1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_COMPILER_DEBUG_ELF_DEBUG_FRAME_WRITER_H_
18 #define ART_COMPILER_DEBUG_ELF_DEBUG_FRAME_WRITER_H_
19 
20 #include <vector>
21 
22 #include "arch/instruction_set.h"
23 #include "debug/dwarf/debug_frame_opcode_writer.h"
24 #include "debug/dwarf/dwarf_constants.h"
25 #include "debug/dwarf/headers.h"
26 #include "debug/method_debug_info.h"
27 #include "linker/elf_builder.h"
28 
29 namespace art {
30 namespace debug {
31 
WriteCIE(InstructionSet isa,dwarf::CFIFormat format,std::vector<uint8_t> * buffer)32 static void WriteCIE(InstructionSet isa,
33                      dwarf::CFIFormat format,
34                      std::vector<uint8_t>* buffer) {
35   using Reg = dwarf::Reg;
36   // Scratch registers should be marked as undefined.  This tells the
37   // debugger that its value in the previous frame is not recoverable.
38   bool is64bit = Is64BitInstructionSet(isa);
39   switch (isa) {
40     case InstructionSet::kArm:
41     case InstructionSet::kThumb2: {
42       dwarf::DebugFrameOpCodeWriter<> opcodes;
43       opcodes.DefCFA(Reg::ArmCore(13), 0);  // R13(SP).
44       // core registers.
45       for (int reg = 0; reg < 13; reg++) {
46         if (reg < 4 || reg == 12) {
47           opcodes.Undefined(Reg::ArmCore(reg));
48         } else {
49           opcodes.SameValue(Reg::ArmCore(reg));
50         }
51       }
52       // fp registers.
53       for (int reg = 0; reg < 32; reg++) {
54         if (reg < 16) {
55           opcodes.Undefined(Reg::ArmFp(reg));
56         } else {
57           opcodes.SameValue(Reg::ArmFp(reg));
58         }
59       }
60       auto return_reg = Reg::ArmCore(14);  // R14(LR).
61       WriteCIE(is64bit, return_reg, opcodes, format, buffer);
62       return;
63     }
64     case InstructionSet::kArm64: {
65       dwarf::DebugFrameOpCodeWriter<> opcodes;
66       opcodes.DefCFA(Reg::Arm64Core(31), 0);  // R31(SP).
67       // core registers.
68       for (int reg = 0; reg < 30; reg++) {
69         if (reg < 8 || reg == 16 || reg == 17) {
70           opcodes.Undefined(Reg::Arm64Core(reg));
71         } else {
72           opcodes.SameValue(Reg::Arm64Core(reg));
73         }
74       }
75       // fp registers.
76       for (int reg = 0; reg < 32; reg++) {
77         if (reg < 8 || reg >= 16) {
78           opcodes.Undefined(Reg::Arm64Fp(reg));
79         } else {
80           opcodes.SameValue(Reg::Arm64Fp(reg));
81         }
82       }
83       auto return_reg = Reg::Arm64Core(30);  // R30(LR).
84       WriteCIE(is64bit, return_reg, opcodes, format, buffer);
85       return;
86     }
87     case InstructionSet::kMips:
88     case InstructionSet::kMips64: {
89       dwarf::DebugFrameOpCodeWriter<> opcodes;
90       opcodes.DefCFA(Reg::MipsCore(29), 0);  // R29(SP).
91       // core registers.
92       for (int reg = 1; reg < 26; reg++) {
93         if (reg < 16 || reg == 24 || reg == 25) {  // AT, V*, A*, T*.
94           opcodes.Undefined(Reg::MipsCore(reg));
95         } else {
96           opcodes.SameValue(Reg::MipsCore(reg));
97         }
98       }
99       // fp registers.
100       for (int reg = 0; reg < 32; reg++) {
101         if (reg < 24) {
102           opcodes.Undefined(Reg::Mips64Fp(reg));
103         } else {
104           opcodes.SameValue(Reg::Mips64Fp(reg));
105         }
106       }
107       auto return_reg = Reg::MipsCore(31);  // R31(RA).
108       WriteCIE(is64bit, return_reg, opcodes, format, buffer);
109       return;
110     }
111     case InstructionSet::kX86: {
112       // FIXME: Add fp registers once libunwind adds support for them. Bug: 20491296
113       constexpr bool generate_opcodes_for_x86_fp = false;
114       dwarf::DebugFrameOpCodeWriter<> opcodes;
115       opcodes.DefCFA(Reg::X86Core(4), 4);   // R4(ESP).
116       opcodes.Offset(Reg::X86Core(8), -4);  // R8(EIP).
117       // core registers.
118       for (int reg = 0; reg < 8; reg++) {
119         if (reg <= 3) {
120           opcodes.Undefined(Reg::X86Core(reg));
121         } else if (reg == 4) {
122           // Stack pointer.
123         } else {
124           opcodes.SameValue(Reg::X86Core(reg));
125         }
126       }
127       // fp registers.
128       if (generate_opcodes_for_x86_fp) {
129         for (int reg = 0; reg < 8; reg++) {
130           opcodes.Undefined(Reg::X86Fp(reg));
131         }
132       }
133       auto return_reg = Reg::X86Core(8);  // R8(EIP).
134       WriteCIE(is64bit, return_reg, opcodes, format, buffer);
135       return;
136     }
137     case InstructionSet::kX86_64: {
138       dwarf::DebugFrameOpCodeWriter<> opcodes;
139       opcodes.DefCFA(Reg::X86_64Core(4), 8);  // R4(RSP).
140       opcodes.Offset(Reg::X86_64Core(16), -8);  // R16(RIP).
141       // core registers.
142       for (int reg = 0; reg < 16; reg++) {
143         if (reg == 4) {
144           // Stack pointer.
145         } else if (reg < 12 && reg != 3 && reg != 5) {  // except EBX and EBP.
146           opcodes.Undefined(Reg::X86_64Core(reg));
147         } else {
148           opcodes.SameValue(Reg::X86_64Core(reg));
149         }
150       }
151       // fp registers.
152       for (int reg = 0; reg < 16; reg++) {
153         if (reg < 12) {
154           opcodes.Undefined(Reg::X86_64Fp(reg));
155         } else {
156           opcodes.SameValue(Reg::X86_64Fp(reg));
157         }
158       }
159       auto return_reg = Reg::X86_64Core(16);  // R16(RIP).
160       WriteCIE(is64bit, return_reg, opcodes, format, buffer);
161       return;
162     }
163     case InstructionSet::kNone:
164       break;
165   }
166   LOG(FATAL) << "Cannot write CIE frame for ISA " << isa;
167   UNREACHABLE();
168 }
169 
170 template<typename ElfTypes>
WriteCFISection(linker::ElfBuilder<ElfTypes> * builder,const ArrayRef<const MethodDebugInfo> & method_infos,dwarf::CFIFormat format,bool write_oat_patches)171 void WriteCFISection(linker::ElfBuilder<ElfTypes>* builder,
172                      const ArrayRef<const MethodDebugInfo>& method_infos,
173                      dwarf::CFIFormat format,
174                      bool write_oat_patches) {
175   CHECK(format == dwarf::DW_DEBUG_FRAME_FORMAT || format == dwarf::DW_EH_FRAME_FORMAT);
176   typedef typename ElfTypes::Addr Elf_Addr;
177 
178   // The methods can be written in any order.
179   // Let's therefore sort them in the lexicographical order of the opcodes.
180   // This has no effect on its own. However, if the final .debug_frame section is
181   // compressed it reduces the size since similar opcodes sequences are grouped.
182   std::vector<const MethodDebugInfo*> sorted_method_infos;
183   sorted_method_infos.reserve(method_infos.size());
184   for (size_t i = 0; i < method_infos.size(); i++) {
185     if (!method_infos[i].cfi.empty() && !method_infos[i].deduped) {
186       sorted_method_infos.push_back(&method_infos[i]);
187     }
188   }
189   if (sorted_method_infos.empty()) {
190     return;
191   }
192   std::stable_sort(
193       sorted_method_infos.begin(),
194       sorted_method_infos.end(),
195       [](const MethodDebugInfo* lhs, const MethodDebugInfo* rhs) {
196         ArrayRef<const uint8_t> l = lhs->cfi;
197         ArrayRef<const uint8_t> r = rhs->cfi;
198         return std::lexicographical_compare(l.begin(), l.end(), r.begin(), r.end());
199       });
200 
201   std::vector<uint32_t> binary_search_table;
202   std::vector<uintptr_t> patch_locations;
203   if (format == dwarf::DW_EH_FRAME_FORMAT) {
204     binary_search_table.reserve(2 * sorted_method_infos.size());
205   } else {
206     patch_locations.reserve(sorted_method_infos.size());
207   }
208 
209   // Write .eh_frame/.debug_frame section.
210   const bool is_debug_frame = format == dwarf::DW_DEBUG_FRAME_FORMAT;
211   auto* cfi_section = (is_debug_frame ? builder->GetDebugFrame() : builder->GetEhFrame());
212   {
213     cfi_section->Start();
214     const bool is64bit = Is64BitInstructionSet(builder->GetIsa());
215     const Elf_Addr cfi_address = (is_debug_frame ? 0 : cfi_section->GetAddress());
216     const Elf_Addr cie_address = cfi_address;
217     Elf_Addr buffer_address = cfi_address;
218     std::vector<uint8_t> buffer;  // Small temporary buffer.
219     WriteCIE(builder->GetIsa(), format, &buffer);
220     cfi_section->WriteFully(buffer.data(), buffer.size());
221     buffer_address += buffer.size();
222     buffer.clear();
223     for (const MethodDebugInfo* mi : sorted_method_infos) {
224       DCHECK(!mi->deduped);
225       DCHECK(!mi->cfi.empty());
226       const Elf_Addr code_address = mi->code_address +
227           (mi->is_code_address_text_relative ? builder->GetText()->GetAddress() : 0);
228       if (format == dwarf::DW_EH_FRAME_FORMAT) {
229         binary_search_table.push_back(dchecked_integral_cast<uint32_t>(code_address));
230         binary_search_table.push_back(dchecked_integral_cast<uint32_t>(buffer_address));
231       }
232       WriteFDE(is64bit, cfi_address, cie_address,
233                code_address, mi->code_size,
234                mi->cfi, format, buffer_address, &buffer,
235                &patch_locations);
236       cfi_section->WriteFully(buffer.data(), buffer.size());
237       buffer_address += buffer.size();
238       buffer.clear();
239     }
240     cfi_section->End();
241   }
242 
243   if (format == dwarf::DW_EH_FRAME_FORMAT) {
244     auto* header_section = builder->GetEhFrameHdr();
245     header_section->Start();
246     uint32_t header_address = dchecked_integral_cast<int32_t>(header_section->GetAddress());
247     // Write .eh_frame_hdr section.
248     std::vector<uint8_t> buffer;
249     dwarf::Writer<> header(&buffer);
250     header.PushUint8(1);  // Version.
251     // Encoding of .eh_frame pointer - libunwind does not honor datarel here,
252     // so we have to use pcrel which means relative to the pointer's location.
253     header.PushUint8(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
254     // Encoding of binary search table size.
255     header.PushUint8(dwarf::DW_EH_PE_udata4);
256     // Encoding of binary search table addresses - libunwind supports only this
257     // specific combination, which means relative to the start of .eh_frame_hdr.
258     header.PushUint8(dwarf::DW_EH_PE_datarel | dwarf::DW_EH_PE_sdata4);
259     // .eh_frame pointer
260     header.PushInt32(cfi_section->GetAddress() - (header_address + 4u));
261     // Binary search table size (number of entries).
262     header.PushUint32(dchecked_integral_cast<uint32_t>(binary_search_table.size()/2));
263     header_section->WriteFully(buffer.data(), buffer.size());
264     // Binary search table.
265     for (size_t i = 0; i < binary_search_table.size(); i++) {
266       // Make addresses section-relative since we know the header address now.
267       binary_search_table[i] -= header_address;
268     }
269     header_section->WriteFully(binary_search_table.data(), binary_search_table.size());
270     header_section->End();
271   } else {
272     if (write_oat_patches) {
273       builder->WritePatches(".debug_frame.oat_patches",
274                             ArrayRef<const uintptr_t>(patch_locations));
275     }
276   }
277 }
278 
279 }  // namespace debug
280 }  // namespace art
281 
282 #endif  // ART_COMPILER_DEBUG_ELF_DEBUG_FRAME_WRITER_H_
283 
284