Instruction*>(candidate);
594   USE(instr);
595   DCHECK(instr->IsLdrLiteralX());
596   return candidate;
597 }
598 
599 
600 Address Assembler::return_address_from_call_start(Address pc) {
601   // The call, generated by MacroAssembler::Call, is one of two possible
602   // sequences:
603   //
604   // Without relocation:
605   //  movz  temp, #(target & 0x000000000000ffff)
606   //  movk  temp, #(target & 0x00000000ffff0000)
607   //  movk  temp, #(target & 0x0000ffff00000000)
608   //  blr   temp
609   //
610   // With relocation:
611   //  ldr   temp, =target
612   //  blr   temp
613   //
614   // The return address is immediately after the blr instruction in both cases,
615   // so it can be found by adding the call size to the address at the start of
616   // the call sequence.
617   STATIC_ASSERT(Assembler::kCallSizeWithoutRelocation == 4 * kInstructionSize);
618   STATIC_ASSERT(Assembler::kCallSizeWithRelocation == 2 * kInstructionSize);
619 
620   Instruction* instr = reinterpret_cast<Instruction*>(pc);
621   if (instr->IsMovz()) {
622     // Verify the instruction sequence.
623     DCHECK(instr->following(1)->IsMovk());
624     DCHECK(instr->following(2)->IsMovk());
625     DCHECK(instr->following(3)->IsBranchAndLinkToRegister());
626     return pc + Assembler::kCallSizeWithoutRelocation;
627   } else {
628     // Verify the instruction sequence.
629     DCHECK(instr->IsLdrLiteralX());
630     DCHECK(instr->following(1)->IsBranchAndLinkToRegister());
631     return pc + Assembler::kCallSizeWithRelocation;
632   }
633 }
634 
635 
636 void Assembler::deserialization_set_special_target_at(
637     Isolate* isolate, Address constant_pool_entry, Code* code, Address target) {
638   Memory::Address_at(constant_pool_entry) = target;
639 }
640 
641 
642 void Assembler::deserialization_set_target_internal_reference_at(
643     Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
644   Memory::Address_at(pc) = target;
645 }
646 
647 
648 void Assembler::set_target_address_at(Isolate* isolate, Address pc,
649                                       Address constant_pool, Address target,
650                                       ICacheFlushMode icache_flush_mode) {
651   Memory::Address_at(target_pointer_address_at(pc)) = target;
652   // Intuitively, we would think it is necessary to always flush the
653   // instruction cache after patching a target address in the code as follows:
654   //   Assembler::FlushICache(isolate(), pc, sizeof(target));
655   // However, on ARM, an instruction is actually patched in the case of
656   // embedded constants of the form:
657   // ldr   ip, [pc, #...]
658   // since the instruction accessing this address in the constant pool remains
659   // unchanged, a flush is not required.
660 }
661 
662 
663 void Assembler::set_target_address_at(Isolate* isolate, Address pc, Code* code,
664                                       Address target,
665                                       ICacheFlushMode icache_flush_mode) {
666   Address constant_pool = code ? code->constant_pool() : NULL;
667   set_target_address_at(isolate, pc, constant_pool, target, icache_flush_mode);
668 }
669 
670 
671 int RelocInfo::target_address_size() {
672   return kPointerSize;
673 }
674 
675 
676 Address RelocInfo::target_address() {
677   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
678   return Assembler::target_address_at(pc_, host_);
679 }
680 
681 Address RelocInfo::target_address_address() {
682   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
683                               || rmode_ == EMBEDDED_OBJECT
684                               || rmode_ == EXTERNAL_REFERENCE);
685   return Assembler::target_pointer_address_at(pc_);
686 }
687 
688 
689 Address RelocInfo::constant_pool_entry_address() {
690   DCHECK(IsInConstantPool());
691   return Assembler::target_pointer_address_at(pc_);
692 }
693 
694 
695 Object* RelocInfo::target_object() {
696   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
697   return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
698 }
699 
700 
701 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
702   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
703   return Handle<Object>(reinterpret_cast<Object**>(
704       Assembler::target_address_at(pc_, host_)));
705 }
706 
707 
708 void RelocInfo::set_target_object(Object* target,
709                                   WriteBarrierMode write_barrier_mode,
710                                   ICacheFlushMode icache_flush_mode) {
711   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
712   Assembler::set_target_address_at(isolate_, pc_, host_,
713                                    reinterpret_cast<Address>(target),
714                                    icache_flush_mode);
715   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
716       host() != NULL &&
717       target->IsHeapObject()) {
718     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
719         host(), this, HeapObject::cast(target));
720     host()->GetHeap()->RecordWriteIntoCode(host(), this, target);
721   }
722 }
723 
724 
725 Address RelocInfo::target_external_reference() {
726   DCHECK(rmode_ == EXTERNAL_REFERENCE);
727   return Assembler::target_address_at(pc_, host_);
728 }
729 
730 
731 Address RelocInfo::target_internal_reference() {
732   DCHECK(rmode_ == INTERNAL_REFERENCE);
733   return Memory::Address_at(pc_);
734 }
735 
736 
737 Address RelocInfo::target_internal_reference_address() {
738   DCHECK(rmode_ == INTERNAL_REFERENCE);
739   return reinterpret_cast<Address>(pc_);
740 }
741 
742 
743 Address RelocInfo::target_runtime_entry(Assembler* origin) {
744   DCHECK(IsRuntimeEntry(rmode_));
745   return target_address();
746 }
747 
748 
749 void RelocInfo::set_target_runtime_entry(Address target,
750                                          WriteBarrierMode write_barrier_mode,
751                                          ICacheFlushMode icache_flush_mode) {
752   DCHECK(IsRuntimeEntry(rmode_));
753   if (target_address() != target) {
754     set_target_address(target, write_barrier_mode, icache_flush_mode);
755   }
756 }
757 
758 
759 Handle<Cell> RelocInfo::target_cell_handle() {
760   UNIMPLEMENTED();
761   Cell *null_cell = NULL;
762   return Handle<Cell>(null_cell);
763 }
764 
765 
766 Cell* RelocInfo::target_cell() {
767   DCHECK(rmode_ == RelocInfo::CELL);
768   return Cell::FromValueAddress(Memory::Address_at(pc_));
769 }
770 
771 
772 void RelocInfo::set_target_cell(Cell* cell,
773                                 WriteBarrierMode write_barrier_mode,
774                                 ICacheFlushMode icache_flush_mode) {
775   UNIMPLEMENTED();
776 }
777 
778 
779 static const int kNoCodeAgeSequenceLength = 5 * kInstructionSize;
780 static const int kCodeAgeStubEntryOffset = 3 * kInstructionSize;
781 
782 
783 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
784   UNREACHABLE();  // This should never be reached on ARM64.
785   return Handle<Object>();
786 }
787 
788 
789 Code* RelocInfo::code_age_stub() {
790   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
791   // Read the stub entry point from the code age sequence.
792   Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset;
793   return Code::GetCodeFromTargetAddress(Memory::Address_at(stub_entry_address));
794 }
795 
796 
797 void RelocInfo::set_code_age_stub(Code* stub,
798                                   ICacheFlushMode icache_flush_mode) {
799   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
800   DCHECK(!Code::IsYoungSequence(stub->GetIsolate(), pc_));
801   // Overwrite the stub entry point in the code age sequence. This is loaded as
802   // a literal so there is no need to call FlushICache here.
803   Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset;
804   Memory::Address_at(stub_entry_address) = stub->instruction_start();
805 }
806 
807 
808 Address RelocInfo::debug_call_address() {
809   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
810   // For the above sequences the Relocinfo points to the load literal loading
811   // the call address.
812   STATIC_ASSERT(Assembler::kPatchDebugBreakSlotAddressOffset == 0);
813   return Assembler::target_address_at(pc_, host_);
814 }
815 
816 
817 void RelocInfo::set_debug_call_address(Address target) {
818   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
819   STATIC_ASSERT(Assembler::kPatchDebugBreakSlotAddressOffset == 0);
820   Assembler::set_target_address_at(isolate_, pc_, host_, target);
821   if (host() != NULL) {
822     Object* target_code = Code::GetCodeFromTargetAddress(target);
823     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
824         host(), this, HeapObject::cast(target_code));
825   }
826 }
827 
828 
829 void RelocInfo::WipeOut() {
830   DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
831          IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
832          IsInternalReference(rmode_));
833   if (IsInternalReference(rmode_)) {
834     Memory::Address_at(pc_) = NULL;
835   } else {
836     Assembler::set_target_address_at(isolate_, pc_, host_, NULL);
837   }
838 }
839 
840 template <typename ObjectVisitor>
841 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
842   RelocInfo::Mode mode = rmode();
843   if (mode == RelocInfo::EMBEDDED_OBJECT) {
844     visitor->VisitEmbeddedPointer(this);
845   } else if (RelocInfo::IsCodeTarget(mode)) {
846     visitor->VisitCodeTarget(this);
847   } else if (mode == RelocInfo::CELL) {
848     visitor->VisitCell(this);
849   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
850     visitor->VisitExternalReference(this);
851   } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
852     visitor->VisitInternalReference(this);
853   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
854              IsPatchedDebugBreakSlotSequence()) {
855     visitor->VisitDebugTarget(this);
856   } else if (RelocInfo::IsRuntimeEntry(mode)) {
857     visitor->VisitRuntimeEntry(this);
858   }
859 }
860 
861 
862 template<typename StaticVisitor>
863 void RelocInfo::Visit(Heap* heap) {
864   RelocInfo::Mode mode = rmode();
865   if (mode == RelocInfo::EMBEDDED_OBJECT) {
866     StaticVisitor::VisitEmbeddedPointer(heap, this);
867   } else if (RelocInfo::IsCodeTarget(mode)) {
868     StaticVisitor::VisitCodeTarget(heap, this);
869   } else if (mode == RelocInfo::CELL) {
870     StaticVisitor::VisitCell(heap, this);
871   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
872     StaticVisitor::VisitExternalReference(this);
873   } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
874     StaticVisitor::VisitInternalReference(this);
875   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
876              IsPatchedDebugBreakSlotSequence()) {
877     StaticVisitor::VisitDebugTarget(heap, this);
878   } else if (RelocInfo::IsRuntimeEntry(mode)) {
879     StaticVisitor::VisitRuntimeEntry(this);
880   }
881 }
882 
883 
884 LoadStoreOp Assembler::LoadOpFor(const CPURegister& rt) {
885   DCHECK(rt.IsValid());
886   if (rt.IsRegister()) {
887     return rt.Is64Bits() ? LDR_x : LDR_w;
888   } else {
889     DCHECK(rt.IsFPRegister());
890     return rt.Is64Bits() ? LDR_d : LDR_s;
891   }
892 }
893 
894 
895 LoadStorePairOp Assembler::LoadPairOpFor(const CPURegister& rt,
896                                          const CPURegister& rt2) {
897   DCHECK(AreSameSizeAndType(rt, rt2));
898   USE(rt2);
899   if (rt.IsRegister()) {
900     return rt.Is64Bits() ? LDP_x : LDP_w;
901   } else {
902     DCHECK(rt.IsFPRegister());
903     return rt.Is64Bits() ? LDP_d : LDP_s;
904   }
905 }
906 
907 
908 LoadStoreOp Assembler::StoreOpFor(const CPURegister& rt) {
909   DCHECK(rt.IsValid());
910   if (rt.IsRegister()) {
911     return rt.Is64Bits() ? STR_x : STR_w;
912   } else {
913     DCHECK(rt.IsFPRegister());
914     return rt.Is64Bits() ? STR_d : STR_s;
915   }
916 }
917 
918 
919 LoadStorePairOp Assembler::StorePairOpFor(const CPURegister& rt,
920                                           const CPURegister& rt2) {
921   DCHECK(AreSameSizeAndType(rt, rt2));
922   USE(rt2);
923   if (rt.IsRegister()) {
924     return rt.Is64Bits() ? STP_x : STP_w;
925   } else {
926     DCHECK(rt.IsFPRegister());
927     return rt.Is64Bits() ? STP_d : STP_s;
928   }
929 }
930 
931 
932 LoadLiteralOp Assembler::LoadLiteralOpFor(const CPURegister& rt) {
933   if (rt.IsRegister()) {
934     return rt.Is64Bits() ? LDR_x_lit : LDR_w_lit;
935   } else {
936     DCHECK(rt.IsFPRegister());
937     return rt.Is64Bits() ? LDR_d_lit : LDR_s_lit;
938   }
939 }
940 
941 
942 int Assembler::LinkAndGetInstructionOffsetTo(Label* label) {
943   DCHECK(kStartOfLabelLinkChain == 0);
944   int offset = LinkAndGetByteOffsetTo(label);
945   DCHECK(IsAligned(offset, kInstructionSize));
946   return offset >> kInstructionSizeLog2;
947 }
948 
949 
950 Instr Assembler::Flags(FlagsUpdate S) {
951   if (S == SetFlags) {
952     return 1 << FlagsUpdate_offset;
953   } else if (S == LeaveFlags) {
954     return 0 << FlagsUpdate_offset;
955   }
956   UNREACHABLE();
957   return 0;
958 }
959 
960 
961 Instr Assembler::Cond(Condition cond) {
962   return cond << Condition_offset;
963 }
964 
965 
966 Instr Assembler::ImmPCRelAddress(int imm21) {
967   CHECK(is_int21(imm21));
968   Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
969   Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
970   Instr immlo = imm << ImmPCRelLo_offset;
971   return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
972 }
973 
974 
975 Instr Assembler::ImmUncondBranch(int imm26) {
976   CHECK(is_int26(imm26));
977   return truncate_to_int26(imm26) << ImmUncondBranch_offset;
978 }
979 
980 
981 Instr Assembler::ImmCondBranch(int imm19) {
982   CHECK(is_int19(imm19));
983   return truncate_to_int19(imm19) << ImmCondBranch_offset;
984 }
985 
986 
987 Instr Assembler::ImmCmpBranch(int imm19) {
988   CHECK(is_int19(imm19));
989   return truncate_to_int19(imm19) << ImmCmpBranch_offset;
990 }
991 
992 
993 Instr Assembler::ImmTestBranch(int imm14) {
994   CHECK(is_int14(imm14));
995   return truncate_to_int14(imm14) << ImmTestBranch_offset;
996 }
997 
998 
999 Instr Assembler::ImmTestBranchBit(unsigned bit_pos) {
1000   DCHECK(is_uint6(bit_pos));
1001   // Subtract five from the shift offset, as we need bit 5 from bit_pos.
1002   unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
1003   unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
1004   b5 &= ImmTestBranchBit5_mask;
1005   b40 &= ImmTestBranchBit40_mask;
1006   return b5 | b40;
1007 }
1008 
1009 
1010 Instr Assembler::SF(Register rd) {
1011     return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
1012 }
1013 
1014 
1015 Instr Assembler::ImmAddSub(int imm) {
1016   DCHECK(IsImmAddSub(imm));
1017   if (is_uint12(imm)) {  // No shift required.
1018     imm <<= ImmAddSub_offset;
1019   } else {
1020     imm = ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
1021   }
1022   return imm;
1023 }
1024 
1025 
1026 Instr Assembler::ImmS(unsigned imms, unsigned reg_size) {
1027   DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(imms)) ||
1028          ((reg_size == kWRegSizeInBits) && is_uint5(imms)));
1029   USE(reg_size);
1030   return imms << ImmS_offset;
1031 }
1032 
1033 
1034 Instr Assembler::ImmR(unsigned immr, unsigned reg_size) {
1035   DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(immr)) ||
1036          ((reg_size == kWRegSizeInBits) && is_uint5(immr)));
1037   USE(reg_size);
1038   DCHECK(is_uint6(immr));
1039   return immr << ImmR_offset;
1040 }
1041 
1042 
1043 Instr Assembler::ImmSetBits(unsigned imms, unsigned reg_size) {
1044   DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
1045   DCHECK(is_uint6(imms));
1046   DCHECK((reg_size == kXRegSizeInBits) || is_uint6(imms + 3));
1047   USE(reg_size);
1048   return imms << ImmSetBits_offset;
1049 }
1050 
1051 
1052 Instr Assembler::ImmRotate(unsigned immr, unsigned reg_size) {
1053   DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
1054   DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(immr)) ||
1055          ((reg_size == kWRegSizeInBits) && is_uint5(immr)));
1056   USE(reg_size);
1057   return immr << ImmRotate_offset;
1058 }
1059 
1060 
1061 Instr Assembler::ImmLLiteral(int imm19) {
1062   CHECK(is_int19(imm19));
1063   return truncate_to_int19(imm19) << ImmLLiteral_offset;
1064 }
1065 
1066 
1067 Instr Assembler::BitN(unsigned bitn, unsigned reg_size) {
1068   DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
1069   DCHECK((reg_size == kXRegSizeInBits) || (bitn == 0));
1070   USE(reg_size);
1071   return bitn << BitN_offset;
1072 }
1073 
1074 
1075 Instr Assembler::ShiftDP(Shift shift) {
1076   DCHECK(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
1077   return shift << ShiftDP_offset;
1078 }
1079 
1080 
1081 Instr Assembler::ImmDPShift(unsigned amount) {
1082   DCHECK(is_uint6(amount));
1083   return amount << ImmDPShift_offset;
1084 }
1085 
1086 
1087 Instr Assembler::ExtendMode(Extend extend) {
1088   return extend << ExtendMode_offset;
1089 }
1090 
1091 
1092 Instr Assembler::ImmExtendShift(unsigned left_shift) {
1093   DCHECK(left_shift <= 4);
1094   return left_shift << ImmExtendShift_offset;
1095 }
1096 
1097 
1098 Instr Assembler::ImmCondCmp(unsigned imm) {
1099   DCHECK(is_uint5(imm));
1100   return imm << ImmCondCmp_offset;
1101 }
1102 
1103 
1104 Instr Assembler::Nzcv(StatusFlags nzcv) {
1105   return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
1106 }
1107 
1108 
1109 Instr Assembler::ImmLSUnsigned(int imm12) {
1110   DCHECK(is_uint12(imm12));
1111   return imm12 << ImmLSUnsigned_offset;
1112 }
1113 
1114 
1115 Instr Assembler::ImmLS(int imm9) {
1116   DCHECK(is_int9(imm9));
1117   return truncate_to_int9(imm9) << ImmLS_offset;
1118 }
1119 
1120 
1121 Instr Assembler::ImmLSPair(int imm7, LSDataSize size) {
1122   DCHECK(((imm7 >> size) << size) == imm7);
1123   int scaled_imm7 = imm7 >> size;
1124   DCHECK(is_int7(scaled_imm7));
1125   return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
1126 }
1127 
1128 
1129 Instr Assembler::ImmShiftLS(unsigned shift_amount) {
1130   DCHECK(is_uint1(shift_amount));
1131   return shift_amount << ImmShiftLS_offset;
1132 }
1133 
1134 
1135 Instr Assembler::ImmException(int imm16) {
1136   DCHECK(is_uint16(imm16));
1137   return imm16 << ImmException_offset;
1138 }
1139 
1140 
1141 Instr Assembler::ImmSystemRegister(int imm15) {
1142   DCHECK(is_uint15(imm15));
1143   return imm15 << ImmSystemRegister_offset;
1144 }
1145 
1146 
1147 Instr Assembler::ImmHint(int imm7) {
1148   DCHECK(is_uint7(imm7));
1149   return imm7 << ImmHint_offset;
1150 }
1151 
1152 
1153 Instr Assembler::ImmBarrierDomain(int imm2) {
1154   DCHECK(is_uint2(imm2));
1155   return imm2 << ImmBarrierDomain_offset;
1156 }
1157 
1158 
1159 Instr Assembler::ImmBarrierType(int imm2) {
1160   DCHECK(is_uint2(imm2));
1161   return imm2 << ImmBarrierType_offset;
1162 }
1163 
1164 
1165 LSDataSize Assembler::CalcLSDataSize(LoadStoreOp op) {
1166   DCHECK((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8));
1167   return static_cast<LSDataSize>(op >> SizeLS_offset);
1168 }
1169 
1170 
1171 Instr Assembler::ImmMoveWide(int imm) {
1172   DCHECK(is_uint16(imm));
1173   return imm << ImmMoveWide_offset;
1174 }
1175 
1176 
1177 Instr Assembler::ShiftMoveWide(int shift) {
1178   DCHECK(is_uint2(shift));
1179   return shift << ShiftMoveWide_offset;
1180 }
1181 
1182 
1183 Instr Assembler::FPType(FPRegister fd) {
1184   return fd.Is64Bits() ? FP64 : FP32;
1185 }
1186 
1187 
1188 Instr Assembler::FPScale(unsigned scale) {
1189   DCHECK(is_uint6(scale));
1190   return scale << FPScale_offset;
1191 }
1192 
1193 
1194 const Register& Assembler::AppropriateZeroRegFor(const CPURegister& reg) const {
1195   return reg.Is64Bits() ? xzr : wzr;
1196 }
1197 
1198 
1199 inline void Assembler::CheckBufferSpace() {
1200   DCHECK(pc_ < (buffer_ + buffer_size_));
1201   if (buffer_space() < kGap) {
1202     GrowBuffer();
1203   }
1204 }
1205 
1206 
1207 inline void Assembler::CheckBuffer() {
1208   CheckBufferSpace();
1209   if (pc_offset() >= next_veneer_pool_check_) {
1210     CheckVeneerPool(false, true);
1211   }
1212   if (pc_offset() >= next_constant_pool_check_) {
1213     CheckConstPool(false, true);
1214   }
1215 }
1216 
1217 
1218 TypeFeedbackId Assembler::RecordedAstId() {
1219   DCHECK(!recorded_ast_id_.IsNone());
1220   return recorded_ast_id_;
1221 }
1222 
1223 
1224 void Assembler::ClearRecordedAstId() {
1225   recorded_ast_id_ = TypeFeedbackId::None();
1226 }
1227 
1228 
1229 }  // namespace internal
1230 }  // namespace v8
1231 
1232 #endif  // V8_ARM64_ASSEMBLER_ARM64_INL_H_
1233