1 /*
2 * Copyright (C) 2018 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #define LOG_TAG "ExtCamDevSsn@3.4"
17 //#define LOG_NDEBUG 0
18 #define ATRACE_TAG ATRACE_TAG_CAMERA
19 #include <log/log.h>
20
21 #include <inttypes.h>
22 #include "ExternalCameraDeviceSession.h"
23
24 #include "android-base/macros.h"
25 #include <utils/Timers.h>
26 #include <utils/Trace.h>
27 #include <linux/videodev2.h>
28 #include <sync/sync.h>
29
30 #define HAVE_JPEG // required for libyuv.h to export MJPEG decode APIs
31 #include <libyuv.h>
32
33 #include <jpeglib.h>
34
35
36 namespace android {
37 namespace hardware {
38 namespace camera {
39 namespace device {
40 namespace V3_4 {
41 namespace implementation {
42
43 namespace {
44 // Size of request/result metadata fast message queue. Change to 0 to always use hwbinder buffer.
45 static constexpr size_t kMetadataMsgQueueSize = 1 << 18 /* 256kB */;
46
47 const int kBadFramesAfterStreamOn = 1; // drop x frames after streamOn to get rid of some initial
48 // bad frames. TODO: develop a better bad frame detection
49 // method
50 constexpr int MAX_RETRY = 15; // Allow retry some ioctl failures a few times to account for some
51 // webcam showing temporarily ioctl failures.
52 constexpr int IOCTL_RETRY_SLEEP_US = 33000; // 33ms * MAX_RETRY = 0.5 seconds
53
54 // Constants for tryLock during dumpstate
55 static constexpr int kDumpLockRetries = 50;
56 static constexpr int kDumpLockSleep = 60000;
57
tryLock(Mutex & mutex)58 bool tryLock(Mutex& mutex)
59 {
60 bool locked = false;
61 for (int i = 0; i < kDumpLockRetries; ++i) {
62 if (mutex.tryLock() == NO_ERROR) {
63 locked = true;
64 break;
65 }
66 usleep(kDumpLockSleep);
67 }
68 return locked;
69 }
70
tryLock(std::mutex & mutex)71 bool tryLock(std::mutex& mutex)
72 {
73 bool locked = false;
74 for (int i = 0; i < kDumpLockRetries; ++i) {
75 if (mutex.try_lock()) {
76 locked = true;
77 break;
78 }
79 usleep(kDumpLockSleep);
80 }
81 return locked;
82 }
83
84 } // Anonymous namespace
85
86 // Static instances
87 const int ExternalCameraDeviceSession::kMaxProcessedStream;
88 const int ExternalCameraDeviceSession::kMaxStallStream;
89 HandleImporter ExternalCameraDeviceSession::sHandleImporter;
90
ExternalCameraDeviceSession(const sp<ICameraDeviceCallback> & callback,const ExternalCameraConfig & cfg,const std::vector<SupportedV4L2Format> & sortedFormats,const CroppingType & croppingType,const common::V1_0::helper::CameraMetadata & chars,const std::string & cameraId,unique_fd v4l2Fd)91 ExternalCameraDeviceSession::ExternalCameraDeviceSession(
92 const sp<ICameraDeviceCallback>& callback,
93 const ExternalCameraConfig& cfg,
94 const std::vector<SupportedV4L2Format>& sortedFormats,
95 const CroppingType& croppingType,
96 const common::V1_0::helper::CameraMetadata& chars,
97 const std::string& cameraId,
98 unique_fd v4l2Fd) :
99 mCallback(callback),
100 mCfg(cfg),
101 mCameraCharacteristics(chars),
102 mSupportedFormats(sortedFormats),
103 mCroppingType(croppingType),
104 mCameraId(cameraId),
105 mV4l2Fd(std::move(v4l2Fd)),
106 mOutputThread(new OutputThread(this, mCroppingType)),
107 mMaxThumbResolution(getMaxThumbResolution()),
108 mMaxJpegResolution(getMaxJpegResolution()) {
109 mInitFail = initialize();
110 }
111
initialize()112 bool ExternalCameraDeviceSession::initialize() {
113 if (mV4l2Fd.get() < 0) {
114 ALOGE("%s: invalid v4l2 device fd %d!", __FUNCTION__, mV4l2Fd.get());
115 return true;
116 }
117
118 struct v4l2_capability capability;
119 int ret = ioctl(mV4l2Fd.get(), VIDIOC_QUERYCAP, &capability);
120 std::string make, model;
121 if (ret < 0) {
122 ALOGW("%s v4l2 QUERYCAP failed", __FUNCTION__);
123 make = "Generic UVC webcam";
124 model = "Generic UVC webcam";
125 } else {
126 // capability.card is UTF-8 encoded
127 char card[32];
128 int j = 0;
129 for (int i = 0; i < 32; i++) {
130 if (capability.card[i] < 128) {
131 card[j++] = capability.card[i];
132 }
133 if (capability.card[i] == '\0') {
134 break;
135 }
136 }
137 if (j == 0 || card[j - 1] != '\0') {
138 make = "Generic UVC webcam";
139 model = "Generic UVC webcam";
140 } else {
141 make = card;
142 model = card;
143 }
144 }
145 mOutputThread->setExifMakeModel(make, model);
146
147 status_t status = initDefaultRequests();
148 if (status != OK) {
149 ALOGE("%s: init default requests failed!", __FUNCTION__);
150 return true;
151 }
152
153 mRequestMetadataQueue = std::make_unique<RequestMetadataQueue>(
154 kMetadataMsgQueueSize, false /* non blocking */);
155 if (!mRequestMetadataQueue->isValid()) {
156 ALOGE("%s: invalid request fmq", __FUNCTION__);
157 return true;
158 }
159 mResultMetadataQueue = std::make_shared<RequestMetadataQueue>(
160 kMetadataMsgQueueSize, false /* non blocking */);
161 if (!mResultMetadataQueue->isValid()) {
162 ALOGE("%s: invalid result fmq", __FUNCTION__);
163 return true;
164 }
165
166 // TODO: check is PRIORITY_DISPLAY enough?
167 mOutputThread->run("ExtCamOut", PRIORITY_DISPLAY);
168 return false;
169 }
170
initStatus() const171 Status ExternalCameraDeviceSession::initStatus() const {
172 Mutex::Autolock _l(mLock);
173 Status status = Status::OK;
174 if (mInitFail || mClosed) {
175 ALOGI("%s: sesssion initFailed %d closed %d", __FUNCTION__, mInitFail, mClosed);
176 status = Status::INTERNAL_ERROR;
177 }
178 return status;
179 }
180
~ExternalCameraDeviceSession()181 ExternalCameraDeviceSession::~ExternalCameraDeviceSession() {
182 if (!isClosed()) {
183 ALOGE("ExternalCameraDeviceSession deleted before close!");
184 close();
185 }
186 }
187
188
dumpState(const native_handle_t * handle)189 void ExternalCameraDeviceSession::dumpState(const native_handle_t* handle) {
190 if (handle->numFds != 1 || handle->numInts != 0) {
191 ALOGE("%s: handle must contain 1 FD and 0 integers! Got %d FDs and %d ints",
192 __FUNCTION__, handle->numFds, handle->numInts);
193 return;
194 }
195 int fd = handle->data[0];
196
197 bool intfLocked = tryLock(mInterfaceLock);
198 if (!intfLocked) {
199 dprintf(fd, "!! ExternalCameraDeviceSession interface may be deadlocked !!\n");
200 }
201
202 if (isClosed()) {
203 dprintf(fd, "External camera %s is closed\n", mCameraId.c_str());
204 return;
205 }
206
207 bool streaming = false;
208 size_t v4L2BufferCount = 0;
209 SupportedV4L2Format streamingFmt;
210 {
211 bool sessionLocked = tryLock(mLock);
212 if (!sessionLocked) {
213 dprintf(fd, "!! ExternalCameraDeviceSession mLock may be deadlocked !!\n");
214 }
215 streaming = mV4l2Streaming;
216 streamingFmt = mV4l2StreamingFmt;
217 v4L2BufferCount = mV4L2BufferCount;
218
219 if (sessionLocked) {
220 mLock.unlock();
221 }
222 }
223
224 std::unordered_set<uint32_t> inflightFrames;
225 {
226 bool iffLocked = tryLock(mInflightFramesLock);
227 if (!iffLocked) {
228 dprintf(fd,
229 "!! ExternalCameraDeviceSession mInflightFramesLock may be deadlocked !!\n");
230 }
231 inflightFrames = mInflightFrames;
232 if (iffLocked) {
233 mInflightFramesLock.unlock();
234 }
235 }
236
237 dprintf(fd, "External camera %s V4L2 FD %d, cropping type %s, %s\n",
238 mCameraId.c_str(), mV4l2Fd.get(),
239 (mCroppingType == VERTICAL) ? "vertical" : "horizontal",
240 streaming ? "streaming" : "not streaming");
241 if (streaming) {
242 // TODO: dump fps later
243 dprintf(fd, "Current V4L2 format %c%c%c%c %dx%d @ %ffps\n",
244 streamingFmt.fourcc & 0xFF,
245 (streamingFmt.fourcc >> 8) & 0xFF,
246 (streamingFmt.fourcc >> 16) & 0xFF,
247 (streamingFmt.fourcc >> 24) & 0xFF,
248 streamingFmt.width, streamingFmt.height,
249 mV4l2StreamingFps);
250
251 size_t numDequeuedV4l2Buffers = 0;
252 {
253 std::lock_guard<std::mutex> lk(mV4l2BufferLock);
254 numDequeuedV4l2Buffers = mNumDequeuedV4l2Buffers;
255 }
256 dprintf(fd, "V4L2 buffer queue size %zu, dequeued %zu\n",
257 v4L2BufferCount, numDequeuedV4l2Buffers);
258 }
259
260 dprintf(fd, "In-flight frames (not sorted):");
261 for (const auto& frameNumber : inflightFrames) {
262 dprintf(fd, "%d, ", frameNumber);
263 }
264 dprintf(fd, "\n");
265 mOutputThread->dump(fd);
266 dprintf(fd, "\n");
267
268 if (intfLocked) {
269 mInterfaceLock.unlock();
270 }
271
272 return;
273 }
274
constructDefaultRequestSettings(V3_2::RequestTemplate type,V3_2::ICameraDeviceSession::constructDefaultRequestSettings_cb _hidl_cb)275 Return<void> ExternalCameraDeviceSession::constructDefaultRequestSettings(
276 V3_2::RequestTemplate type,
277 V3_2::ICameraDeviceSession::constructDefaultRequestSettings_cb _hidl_cb) {
278 V3_2::CameraMetadata outMetadata;
279 Status status = constructDefaultRequestSettingsRaw(
280 static_cast<RequestTemplate>(type), &outMetadata);
281 _hidl_cb(status, outMetadata);
282 return Void();
283 }
284
constructDefaultRequestSettingsRaw(RequestTemplate type,V3_2::CameraMetadata * outMetadata)285 Status ExternalCameraDeviceSession::constructDefaultRequestSettingsRaw(RequestTemplate type,
286 V3_2::CameraMetadata *outMetadata) {
287 CameraMetadata emptyMd;
288 Status status = initStatus();
289 if (status != Status::OK) {
290 return status;
291 }
292
293 switch (type) {
294 case RequestTemplate::PREVIEW:
295 case RequestTemplate::STILL_CAPTURE:
296 case RequestTemplate::VIDEO_RECORD:
297 case RequestTemplate::VIDEO_SNAPSHOT: {
298 *outMetadata = mDefaultRequests[type];
299 break;
300 }
301 case RequestTemplate::MANUAL:
302 case RequestTemplate::ZERO_SHUTTER_LAG:
303 // Don't support MANUAL, ZSL templates
304 status = Status::ILLEGAL_ARGUMENT;
305 break;
306 default:
307 ALOGE("%s: unknown request template type %d", __FUNCTION__, static_cast<int>(type));
308 status = Status::ILLEGAL_ARGUMENT;
309 break;
310 }
311 return status;
312 }
313
configureStreams(const V3_2::StreamConfiguration & streams,ICameraDeviceSession::configureStreams_cb _hidl_cb)314 Return<void> ExternalCameraDeviceSession::configureStreams(
315 const V3_2::StreamConfiguration& streams,
316 ICameraDeviceSession::configureStreams_cb _hidl_cb) {
317 V3_2::HalStreamConfiguration outStreams;
318 V3_3::HalStreamConfiguration outStreams_v33;
319 Mutex::Autolock _il(mInterfaceLock);
320
321 Status status = configureStreams(streams, &outStreams_v33);
322 size_t size = outStreams_v33.streams.size();
323 outStreams.streams.resize(size);
324 for (size_t i = 0; i < size; i++) {
325 outStreams.streams[i] = outStreams_v33.streams[i].v3_2;
326 }
327 _hidl_cb(status, outStreams);
328 return Void();
329 }
330
configureStreams_3_3(const V3_2::StreamConfiguration & streams,ICameraDeviceSession::configureStreams_3_3_cb _hidl_cb)331 Return<void> ExternalCameraDeviceSession::configureStreams_3_3(
332 const V3_2::StreamConfiguration& streams,
333 ICameraDeviceSession::configureStreams_3_3_cb _hidl_cb) {
334 V3_3::HalStreamConfiguration outStreams;
335 Mutex::Autolock _il(mInterfaceLock);
336
337 Status status = configureStreams(streams, &outStreams);
338 _hidl_cb(status, outStreams);
339 return Void();
340 }
341
configureStreams_3_4(const V3_4::StreamConfiguration & requestedConfiguration,ICameraDeviceSession::configureStreams_3_4_cb _hidl_cb)342 Return<void> ExternalCameraDeviceSession::configureStreams_3_4(
343 const V3_4::StreamConfiguration& requestedConfiguration,
344 ICameraDeviceSession::configureStreams_3_4_cb _hidl_cb) {
345 V3_2::StreamConfiguration config_v32;
346 V3_3::HalStreamConfiguration outStreams_v33;
347 Mutex::Autolock _il(mInterfaceLock);
348
349 config_v32.operationMode = requestedConfiguration.operationMode;
350 config_v32.streams.resize(requestedConfiguration.streams.size());
351 for (size_t i = 0; i < config_v32.streams.size(); i++) {
352 config_v32.streams[i] = requestedConfiguration.streams[i].v3_2;
353 }
354
355 Status status = configureStreams(config_v32, &outStreams_v33);
356
357 V3_4::HalStreamConfiguration outStreams;
358 outStreams.streams.resize(outStreams_v33.streams.size());
359 for (size_t i = 0; i < outStreams.streams.size(); i++) {
360 outStreams.streams[i].v3_3 = outStreams_v33.streams[i];
361 }
362 _hidl_cb(status, outStreams);
363 return Void();
364 }
365
getCaptureRequestMetadataQueue(ICameraDeviceSession::getCaptureRequestMetadataQueue_cb _hidl_cb)366 Return<void> ExternalCameraDeviceSession::getCaptureRequestMetadataQueue(
367 ICameraDeviceSession::getCaptureRequestMetadataQueue_cb _hidl_cb) {
368 Mutex::Autolock _il(mInterfaceLock);
369 _hidl_cb(*mRequestMetadataQueue->getDesc());
370 return Void();
371 }
372
getCaptureResultMetadataQueue(ICameraDeviceSession::getCaptureResultMetadataQueue_cb _hidl_cb)373 Return<void> ExternalCameraDeviceSession::getCaptureResultMetadataQueue(
374 ICameraDeviceSession::getCaptureResultMetadataQueue_cb _hidl_cb) {
375 Mutex::Autolock _il(mInterfaceLock);
376 _hidl_cb(*mResultMetadataQueue->getDesc());
377 return Void();
378 }
379
processCaptureRequest(const hidl_vec<CaptureRequest> & requests,const hidl_vec<BufferCache> & cachesToRemove,ICameraDeviceSession::processCaptureRequest_cb _hidl_cb)380 Return<void> ExternalCameraDeviceSession::processCaptureRequest(
381 const hidl_vec<CaptureRequest>& requests,
382 const hidl_vec<BufferCache>& cachesToRemove,
383 ICameraDeviceSession::processCaptureRequest_cb _hidl_cb) {
384 Mutex::Autolock _il(mInterfaceLock);
385 updateBufferCaches(cachesToRemove);
386
387 uint32_t numRequestProcessed = 0;
388 Status s = Status::OK;
389 for (size_t i = 0; i < requests.size(); i++, numRequestProcessed++) {
390 s = processOneCaptureRequest(requests[i]);
391 if (s != Status::OK) {
392 break;
393 }
394 }
395
396 _hidl_cb(s, numRequestProcessed);
397 return Void();
398 }
399
processCaptureRequest_3_4(const hidl_vec<V3_4::CaptureRequest> & requests,const hidl_vec<V3_2::BufferCache> & cachesToRemove,ICameraDeviceSession::processCaptureRequest_3_4_cb _hidl_cb)400 Return<void> ExternalCameraDeviceSession::processCaptureRequest_3_4(
401 const hidl_vec<V3_4::CaptureRequest>& requests,
402 const hidl_vec<V3_2::BufferCache>& cachesToRemove,
403 ICameraDeviceSession::processCaptureRequest_3_4_cb _hidl_cb) {
404 Mutex::Autolock _il(mInterfaceLock);
405 updateBufferCaches(cachesToRemove);
406
407 uint32_t numRequestProcessed = 0;
408 Status s = Status::OK;
409 for (size_t i = 0; i < requests.size(); i++, numRequestProcessed++) {
410 s = processOneCaptureRequest(requests[i].v3_2);
411 if (s != Status::OK) {
412 break;
413 }
414 }
415
416 _hidl_cb(s, numRequestProcessed);
417 return Void();
418 }
419
flush()420 Return<Status> ExternalCameraDeviceSession::flush() {
421 ATRACE_CALL();
422 Mutex::Autolock _il(mInterfaceLock);
423 Status status = initStatus();
424 if (status != Status::OK) {
425 return status;
426 }
427 mOutputThread->flush();
428 return Status::OK;
429 }
430
close()431 Return<void> ExternalCameraDeviceSession::close() {
432 Mutex::Autolock _il(mInterfaceLock);
433 bool closed = isClosed();
434 if (!closed) {
435 mOutputThread->flush();
436 mOutputThread->requestExit();
437 mOutputThread->join();
438
439 Mutex::Autolock _l(mLock);
440 // free all buffers
441 for(auto pair : mStreamMap) {
442 cleanupBuffersLocked(/*Stream ID*/pair.first);
443 }
444 v4l2StreamOffLocked();
445 ALOGV("%s: closing V4L2 camera FD %d", __FUNCTION__, mV4l2Fd.get());
446 mV4l2Fd.reset();
447 mClosed = true;
448 }
449 return Void();
450 }
451
importRequest(const CaptureRequest & request,hidl_vec<buffer_handle_t * > & allBufPtrs,hidl_vec<int> & allFences)452 Status ExternalCameraDeviceSession::importRequest(
453 const CaptureRequest& request,
454 hidl_vec<buffer_handle_t*>& allBufPtrs,
455 hidl_vec<int>& allFences) {
456 size_t numOutputBufs = request.outputBuffers.size();
457 size_t numBufs = numOutputBufs;
458 // Validate all I/O buffers
459 hidl_vec<buffer_handle_t> allBufs;
460 hidl_vec<uint64_t> allBufIds;
461 allBufs.resize(numBufs);
462 allBufIds.resize(numBufs);
463 allBufPtrs.resize(numBufs);
464 allFences.resize(numBufs);
465 std::vector<int32_t> streamIds(numBufs);
466
467 for (size_t i = 0; i < numOutputBufs; i++) {
468 allBufs[i] = request.outputBuffers[i].buffer.getNativeHandle();
469 allBufIds[i] = request.outputBuffers[i].bufferId;
470 allBufPtrs[i] = &allBufs[i];
471 streamIds[i] = request.outputBuffers[i].streamId;
472 }
473
474 for (size_t i = 0; i < numBufs; i++) {
475 buffer_handle_t buf = allBufs[i];
476 uint64_t bufId = allBufIds[i];
477 CirculatingBuffers& cbs = mCirculatingBuffers[streamIds[i]];
478 if (cbs.count(bufId) == 0) {
479 if (buf == nullptr) {
480 ALOGE("%s: bufferId %" PRIu64 " has null buffer handle!", __FUNCTION__, bufId);
481 return Status::ILLEGAL_ARGUMENT;
482 }
483 // Register a newly seen buffer
484 buffer_handle_t importedBuf = buf;
485 sHandleImporter.importBuffer(importedBuf);
486 if (importedBuf == nullptr) {
487 ALOGE("%s: output buffer %zu is invalid!", __FUNCTION__, i);
488 return Status::INTERNAL_ERROR;
489 } else {
490 cbs[bufId] = importedBuf;
491 }
492 }
493 allBufPtrs[i] = &cbs[bufId];
494 }
495
496 // All buffers are imported. Now validate output buffer acquire fences
497 for (size_t i = 0; i < numOutputBufs; i++) {
498 if (!sHandleImporter.importFence(
499 request.outputBuffers[i].acquireFence, allFences[i])) {
500 ALOGE("%s: output buffer %zu acquire fence is invalid", __FUNCTION__, i);
501 cleanupInflightFences(allFences, i);
502 return Status::INTERNAL_ERROR;
503 }
504 }
505 return Status::OK;
506 }
507
cleanupInflightFences(hidl_vec<int> & allFences,size_t numFences)508 void ExternalCameraDeviceSession::cleanupInflightFences(
509 hidl_vec<int>& allFences, size_t numFences) {
510 for (size_t j = 0; j < numFences; j++) {
511 sHandleImporter.closeFence(allFences[j]);
512 }
513 }
514
waitForV4L2BufferReturnLocked(std::unique_lock<std::mutex> & lk)515 int ExternalCameraDeviceSession::waitForV4L2BufferReturnLocked(std::unique_lock<std::mutex>& lk) {
516 ATRACE_CALL();
517 std::chrono::seconds timeout = std::chrono::seconds(kBufferWaitTimeoutSec);
518 mLock.unlock();
519 auto st = mV4L2BufferReturned.wait_for(lk, timeout);
520 // Here we introduce a order where mV4l2BufferLock is acquired before mLock, while
521 // the normal lock acquisition order is reversed. This is fine because in most of
522 // cases we are protected by mInterfaceLock. The only thread that can cause deadlock
523 // is the OutputThread, where we do need to make sure we don't acquire mLock then
524 // mV4l2BufferLock
525 mLock.lock();
526 if (st == std::cv_status::timeout) {
527 ALOGE("%s: wait for V4L2 buffer return timeout!", __FUNCTION__);
528 return -1;
529 }
530 return 0;
531 }
532
processOneCaptureRequest(const CaptureRequest & request)533 Status ExternalCameraDeviceSession::processOneCaptureRequest(const CaptureRequest& request) {
534 ATRACE_CALL();
535 Status status = initStatus();
536 if (status != Status::OK) {
537 return status;
538 }
539
540 if (request.inputBuffer.streamId != -1) {
541 ALOGE("%s: external camera does not support reprocessing!", __FUNCTION__);
542 return Status::ILLEGAL_ARGUMENT;
543 }
544
545 Mutex::Autolock _l(mLock);
546 if (!mV4l2Streaming) {
547 ALOGE("%s: cannot process request in streamOff state!", __FUNCTION__);
548 return Status::INTERNAL_ERROR;
549 }
550
551 const camera_metadata_t *rawSettings = nullptr;
552 bool converted = true;
553 CameraMetadata settingsFmq; // settings from FMQ
554 if (request.fmqSettingsSize > 0) {
555 // non-blocking read; client must write metadata before calling
556 // processOneCaptureRequest
557 settingsFmq.resize(request.fmqSettingsSize);
558 bool read = mRequestMetadataQueue->read(settingsFmq.data(), request.fmqSettingsSize);
559 if (read) {
560 converted = V3_2::implementation::convertFromHidl(settingsFmq, &rawSettings);
561 } else {
562 ALOGE("%s: capture request settings metadata couldn't be read from fmq!", __FUNCTION__);
563 converted = false;
564 }
565 } else {
566 converted = V3_2::implementation::convertFromHidl(request.settings, &rawSettings);
567 }
568
569 if (converted && rawSettings != nullptr) {
570 mLatestReqSetting = rawSettings;
571 }
572
573 if (!converted) {
574 ALOGE("%s: capture request settings metadata is corrupt!", __FUNCTION__);
575 return Status::ILLEGAL_ARGUMENT;
576 }
577
578 if (mFirstRequest && rawSettings == nullptr) {
579 ALOGE("%s: capture request settings must not be null for first request!",
580 __FUNCTION__);
581 return Status::ILLEGAL_ARGUMENT;
582 }
583
584 hidl_vec<buffer_handle_t*> allBufPtrs;
585 hidl_vec<int> allFences;
586 size_t numOutputBufs = request.outputBuffers.size();
587
588 if (numOutputBufs == 0) {
589 ALOGE("%s: capture request must have at least one output buffer!", __FUNCTION__);
590 return Status::ILLEGAL_ARGUMENT;
591 }
592
593 camera_metadata_entry fpsRange = mLatestReqSetting.find(ANDROID_CONTROL_AE_TARGET_FPS_RANGE);
594 if (fpsRange.count == 2) {
595 double requestFpsMax = fpsRange.data.i32[1];
596 double closestFps = 0.0;
597 double fpsError = 1000.0;
598 bool fpsSupported = false;
599 for (const auto& fr : mV4l2StreamingFmt.frameRates) {
600 double f = fr.getDouble();
601 if (std::fabs(requestFpsMax - f) < 1.0) {
602 fpsSupported = true;
603 break;
604 }
605 if (std::fabs(requestFpsMax - f) < fpsError) {
606 fpsError = std::fabs(requestFpsMax - f);
607 closestFps = f;
608 }
609 }
610 if (!fpsSupported) {
611 /* This can happen in a few scenarios:
612 * 1. The application is sending a FPS range not supported by the configured outputs.
613 * 2. The application is sending a valid FPS range for all cofigured outputs, but
614 * the selected V4L2 size can only run at slower speed. This should be very rare
615 * though: for this to happen a sensor needs to support at least 3 different aspect
616 * ratio outputs, and when (at least) two outputs are both not the main aspect ratio
617 * of the webcam, a third size that's larger might be picked and runs into this
618 * issue.
619 */
620 ALOGW("%s: cannot reach fps %d! Will do %f instead",
621 __FUNCTION__, fpsRange.data.i32[1], closestFps);
622 requestFpsMax = closestFps;
623 }
624
625 if (requestFpsMax != mV4l2StreamingFps) {
626 {
627 std::unique_lock<std::mutex> lk(mV4l2BufferLock);
628 while (mNumDequeuedV4l2Buffers != 0) {
629 // Wait until pipeline is idle before reconfigure stream
630 int waitRet = waitForV4L2BufferReturnLocked(lk);
631 if (waitRet != 0) {
632 ALOGE("%s: wait for pipeline idle failed!", __FUNCTION__);
633 return Status::INTERNAL_ERROR;
634 }
635 }
636 }
637 configureV4l2StreamLocked(mV4l2StreamingFmt, requestFpsMax);
638 }
639 }
640
641 status = importRequest(request, allBufPtrs, allFences);
642 if (status != Status::OK) {
643 return status;
644 }
645
646 nsecs_t shutterTs = 0;
647 sp<V4L2Frame> frameIn = dequeueV4l2FrameLocked(&shutterTs);
648 if ( frameIn == nullptr) {
649 ALOGE("%s: V4L2 deque frame failed!", __FUNCTION__);
650 return Status::INTERNAL_ERROR;
651 }
652
653 std::shared_ptr<HalRequest> halReq = std::make_shared<HalRequest>();
654 halReq->frameNumber = request.frameNumber;
655 halReq->setting = mLatestReqSetting;
656 halReq->frameIn = frameIn;
657 halReq->shutterTs = shutterTs;
658 halReq->buffers.resize(numOutputBufs);
659 for (size_t i = 0; i < numOutputBufs; i++) {
660 HalStreamBuffer& halBuf = halReq->buffers[i];
661 int streamId = halBuf.streamId = request.outputBuffers[i].streamId;
662 halBuf.bufferId = request.outputBuffers[i].bufferId;
663 const Stream& stream = mStreamMap[streamId];
664 halBuf.width = stream.width;
665 halBuf.height = stream.height;
666 halBuf.format = stream.format;
667 halBuf.usage = stream.usage;
668 halBuf.bufPtr = allBufPtrs[i];
669 halBuf.acquireFence = allFences[i];
670 halBuf.fenceTimeout = false;
671 }
672 {
673 std::lock_guard<std::mutex> lk(mInflightFramesLock);
674 mInflightFrames.insert(halReq->frameNumber);
675 }
676 // Send request to OutputThread for the rest of processing
677 mOutputThread->submitRequest(halReq);
678 mFirstRequest = false;
679 return Status::OK;
680 }
681
notifyShutter(uint32_t frameNumber,nsecs_t shutterTs)682 void ExternalCameraDeviceSession::notifyShutter(uint32_t frameNumber, nsecs_t shutterTs) {
683 NotifyMsg msg;
684 msg.type = MsgType::SHUTTER;
685 msg.msg.shutter.frameNumber = frameNumber;
686 msg.msg.shutter.timestamp = shutterTs;
687 mCallback->notify({msg});
688 }
689
notifyError(uint32_t frameNumber,int32_t streamId,ErrorCode ec)690 void ExternalCameraDeviceSession::notifyError(
691 uint32_t frameNumber, int32_t streamId, ErrorCode ec) {
692 NotifyMsg msg;
693 msg.type = MsgType::ERROR;
694 msg.msg.error.frameNumber = frameNumber;
695 msg.msg.error.errorStreamId = streamId;
696 msg.msg.error.errorCode = ec;
697 mCallback->notify({msg});
698 }
699
700 //TODO: refactor with processCaptureResult
processCaptureRequestError(const std::shared_ptr<HalRequest> & req)701 Status ExternalCameraDeviceSession::processCaptureRequestError(
702 const std::shared_ptr<HalRequest>& req) {
703 ATRACE_CALL();
704 // Return V4L2 buffer to V4L2 buffer queue
705 enqueueV4l2Frame(req->frameIn);
706
707 // NotifyShutter
708 notifyShutter(req->frameNumber, req->shutterTs);
709
710 notifyError(/*frameNum*/req->frameNumber, /*stream*/-1, ErrorCode::ERROR_REQUEST);
711
712 // Fill output buffers
713 hidl_vec<CaptureResult> results;
714 results.resize(1);
715 CaptureResult& result = results[0];
716 result.frameNumber = req->frameNumber;
717 result.partialResult = 1;
718 result.inputBuffer.streamId = -1;
719 result.outputBuffers.resize(req->buffers.size());
720 for (size_t i = 0; i < req->buffers.size(); i++) {
721 result.outputBuffers[i].streamId = req->buffers[i].streamId;
722 result.outputBuffers[i].bufferId = req->buffers[i].bufferId;
723 result.outputBuffers[i].status = BufferStatus::ERROR;
724 if (req->buffers[i].acquireFence >= 0) {
725 native_handle_t* handle = native_handle_create(/*numFds*/1, /*numInts*/0);
726 handle->data[0] = req->buffers[i].acquireFence;
727 result.outputBuffers[i].releaseFence.setTo(handle, /*shouldOwn*/false);
728 }
729 }
730
731 // update inflight records
732 {
733 std::lock_guard<std::mutex> lk(mInflightFramesLock);
734 mInflightFrames.erase(req->frameNumber);
735 }
736
737 // Callback into framework
738 invokeProcessCaptureResultCallback(results, /* tryWriteFmq */true);
739 freeReleaseFences(results);
740 return Status::OK;
741 }
742
processCaptureResult(std::shared_ptr<HalRequest> & req)743 Status ExternalCameraDeviceSession::processCaptureResult(std::shared_ptr<HalRequest>& req) {
744 ATRACE_CALL();
745 // Return V4L2 buffer to V4L2 buffer queue
746 enqueueV4l2Frame(req->frameIn);
747
748 // NotifyShutter
749 notifyShutter(req->frameNumber, req->shutterTs);
750
751 // Fill output buffers
752 hidl_vec<CaptureResult> results;
753 results.resize(1);
754 CaptureResult& result = results[0];
755 result.frameNumber = req->frameNumber;
756 result.partialResult = 1;
757 result.inputBuffer.streamId = -1;
758 result.outputBuffers.resize(req->buffers.size());
759 for (size_t i = 0; i < req->buffers.size(); i++) {
760 result.outputBuffers[i].streamId = req->buffers[i].streamId;
761 result.outputBuffers[i].bufferId = req->buffers[i].bufferId;
762 if (req->buffers[i].fenceTimeout) {
763 result.outputBuffers[i].status = BufferStatus::ERROR;
764 native_handle_t* handle = native_handle_create(/*numFds*/1, /*numInts*/0);
765 handle->data[0] = req->buffers[i].acquireFence;
766 result.outputBuffers[i].releaseFence.setTo(handle, /*shouldOwn*/false);
767 notifyError(req->frameNumber, req->buffers[i].streamId, ErrorCode::ERROR_BUFFER);
768 } else {
769 result.outputBuffers[i].status = BufferStatus::OK;
770 // TODO: refactor
771 if (req->buffers[i].acquireFence > 0) {
772 native_handle_t* handle = native_handle_create(/*numFds*/1, /*numInts*/0);
773 handle->data[0] = req->buffers[i].acquireFence;
774 result.outputBuffers[i].releaseFence.setTo(handle, /*shouldOwn*/false);
775 }
776 }
777 }
778
779 // Fill capture result metadata
780 fillCaptureResult(req->setting, req->shutterTs);
781 const camera_metadata_t *rawResult = req->setting.getAndLock();
782 V3_2::implementation::convertToHidl(rawResult, &result.result);
783 req->setting.unlock(rawResult);
784
785 // update inflight records
786 {
787 std::lock_guard<std::mutex> lk(mInflightFramesLock);
788 mInflightFrames.erase(req->frameNumber);
789 }
790
791 // Callback into framework
792 invokeProcessCaptureResultCallback(results, /* tryWriteFmq */true);
793 freeReleaseFences(results);
794 return Status::OK;
795 }
796
invokeProcessCaptureResultCallback(hidl_vec<CaptureResult> & results,bool tryWriteFmq)797 void ExternalCameraDeviceSession::invokeProcessCaptureResultCallback(
798 hidl_vec<CaptureResult> &results, bool tryWriteFmq) {
799 if (mProcessCaptureResultLock.tryLock() != OK) {
800 const nsecs_t NS_TO_SECOND = 1000000000;
801 ALOGV("%s: previous call is not finished! waiting 1s...", __FUNCTION__);
802 if (mProcessCaptureResultLock.timedLock(/* 1s */NS_TO_SECOND) != OK) {
803 ALOGE("%s: cannot acquire lock in 1s, cannot proceed",
804 __FUNCTION__);
805 return;
806 }
807 }
808 if (tryWriteFmq && mResultMetadataQueue->availableToWrite() > 0) {
809 for (CaptureResult &result : results) {
810 if (result.result.size() > 0) {
811 if (mResultMetadataQueue->write(result.result.data(), result.result.size())) {
812 result.fmqResultSize = result.result.size();
813 result.result.resize(0);
814 } else {
815 ALOGW("%s: couldn't utilize fmq, fall back to hwbinder", __FUNCTION__);
816 result.fmqResultSize = 0;
817 }
818 } else {
819 result.fmqResultSize = 0;
820 }
821 }
822 }
823 auto status = mCallback->processCaptureResult(results);
824 if (!status.isOk()) {
825 ALOGE("%s: processCaptureResult ERROR : %s", __FUNCTION__,
826 status.description().c_str());
827 }
828
829 mProcessCaptureResultLock.unlock();
830 }
831
freeReleaseFences(hidl_vec<CaptureResult> & results)832 void ExternalCameraDeviceSession::freeReleaseFences(hidl_vec<CaptureResult>& results) {
833 for (auto& result : results) {
834 if (result.inputBuffer.releaseFence.getNativeHandle() != nullptr) {
835 native_handle_t* handle = const_cast<native_handle_t*>(
836 result.inputBuffer.releaseFence.getNativeHandle());
837 native_handle_close(handle);
838 native_handle_delete(handle);
839 }
840 for (auto& buf : result.outputBuffers) {
841 if (buf.releaseFence.getNativeHandle() != nullptr) {
842 native_handle_t* handle = const_cast<native_handle_t*>(
843 buf.releaseFence.getNativeHandle());
844 native_handle_close(handle);
845 native_handle_delete(handle);
846 }
847 }
848 }
849 return;
850 }
851
OutputThread(wp<ExternalCameraDeviceSession> parent,CroppingType ct)852 ExternalCameraDeviceSession::OutputThread::OutputThread(
853 wp<ExternalCameraDeviceSession> parent,
854 CroppingType ct) : mParent(parent), mCroppingType(ct) {}
855
~OutputThread()856 ExternalCameraDeviceSession::OutputThread::~OutputThread() {}
857
setExifMakeModel(const std::string & make,const std::string & model)858 void ExternalCameraDeviceSession::OutputThread::setExifMakeModel(
859 const std::string& make, const std::string& model) {
860 mExifMake = make;
861 mExifModel = model;
862 }
863
getFourCcFromLayout(const YCbCrLayout & layout)864 uint32_t ExternalCameraDeviceSession::OutputThread::getFourCcFromLayout(
865 const YCbCrLayout& layout) {
866 intptr_t cb = reinterpret_cast<intptr_t>(layout.cb);
867 intptr_t cr = reinterpret_cast<intptr_t>(layout.cr);
868 if (std::abs(cb - cr) == 1 && layout.chromaStep == 2) {
869 // Interleaved format
870 if (layout.cb > layout.cr) {
871 return V4L2_PIX_FMT_NV21;
872 } else {
873 return V4L2_PIX_FMT_NV12;
874 }
875 } else if (layout.chromaStep == 1) {
876 // Planar format
877 if (layout.cb > layout.cr) {
878 return V4L2_PIX_FMT_YVU420; // YV12
879 } else {
880 return V4L2_PIX_FMT_YUV420; // YU12
881 }
882 } else {
883 return FLEX_YUV_GENERIC;
884 }
885 }
886
getCropRect(CroppingType ct,const Size & inSize,const Size & outSize,IMapper::Rect * out)887 int ExternalCameraDeviceSession::OutputThread::getCropRect(
888 CroppingType ct, const Size& inSize, const Size& outSize, IMapper::Rect* out) {
889 if (out == nullptr) {
890 ALOGE("%s: out is null", __FUNCTION__);
891 return -1;
892 }
893
894 uint32_t inW = inSize.width;
895 uint32_t inH = inSize.height;
896 uint32_t outW = outSize.width;
897 uint32_t outH = outSize.height;
898
899 // Handle special case where aspect ratio is close to input but scaled
900 // dimension is slightly larger than input
901 float arIn = ASPECT_RATIO(inSize);
902 float arOut = ASPECT_RATIO(outSize);
903 if (isAspectRatioClose(arIn, arOut)) {
904 out->left = 0;
905 out->top = 0;
906 out->width = inW;
907 out->height = inH;
908 return 0;
909 }
910
911 if (ct == VERTICAL) {
912 uint64_t scaledOutH = static_cast<uint64_t>(outH) * inW / outW;
913 if (scaledOutH > inH) {
914 ALOGE("%s: Output size %dx%d cannot be vertically cropped from input size %dx%d",
915 __FUNCTION__, outW, outH, inW, inH);
916 return -1;
917 }
918 scaledOutH = scaledOutH & ~0x1; // make it multiple of 2
919
920 out->left = 0;
921 out->top = ((inH - scaledOutH) / 2) & ~0x1;
922 out->width = inW;
923 out->height = static_cast<int32_t>(scaledOutH);
924 ALOGV("%s: crop %dx%d to %dx%d: top %d, scaledH %d",
925 __FUNCTION__, inW, inH, outW, outH, out->top, static_cast<int32_t>(scaledOutH));
926 } else {
927 uint64_t scaledOutW = static_cast<uint64_t>(outW) * inH / outH;
928 if (scaledOutW > inW) {
929 ALOGE("%s: Output size %dx%d cannot be horizontally cropped from input size %dx%d",
930 __FUNCTION__, outW, outH, inW, inH);
931 return -1;
932 }
933 scaledOutW = scaledOutW & ~0x1; // make it multiple of 2
934
935 out->left = ((inW - scaledOutW) / 2) & ~0x1;
936 out->top = 0;
937 out->width = static_cast<int32_t>(scaledOutW);
938 out->height = inH;
939 ALOGV("%s: crop %dx%d to %dx%d: top %d, scaledW %d",
940 __FUNCTION__, inW, inH, outW, outH, out->top, static_cast<int32_t>(scaledOutW));
941 }
942
943 return 0;
944 }
945
cropAndScaleLocked(sp<AllocatedFrame> & in,const Size & outSz,YCbCrLayout * out)946 int ExternalCameraDeviceSession::OutputThread::cropAndScaleLocked(
947 sp<AllocatedFrame>& in, const Size& outSz, YCbCrLayout* out) {
948 Size inSz = {in->mWidth, in->mHeight};
949
950 int ret;
951 if (inSz == outSz) {
952 ret = in->getLayout(out);
953 if (ret != 0) {
954 ALOGE("%s: failed to get input image layout", __FUNCTION__);
955 return ret;
956 }
957 return ret;
958 }
959
960 // Cropping to output aspect ratio
961 IMapper::Rect inputCrop;
962 ret = getCropRect(mCroppingType, inSz, outSz, &inputCrop);
963 if (ret != 0) {
964 ALOGE("%s: failed to compute crop rect for output size %dx%d",
965 __FUNCTION__, outSz.width, outSz.height);
966 return ret;
967 }
968
969 YCbCrLayout croppedLayout;
970 ret = in->getCroppedLayout(inputCrop, &croppedLayout);
971 if (ret != 0) {
972 ALOGE("%s: failed to crop input image %dx%d to output size %dx%d",
973 __FUNCTION__, inSz.width, inSz.height, outSz.width, outSz.height);
974 return ret;
975 }
976
977 if ((mCroppingType == VERTICAL && inSz.width == outSz.width) ||
978 (mCroppingType == HORIZONTAL && inSz.height == outSz.height)) {
979 // No scale is needed
980 *out = croppedLayout;
981 return 0;
982 }
983
984 auto it = mScaledYu12Frames.find(outSz);
985 sp<AllocatedFrame> scaledYu12Buf;
986 if (it != mScaledYu12Frames.end()) {
987 scaledYu12Buf = it->second;
988 } else {
989 it = mIntermediateBuffers.find(outSz);
990 if (it == mIntermediateBuffers.end()) {
991 ALOGE("%s: failed to find intermediate buffer size %dx%d",
992 __FUNCTION__, outSz.width, outSz.height);
993 return -1;
994 }
995 scaledYu12Buf = it->second;
996 }
997 // Scale
998 YCbCrLayout outLayout;
999 ret = scaledYu12Buf->getLayout(&outLayout);
1000 if (ret != 0) {
1001 ALOGE("%s: failed to get output buffer layout", __FUNCTION__);
1002 return ret;
1003 }
1004
1005 ret = libyuv::I420Scale(
1006 static_cast<uint8_t*>(croppedLayout.y),
1007 croppedLayout.yStride,
1008 static_cast<uint8_t*>(croppedLayout.cb),
1009 croppedLayout.cStride,
1010 static_cast<uint8_t*>(croppedLayout.cr),
1011 croppedLayout.cStride,
1012 inputCrop.width,
1013 inputCrop.height,
1014 static_cast<uint8_t*>(outLayout.y),
1015 outLayout.yStride,
1016 static_cast<uint8_t*>(outLayout.cb),
1017 outLayout.cStride,
1018 static_cast<uint8_t*>(outLayout.cr),
1019 outLayout.cStride,
1020 outSz.width,
1021 outSz.height,
1022 // TODO: b/72261744 see if we can use better filter without losing too much perf
1023 libyuv::FilterMode::kFilterNone);
1024
1025 if (ret != 0) {
1026 ALOGE("%s: failed to scale buffer from %dx%d to %dx%d. Ret %d",
1027 __FUNCTION__, inputCrop.width, inputCrop.height,
1028 outSz.width, outSz.height, ret);
1029 return ret;
1030 }
1031
1032 *out = outLayout;
1033 mScaledYu12Frames.insert({outSz, scaledYu12Buf});
1034 return 0;
1035 }
1036
1037
cropAndScaleThumbLocked(sp<AllocatedFrame> & in,const Size & outSz,YCbCrLayout * out)1038 int ExternalCameraDeviceSession::OutputThread::cropAndScaleThumbLocked(
1039 sp<AllocatedFrame>& in, const Size &outSz, YCbCrLayout* out) {
1040 Size inSz {in->mWidth, in->mHeight};
1041
1042 if ((outSz.width * outSz.height) >
1043 (mYu12ThumbFrame->mWidth * mYu12ThumbFrame->mHeight)) {
1044 ALOGE("%s: Requested thumbnail size too big (%d,%d) > (%d,%d)",
1045 __FUNCTION__, outSz.width, outSz.height,
1046 mYu12ThumbFrame->mWidth, mYu12ThumbFrame->mHeight);
1047 return -1;
1048 }
1049
1050 int ret;
1051
1052 /* This will crop-and-zoom the input YUV frame to the thumbnail size
1053 * Based on the following logic:
1054 * 1) Square pixels come in, square pixels come out, therefore single
1055 * scale factor is computed to either make input bigger or smaller
1056 * depending on if we are upscaling or downscaling
1057 * 2) That single scale factor would either make height too tall or width
1058 * too wide so we need to crop the input either horizontally or vertically
1059 * but not both
1060 */
1061
1062 /* Convert the input and output dimensions into floats for ease of math */
1063 float fWin = static_cast<float>(inSz.width);
1064 float fHin = static_cast<float>(inSz.height);
1065 float fWout = static_cast<float>(outSz.width);
1066 float fHout = static_cast<float>(outSz.height);
1067
1068 /* Compute the one scale factor from (1) above, it will be the smaller of
1069 * the two possibilities. */
1070 float scaleFactor = std::min( fHin / fHout, fWin / fWout );
1071
1072 /* Since we are crop-and-zooming (as opposed to letter/pillar boxing) we can
1073 * simply multiply the output by our scaleFactor to get the cropped input
1074 * size. Note that at least one of {fWcrop, fHcrop} is going to wind up
1075 * being {fWin, fHin} respectively because fHout or fWout cancels out the
1076 * scaleFactor calculation above.
1077 *
1078 * Specifically:
1079 * if ( fHin / fHout ) < ( fWin / fWout ) we crop the sides off
1080 * input, in which case
1081 * scaleFactor = fHin / fHout
1082 * fWcrop = fHin / fHout * fWout
1083 * fHcrop = fHin
1084 *
1085 * Note that fWcrop <= fWin ( because ( fHin / fHout ) * fWout < fWin, which
1086 * is just the inequality above with both sides multiplied by fWout
1087 *
1088 * on the other hand if ( fWin / fWout ) < ( fHin / fHout) we crop the top
1089 * and the bottom off of input, and
1090 * scaleFactor = fWin / fWout
1091 * fWcrop = fWin
1092 * fHCrop = fWin / fWout * fHout
1093 */
1094 float fWcrop = scaleFactor * fWout;
1095 float fHcrop = scaleFactor * fHout;
1096
1097 /* Convert to integer and truncate to an even number */
1098 Size cropSz = { 2*static_cast<uint32_t>(fWcrop/2.0f),
1099 2*static_cast<uint32_t>(fHcrop/2.0f) };
1100
1101 /* Convert to a centered rectange with even top/left */
1102 IMapper::Rect inputCrop {
1103 2*static_cast<int32_t>((inSz.width - cropSz.width)/4),
1104 2*static_cast<int32_t>((inSz.height - cropSz.height)/4),
1105 static_cast<int32_t>(cropSz.width),
1106 static_cast<int32_t>(cropSz.height) };
1107
1108 if ((inputCrop.top < 0) ||
1109 (inputCrop.top >= static_cast<int32_t>(inSz.height)) ||
1110 (inputCrop.left < 0) ||
1111 (inputCrop.left >= static_cast<int32_t>(inSz.width)) ||
1112 (inputCrop.width <= 0) ||
1113 (inputCrop.width + inputCrop.left > static_cast<int32_t>(inSz.width)) ||
1114 (inputCrop.height <= 0) ||
1115 (inputCrop.height + inputCrop.top > static_cast<int32_t>(inSz.height)))
1116 {
1117 ALOGE("%s: came up with really wrong crop rectangle",__FUNCTION__);
1118 ALOGE("%s: input layout %dx%d to for output size %dx%d",
1119 __FUNCTION__, inSz.width, inSz.height, outSz.width, outSz.height);
1120 ALOGE("%s: computed input crop +%d,+%d %dx%d",
1121 __FUNCTION__, inputCrop.left, inputCrop.top,
1122 inputCrop.width, inputCrop.height);
1123 return -1;
1124 }
1125
1126 YCbCrLayout inputLayout;
1127 ret = in->getCroppedLayout(inputCrop, &inputLayout);
1128 if (ret != 0) {
1129 ALOGE("%s: failed to crop input layout %dx%d to for output size %dx%d",
1130 __FUNCTION__, inSz.width, inSz.height, outSz.width, outSz.height);
1131 ALOGE("%s: computed input crop +%d,+%d %dx%d",
1132 __FUNCTION__, inputCrop.left, inputCrop.top,
1133 inputCrop.width, inputCrop.height);
1134 return ret;
1135 }
1136 ALOGV("%s: crop input layout %dx%d to for output size %dx%d",
1137 __FUNCTION__, inSz.width, inSz.height, outSz.width, outSz.height);
1138 ALOGV("%s: computed input crop +%d,+%d %dx%d",
1139 __FUNCTION__, inputCrop.left, inputCrop.top,
1140 inputCrop.width, inputCrop.height);
1141
1142
1143 // Scale
1144 YCbCrLayout outFullLayout;
1145
1146 ret = mYu12ThumbFrame->getLayout(&outFullLayout);
1147 if (ret != 0) {
1148 ALOGE("%s: failed to get output buffer layout", __FUNCTION__);
1149 return ret;
1150 }
1151
1152
1153 ret = libyuv::I420Scale(
1154 static_cast<uint8_t*>(inputLayout.y),
1155 inputLayout.yStride,
1156 static_cast<uint8_t*>(inputLayout.cb),
1157 inputLayout.cStride,
1158 static_cast<uint8_t*>(inputLayout.cr),
1159 inputLayout.cStride,
1160 inputCrop.width,
1161 inputCrop.height,
1162 static_cast<uint8_t*>(outFullLayout.y),
1163 outFullLayout.yStride,
1164 static_cast<uint8_t*>(outFullLayout.cb),
1165 outFullLayout.cStride,
1166 static_cast<uint8_t*>(outFullLayout.cr),
1167 outFullLayout.cStride,
1168 outSz.width,
1169 outSz.height,
1170 libyuv::FilterMode::kFilterNone);
1171
1172 if (ret != 0) {
1173 ALOGE("%s: failed to scale buffer from %dx%d to %dx%d. Ret %d",
1174 __FUNCTION__, inputCrop.width, inputCrop.height,
1175 outSz.width, outSz.height, ret);
1176 return ret;
1177 }
1178
1179 *out = outFullLayout;
1180 return 0;
1181 }
1182
formatConvertLocked(const YCbCrLayout & in,const YCbCrLayout & out,Size sz,uint32_t format)1183 int ExternalCameraDeviceSession::OutputThread::formatConvertLocked(
1184 const YCbCrLayout& in, const YCbCrLayout& out, Size sz, uint32_t format) {
1185 int ret = 0;
1186 switch (format) {
1187 case V4L2_PIX_FMT_NV21:
1188 ret = libyuv::I420ToNV21(
1189 static_cast<uint8_t*>(in.y),
1190 in.yStride,
1191 static_cast<uint8_t*>(in.cb),
1192 in.cStride,
1193 static_cast<uint8_t*>(in.cr),
1194 in.cStride,
1195 static_cast<uint8_t*>(out.y),
1196 out.yStride,
1197 static_cast<uint8_t*>(out.cr),
1198 out.cStride,
1199 sz.width,
1200 sz.height);
1201 if (ret != 0) {
1202 ALOGE("%s: convert to NV21 buffer failed! ret %d",
1203 __FUNCTION__, ret);
1204 return ret;
1205 }
1206 break;
1207 case V4L2_PIX_FMT_NV12:
1208 ret = libyuv::I420ToNV12(
1209 static_cast<uint8_t*>(in.y),
1210 in.yStride,
1211 static_cast<uint8_t*>(in.cb),
1212 in.cStride,
1213 static_cast<uint8_t*>(in.cr),
1214 in.cStride,
1215 static_cast<uint8_t*>(out.y),
1216 out.yStride,
1217 static_cast<uint8_t*>(out.cb),
1218 out.cStride,
1219 sz.width,
1220 sz.height);
1221 if (ret != 0) {
1222 ALOGE("%s: convert to NV12 buffer failed! ret %d",
1223 __FUNCTION__, ret);
1224 return ret;
1225 }
1226 break;
1227 case V4L2_PIX_FMT_YVU420: // YV12
1228 case V4L2_PIX_FMT_YUV420: // YU12
1229 // TODO: maybe we can speed up here by somehow save this copy?
1230 ret = libyuv::I420Copy(
1231 static_cast<uint8_t*>(in.y),
1232 in.yStride,
1233 static_cast<uint8_t*>(in.cb),
1234 in.cStride,
1235 static_cast<uint8_t*>(in.cr),
1236 in.cStride,
1237 static_cast<uint8_t*>(out.y),
1238 out.yStride,
1239 static_cast<uint8_t*>(out.cb),
1240 out.cStride,
1241 static_cast<uint8_t*>(out.cr),
1242 out.cStride,
1243 sz.width,
1244 sz.height);
1245 if (ret != 0) {
1246 ALOGE("%s: copy to YV12 or YU12 buffer failed! ret %d",
1247 __FUNCTION__, ret);
1248 return ret;
1249 }
1250 break;
1251 case FLEX_YUV_GENERIC:
1252 // TODO: b/72261744 write to arbitrary flexible YUV layout. Slow.
1253 ALOGE("%s: unsupported flexible yuv layout"
1254 " y %p cb %p cr %p y_str %d c_str %d c_step %d",
1255 __FUNCTION__, out.y, out.cb, out.cr,
1256 out.yStride, out.cStride, out.chromaStep);
1257 return -1;
1258 default:
1259 ALOGE("%s: unknown YUV format 0x%x!", __FUNCTION__, format);
1260 return -1;
1261 }
1262 return 0;
1263 }
1264
encodeJpegYU12(const Size & inSz,const YCbCrLayout & inLayout,int jpegQuality,const void * app1Buffer,size_t app1Size,void * out,const size_t maxOutSize,size_t & actualCodeSize)1265 int ExternalCameraDeviceSession::OutputThread::encodeJpegYU12(
1266 const Size & inSz, const YCbCrLayout& inLayout,
1267 int jpegQuality, const void *app1Buffer, size_t app1Size,
1268 void *out, const size_t maxOutSize, size_t &actualCodeSize)
1269 {
1270 /* libjpeg is a C library so we use C-style "inheritance" by
1271 * putting libjpeg's jpeg_destination_mgr first in our custom
1272 * struct. This allows us to cast jpeg_destination_mgr* to
1273 * CustomJpegDestMgr* when we get it passed to us in a callback */
1274 struct CustomJpegDestMgr {
1275 struct jpeg_destination_mgr mgr;
1276 JOCTET *mBuffer;
1277 size_t mBufferSize;
1278 size_t mEncodedSize;
1279 bool mSuccess;
1280 } dmgr;
1281
1282 jpeg_compress_struct cinfo = {};
1283 jpeg_error_mgr jerr;
1284
1285 /* Initialize error handling with standard callbacks, but
1286 * then override output_message (to print to ALOG) and
1287 * error_exit to set a flag and print a message instead
1288 * of killing the whole process */
1289 cinfo.err = jpeg_std_error(&jerr);
1290
1291 cinfo.err->output_message = [](j_common_ptr cinfo) {
1292 char buffer[JMSG_LENGTH_MAX];
1293
1294 /* Create the message */
1295 (*cinfo->err->format_message)(cinfo, buffer);
1296 ALOGE("libjpeg error: %s", buffer);
1297 };
1298 cinfo.err->error_exit = [](j_common_ptr cinfo) {
1299 (*cinfo->err->output_message)(cinfo);
1300 if(cinfo->client_data) {
1301 auto & dmgr =
1302 *reinterpret_cast<CustomJpegDestMgr*>(cinfo->client_data);
1303 dmgr.mSuccess = false;
1304 }
1305 };
1306 /* Now that we initialized some callbacks, let's create our compressor */
1307 jpeg_create_compress(&cinfo);
1308
1309 /* Initialize our destination manager */
1310 dmgr.mBuffer = static_cast<JOCTET*>(out);
1311 dmgr.mBufferSize = maxOutSize;
1312 dmgr.mEncodedSize = 0;
1313 dmgr.mSuccess = true;
1314 cinfo.client_data = static_cast<void*>(&dmgr);
1315
1316 /* These lambdas become C-style function pointers and as per C++11 spec
1317 * may not capture anything */
1318 dmgr.mgr.init_destination = [](j_compress_ptr cinfo) {
1319 auto & dmgr = reinterpret_cast<CustomJpegDestMgr&>(*cinfo->dest);
1320 dmgr.mgr.next_output_byte = dmgr.mBuffer;
1321 dmgr.mgr.free_in_buffer = dmgr.mBufferSize;
1322 ALOGV("%s:%d jpeg start: %p [%zu]",
1323 __FUNCTION__, __LINE__, dmgr.mBuffer, dmgr.mBufferSize);
1324 };
1325
1326 dmgr.mgr.empty_output_buffer = [](j_compress_ptr cinfo __unused) {
1327 ALOGV("%s:%d Out of buffer", __FUNCTION__, __LINE__);
1328 return 0;
1329 };
1330
1331 dmgr.mgr.term_destination = [](j_compress_ptr cinfo) {
1332 auto & dmgr = reinterpret_cast<CustomJpegDestMgr&>(*cinfo->dest);
1333 dmgr.mEncodedSize = dmgr.mBufferSize - dmgr.mgr.free_in_buffer;
1334 ALOGV("%s:%d Done with jpeg: %zu", __FUNCTION__, __LINE__, dmgr.mEncodedSize);
1335 };
1336 cinfo.dest = reinterpret_cast<struct jpeg_destination_mgr*>(&dmgr);
1337
1338 /* We are going to be using JPEG in raw data mode, so we are passing
1339 * straight subsampled planar YCbCr and it will not touch our pixel
1340 * data or do any scaling or anything */
1341 cinfo.image_width = inSz.width;
1342 cinfo.image_height = inSz.height;
1343 cinfo.input_components = 3;
1344 cinfo.in_color_space = JCS_YCbCr;
1345
1346 /* Initialize defaults and then override what we want */
1347 jpeg_set_defaults(&cinfo);
1348
1349 jpeg_set_quality(&cinfo, jpegQuality, 1);
1350 jpeg_set_colorspace(&cinfo, JCS_YCbCr);
1351 cinfo.raw_data_in = 1;
1352 cinfo.dct_method = JDCT_IFAST;
1353
1354 /* Configure sampling factors. The sampling factor is JPEG subsampling 420
1355 * because the source format is YUV420. Note that libjpeg sampling factors
1356 * are... a little weird. Sampling of Y=2,U=1,V=1 means there is 1 U and
1357 * 1 V value for each 2 Y values */
1358 cinfo.comp_info[0].h_samp_factor = 2;
1359 cinfo.comp_info[0].v_samp_factor = 2;
1360 cinfo.comp_info[1].h_samp_factor = 1;
1361 cinfo.comp_info[1].v_samp_factor = 1;
1362 cinfo.comp_info[2].h_samp_factor = 1;
1363 cinfo.comp_info[2].v_samp_factor = 1;
1364
1365 /* Let's not hardcode YUV420 in 6 places... 5 was enough */
1366 int maxVSampFactor = std::max( {
1367 cinfo.comp_info[0].v_samp_factor,
1368 cinfo.comp_info[1].v_samp_factor,
1369 cinfo.comp_info[2].v_samp_factor
1370 });
1371 int cVSubSampling = cinfo.comp_info[0].v_samp_factor /
1372 cinfo.comp_info[1].v_samp_factor;
1373
1374 /* Start the compressor */
1375 jpeg_start_compress(&cinfo, TRUE);
1376
1377 /* Compute our macroblock height, so we can pad our input to be vertically
1378 * macroblock aligned.
1379 * TODO: Does it need to be horizontally MCU aligned too? */
1380
1381 size_t mcuV = DCTSIZE*maxVSampFactor;
1382 size_t paddedHeight = mcuV * ((inSz.height + mcuV - 1) / mcuV);
1383
1384 /* libjpeg uses arrays of row pointers, which makes it really easy to pad
1385 * data vertically (unfortunately doesn't help horizontally) */
1386 std::vector<JSAMPROW> yLines (paddedHeight);
1387 std::vector<JSAMPROW> cbLines(paddedHeight/cVSubSampling);
1388 std::vector<JSAMPROW> crLines(paddedHeight/cVSubSampling);
1389
1390 uint8_t *py = static_cast<uint8_t*>(inLayout.y);
1391 uint8_t *pcr = static_cast<uint8_t*>(inLayout.cr);
1392 uint8_t *pcb = static_cast<uint8_t*>(inLayout.cb);
1393
1394 for(uint32_t i = 0; i < paddedHeight; i++)
1395 {
1396 /* Once we are in the padding territory we still point to the last line
1397 * effectively replicating it several times ~ CLAMP_TO_EDGE */
1398 int li = std::min(i, inSz.height - 1);
1399 yLines[i] = static_cast<JSAMPROW>(py + li * inLayout.yStride);
1400 if(i < paddedHeight / cVSubSampling)
1401 {
1402 crLines[i] = static_cast<JSAMPROW>(pcr + li * inLayout.cStride);
1403 cbLines[i] = static_cast<JSAMPROW>(pcb + li * inLayout.cStride);
1404 }
1405 }
1406
1407 /* If APP1 data was passed in, use it */
1408 if(app1Buffer && app1Size)
1409 {
1410 jpeg_write_marker(&cinfo, JPEG_APP0 + 1,
1411 static_cast<const JOCTET*>(app1Buffer), app1Size);
1412 }
1413
1414 /* While we still have padded height left to go, keep giving it one
1415 * macroblock at a time. */
1416 while (cinfo.next_scanline < cinfo.image_height) {
1417 const uint32_t batchSize = DCTSIZE * maxVSampFactor;
1418 const uint32_t nl = cinfo.next_scanline;
1419 JSAMPARRAY planes[3]{ &yLines[nl],
1420 &cbLines[nl/cVSubSampling],
1421 &crLines[nl/cVSubSampling] };
1422
1423 uint32_t done = jpeg_write_raw_data(&cinfo, planes, batchSize);
1424
1425 if (done != batchSize) {
1426 ALOGE("%s: compressed %u lines, expected %u (total %u/%u)",
1427 __FUNCTION__, done, batchSize, cinfo.next_scanline,
1428 cinfo.image_height);
1429 return -1;
1430 }
1431 }
1432
1433 /* This will flush everything */
1434 jpeg_finish_compress(&cinfo);
1435
1436 /* Grab the actual code size and set it */
1437 actualCodeSize = dmgr.mEncodedSize;
1438
1439 return 0;
1440 }
1441
1442 /*
1443 * TODO: There needs to be a mechanism to discover allocated buffer size
1444 * in the HAL.
1445 *
1446 * This is very fragile because it is duplicated computation from:
1447 * frameworks/av/services/camera/libcameraservice/device3/Camera3Device.cpp
1448 *
1449 */
1450
1451 /* This assumes mSupportedFormats have all been declared as supporting
1452 * HAL_PIXEL_FORMAT_BLOB to the framework */
getMaxJpegResolution() const1453 Size ExternalCameraDeviceSession::getMaxJpegResolution() const {
1454 Size ret { 0, 0 };
1455 for(auto & fmt : mSupportedFormats) {
1456 if(fmt.width * fmt.height > ret.width * ret.height) {
1457 ret = Size { fmt.width, fmt.height };
1458 }
1459 }
1460 return ret;
1461 }
1462
getMaxThumbResolution() const1463 Size ExternalCameraDeviceSession::getMaxThumbResolution() const {
1464 Size thumbSize { 0, 0 };
1465 camera_metadata_ro_entry entry =
1466 mCameraCharacteristics.find(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES);
1467 for(uint32_t i = 0; i < entry.count; i += 2) {
1468 Size sz { static_cast<uint32_t>(entry.data.i32[i]),
1469 static_cast<uint32_t>(entry.data.i32[i+1]) };
1470 if(sz.width * sz.height > thumbSize.width * thumbSize.height) {
1471 thumbSize = sz;
1472 }
1473 }
1474
1475 if (thumbSize.width * thumbSize.height == 0) {
1476 ALOGW("%s: non-zero thumbnail size not available", __FUNCTION__);
1477 }
1478
1479 return thumbSize;
1480 }
1481
1482
getJpegBufferSize(uint32_t width,uint32_t height) const1483 ssize_t ExternalCameraDeviceSession::getJpegBufferSize(
1484 uint32_t width, uint32_t height) const {
1485 // Constant from camera3.h
1486 const ssize_t kMinJpegBufferSize = 256 * 1024 + sizeof(CameraBlob);
1487 // Get max jpeg size (area-wise).
1488 if (mMaxJpegResolution.width == 0) {
1489 ALOGE("%s: Do not have a single supported JPEG stream",
1490 __FUNCTION__);
1491 return BAD_VALUE;
1492 }
1493
1494 // Get max jpeg buffer size
1495 ssize_t maxJpegBufferSize = 0;
1496 camera_metadata_ro_entry jpegBufMaxSize =
1497 mCameraCharacteristics.find(ANDROID_JPEG_MAX_SIZE);
1498 if (jpegBufMaxSize.count == 0) {
1499 ALOGE("%s: Can't find maximum JPEG size in static metadata!",
1500 __FUNCTION__);
1501 return BAD_VALUE;
1502 }
1503 maxJpegBufferSize = jpegBufMaxSize.data.i32[0];
1504
1505 if (maxJpegBufferSize <= kMinJpegBufferSize) {
1506 ALOGE("%s: ANDROID_JPEG_MAX_SIZE (%zd) <= kMinJpegBufferSize (%zd)",
1507 __FUNCTION__, maxJpegBufferSize, kMinJpegBufferSize);
1508 return BAD_VALUE;
1509 }
1510
1511 // Calculate final jpeg buffer size for the given resolution.
1512 float scaleFactor = ((float) (width * height)) /
1513 (mMaxJpegResolution.width * mMaxJpegResolution.height);
1514 ssize_t jpegBufferSize = scaleFactor * (maxJpegBufferSize - kMinJpegBufferSize) +
1515 kMinJpegBufferSize;
1516 if (jpegBufferSize > maxJpegBufferSize) {
1517 jpegBufferSize = maxJpegBufferSize;
1518 }
1519
1520 return jpegBufferSize;
1521 }
1522
createJpegLocked(HalStreamBuffer & halBuf,const std::shared_ptr<HalRequest> & req)1523 int ExternalCameraDeviceSession::OutputThread::createJpegLocked(
1524 HalStreamBuffer &halBuf,
1525 const std::shared_ptr<HalRequest>& req)
1526 {
1527 ATRACE_CALL();
1528 int ret;
1529 auto lfail = [&](auto... args) {
1530 ALOGE(args...);
1531
1532 return 1;
1533 };
1534 auto parent = mParent.promote();
1535 if (parent == nullptr) {
1536 ALOGE("%s: session has been disconnected!", __FUNCTION__);
1537 return 1;
1538 }
1539
1540 ALOGV("%s: HAL buffer sid: %d bid: %" PRIu64 " w: %u h: %u",
1541 __FUNCTION__, halBuf.streamId, static_cast<uint64_t>(halBuf.bufferId),
1542 halBuf.width, halBuf.height);
1543 ALOGV("%s: HAL buffer fmt: %x usage: %" PRIx64 " ptr: %p",
1544 __FUNCTION__, halBuf.format, static_cast<uint64_t>(halBuf.usage),
1545 halBuf.bufPtr);
1546 ALOGV("%s: YV12 buffer %d x %d",
1547 __FUNCTION__,
1548 mYu12Frame->mWidth, mYu12Frame->mHeight);
1549
1550 int jpegQuality, thumbQuality;
1551 Size thumbSize;
1552 bool outputThumbnail = true;
1553
1554 if (req->setting.exists(ANDROID_JPEG_QUALITY)) {
1555 camera_metadata_entry entry =
1556 req->setting.find(ANDROID_JPEG_QUALITY);
1557 jpegQuality = entry.data.u8[0];
1558 } else {
1559 return lfail("%s: ANDROID_JPEG_QUALITY not set",__FUNCTION__);
1560 }
1561
1562 if (req->setting.exists(ANDROID_JPEG_THUMBNAIL_QUALITY)) {
1563 camera_metadata_entry entry =
1564 req->setting.find(ANDROID_JPEG_THUMBNAIL_QUALITY);
1565 thumbQuality = entry.data.u8[0];
1566 } else {
1567 return lfail(
1568 "%s: ANDROID_JPEG_THUMBNAIL_QUALITY not set",
1569 __FUNCTION__);
1570 }
1571
1572 if (req->setting.exists(ANDROID_JPEG_THUMBNAIL_SIZE)) {
1573 camera_metadata_entry entry =
1574 req->setting.find(ANDROID_JPEG_THUMBNAIL_SIZE);
1575 thumbSize = Size { static_cast<uint32_t>(entry.data.i32[0]),
1576 static_cast<uint32_t>(entry.data.i32[1])
1577 };
1578 if (thumbSize.width == 0 && thumbSize.height == 0) {
1579 outputThumbnail = false;
1580 }
1581 } else {
1582 return lfail(
1583 "%s: ANDROID_JPEG_THUMBNAIL_SIZE not set", __FUNCTION__);
1584 }
1585
1586 /* Cropped and scaled YU12 buffer for main and thumbnail */
1587 YCbCrLayout yu12Main;
1588 Size jpegSize { halBuf.width, halBuf.height };
1589
1590 /* Compute temporary buffer sizes accounting for the following:
1591 * thumbnail can't exceed APP1 size of 64K
1592 * main image needs to hold APP1, headers, and at most a poorly
1593 * compressed image */
1594 const ssize_t maxThumbCodeSize = 64 * 1024;
1595 const ssize_t maxJpegCodeSize = parent->getJpegBufferSize(jpegSize.width,
1596 jpegSize.height);
1597
1598 /* Check that getJpegBufferSize did not return an error */
1599 if (maxJpegCodeSize < 0) {
1600 return lfail(
1601 "%s: getJpegBufferSize returned %zd",__FUNCTION__,maxJpegCodeSize);
1602 }
1603
1604
1605 /* Hold actual thumbnail and main image code sizes */
1606 size_t thumbCodeSize = 0, jpegCodeSize = 0;
1607 /* Temporary thumbnail code buffer */
1608 std::vector<uint8_t> thumbCode(outputThumbnail ? maxThumbCodeSize : 0);
1609
1610 YCbCrLayout yu12Thumb;
1611 if (outputThumbnail) {
1612 ret = cropAndScaleThumbLocked(mYu12Frame, thumbSize, &yu12Thumb);
1613
1614 if (ret != 0) {
1615 return lfail(
1616 "%s: crop and scale thumbnail failed!", __FUNCTION__);
1617 }
1618 }
1619
1620 /* Scale and crop main jpeg */
1621 ret = cropAndScaleLocked(mYu12Frame, jpegSize, &yu12Main);
1622
1623 if (ret != 0) {
1624 return lfail("%s: crop and scale main failed!", __FUNCTION__);
1625 }
1626
1627 /* Encode the thumbnail image */
1628 if (outputThumbnail) {
1629 ret = encodeJpegYU12(thumbSize, yu12Thumb,
1630 thumbQuality, 0, 0,
1631 &thumbCode[0], maxThumbCodeSize, thumbCodeSize);
1632
1633 if (ret != 0) {
1634 return lfail("%s: thumbnail encodeJpegYU12 failed with %d",__FUNCTION__, ret);
1635 }
1636 }
1637
1638 /* Combine camera characteristics with request settings to form EXIF
1639 * metadata */
1640 common::V1_0::helper::CameraMetadata meta(parent->mCameraCharacteristics);
1641 meta.append(req->setting);
1642
1643 /* Generate EXIF object */
1644 std::unique_ptr<ExifUtils> utils(ExifUtils::create());
1645 /* Make sure it's initialized */
1646 utils->initialize();
1647
1648 utils->setFromMetadata(meta, jpegSize.width, jpegSize.height);
1649 utils->setMake(mExifMake);
1650 utils->setModel(mExifModel);
1651
1652 ret = utils->generateApp1(outputThumbnail ? &thumbCode[0] : 0, thumbCodeSize);
1653
1654 if (!ret) {
1655 return lfail("%s: generating APP1 failed", __FUNCTION__);
1656 }
1657
1658 /* Get internal buffer */
1659 size_t exifDataSize = utils->getApp1Length();
1660 const uint8_t* exifData = utils->getApp1Buffer();
1661
1662 /* Lock the HAL jpeg code buffer */
1663 void *bufPtr = sHandleImporter.lock(
1664 *(halBuf.bufPtr), halBuf.usage, maxJpegCodeSize);
1665
1666 if (!bufPtr) {
1667 return lfail("%s: could not lock %zu bytes", __FUNCTION__, maxJpegCodeSize);
1668 }
1669
1670 /* Encode the main jpeg image */
1671 ret = encodeJpegYU12(jpegSize, yu12Main,
1672 jpegQuality, exifData, exifDataSize,
1673 bufPtr, maxJpegCodeSize, jpegCodeSize);
1674
1675 /* TODO: Not sure this belongs here, maybe better to pass jpegCodeSize out
1676 * and do this when returning buffer to parent */
1677 CameraBlob blob { CameraBlobId::JPEG, static_cast<uint32_t>(jpegCodeSize) };
1678 void *blobDst =
1679 reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(bufPtr) +
1680 maxJpegCodeSize -
1681 sizeof(CameraBlob));
1682 memcpy(blobDst, &blob, sizeof(CameraBlob));
1683
1684 /* Unlock the HAL jpeg code buffer */
1685 int relFence = sHandleImporter.unlock(*(halBuf.bufPtr));
1686 if (relFence > 0) {
1687 halBuf.acquireFence = relFence;
1688 }
1689
1690 /* Check if our JPEG actually succeeded */
1691 if (ret != 0) {
1692 return lfail(
1693 "%s: encodeJpegYU12 failed with %d",__FUNCTION__, ret);
1694 }
1695
1696 ALOGV("%s: encoded JPEG (ret:%d) with Q:%d max size: %zu",
1697 __FUNCTION__, ret, jpegQuality, maxJpegCodeSize);
1698
1699 return 0;
1700 }
1701
threadLoop()1702 bool ExternalCameraDeviceSession::OutputThread::threadLoop() {
1703 std::shared_ptr<HalRequest> req;
1704 auto parent = mParent.promote();
1705 if (parent == nullptr) {
1706 ALOGE("%s: session has been disconnected!", __FUNCTION__);
1707 return false;
1708 }
1709
1710 // TODO: maybe we need to setup a sensor thread to dq/enq v4l frames
1711 // regularly to prevent v4l buffer queue filled with stale buffers
1712 // when app doesn't program a preveiw request
1713 waitForNextRequest(&req);
1714 if (req == nullptr) {
1715 // No new request, wait again
1716 return true;
1717 }
1718
1719 auto onDeviceError = [&](auto... args) {
1720 ALOGE(args...);
1721 parent->notifyError(
1722 req->frameNumber, /*stream*/-1, ErrorCode::ERROR_DEVICE);
1723 signalRequestDone();
1724 return false;
1725 };
1726
1727 if (req->frameIn->mFourcc != V4L2_PIX_FMT_MJPEG) {
1728 return onDeviceError("%s: do not support V4L2 format %c%c%c%c", __FUNCTION__,
1729 req->frameIn->mFourcc & 0xFF,
1730 (req->frameIn->mFourcc >> 8) & 0xFF,
1731 (req->frameIn->mFourcc >> 16) & 0xFF,
1732 (req->frameIn->mFourcc >> 24) & 0xFF);
1733 }
1734
1735 std::unique_lock<std::mutex> lk(mBufferLock);
1736 // Convert input V4L2 frame to YU12 of the same size
1737 // TODO: see if we can save some computation by converting to YV12 here
1738 uint8_t* inData;
1739 size_t inDataSize;
1740 req->frameIn->map(&inData, &inDataSize);
1741 // TODO: in some special case maybe we can decode jpg directly to gralloc output?
1742 ATRACE_BEGIN("MJPGtoI420");
1743 int res = libyuv::MJPGToI420(
1744 inData, inDataSize,
1745 static_cast<uint8_t*>(mYu12FrameLayout.y),
1746 mYu12FrameLayout.yStride,
1747 static_cast<uint8_t*>(mYu12FrameLayout.cb),
1748 mYu12FrameLayout.cStride,
1749 static_cast<uint8_t*>(mYu12FrameLayout.cr),
1750 mYu12FrameLayout.cStride,
1751 mYu12Frame->mWidth, mYu12Frame->mHeight,
1752 mYu12Frame->mWidth, mYu12Frame->mHeight);
1753 ATRACE_END();
1754
1755 if (res != 0) {
1756 // For some webcam, the first few V4L2 frames might be malformed...
1757 ALOGE("%s: Convert V4L2 frame to YU12 failed! res %d", __FUNCTION__, res);
1758 lk.unlock();
1759 Status st = parent->processCaptureRequestError(req);
1760 if (st != Status::OK) {
1761 return onDeviceError("%s: failed to process capture request error!", __FUNCTION__);
1762 }
1763 signalRequestDone();
1764 return true;
1765 }
1766
1767 ALOGV("%s processing new request", __FUNCTION__);
1768 const int kSyncWaitTimeoutMs = 500;
1769 for (auto& halBuf : req->buffers) {
1770 if (halBuf.acquireFence != -1) {
1771 int ret = sync_wait(halBuf.acquireFence, kSyncWaitTimeoutMs);
1772 if (ret) {
1773 halBuf.fenceTimeout = true;
1774 } else {
1775 ::close(halBuf.acquireFence);
1776 halBuf.acquireFence = -1;
1777 }
1778 }
1779
1780 if (halBuf.fenceTimeout) {
1781 continue;
1782 }
1783
1784 // Gralloc lockYCbCr the buffer
1785 switch (halBuf.format) {
1786 case PixelFormat::BLOB: {
1787 int ret = createJpegLocked(halBuf, req);
1788
1789 if(ret != 0) {
1790 lk.unlock();
1791 return onDeviceError("%s: createJpegLocked failed with %d",
1792 __FUNCTION__, ret);
1793 }
1794 } break;
1795 case PixelFormat::YCBCR_420_888:
1796 case PixelFormat::YV12: {
1797 IMapper::Rect outRect {0, 0,
1798 static_cast<int32_t>(halBuf.width),
1799 static_cast<int32_t>(halBuf.height)};
1800 YCbCrLayout outLayout = sHandleImporter.lockYCbCr(
1801 *(halBuf.bufPtr), halBuf.usage, outRect);
1802 ALOGV("%s: outLayout y %p cb %p cr %p y_str %d c_str %d c_step %d",
1803 __FUNCTION__, outLayout.y, outLayout.cb, outLayout.cr,
1804 outLayout.yStride, outLayout.cStride, outLayout.chromaStep);
1805
1806 // Convert to output buffer size/format
1807 uint32_t outputFourcc = getFourCcFromLayout(outLayout);
1808 ALOGV("%s: converting to format %c%c%c%c", __FUNCTION__,
1809 outputFourcc & 0xFF,
1810 (outputFourcc >> 8) & 0xFF,
1811 (outputFourcc >> 16) & 0xFF,
1812 (outputFourcc >> 24) & 0xFF);
1813
1814 YCbCrLayout cropAndScaled;
1815 ATRACE_BEGIN("cropAndScaleLocked");
1816 int ret = cropAndScaleLocked(
1817 mYu12Frame,
1818 Size { halBuf.width, halBuf.height },
1819 &cropAndScaled);
1820 ATRACE_END();
1821 if (ret != 0) {
1822 lk.unlock();
1823 return onDeviceError("%s: crop and scale failed!", __FUNCTION__);
1824 }
1825
1826 Size sz {halBuf.width, halBuf.height};
1827 ATRACE_BEGIN("formatConvertLocked");
1828 ret = formatConvertLocked(cropAndScaled, outLayout, sz, outputFourcc);
1829 ATRACE_END();
1830 if (ret != 0) {
1831 lk.unlock();
1832 return onDeviceError("%s: format coversion failed!", __FUNCTION__);
1833 }
1834 int relFence = sHandleImporter.unlock(*(halBuf.bufPtr));
1835 if (relFence > 0) {
1836 halBuf.acquireFence = relFence;
1837 }
1838 } break;
1839 default:
1840 lk.unlock();
1841 return onDeviceError("%s: unknown output format %x", __FUNCTION__, halBuf.format);
1842 }
1843 } // for each buffer
1844 mScaledYu12Frames.clear();
1845
1846 // Don't hold the lock while calling back to parent
1847 lk.unlock();
1848 Status st = parent->processCaptureResult(req);
1849 if (st != Status::OK) {
1850 return onDeviceError("%s: failed to process capture result!", __FUNCTION__);
1851 }
1852 signalRequestDone();
1853 return true;
1854 }
1855
allocateIntermediateBuffers(const Size & v4lSize,const Size & thumbSize,const hidl_vec<Stream> & streams)1856 Status ExternalCameraDeviceSession::OutputThread::allocateIntermediateBuffers(
1857 const Size& v4lSize, const Size& thumbSize,
1858 const hidl_vec<Stream>& streams) {
1859 std::lock_guard<std::mutex> lk(mBufferLock);
1860 if (mScaledYu12Frames.size() != 0) {
1861 ALOGE("%s: intermediate buffer pool has %zu inflight buffers! (expect 0)",
1862 __FUNCTION__, mScaledYu12Frames.size());
1863 return Status::INTERNAL_ERROR;
1864 }
1865
1866 // Allocating intermediate YU12 frame
1867 if (mYu12Frame == nullptr || mYu12Frame->mWidth != v4lSize.width ||
1868 mYu12Frame->mHeight != v4lSize.height) {
1869 mYu12Frame.clear();
1870 mYu12Frame = new AllocatedFrame(v4lSize.width, v4lSize.height);
1871 int ret = mYu12Frame->allocate(&mYu12FrameLayout);
1872 if (ret != 0) {
1873 ALOGE("%s: allocating YU12 frame failed!", __FUNCTION__);
1874 return Status::INTERNAL_ERROR;
1875 }
1876 }
1877
1878 // Allocating intermediate YU12 thumbnail frame
1879 if (mYu12ThumbFrame == nullptr ||
1880 mYu12ThumbFrame->mWidth != thumbSize.width ||
1881 mYu12ThumbFrame->mHeight != thumbSize.height) {
1882 mYu12ThumbFrame.clear();
1883 mYu12ThumbFrame = new AllocatedFrame(thumbSize.width, thumbSize.height);
1884 int ret = mYu12ThumbFrame->allocate(&mYu12ThumbFrameLayout);
1885 if (ret != 0) {
1886 ALOGE("%s: allocating YU12 thumb frame failed!", __FUNCTION__);
1887 return Status::INTERNAL_ERROR;
1888 }
1889 }
1890
1891 // Allocating scaled buffers
1892 for (const auto& stream : streams) {
1893 Size sz = {stream.width, stream.height};
1894 if (sz == v4lSize) {
1895 continue; // Don't need an intermediate buffer same size as v4lBuffer
1896 }
1897 if (mIntermediateBuffers.count(sz) == 0) {
1898 // Create new intermediate buffer
1899 sp<AllocatedFrame> buf = new AllocatedFrame(stream.width, stream.height);
1900 int ret = buf->allocate();
1901 if (ret != 0) {
1902 ALOGE("%s: allocating intermediate YU12 frame %dx%d failed!",
1903 __FUNCTION__, stream.width, stream.height);
1904 return Status::INTERNAL_ERROR;
1905 }
1906 mIntermediateBuffers[sz] = buf;
1907 }
1908 }
1909
1910 // Remove unconfigured buffers
1911 auto it = mIntermediateBuffers.begin();
1912 while (it != mIntermediateBuffers.end()) {
1913 bool configured = false;
1914 auto sz = it->first;
1915 for (const auto& stream : streams) {
1916 if (stream.width == sz.width && stream.height == sz.height) {
1917 configured = true;
1918 break;
1919 }
1920 }
1921 if (configured) {
1922 it++;
1923 } else {
1924 it = mIntermediateBuffers.erase(it);
1925 }
1926 }
1927 return Status::OK;
1928 }
1929
submitRequest(const std::shared_ptr<HalRequest> & req)1930 Status ExternalCameraDeviceSession::OutputThread::submitRequest(
1931 const std::shared_ptr<HalRequest>& req) {
1932 std::unique_lock<std::mutex> lk(mRequestListLock);
1933 mRequestList.push_back(req);
1934 lk.unlock();
1935 mRequestCond.notify_one();
1936 return Status::OK;
1937 }
1938
flush()1939 void ExternalCameraDeviceSession::OutputThread::flush() {
1940 ATRACE_CALL();
1941 auto parent = mParent.promote();
1942 if (parent == nullptr) {
1943 ALOGE("%s: session has been disconnected!", __FUNCTION__);
1944 return;
1945 }
1946
1947 std::unique_lock<std::mutex> lk(mRequestListLock);
1948 std::list<std::shared_ptr<HalRequest>> reqs = std::move(mRequestList);
1949 mRequestList.clear();
1950 if (mProcessingRequest) {
1951 std::chrono::seconds timeout = std::chrono::seconds(kFlushWaitTimeoutSec);
1952 auto st = mRequestDoneCond.wait_for(lk, timeout);
1953 if (st == std::cv_status::timeout) {
1954 ALOGE("%s: wait for inflight request finish timeout!", __FUNCTION__);
1955 }
1956 }
1957
1958 ALOGV("%s: flusing inflight requests", __FUNCTION__);
1959 lk.unlock();
1960 for (const auto& req : reqs) {
1961 parent->processCaptureRequestError(req);
1962 }
1963 }
1964
waitForNextRequest(std::shared_ptr<HalRequest> * out)1965 void ExternalCameraDeviceSession::OutputThread::waitForNextRequest(
1966 std::shared_ptr<HalRequest>* out) {
1967 ATRACE_CALL();
1968 if (out == nullptr) {
1969 ALOGE("%s: out is null", __FUNCTION__);
1970 return;
1971 }
1972
1973 std::unique_lock<std::mutex> lk(mRequestListLock);
1974 int waitTimes = 0;
1975 while (mRequestList.empty()) {
1976 if (exitPending()) {
1977 return;
1978 }
1979 std::chrono::milliseconds timeout = std::chrono::milliseconds(kReqWaitTimeoutMs);
1980 auto st = mRequestCond.wait_for(lk, timeout);
1981 if (st == std::cv_status::timeout) {
1982 waitTimes++;
1983 if (waitTimes == kReqWaitTimesMax) {
1984 // no new request, return
1985 return;
1986 }
1987 }
1988 }
1989 *out = mRequestList.front();
1990 mRequestList.pop_front();
1991 mProcessingRequest = true;
1992 mProcessingFrameNumer = (*out)->frameNumber;
1993 }
1994
signalRequestDone()1995 void ExternalCameraDeviceSession::OutputThread::signalRequestDone() {
1996 std::unique_lock<std::mutex> lk(mRequestListLock);
1997 mProcessingRequest = false;
1998 mProcessingFrameNumer = 0;
1999 lk.unlock();
2000 mRequestDoneCond.notify_one();
2001 }
2002
dump(int fd)2003 void ExternalCameraDeviceSession::OutputThread::dump(int fd) {
2004 std::lock_guard<std::mutex> lk(mRequestListLock);
2005 if (mProcessingRequest) {
2006 dprintf(fd, "OutputThread processing frame %d\n", mProcessingFrameNumer);
2007 } else {
2008 dprintf(fd, "OutputThread not processing any frames\n");
2009 }
2010 dprintf(fd, "OutputThread request list contains frame: ");
2011 for (const auto& req : mRequestList) {
2012 dprintf(fd, "%d, ", req->frameNumber);
2013 }
2014 dprintf(fd, "\n");
2015 }
2016
cleanupBuffersLocked(int id)2017 void ExternalCameraDeviceSession::cleanupBuffersLocked(int id) {
2018 for (auto& pair : mCirculatingBuffers.at(id)) {
2019 sHandleImporter.freeBuffer(pair.second);
2020 }
2021 mCirculatingBuffers[id].clear();
2022 mCirculatingBuffers.erase(id);
2023 }
2024
updateBufferCaches(const hidl_vec<BufferCache> & cachesToRemove)2025 void ExternalCameraDeviceSession::updateBufferCaches(const hidl_vec<BufferCache>& cachesToRemove) {
2026 Mutex::Autolock _l(mLock);
2027 for (auto& cache : cachesToRemove) {
2028 auto cbsIt = mCirculatingBuffers.find(cache.streamId);
2029 if (cbsIt == mCirculatingBuffers.end()) {
2030 // The stream could have been removed
2031 continue;
2032 }
2033 CirculatingBuffers& cbs = cbsIt->second;
2034 auto it = cbs.find(cache.bufferId);
2035 if (it != cbs.end()) {
2036 sHandleImporter.freeBuffer(it->second);
2037 cbs.erase(it);
2038 } else {
2039 ALOGE("%s: stream %d buffer %" PRIu64 " is not cached",
2040 __FUNCTION__, cache.streamId, cache.bufferId);
2041 }
2042 }
2043 }
2044
isSupported(const Stream & stream)2045 bool ExternalCameraDeviceSession::isSupported(const Stream& stream) {
2046 int32_t ds = static_cast<int32_t>(stream.dataSpace);
2047 PixelFormat fmt = stream.format;
2048 uint32_t width = stream.width;
2049 uint32_t height = stream.height;
2050 // TODO: check usage flags
2051
2052 if (stream.streamType != StreamType::OUTPUT) {
2053 ALOGE("%s: does not support non-output stream type", __FUNCTION__);
2054 return false;
2055 }
2056
2057 if (stream.rotation != StreamRotation::ROTATION_0) {
2058 ALOGE("%s: does not support stream rotation", __FUNCTION__);
2059 return false;
2060 }
2061
2062 if (ds & Dataspace::DEPTH) {
2063 ALOGI("%s: does not support depth output", __FUNCTION__);
2064 return false;
2065 }
2066
2067 switch (fmt) {
2068 case PixelFormat::BLOB:
2069 if (ds != static_cast<int32_t>(Dataspace::V0_JFIF)) {
2070 ALOGI("%s: BLOB format does not support dataSpace %x", __FUNCTION__, ds);
2071 return false;
2072 }
2073 case PixelFormat::IMPLEMENTATION_DEFINED:
2074 case PixelFormat::YCBCR_420_888:
2075 case PixelFormat::YV12:
2076 // TODO: check what dataspace we can support here.
2077 // intentional no-ops.
2078 break;
2079 default:
2080 ALOGI("%s: does not support format %x", __FUNCTION__, fmt);
2081 return false;
2082 }
2083
2084 // Assume we can convert any V4L2 format to any of supported output format for now, i.e,
2085 // ignoring v4l2Fmt.fourcc for now. Might need more subtle check if we support more v4l format
2086 // in the futrue.
2087 for (const auto& v4l2Fmt : mSupportedFormats) {
2088 if (width == v4l2Fmt.width && height == v4l2Fmt.height) {
2089 return true;
2090 }
2091 }
2092 ALOGI("%s: resolution %dx%d is not supported", __FUNCTION__, width, height);
2093 return false;
2094 }
2095
v4l2StreamOffLocked()2096 int ExternalCameraDeviceSession::v4l2StreamOffLocked() {
2097 if (!mV4l2Streaming) {
2098 return OK;
2099 }
2100
2101 {
2102 std::lock_guard<std::mutex> lk(mV4l2BufferLock);
2103 if (mNumDequeuedV4l2Buffers != 0) {
2104 ALOGE("%s: there are %zu inflight V4L buffers",
2105 __FUNCTION__, mNumDequeuedV4l2Buffers);
2106 return -1;
2107 }
2108 }
2109 mV4L2BufferCount = 0;
2110
2111 // VIDIOC_STREAMOFF
2112 v4l2_buf_type capture_type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
2113 if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_STREAMOFF, &capture_type)) < 0) {
2114 ALOGE("%s: STREAMOFF failed: %s", __FUNCTION__, strerror(errno));
2115 return -errno;
2116 }
2117
2118 // VIDIOC_REQBUFS: clear buffers
2119 v4l2_requestbuffers req_buffers{};
2120 req_buffers.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
2121 req_buffers.memory = V4L2_MEMORY_MMAP;
2122 req_buffers.count = 0;
2123 if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_REQBUFS, &req_buffers)) < 0) {
2124 ALOGE("%s: REQBUFS failed: %s", __FUNCTION__, strerror(errno));
2125 return -errno;
2126 }
2127
2128 mV4l2Streaming = false;
2129 return OK;
2130 }
2131
setV4l2FpsLocked(double fps)2132 int ExternalCameraDeviceSession::setV4l2FpsLocked(double fps) {
2133 // VIDIOC_G_PARM/VIDIOC_S_PARM: set fps
2134 v4l2_streamparm streamparm = { .type = V4L2_BUF_TYPE_VIDEO_CAPTURE };
2135 // The following line checks that the driver knows about framerate get/set.
2136 int ret = TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_G_PARM, &streamparm));
2137 if (ret != 0) {
2138 if (errno == -EINVAL) {
2139 ALOGW("%s: device does not support VIDIOC_G_PARM", __FUNCTION__);
2140 }
2141 return -errno;
2142 }
2143 // Now check if the device is able to accept a capture framerate set.
2144 if (!(streamparm.parm.capture.capability & V4L2_CAP_TIMEPERFRAME)) {
2145 ALOGW("%s: device does not support V4L2_CAP_TIMEPERFRAME", __FUNCTION__);
2146 return -EINVAL;
2147 }
2148
2149 // fps is float, approximate by a fraction.
2150 const int kFrameRatePrecision = 10000;
2151 streamparm.parm.capture.timeperframe.numerator = kFrameRatePrecision;
2152 streamparm.parm.capture.timeperframe.denominator =
2153 (fps * kFrameRatePrecision);
2154
2155 if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_S_PARM, &streamparm)) < 0) {
2156 ALOGE("%s: failed to set framerate to %f: %s", __FUNCTION__, fps, strerror(errno));
2157 return -1;
2158 }
2159
2160 double retFps = streamparm.parm.capture.timeperframe.denominator /
2161 static_cast<double>(streamparm.parm.capture.timeperframe.numerator);
2162 if (std::fabs(fps - retFps) > 1.0) {
2163 ALOGE("%s: expect fps %f, got %f instead", __FUNCTION__, fps, retFps);
2164 return -1;
2165 }
2166 mV4l2StreamingFps = fps;
2167 return 0;
2168 }
2169
configureV4l2StreamLocked(const SupportedV4L2Format & v4l2Fmt,double requestFps)2170 int ExternalCameraDeviceSession::configureV4l2StreamLocked(
2171 const SupportedV4L2Format& v4l2Fmt, double requestFps) {
2172 ATRACE_CALL();
2173 int ret = v4l2StreamOffLocked();
2174 if (ret != OK) {
2175 ALOGE("%s: stop v4l2 streaming failed: ret %d", __FUNCTION__, ret);
2176 return ret;
2177 }
2178
2179 // VIDIOC_S_FMT w/h/fmt
2180 v4l2_format fmt;
2181 fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
2182 fmt.fmt.pix.width = v4l2Fmt.width;
2183 fmt.fmt.pix.height = v4l2Fmt.height;
2184 fmt.fmt.pix.pixelformat = v4l2Fmt.fourcc;
2185 ret = TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_S_FMT, &fmt));
2186 if (ret < 0) {
2187 int numAttempt = 0;
2188 while (ret < 0) {
2189 ALOGW("%s: VIDIOC_S_FMT failed, wait 33ms and try again", __FUNCTION__);
2190 usleep(IOCTL_RETRY_SLEEP_US); // sleep and try again
2191 ret = TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_S_FMT, &fmt));
2192 if (numAttempt == MAX_RETRY) {
2193 break;
2194 }
2195 numAttempt++;
2196 }
2197 if (ret < 0) {
2198 ALOGE("%s: S_FMT ioctl failed: %s", __FUNCTION__, strerror(errno));
2199 return -errno;
2200 }
2201 }
2202
2203 if (v4l2Fmt.width != fmt.fmt.pix.width || v4l2Fmt.height != fmt.fmt.pix.height ||
2204 v4l2Fmt.fourcc != fmt.fmt.pix.pixelformat) {
2205 ALOGE("%s: S_FMT expect %c%c%c%c %dx%d, got %c%c%c%c %dx%d instead!", __FUNCTION__,
2206 v4l2Fmt.fourcc & 0xFF,
2207 (v4l2Fmt.fourcc >> 8) & 0xFF,
2208 (v4l2Fmt.fourcc >> 16) & 0xFF,
2209 (v4l2Fmt.fourcc >> 24) & 0xFF,
2210 v4l2Fmt.width, v4l2Fmt.height,
2211 fmt.fmt.pix.pixelformat & 0xFF,
2212 (fmt.fmt.pix.pixelformat >> 8) & 0xFF,
2213 (fmt.fmt.pix.pixelformat >> 16) & 0xFF,
2214 (fmt.fmt.pix.pixelformat >> 24) & 0xFF,
2215 fmt.fmt.pix.width, fmt.fmt.pix.height);
2216 return -EINVAL;
2217 }
2218 uint32_t bufferSize = fmt.fmt.pix.sizeimage;
2219 ALOGI("%s: V4L2 buffer size is %d", __FUNCTION__, bufferSize);
2220 uint32_t expectedMaxBufferSize = kMaxBytesPerPixel * fmt.fmt.pix.width * fmt.fmt.pix.height;
2221 if ((bufferSize == 0) || (bufferSize > expectedMaxBufferSize)) {
2222 ALOGE("%s: V4L2 buffer size: %u looks invalid. Expected maximum size: %u", __FUNCTION__,
2223 bufferSize, expectedMaxBufferSize);
2224 return -EINVAL;
2225 }
2226 mMaxV4L2BufferSize = bufferSize;
2227
2228 const double kDefaultFps = 30.0;
2229 double fps = 1000.0;
2230 if (requestFps != 0.0) {
2231 fps = requestFps;
2232 } else {
2233 double maxFps = -1.0;
2234 // Try to pick the slowest fps that is at least 30
2235 for (const auto& fr : v4l2Fmt.frameRates) {
2236 double f = fr.getDouble();
2237 if (maxFps < f) {
2238 maxFps = f;
2239 }
2240 if (f >= kDefaultFps && f < fps) {
2241 fps = f;
2242 }
2243 }
2244 if (fps == 1000.0) {
2245 fps = maxFps;
2246 }
2247 }
2248
2249 int fpsRet = setV4l2FpsLocked(fps);
2250 if (fpsRet != 0 && fpsRet != -EINVAL) {
2251 ALOGE("%s: set fps failed: %s", __FUNCTION__, strerror(fpsRet));
2252 return fpsRet;
2253 }
2254
2255 uint32_t v4lBufferCount = (fps >= kDefaultFps) ?
2256 mCfg.numVideoBuffers : mCfg.numStillBuffers;
2257 // VIDIOC_REQBUFS: create buffers
2258 v4l2_requestbuffers req_buffers{};
2259 req_buffers.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
2260 req_buffers.memory = V4L2_MEMORY_MMAP;
2261 req_buffers.count = v4lBufferCount;
2262 if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_REQBUFS, &req_buffers)) < 0) {
2263 ALOGE("%s: VIDIOC_REQBUFS failed: %s", __FUNCTION__, strerror(errno));
2264 return -errno;
2265 }
2266
2267 // Driver can indeed return more buffer if it needs more to operate
2268 if (req_buffers.count < v4lBufferCount) {
2269 ALOGE("%s: VIDIOC_REQBUFS expected %d buffers, got %d instead",
2270 __FUNCTION__, v4lBufferCount, req_buffers.count);
2271 return NO_MEMORY;
2272 }
2273
2274 // VIDIOC_QUERYBUF: get buffer offset in the V4L2 fd
2275 // VIDIOC_QBUF: send buffer to driver
2276 mV4L2BufferCount = req_buffers.count;
2277 for (uint32_t i = 0; i < req_buffers.count; i++) {
2278 v4l2_buffer buffer = {
2279 .type = V4L2_BUF_TYPE_VIDEO_CAPTURE,
2280 .index = i,
2281 .memory = V4L2_MEMORY_MMAP};
2282
2283 if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_QUERYBUF, &buffer)) < 0) {
2284 ALOGE("%s: QUERYBUF %d failed: %s", __FUNCTION__, i, strerror(errno));
2285 return -errno;
2286 }
2287
2288 if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_QBUF, &buffer)) < 0) {
2289 ALOGE("%s: QBUF %d failed: %s", __FUNCTION__, i, strerror(errno));
2290 return -errno;
2291 }
2292 }
2293
2294 // VIDIOC_STREAMON: start streaming
2295 v4l2_buf_type capture_type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
2296 ret = TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_STREAMON, &capture_type));
2297 if (ret < 0) {
2298 int numAttempt = 0;
2299 while (ret < 0) {
2300 ALOGW("%s: VIDIOC_STREAMON failed, wait 33ms and try again", __FUNCTION__);
2301 usleep(IOCTL_RETRY_SLEEP_US); // sleep 100 ms and try again
2302 ret = TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_STREAMON, &capture_type));
2303 if (numAttempt == MAX_RETRY) {
2304 break;
2305 }
2306 numAttempt++;
2307 }
2308 if (ret < 0) {
2309 ALOGE("%s: VIDIOC_STREAMON ioctl failed: %s", __FUNCTION__, strerror(errno));
2310 return -errno;
2311 }
2312 }
2313
2314 // Swallow first few frames after streamOn to account for bad frames from some devices
2315 for (int i = 0; i < kBadFramesAfterStreamOn; i++) {
2316 v4l2_buffer buffer{};
2317 buffer.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
2318 buffer.memory = V4L2_MEMORY_MMAP;
2319 if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_DQBUF, &buffer)) < 0) {
2320 ALOGE("%s: DQBUF fails: %s", __FUNCTION__, strerror(errno));
2321 return -errno;
2322 }
2323
2324 if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_QBUF, &buffer)) < 0) {
2325 ALOGE("%s: QBUF index %d fails: %s", __FUNCTION__, buffer.index, strerror(errno));
2326 return -errno;
2327 }
2328 }
2329
2330 ALOGI("%s: start V4L2 streaming %dx%d@%ffps",
2331 __FUNCTION__, v4l2Fmt.width, v4l2Fmt.height, fps);
2332 mV4l2StreamingFmt = v4l2Fmt;
2333 mV4l2Streaming = true;
2334 return OK;
2335 }
2336
dequeueV4l2FrameLocked(nsecs_t * shutterTs)2337 sp<V4L2Frame> ExternalCameraDeviceSession::dequeueV4l2FrameLocked(/*out*/nsecs_t* shutterTs) {
2338 ATRACE_CALL();
2339 sp<V4L2Frame> ret = nullptr;
2340
2341 if (shutterTs == nullptr) {
2342 ALOGE("%s: shutterTs must not be null!", __FUNCTION__);
2343 return ret;
2344 }
2345
2346 {
2347 std::unique_lock<std::mutex> lk(mV4l2BufferLock);
2348 if (mNumDequeuedV4l2Buffers == mV4L2BufferCount) {
2349 int waitRet = waitForV4L2BufferReturnLocked(lk);
2350 if (waitRet != 0) {
2351 return ret;
2352 }
2353 }
2354 }
2355
2356 ATRACE_BEGIN("VIDIOC_DQBUF");
2357 v4l2_buffer buffer{};
2358 buffer.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
2359 buffer.memory = V4L2_MEMORY_MMAP;
2360 if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_DQBUF, &buffer)) < 0) {
2361 ALOGE("%s: DQBUF fails: %s", __FUNCTION__, strerror(errno));
2362 return ret;
2363 }
2364 ATRACE_END();
2365
2366 if (buffer.index >= mV4L2BufferCount) {
2367 ALOGE("%s: Invalid buffer id: %d", __FUNCTION__, buffer.index);
2368 return ret;
2369 }
2370
2371 if (buffer.flags & V4L2_BUF_FLAG_ERROR) {
2372 ALOGE("%s: v4l2 buf error! buf flag 0x%x", __FUNCTION__, buffer.flags);
2373 // TODO: try to dequeue again
2374 }
2375
2376 if (buffer.bytesused > mMaxV4L2BufferSize) {
2377 ALOGE("%s: v4l2 buffer bytes used: %u maximum %u", __FUNCTION__, buffer.bytesused,
2378 mMaxV4L2BufferSize);
2379 return ret;
2380 }
2381
2382 if (buffer.flags & V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC) {
2383 // Ideally we should also check for V4L2_BUF_FLAG_TSTAMP_SRC_SOE, but
2384 // even V4L2_BUF_FLAG_TSTAMP_SRC_EOF is better than capture a timestamp now
2385 *shutterTs = static_cast<nsecs_t>(buffer.timestamp.tv_sec)*1000000000LL +
2386 buffer.timestamp.tv_usec * 1000LL;
2387 } else {
2388 *shutterTs = systemTime(SYSTEM_TIME_MONOTONIC);
2389 }
2390
2391 {
2392 std::lock_guard<std::mutex> lk(mV4l2BufferLock);
2393 mNumDequeuedV4l2Buffers++;
2394 }
2395 return new V4L2Frame(
2396 mV4l2StreamingFmt.width, mV4l2StreamingFmt.height, mV4l2StreamingFmt.fourcc,
2397 buffer.index, mV4l2Fd.get(), buffer.bytesused, buffer.m.offset);
2398 }
2399
enqueueV4l2Frame(const sp<V4L2Frame> & frame)2400 void ExternalCameraDeviceSession::enqueueV4l2Frame(const sp<V4L2Frame>& frame) {
2401 ATRACE_CALL();
2402 frame->unmap();
2403 ATRACE_BEGIN("VIDIOC_QBUF");
2404 v4l2_buffer buffer{};
2405 buffer.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
2406 buffer.memory = V4L2_MEMORY_MMAP;
2407 buffer.index = frame->mBufferIndex;
2408 if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_QBUF, &buffer)) < 0) {
2409 ALOGE("%s: QBUF index %d fails: %s", __FUNCTION__,
2410 frame->mBufferIndex, strerror(errno));
2411 return;
2412 }
2413 ATRACE_END();
2414
2415 {
2416 std::lock_guard<std::mutex> lk(mV4l2BufferLock);
2417 mNumDequeuedV4l2Buffers--;
2418 }
2419 mV4L2BufferReturned.notify_one();
2420 }
2421
configureStreams(const V3_2::StreamConfiguration & config,V3_3::HalStreamConfiguration * out)2422 Status ExternalCameraDeviceSession::configureStreams(
2423 const V3_2::StreamConfiguration& config, V3_3::HalStreamConfiguration* out) {
2424 ATRACE_CALL();
2425 if (config.operationMode != StreamConfigurationMode::NORMAL_MODE) {
2426 ALOGE("%s: unsupported operation mode: %d", __FUNCTION__, config.operationMode);
2427 return Status::ILLEGAL_ARGUMENT;
2428 }
2429
2430 if (config.streams.size() == 0) {
2431 ALOGE("%s: cannot configure zero stream", __FUNCTION__);
2432 return Status::ILLEGAL_ARGUMENT;
2433 }
2434
2435 int numProcessedStream = 0;
2436 int numStallStream = 0;
2437 for (const auto& stream : config.streams) {
2438 // Check if the format/width/height combo is supported
2439 if (!isSupported(stream)) {
2440 return Status::ILLEGAL_ARGUMENT;
2441 }
2442 if (stream.format == PixelFormat::BLOB) {
2443 numStallStream++;
2444 } else {
2445 numProcessedStream++;
2446 }
2447 }
2448
2449 if (numProcessedStream > kMaxProcessedStream) {
2450 ALOGE("%s: too many processed streams (expect <= %d, got %d)", __FUNCTION__,
2451 kMaxProcessedStream, numProcessedStream);
2452 return Status::ILLEGAL_ARGUMENT;
2453 }
2454
2455 if (numStallStream > kMaxStallStream) {
2456 ALOGE("%s: too many stall streams (expect <= %d, got %d)", __FUNCTION__,
2457 kMaxStallStream, numStallStream);
2458 return Status::ILLEGAL_ARGUMENT;
2459 }
2460
2461 Status status = initStatus();
2462 if (status != Status::OK) {
2463 return status;
2464 }
2465
2466
2467 {
2468 std::lock_guard<std::mutex> lk(mInflightFramesLock);
2469 if (!mInflightFrames.empty()) {
2470 ALOGE("%s: trying to configureStreams while there are still %zu inflight frames!",
2471 __FUNCTION__, mInflightFrames.size());
2472 return Status::INTERNAL_ERROR;
2473 }
2474 }
2475
2476 Mutex::Autolock _l(mLock);
2477 // Add new streams
2478 for (const auto& stream : config.streams) {
2479 if (mStreamMap.count(stream.id) == 0) {
2480 mStreamMap[stream.id] = stream;
2481 mCirculatingBuffers.emplace(stream.id, CirculatingBuffers{});
2482 }
2483 }
2484
2485 // Cleanup removed streams
2486 for(auto it = mStreamMap.begin(); it != mStreamMap.end();) {
2487 int id = it->first;
2488 bool found = false;
2489 for (const auto& stream : config.streams) {
2490 if (id == stream.id) {
2491 found = true;
2492 break;
2493 }
2494 }
2495 if (!found) {
2496 // Unmap all buffers of deleted stream
2497 cleanupBuffersLocked(id);
2498 it = mStreamMap.erase(it);
2499 } else {
2500 ++it;
2501 }
2502 }
2503
2504 // Now select a V4L2 format to produce all output streams
2505 float desiredAr = (mCroppingType == VERTICAL) ? kMaxAspectRatio : kMinAspectRatio;
2506 uint32_t maxDim = 0;
2507 for (const auto& stream : config.streams) {
2508 float aspectRatio = ASPECT_RATIO(stream);
2509 ALOGI("%s: request stream %dx%d", __FUNCTION__, stream.width, stream.height);
2510 if ((mCroppingType == VERTICAL && aspectRatio < desiredAr) ||
2511 (mCroppingType == HORIZONTAL && aspectRatio > desiredAr)) {
2512 desiredAr = aspectRatio;
2513 }
2514
2515 // The dimension that's not cropped
2516 uint32_t dim = (mCroppingType == VERTICAL) ? stream.width : stream.height;
2517 if (dim > maxDim) {
2518 maxDim = dim;
2519 }
2520 }
2521 // Find the smallest format that matches the desired aspect ratio and is wide/high enough
2522 SupportedV4L2Format v4l2Fmt {.width = 0, .height = 0};
2523 for (const auto& fmt : mSupportedFormats) {
2524 uint32_t dim = (mCroppingType == VERTICAL) ? fmt.width : fmt.height;
2525 if (dim >= maxDim) {
2526 float aspectRatio = ASPECT_RATIO(fmt);
2527 if (isAspectRatioClose(aspectRatio, desiredAr)) {
2528 v4l2Fmt = fmt;
2529 // since mSupportedFormats is sorted by width then height, the first matching fmt
2530 // will be the smallest one with matching aspect ratio
2531 break;
2532 }
2533 }
2534 }
2535 if (v4l2Fmt.width == 0) {
2536 // Cannot find exact good aspect ratio candidate, try to find a close one
2537 for (const auto& fmt : mSupportedFormats) {
2538 uint32_t dim = (mCroppingType == VERTICAL) ? fmt.width : fmt.height;
2539 if (dim >= maxDim) {
2540 float aspectRatio = ASPECT_RATIO(fmt);
2541 if ((mCroppingType == VERTICAL && aspectRatio < desiredAr) ||
2542 (mCroppingType == HORIZONTAL && aspectRatio > desiredAr)) {
2543 v4l2Fmt = fmt;
2544 break;
2545 }
2546 }
2547 }
2548 }
2549
2550 if (v4l2Fmt.width == 0) {
2551 ALOGE("%s: unable to find a resolution matching (%s at least %d, aspect ratio %f)"
2552 , __FUNCTION__, (mCroppingType == VERTICAL) ? "width" : "height",
2553 maxDim, desiredAr);
2554 return Status::ILLEGAL_ARGUMENT;
2555 }
2556
2557 if (configureV4l2StreamLocked(v4l2Fmt) != 0) {
2558 ALOGE("V4L configuration failed!, format:%c%c%c%c, w %d, h %d",
2559 v4l2Fmt.fourcc & 0xFF,
2560 (v4l2Fmt.fourcc >> 8) & 0xFF,
2561 (v4l2Fmt.fourcc >> 16) & 0xFF,
2562 (v4l2Fmt.fourcc >> 24) & 0xFF,
2563 v4l2Fmt.width, v4l2Fmt.height);
2564 return Status::INTERNAL_ERROR;
2565 }
2566
2567 Size v4lSize = {v4l2Fmt.width, v4l2Fmt.height};
2568 Size thumbSize { 0, 0 };
2569 camera_metadata_ro_entry entry =
2570 mCameraCharacteristics.find(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES);
2571 for(uint32_t i = 0; i < entry.count; i += 2) {
2572 Size sz { static_cast<uint32_t>(entry.data.i32[i]),
2573 static_cast<uint32_t>(entry.data.i32[i+1]) };
2574 if(sz.width * sz.height > thumbSize.width * thumbSize.height) {
2575 thumbSize = sz;
2576 }
2577 }
2578
2579 if (thumbSize.width * thumbSize.height == 0) {
2580 ALOGE("%s: non-zero thumbnail size not available", __FUNCTION__);
2581 return Status::INTERNAL_ERROR;
2582 }
2583
2584 status = mOutputThread->allocateIntermediateBuffers(v4lSize,
2585 mMaxThumbResolution, config.streams);
2586 if (status != Status::OK) {
2587 ALOGE("%s: allocating intermediate buffers failed!", __FUNCTION__);
2588 return status;
2589 }
2590
2591 out->streams.resize(config.streams.size());
2592 for (size_t i = 0; i < config.streams.size(); i++) {
2593 out->streams[i].overrideDataSpace = config.streams[i].dataSpace;
2594 out->streams[i].v3_2.id = config.streams[i].id;
2595 // TODO: double check should we add those CAMERA flags
2596 mStreamMap[config.streams[i].id].usage =
2597 out->streams[i].v3_2.producerUsage = config.streams[i].usage |
2598 BufferUsage::CPU_WRITE_OFTEN |
2599 BufferUsage::CAMERA_OUTPUT;
2600 out->streams[i].v3_2.consumerUsage = 0;
2601 out->streams[i].v3_2.maxBuffers = mV4L2BufferCount;
2602
2603 switch (config.streams[i].format) {
2604 case PixelFormat::BLOB:
2605 case PixelFormat::YCBCR_420_888:
2606 case PixelFormat::YV12: // Used by SurfaceTexture
2607 // No override
2608 out->streams[i].v3_2.overrideFormat = config.streams[i].format;
2609 break;
2610 case PixelFormat::IMPLEMENTATION_DEFINED:
2611 // Override based on VIDEO or not
2612 out->streams[i].v3_2.overrideFormat =
2613 (config.streams[i].usage & BufferUsage::VIDEO_ENCODER) ?
2614 PixelFormat::YCBCR_420_888 : PixelFormat::YV12;
2615 // Save overridden formt in mStreamMap
2616 mStreamMap[config.streams[i].id].format = out->streams[i].v3_2.overrideFormat;
2617 break;
2618 default:
2619 ALOGE("%s: unsupported format 0x%x", __FUNCTION__, config.streams[i].format);
2620 return Status::ILLEGAL_ARGUMENT;
2621 }
2622 }
2623
2624 mFirstRequest = true;
2625 return Status::OK;
2626 }
2627
isClosed()2628 bool ExternalCameraDeviceSession::isClosed() {
2629 Mutex::Autolock _l(mLock);
2630 return mClosed;
2631 }
2632
2633 #define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
2634 #define UPDATE(md, tag, data, size) \
2635 do { \
2636 if ((md).update((tag), (data), (size))) { \
2637 ALOGE("Update " #tag " failed!"); \
2638 return BAD_VALUE; \
2639 } \
2640 } while (0)
2641
initDefaultRequests()2642 status_t ExternalCameraDeviceSession::initDefaultRequests() {
2643 ::android::hardware::camera::common::V1_0::helper::CameraMetadata md;
2644
2645 const uint8_t aberrationMode = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF;
2646 UPDATE(md, ANDROID_COLOR_CORRECTION_ABERRATION_MODE, &aberrationMode, 1);
2647
2648 const int32_t exposureCompensation = 0;
2649 UPDATE(md, ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION, &exposureCompensation, 1);
2650
2651 const uint8_t videoStabilizationMode = ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF;
2652 UPDATE(md, ANDROID_CONTROL_VIDEO_STABILIZATION_MODE, &videoStabilizationMode, 1);
2653
2654 const uint8_t awbMode = ANDROID_CONTROL_AWB_MODE_AUTO;
2655 UPDATE(md, ANDROID_CONTROL_AWB_MODE, &awbMode, 1);
2656
2657 const uint8_t aeMode = ANDROID_CONTROL_AE_MODE_ON;
2658 UPDATE(md, ANDROID_CONTROL_AE_MODE, &aeMode, 1);
2659
2660 const uint8_t aePrecaptureTrigger = ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE;
2661 UPDATE(md, ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER, &aePrecaptureTrigger, 1);
2662
2663 const uint8_t afMode = ANDROID_CONTROL_AF_MODE_AUTO;
2664 UPDATE(md, ANDROID_CONTROL_AF_MODE, &afMode, 1);
2665
2666 const uint8_t afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE;
2667 UPDATE(md, ANDROID_CONTROL_AF_TRIGGER, &afTrigger, 1);
2668
2669 const uint8_t sceneMode = ANDROID_CONTROL_SCENE_MODE_DISABLED;
2670 UPDATE(md, ANDROID_CONTROL_SCENE_MODE, &sceneMode, 1);
2671
2672 const uint8_t effectMode = ANDROID_CONTROL_EFFECT_MODE_OFF;
2673 UPDATE(md, ANDROID_CONTROL_EFFECT_MODE, &effectMode, 1);
2674
2675 const uint8_t flashMode = ANDROID_FLASH_MODE_OFF;
2676 UPDATE(md, ANDROID_FLASH_MODE, &flashMode, 1);
2677
2678 const int32_t thumbnailSize[] = {240, 180};
2679 UPDATE(md, ANDROID_JPEG_THUMBNAIL_SIZE, thumbnailSize, 2);
2680
2681 const uint8_t jpegQuality = 90;
2682 UPDATE(md, ANDROID_JPEG_QUALITY, &jpegQuality, 1);
2683 UPDATE(md, ANDROID_JPEG_THUMBNAIL_QUALITY, &jpegQuality, 1);
2684
2685 const int32_t jpegOrientation = 0;
2686 UPDATE(md, ANDROID_JPEG_ORIENTATION, &jpegOrientation, 1);
2687
2688 const uint8_t oisMode = ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
2689 UPDATE(md, ANDROID_LENS_OPTICAL_STABILIZATION_MODE, &oisMode, 1);
2690
2691 const uint8_t nrMode = ANDROID_NOISE_REDUCTION_MODE_OFF;
2692 UPDATE(md, ANDROID_NOISE_REDUCTION_MODE, &nrMode, 1);
2693
2694 const int32_t testPatternModes = ANDROID_SENSOR_TEST_PATTERN_MODE_OFF;
2695 UPDATE(md, ANDROID_SENSOR_TEST_PATTERN_MODE, &testPatternModes, 1);
2696
2697 const uint8_t fdMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
2698 UPDATE(md, ANDROID_STATISTICS_FACE_DETECT_MODE, &fdMode, 1);
2699
2700 const uint8_t hotpixelMode = ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE_OFF;
2701 UPDATE(md, ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE, &hotpixelMode, 1);
2702
2703 bool support30Fps = false;
2704 int32_t maxFps = std::numeric_limits<int32_t>::min();
2705 for (const auto& supportedFormat : mSupportedFormats) {
2706 for (const auto& fr : supportedFormat.frameRates) {
2707 int32_t framerateInt = static_cast<int32_t>(fr.getDouble());
2708 if (maxFps < framerateInt) {
2709 maxFps = framerateInt;
2710 }
2711 if (framerateInt == 30) {
2712 support30Fps = true;
2713 break;
2714 }
2715 }
2716 if (support30Fps) {
2717 break;
2718 }
2719 }
2720 int32_t defaultFramerate = support30Fps ? 30 : maxFps;
2721 int32_t defaultFpsRange[] = {defaultFramerate / 2, defaultFramerate};
2722 UPDATE(md, ANDROID_CONTROL_AE_TARGET_FPS_RANGE, defaultFpsRange, ARRAY_SIZE(defaultFpsRange));
2723
2724 uint8_t antibandingMode = ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO;
2725 UPDATE(md, ANDROID_CONTROL_AE_ANTIBANDING_MODE, &antibandingMode, 1);
2726
2727 const uint8_t controlMode = ANDROID_CONTROL_MODE_AUTO;
2728 UPDATE(md, ANDROID_CONTROL_MODE, &controlMode, 1);
2729
2730 auto requestTemplates = hidl_enum_iterator<RequestTemplate>();
2731 for (RequestTemplate type : requestTemplates) {
2732 ::android::hardware::camera::common::V1_0::helper::CameraMetadata mdCopy = md;
2733 uint8_t intent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
2734 switch (type) {
2735 case RequestTemplate::PREVIEW:
2736 intent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
2737 break;
2738 case RequestTemplate::STILL_CAPTURE:
2739 intent = ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE;
2740 break;
2741 case RequestTemplate::VIDEO_RECORD:
2742 intent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_RECORD;
2743 break;
2744 case RequestTemplate::VIDEO_SNAPSHOT:
2745 intent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_SNAPSHOT;
2746 break;
2747 default:
2748 ALOGV("%s: unsupported RequestTemplate type %d", __FUNCTION__, type);
2749 continue;
2750 }
2751 UPDATE(mdCopy, ANDROID_CONTROL_CAPTURE_INTENT, &intent, 1);
2752
2753 camera_metadata_t* rawMd = mdCopy.release();
2754 CameraMetadata hidlMd;
2755 hidlMd.setToExternal(
2756 (uint8_t*) rawMd, get_camera_metadata_size(rawMd));
2757 mDefaultRequests[type] = hidlMd;
2758 free_camera_metadata(rawMd);
2759 }
2760
2761 return OK;
2762 }
2763
fillCaptureResult(common::V1_0::helper::CameraMetadata & md,nsecs_t timestamp)2764 status_t ExternalCameraDeviceSession::fillCaptureResult(
2765 common::V1_0::helper::CameraMetadata &md, nsecs_t timestamp) {
2766 // android.control
2767 // For USB camera, we don't know the AE state. Set the state to converged to
2768 // indicate the frame should be good to use. Then apps don't have to wait the
2769 // AE state.
2770 const uint8_t aeState = ANDROID_CONTROL_AE_STATE_CONVERGED;
2771 UPDATE(md, ANDROID_CONTROL_AE_STATE, &aeState, 1);
2772
2773 const uint8_t ae_lock = ANDROID_CONTROL_AE_LOCK_OFF;
2774 UPDATE(md, ANDROID_CONTROL_AE_LOCK, &ae_lock, 1);
2775
2776 bool afTrigger = false;
2777 {
2778 std::lock_guard<std::mutex> lk(mAfTriggerLock);
2779 afTrigger = mAfTrigger;
2780 if (md.exists(ANDROID_CONTROL_AF_TRIGGER)) {
2781 camera_metadata_entry entry = md.find(ANDROID_CONTROL_AF_TRIGGER);
2782 if (entry.data.u8[0] == ANDROID_CONTROL_AF_TRIGGER_START) {
2783 mAfTrigger = afTrigger = true;
2784 } else if (entry.data.u8[0] == ANDROID_CONTROL_AF_TRIGGER_CANCEL) {
2785 mAfTrigger = afTrigger = false;
2786 }
2787 }
2788 }
2789
2790 // For USB camera, the USB camera handles everything and we don't have control
2791 // over AF. We only simply fake the AF metadata based on the request
2792 // received here.
2793 uint8_t afState;
2794 if (afTrigger) {
2795 afState = ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED;
2796 } else {
2797 afState = ANDROID_CONTROL_AF_STATE_INACTIVE;
2798 }
2799 UPDATE(md, ANDROID_CONTROL_AF_STATE, &afState, 1);
2800
2801 // Set AWB state to converged to indicate the frame should be good to use.
2802 const uint8_t awbState = ANDROID_CONTROL_AWB_STATE_CONVERGED;
2803 UPDATE(md, ANDROID_CONTROL_AWB_STATE, &awbState, 1);
2804
2805 const uint8_t awbLock = ANDROID_CONTROL_AWB_LOCK_OFF;
2806 UPDATE(md, ANDROID_CONTROL_AWB_LOCK, &awbLock, 1);
2807
2808 camera_metadata_ro_entry active_array_size =
2809 mCameraCharacteristics.find(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE);
2810
2811 if (active_array_size.count == 0) {
2812 ALOGE("%s: cannot find active array size!", __FUNCTION__);
2813 return -EINVAL;
2814 }
2815
2816 const uint8_t flashState = ANDROID_FLASH_STATE_UNAVAILABLE;
2817 UPDATE(md, ANDROID_FLASH_STATE, &flashState, 1);
2818
2819 // This means pipeline latency of X frame intervals. The maximum number is 4.
2820 const uint8_t requestPipelineMaxDepth = 4;
2821 UPDATE(md, ANDROID_REQUEST_PIPELINE_DEPTH, &requestPipelineMaxDepth, 1);
2822
2823 // android.scaler
2824 const int32_t crop_region[] = {
2825 active_array_size.data.i32[0], active_array_size.data.i32[1],
2826 active_array_size.data.i32[2], active_array_size.data.i32[3],
2827 };
2828 UPDATE(md, ANDROID_SCALER_CROP_REGION, crop_region, ARRAY_SIZE(crop_region));
2829
2830 // android.sensor
2831 UPDATE(md, ANDROID_SENSOR_TIMESTAMP, ×tamp, 1);
2832
2833 // android.statistics
2834 const uint8_t lensShadingMapMode = ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF;
2835 UPDATE(md, ANDROID_STATISTICS_LENS_SHADING_MAP_MODE, &lensShadingMapMode, 1);
2836
2837 const uint8_t sceneFlicker = ANDROID_STATISTICS_SCENE_FLICKER_NONE;
2838 UPDATE(md, ANDROID_STATISTICS_SCENE_FLICKER, &sceneFlicker, 1);
2839
2840 return OK;
2841 }
2842
2843 #undef ARRAY_SIZE
2844 #undef UPDATE
2845
2846 } // namespace implementation
2847 } // namespace V3_4
2848 } // namespace device
2849 } // namespace camera
2850 } // namespace hardware
2851 } // namespace android
2852