1 /*
2  * Copyright (C) 2007 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <math.h>
18 
19 #include <cutils/compiler.h>
20 #include <utils/String8.h>
21 #include <ui/Region.h>
22 
23 #include "Transform.h"
24 #include "clz.h"
25 
26 // ---------------------------------------------------------------------------
27 
28 namespace android {
29 
30 // ---------------------------------------------------------------------------
31 
Transform()32 Transform::Transform() {
33     reset();
34 }
35 
Transform(const Transform & other)36 Transform::Transform(const Transform&  other)
37     : mMatrix(other.mMatrix), mType(other.mType) {
38 }
39 
Transform(uint32_t orientation)40 Transform::Transform(uint32_t orientation) {
41     set(orientation, 0, 0);
42 }
43 
~Transform()44 Transform::~Transform() {
45 }
46 
47 static const float EPSILON = 0.0f;
48 
isZero(float f)49 bool Transform::isZero(float f) {
50     return fabs(f) <= EPSILON;
51 }
52 
absIsOne(float f)53 bool Transform::absIsOne(float f) {
54     return isZero(fabs(f) - 1.0f);
55 }
56 
operator *(const Transform & rhs) const57 Transform Transform::operator * (const Transform& rhs) const
58 {
59     if (CC_LIKELY(mType == IDENTITY))
60         return rhs;
61 
62     Transform r(*this);
63     if (rhs.mType == IDENTITY)
64         return r;
65 
66     // TODO: we could use mType to optimize the matrix multiply
67     const mat33& A(mMatrix);
68     const mat33& B(rhs.mMatrix);
69           mat33& D(r.mMatrix);
70     for (int i=0 ; i<3 ; i++) {
71         const float v0 = A[0][i];
72         const float v1 = A[1][i];
73         const float v2 = A[2][i];
74         D[0][i] = v0*B[0][0] + v1*B[0][1] + v2*B[0][2];
75         D[1][i] = v0*B[1][0] + v1*B[1][1] + v2*B[1][2];
76         D[2][i] = v0*B[2][0] + v1*B[2][1] + v2*B[2][2];
77     }
78     r.mType |= rhs.mType;
79 
80     // TODO: we could recompute this value from r and rhs
81     r.mType &= 0xFF;
82     r.mType |= UNKNOWN_TYPE;
83     return r;
84 }
85 
operator [](size_t i) const86 const vec3& Transform::operator [] (size_t i) const {
87     return mMatrix[i];
88 }
89 
tx() const90 float Transform::tx() const {
91     return mMatrix[2][0];
92 }
93 
ty() const94 float Transform::ty() const {
95     return mMatrix[2][1];
96 }
97 
reset()98 void Transform::reset() {
99     mType = IDENTITY;
100     for(int i=0 ; i<3 ; i++) {
101         vec3& v(mMatrix[i]);
102         for (int j=0 ; j<3 ; j++)
103             v[j] = ((i==j) ? 1.0f : 0.0f);
104     }
105 }
106 
set(float tx,float ty)107 void Transform::set(float tx, float ty)
108 {
109     mMatrix[2][0] = tx;
110     mMatrix[2][1] = ty;
111     mMatrix[2][2] = 1.0f;
112 
113     if (isZero(tx) && isZero(ty)) {
114         mType &= ~TRANSLATE;
115     } else {
116         mType |= TRANSLATE;
117     }
118 }
119 
set(float a,float b,float c,float d)120 void Transform::set(float a, float b, float c, float d)
121 {
122     mat33& M(mMatrix);
123     M[0][0] = a;    M[1][0] = b;
124     M[0][1] = c;    M[1][1] = d;
125     M[0][2] = 0;    M[1][2] = 0;
126     mType = UNKNOWN_TYPE;
127 }
128 
set(uint32_t flags,float w,float h)129 status_t Transform::set(uint32_t flags, float w, float h)
130 {
131     if (flags & ROT_INVALID) {
132         // that's not allowed!
133         reset();
134         return BAD_VALUE;
135     }
136 
137     Transform H, V, R;
138     if (flags & ROT_90) {
139         // w & h are inverted when rotating by 90 degrees
140         swap(w, h);
141     }
142 
143     if (flags & FLIP_H) {
144         H.mType = (FLIP_H << 8) | SCALE;
145         H.mType |= isZero(w) ? IDENTITY : TRANSLATE;
146         mat33& M(H.mMatrix);
147         M[0][0] = -1;
148         M[2][0] = w;
149     }
150 
151     if (flags & FLIP_V) {
152         V.mType = (FLIP_V << 8) | SCALE;
153         V.mType |= isZero(h) ? IDENTITY : TRANSLATE;
154         mat33& M(V.mMatrix);
155         M[1][1] = -1;
156         M[2][1] = h;
157     }
158 
159     if (flags & ROT_90) {
160         const float original_w = h;
161         R.mType = (ROT_90 << 8) | ROTATE;
162         R.mType |= isZero(original_w) ? IDENTITY : TRANSLATE;
163         mat33& M(R.mMatrix);
164         M[0][0] = 0;    M[1][0] =-1;    M[2][0] = original_w;
165         M[0][1] = 1;    M[1][1] = 0;
166     }
167 
168     *this = (R*(H*V));
169     return NO_ERROR;
170 }
171 
transform(const vec2 & v) const172 vec2 Transform::transform(const vec2& v) const {
173     vec2 r;
174     const mat33& M(mMatrix);
175     r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0];
176     r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1];
177     return r;
178 }
179 
transform(const vec3 & v) const180 vec3 Transform::transform(const vec3& v) const {
181     vec3 r;
182     const mat33& M(mMatrix);
183     r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0]*v[2];
184     r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1]*v[2];
185     r[2] = M[0][2]*v[0] + M[1][2]*v[1] + M[2][2]*v[2];
186     return r;
187 }
188 
transform(int x,int y) const189 vec2 Transform::transform(int x, int y) const
190 {
191     return transform(vec2(x,y));
192 }
193 
makeBounds(int w,int h) const194 Rect Transform::makeBounds(int w, int h) const
195 {
196     return transform( Rect(w, h) );
197 }
198 
transform(const Rect & bounds,bool roundOutwards) const199 Rect Transform::transform(const Rect& bounds, bool roundOutwards) const
200 {
201     Rect r;
202     vec2 lt( bounds.left,  bounds.top    );
203     vec2 rt( bounds.right, bounds.top    );
204     vec2 lb( bounds.left,  bounds.bottom );
205     vec2 rb( bounds.right, bounds.bottom );
206 
207     lt = transform(lt);
208     rt = transform(rt);
209     lb = transform(lb);
210     rb = transform(rb);
211 
212     if (roundOutwards) {
213         r.left   = floorf(min(lt[0], rt[0], lb[0], rb[0]));
214         r.top    = floorf(min(lt[1], rt[1], lb[1], rb[1]));
215         r.right  = ceilf(max(lt[0], rt[0], lb[0], rb[0]));
216         r.bottom = ceilf(max(lt[1], rt[1], lb[1], rb[1]));
217     } else {
218         r.left   = floorf(min(lt[0], rt[0], lb[0], rb[0]) + 0.5f);
219         r.top    = floorf(min(lt[1], rt[1], lb[1], rb[1]) + 0.5f);
220         r.right  = floorf(max(lt[0], rt[0], lb[0], rb[0]) + 0.5f);
221         r.bottom = floorf(max(lt[1], rt[1], lb[1], rb[1]) + 0.5f);
222     }
223 
224     return r;
225 }
226 
transform(const FloatRect & bounds) const227 FloatRect Transform::transform(const FloatRect& bounds) const
228 {
229     vec2 lt(bounds.left, bounds.top);
230     vec2 rt(bounds.right, bounds.top);
231     vec2 lb(bounds.left, bounds.bottom);
232     vec2 rb(bounds.right, bounds.bottom);
233 
234     lt = transform(lt);
235     rt = transform(rt);
236     lb = transform(lb);
237     rb = transform(rb);
238 
239     FloatRect r;
240     r.left = min(lt[0], rt[0], lb[0], rb[0]);
241     r.top = min(lt[1], rt[1], lb[1], rb[1]);
242     r.right = max(lt[0], rt[0], lb[0], rb[0]);
243     r.bottom = max(lt[1], rt[1], lb[1], rb[1]);
244 
245     return r;
246 }
247 
transform(const Region & reg) const248 Region Transform::transform(const Region& reg) const
249 {
250     Region out;
251     if (CC_UNLIKELY(type() > TRANSLATE)) {
252         if (CC_LIKELY(preserveRects())) {
253             Region::const_iterator it = reg.begin();
254             Region::const_iterator const end = reg.end();
255             while (it != end) {
256                 out.orSelf(transform(*it++));
257             }
258         } else {
259             out.set(transform(reg.bounds()));
260         }
261     } else {
262         int xpos = floorf(tx() + 0.5f);
263         int ypos = floorf(ty() + 0.5f);
264         out = reg.translate(xpos, ypos);
265     }
266     return out;
267 }
268 
type() const269 uint32_t Transform::type() const
270 {
271     if (mType & UNKNOWN_TYPE) {
272         // recompute what this transform is
273 
274         const mat33& M(mMatrix);
275         const float a = M[0][0];
276         const float b = M[1][0];
277         const float c = M[0][1];
278         const float d = M[1][1];
279         const float x = M[2][0];
280         const float y = M[2][1];
281 
282         bool scale = false;
283         uint32_t flags = ROT_0;
284         if (isZero(b) && isZero(c)) {
285             if (a<0)    flags |= FLIP_H;
286             if (d<0)    flags |= FLIP_V;
287             if (!absIsOne(a) || !absIsOne(d)) {
288                 scale = true;
289             }
290         } else if (isZero(a) && isZero(d)) {
291             flags |= ROT_90;
292             if (b>0)    flags |= FLIP_V;
293             if (c<0)    flags |= FLIP_H;
294             if (!absIsOne(b) || !absIsOne(c)) {
295                 scale = true;
296             }
297         } else {
298             // there is a skew component and/or a non 90 degrees rotation
299             flags = ROT_INVALID;
300         }
301 
302         mType = flags << 8;
303         if (flags & ROT_INVALID) {
304             mType |= UNKNOWN;
305         } else {
306             if ((flags & ROT_90) || ((flags & ROT_180) == ROT_180))
307                 mType |= ROTATE;
308             if (flags & FLIP_H)
309                 mType ^= SCALE;
310             if (flags & FLIP_V)
311                 mType ^= SCALE;
312             if (scale)
313                 mType |= SCALE;
314         }
315 
316         if (!isZero(x) || !isZero(y))
317             mType |= TRANSLATE;
318     }
319     return mType;
320 }
321 
inverse() const322 Transform Transform::inverse() const {
323     // our 3x3 matrix is always of the form of a 2x2 transformation
324     // followed by a translation: T*M, therefore:
325     // (T*M)^-1 = M^-1 * T^-1
326     Transform result;
327     if (mType <= TRANSLATE) {
328         // 1 0 0
329         // 0 1 0
330         // x y 1
331         result = *this;
332         result.mMatrix[2][0] = -result.mMatrix[2][0];
333         result.mMatrix[2][1] = -result.mMatrix[2][1];
334     } else {
335         // a c 0
336         // b d 0
337         // x y 1
338         const mat33& M(mMatrix);
339         const float a = M[0][0];
340         const float b = M[1][0];
341         const float c = M[0][1];
342         const float d = M[1][1];
343         const float x = M[2][0];
344         const float y = M[2][1];
345 
346         const float idet = 1.0 / (a*d - b*c);
347         result.mMatrix[0][0] =  d*idet;
348         result.mMatrix[0][1] = -c*idet;
349         result.mMatrix[1][0] = -b*idet;
350         result.mMatrix[1][1] =  a*idet;
351         result.mType = mType;
352 
353         vec2 T(-x, -y);
354         T = result.transform(T);
355         result.mMatrix[2][0] = T[0];
356         result.mMatrix[2][1] = T[1];
357     }
358     return result;
359 }
360 
getType() const361 uint32_t Transform::getType() const {
362     return type() & 0xFF;
363 }
364 
getOrientation() const365 uint32_t Transform::getOrientation() const
366 {
367     return (type() >> 8) & 0xFF;
368 }
369 
preserveRects() const370 bool Transform::preserveRects() const
371 {
372     return (getOrientation() & ROT_INVALID) ? false : true;
373 }
374 
dump(const char * name) const375 void Transform::dump(const char* name) const
376 {
377     type(); // updates the type
378 
379     String8 flags, type;
380     const mat33& m(mMatrix);
381     uint32_t orient = mType >> 8;
382 
383     if (orient&ROT_INVALID) {
384         flags.append("ROT_INVALID ");
385     } else {
386         if (orient&ROT_90) {
387             flags.append("ROT_90 ");
388         } else {
389             flags.append("ROT_0 ");
390         }
391         if (orient&FLIP_V)
392             flags.append("FLIP_V ");
393         if (orient&FLIP_H)
394             flags.append("FLIP_H ");
395     }
396 
397     if (!(mType&(SCALE|ROTATE|TRANSLATE)))
398         type.append("IDENTITY ");
399     if (mType&SCALE)
400         type.append("SCALE ");
401     if (mType&ROTATE)
402         type.append("ROTATE ");
403     if (mType&TRANSLATE)
404         type.append("TRANSLATE ");
405 
406     ALOGD("%s 0x%08x (%s, %s)", name, mType, flags.string(), type.string());
407     ALOGD("%.4f  %.4f  %.4f", m[0][0], m[1][0], m[2][0]);
408     ALOGD("%.4f  %.4f  %.4f", m[0][1], m[1][1], m[2][1]);
409     ALOGD("%.4f  %.4f  %.4f", m[0][2], m[1][2], m[2][2]);
410 }
411 
fromRotation(ISurfaceComposer::Rotation rotation)412 Transform::orientation_flags Transform::fromRotation(ISurfaceComposer::Rotation rotation) {
413     // Convert to surfaceflinger's internal rotation type.
414     switch (rotation) {
415         case ISurfaceComposer::eRotateNone:
416             return Transform::ROT_0;
417         case ISurfaceComposer::eRotate90:
418             return Transform::ROT_90;
419         case ISurfaceComposer::eRotate180:
420             return Transform::ROT_180;
421         case ISurfaceComposer::eRotate270:
422             return Transform::ROT_270;
423         default:
424             ALOGE("Invalid rotation passed to captureScreen(): %d\n", rotation);
425             return Transform::ROT_0;
426     }
427 }
428 
429 // ---------------------------------------------------------------------------
430 
431 }; // namespace android
432