1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "instruction_builder.h"
18
19 #include "art_method-inl.h"
20 #include "base/arena_bit_vector.h"
21 #include "base/bit_vector-inl.h"
22 #include "block_builder.h"
23 #include "class_linker.h"
24 #include "data_type-inl.h"
25 #include "dex/bytecode_utils.h"
26 #include "dex/dex_instruction-inl.h"
27 #include "driver/compiler_driver-inl.h"
28 #include "driver/dex_compilation_unit.h"
29 #include "driver/compiler_options.h"
30 #include "imtable-inl.h"
31 #include "mirror/dex_cache.h"
32 #include "oat_file.h"
33 #include "optimizing_compiler_stats.h"
34 #include "quicken_info.h"
35 #include "scoped_thread_state_change-inl.h"
36 #include "sharpening.h"
37 #include "ssa_builder.h"
38 #include "well_known_classes.h"
39
40 namespace art {
41
HInstructionBuilder(HGraph * graph,HBasicBlockBuilder * block_builder,SsaBuilder * ssa_builder,const DexFile * dex_file,const CodeItemDebugInfoAccessor & accessor,DataType::Type return_type,const DexCompilationUnit * dex_compilation_unit,const DexCompilationUnit * outer_compilation_unit,CompilerDriver * compiler_driver,CodeGenerator * code_generator,ArrayRef<const uint8_t> interpreter_metadata,OptimizingCompilerStats * compiler_stats,VariableSizedHandleScope * handles,ScopedArenaAllocator * local_allocator)42 HInstructionBuilder::HInstructionBuilder(HGraph* graph,
43 HBasicBlockBuilder* block_builder,
44 SsaBuilder* ssa_builder,
45 const DexFile* dex_file,
46 const CodeItemDebugInfoAccessor& accessor,
47 DataType::Type return_type,
48 const DexCompilationUnit* dex_compilation_unit,
49 const DexCompilationUnit* outer_compilation_unit,
50 CompilerDriver* compiler_driver,
51 CodeGenerator* code_generator,
52 ArrayRef<const uint8_t> interpreter_metadata,
53 OptimizingCompilerStats* compiler_stats,
54 VariableSizedHandleScope* handles,
55 ScopedArenaAllocator* local_allocator)
56 : allocator_(graph->GetAllocator()),
57 graph_(graph),
58 handles_(handles),
59 dex_file_(dex_file),
60 code_item_accessor_(accessor),
61 return_type_(return_type),
62 block_builder_(block_builder),
63 ssa_builder_(ssa_builder),
64 compiler_driver_(compiler_driver),
65 code_generator_(code_generator),
66 dex_compilation_unit_(dex_compilation_unit),
67 outer_compilation_unit_(outer_compilation_unit),
68 quicken_info_(interpreter_metadata),
69 compilation_stats_(compiler_stats),
70 local_allocator_(local_allocator),
71 locals_for_(local_allocator->Adapter(kArenaAllocGraphBuilder)),
72 current_block_(nullptr),
73 current_locals_(nullptr),
74 latest_result_(nullptr),
75 current_this_parameter_(nullptr),
76 loop_headers_(local_allocator->Adapter(kArenaAllocGraphBuilder)) {
77 loop_headers_.reserve(kDefaultNumberOfLoops);
78 }
79
FindBlockStartingAt(uint32_t dex_pc) const80 HBasicBlock* HInstructionBuilder::FindBlockStartingAt(uint32_t dex_pc) const {
81 return block_builder_->GetBlockAt(dex_pc);
82 }
83
GetLocalsFor(HBasicBlock * block)84 inline ScopedArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsFor(HBasicBlock* block) {
85 ScopedArenaVector<HInstruction*>* locals = &locals_for_[block->GetBlockId()];
86 const size_t vregs = graph_->GetNumberOfVRegs();
87 if (locals->size() == vregs) {
88 return locals;
89 }
90 return GetLocalsForWithAllocation(block, locals, vregs);
91 }
92
GetLocalsForWithAllocation(HBasicBlock * block,ScopedArenaVector<HInstruction * > * locals,const size_t vregs)93 ScopedArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsForWithAllocation(
94 HBasicBlock* block,
95 ScopedArenaVector<HInstruction*>* locals,
96 const size_t vregs) {
97 DCHECK_NE(locals->size(), vregs);
98 locals->resize(vregs, nullptr);
99 if (block->IsCatchBlock()) {
100 // We record incoming inputs of catch phis at throwing instructions and
101 // must therefore eagerly create the phis. Phis for undefined vregs will
102 // be deleted when the first throwing instruction with the vreg undefined
103 // is encountered. Unused phis will be removed by dead phi analysis.
104 for (size_t i = 0; i < vregs; ++i) {
105 // No point in creating the catch phi if it is already undefined at
106 // the first throwing instruction.
107 HInstruction* current_local_value = (*current_locals_)[i];
108 if (current_local_value != nullptr) {
109 HPhi* phi = new (allocator_) HPhi(
110 allocator_,
111 i,
112 0,
113 current_local_value->GetType());
114 block->AddPhi(phi);
115 (*locals)[i] = phi;
116 }
117 }
118 }
119 return locals;
120 }
121
ValueOfLocalAt(HBasicBlock * block,size_t local)122 inline HInstruction* HInstructionBuilder::ValueOfLocalAt(HBasicBlock* block, size_t local) {
123 ScopedArenaVector<HInstruction*>* locals = GetLocalsFor(block);
124 return (*locals)[local];
125 }
126
InitializeBlockLocals()127 void HInstructionBuilder::InitializeBlockLocals() {
128 current_locals_ = GetLocalsFor(current_block_);
129
130 if (current_block_->IsCatchBlock()) {
131 // Catch phis were already created and inputs collected from throwing sites.
132 if (kIsDebugBuild) {
133 // Make sure there was at least one throwing instruction which initialized
134 // locals (guaranteed by HGraphBuilder) and that all try blocks have been
135 // visited already (from HTryBoundary scoping and reverse post order).
136 bool catch_block_visited = false;
137 for (HBasicBlock* current : graph_->GetReversePostOrder()) {
138 if (current == current_block_) {
139 catch_block_visited = true;
140 } else if (current->IsTryBlock()) {
141 const HTryBoundary& try_entry = current->GetTryCatchInformation()->GetTryEntry();
142 if (try_entry.HasExceptionHandler(*current_block_)) {
143 DCHECK(!catch_block_visited) << "Catch block visited before its try block.";
144 }
145 }
146 }
147 DCHECK_EQ(current_locals_->size(), graph_->GetNumberOfVRegs())
148 << "No instructions throwing into a live catch block.";
149 }
150 } else if (current_block_->IsLoopHeader()) {
151 // If the block is a loop header, we know we only have visited the pre header
152 // because we are visiting in reverse post order. We create phis for all initialized
153 // locals from the pre header. Their inputs will be populated at the end of
154 // the analysis.
155 for (size_t local = 0; local < current_locals_->size(); ++local) {
156 HInstruction* incoming =
157 ValueOfLocalAt(current_block_->GetLoopInformation()->GetPreHeader(), local);
158 if (incoming != nullptr) {
159 HPhi* phi = new (allocator_) HPhi(
160 allocator_,
161 local,
162 0,
163 incoming->GetType());
164 current_block_->AddPhi(phi);
165 (*current_locals_)[local] = phi;
166 }
167 }
168
169 // Save the loop header so that the last phase of the analysis knows which
170 // blocks need to be updated.
171 loop_headers_.push_back(current_block_);
172 } else if (current_block_->GetPredecessors().size() > 0) {
173 // All predecessors have already been visited because we are visiting in reverse post order.
174 // We merge the values of all locals, creating phis if those values differ.
175 for (size_t local = 0; local < current_locals_->size(); ++local) {
176 bool one_predecessor_has_no_value = false;
177 bool is_different = false;
178 HInstruction* value = ValueOfLocalAt(current_block_->GetPredecessors()[0], local);
179
180 for (HBasicBlock* predecessor : current_block_->GetPredecessors()) {
181 HInstruction* current = ValueOfLocalAt(predecessor, local);
182 if (current == nullptr) {
183 one_predecessor_has_no_value = true;
184 break;
185 } else if (current != value) {
186 is_different = true;
187 }
188 }
189
190 if (one_predecessor_has_no_value) {
191 // If one predecessor has no value for this local, we trust the verifier has
192 // successfully checked that there is a store dominating any read after this block.
193 continue;
194 }
195
196 if (is_different) {
197 HInstruction* first_input = ValueOfLocalAt(current_block_->GetPredecessors()[0], local);
198 HPhi* phi = new (allocator_) HPhi(
199 allocator_,
200 local,
201 current_block_->GetPredecessors().size(),
202 first_input->GetType());
203 for (size_t i = 0; i < current_block_->GetPredecessors().size(); i++) {
204 HInstruction* pred_value = ValueOfLocalAt(current_block_->GetPredecessors()[i], local);
205 phi->SetRawInputAt(i, pred_value);
206 }
207 current_block_->AddPhi(phi);
208 value = phi;
209 }
210 (*current_locals_)[local] = value;
211 }
212 }
213 }
214
PropagateLocalsToCatchBlocks()215 void HInstructionBuilder::PropagateLocalsToCatchBlocks() {
216 const HTryBoundary& try_entry = current_block_->GetTryCatchInformation()->GetTryEntry();
217 for (HBasicBlock* catch_block : try_entry.GetExceptionHandlers()) {
218 ScopedArenaVector<HInstruction*>* handler_locals = GetLocalsFor(catch_block);
219 DCHECK_EQ(handler_locals->size(), current_locals_->size());
220 for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) {
221 HInstruction* handler_value = (*handler_locals)[vreg];
222 if (handler_value == nullptr) {
223 // Vreg was undefined at a previously encountered throwing instruction
224 // and the catch phi was deleted. Do not record the local value.
225 continue;
226 }
227 DCHECK(handler_value->IsPhi());
228
229 HInstruction* local_value = (*current_locals_)[vreg];
230 if (local_value == nullptr) {
231 // This is the first instruction throwing into `catch_block` where
232 // `vreg` is undefined. Delete the catch phi.
233 catch_block->RemovePhi(handler_value->AsPhi());
234 (*handler_locals)[vreg] = nullptr;
235 } else {
236 // Vreg has been defined at all instructions throwing into `catch_block`
237 // encountered so far. Record the local value in the catch phi.
238 handler_value->AsPhi()->AddInput(local_value);
239 }
240 }
241 }
242 }
243
AppendInstruction(HInstruction * instruction)244 void HInstructionBuilder::AppendInstruction(HInstruction* instruction) {
245 current_block_->AddInstruction(instruction);
246 InitializeInstruction(instruction);
247 }
248
InsertInstructionAtTop(HInstruction * instruction)249 void HInstructionBuilder::InsertInstructionAtTop(HInstruction* instruction) {
250 if (current_block_->GetInstructions().IsEmpty()) {
251 current_block_->AddInstruction(instruction);
252 } else {
253 current_block_->InsertInstructionBefore(instruction, current_block_->GetFirstInstruction());
254 }
255 InitializeInstruction(instruction);
256 }
257
InitializeInstruction(HInstruction * instruction)258 void HInstructionBuilder::InitializeInstruction(HInstruction* instruction) {
259 if (instruction->NeedsEnvironment()) {
260 HEnvironment* environment = new (allocator_) HEnvironment(
261 allocator_,
262 current_locals_->size(),
263 graph_->GetArtMethod(),
264 instruction->GetDexPc(),
265 instruction);
266 environment->CopyFrom(ArrayRef<HInstruction* const>(*current_locals_));
267 instruction->SetRawEnvironment(environment);
268 }
269 }
270
LoadNullCheckedLocal(uint32_t register_index,uint32_t dex_pc)271 HInstruction* HInstructionBuilder::LoadNullCheckedLocal(uint32_t register_index, uint32_t dex_pc) {
272 HInstruction* ref = LoadLocal(register_index, DataType::Type::kReference);
273 if (!ref->CanBeNull()) {
274 return ref;
275 }
276
277 HNullCheck* null_check = new (allocator_) HNullCheck(ref, dex_pc);
278 AppendInstruction(null_check);
279 return null_check;
280 }
281
SetLoopHeaderPhiInputs()282 void HInstructionBuilder::SetLoopHeaderPhiInputs() {
283 for (size_t i = loop_headers_.size(); i > 0; --i) {
284 HBasicBlock* block = loop_headers_[i - 1];
285 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
286 HPhi* phi = it.Current()->AsPhi();
287 size_t vreg = phi->GetRegNumber();
288 for (HBasicBlock* predecessor : block->GetPredecessors()) {
289 HInstruction* value = ValueOfLocalAt(predecessor, vreg);
290 if (value == nullptr) {
291 // Vreg is undefined at this predecessor. Mark it dead and leave with
292 // fewer inputs than predecessors. SsaChecker will fail if not removed.
293 phi->SetDead();
294 break;
295 } else {
296 phi->AddInput(value);
297 }
298 }
299 }
300 }
301 }
302
IsBlockPopulated(HBasicBlock * block)303 static bool IsBlockPopulated(HBasicBlock* block) {
304 if (block->IsLoopHeader()) {
305 // Suspend checks were inserted into loop headers during building of dominator tree.
306 DCHECK(block->GetFirstInstruction()->IsSuspendCheck());
307 return block->GetFirstInstruction() != block->GetLastInstruction();
308 } else {
309 return !block->GetInstructions().IsEmpty();
310 }
311 }
312
Build()313 bool HInstructionBuilder::Build() {
314 DCHECK(code_item_accessor_.HasCodeItem());
315 locals_for_.resize(
316 graph_->GetBlocks().size(),
317 ScopedArenaVector<HInstruction*>(local_allocator_->Adapter(kArenaAllocGraphBuilder)));
318
319 // Find locations where we want to generate extra stackmaps for native debugging.
320 // This allows us to generate the info only at interesting points (for example,
321 // at start of java statement) rather than before every dex instruction.
322 const bool native_debuggable = compiler_driver_ != nullptr &&
323 compiler_driver_->GetCompilerOptions().GetNativeDebuggable();
324 ArenaBitVector* native_debug_info_locations = nullptr;
325 if (native_debuggable) {
326 native_debug_info_locations = FindNativeDebugInfoLocations();
327 }
328
329 for (HBasicBlock* block : graph_->GetReversePostOrder()) {
330 current_block_ = block;
331 uint32_t block_dex_pc = current_block_->GetDexPc();
332
333 InitializeBlockLocals();
334
335 if (current_block_->IsEntryBlock()) {
336 InitializeParameters();
337 AppendInstruction(new (allocator_) HSuspendCheck(0u));
338 AppendInstruction(new (allocator_) HGoto(0u));
339 continue;
340 } else if (current_block_->IsExitBlock()) {
341 AppendInstruction(new (allocator_) HExit());
342 continue;
343 } else if (current_block_->IsLoopHeader()) {
344 HSuspendCheck* suspend_check = new (allocator_) HSuspendCheck(current_block_->GetDexPc());
345 current_block_->GetLoopInformation()->SetSuspendCheck(suspend_check);
346 // This is slightly odd because the loop header might not be empty (TryBoundary).
347 // But we're still creating the environment with locals from the top of the block.
348 InsertInstructionAtTop(suspend_check);
349 }
350
351 if (block_dex_pc == kNoDexPc || current_block_ != block_builder_->GetBlockAt(block_dex_pc)) {
352 // Synthetic block that does not need to be populated.
353 DCHECK(IsBlockPopulated(current_block_));
354 continue;
355 }
356
357 DCHECK(!IsBlockPopulated(current_block_));
358
359 uint32_t quicken_index = 0;
360 if (CanDecodeQuickenedInfo()) {
361 quicken_index = block_builder_->GetQuickenIndex(block_dex_pc);
362 }
363
364 for (const DexInstructionPcPair& pair : code_item_accessor_.InstructionsFrom(block_dex_pc)) {
365 if (current_block_ == nullptr) {
366 // The previous instruction ended this block.
367 break;
368 }
369
370 const uint32_t dex_pc = pair.DexPc();
371 if (dex_pc != block_dex_pc && FindBlockStartingAt(dex_pc) != nullptr) {
372 // This dex_pc starts a new basic block.
373 break;
374 }
375
376 if (current_block_->IsTryBlock() && IsThrowingDexInstruction(pair.Inst())) {
377 PropagateLocalsToCatchBlocks();
378 }
379
380 if (native_debuggable && native_debug_info_locations->IsBitSet(dex_pc)) {
381 AppendInstruction(new (allocator_) HNativeDebugInfo(dex_pc));
382 }
383
384 if (!ProcessDexInstruction(pair.Inst(), dex_pc, quicken_index)) {
385 return false;
386 }
387
388 if (QuickenInfoTable::NeedsIndexForInstruction(&pair.Inst())) {
389 ++quicken_index;
390 }
391 }
392
393 if (current_block_ != nullptr) {
394 // Branching instructions clear current_block, so we know the last
395 // instruction of the current block is not a branching instruction.
396 // We add an unconditional Goto to the next block.
397 DCHECK_EQ(current_block_->GetSuccessors().size(), 1u);
398 AppendInstruction(new (allocator_) HGoto());
399 }
400 }
401
402 SetLoopHeaderPhiInputs();
403
404 return true;
405 }
406
BuildIntrinsic(ArtMethod * method)407 void HInstructionBuilder::BuildIntrinsic(ArtMethod* method) {
408 DCHECK(!code_item_accessor_.HasCodeItem());
409 DCHECK(method->IsIntrinsic());
410
411 locals_for_.resize(
412 graph_->GetBlocks().size(),
413 ScopedArenaVector<HInstruction*>(local_allocator_->Adapter(kArenaAllocGraphBuilder)));
414
415 // Fill the entry block. Do not add suspend check, we do not want a suspend
416 // check in intrinsics; intrinsic methods are supposed to be fast.
417 current_block_ = graph_->GetEntryBlock();
418 InitializeBlockLocals();
419 InitializeParameters();
420 AppendInstruction(new (allocator_) HGoto(0u));
421
422 // Fill the body.
423 current_block_ = current_block_->GetSingleSuccessor();
424 InitializeBlockLocals();
425 DCHECK(!IsBlockPopulated(current_block_));
426
427 // Add the invoke and return instruction. Use HInvokeStaticOrDirect even
428 // for methods that would normally use an HInvokeVirtual (sharpen the call).
429 size_t in_vregs = graph_->GetNumberOfInVRegs();
430 size_t number_of_arguments =
431 in_vregs - std::count(current_locals_->end() - in_vregs, current_locals_->end(), nullptr);
432 uint32_t method_idx = dex_compilation_unit_->GetDexMethodIndex();
433 MethodReference target_method(dex_file_, method_idx);
434 HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
435 HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall,
436 HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
437 /* method_load_data */ 0u
438 };
439 InvokeType invoke_type = dex_compilation_unit_->IsStatic() ? kStatic : kDirect;
440 HInvokeStaticOrDirect* invoke = new (allocator_) HInvokeStaticOrDirect(
441 allocator_,
442 number_of_arguments,
443 return_type_,
444 kNoDexPc,
445 method_idx,
446 method,
447 dispatch_info,
448 invoke_type,
449 target_method,
450 HInvokeStaticOrDirect::ClinitCheckRequirement::kNone);
451 HandleInvoke(invoke,
452 in_vregs,
453 /* args */ nullptr,
454 graph_->GetNumberOfVRegs() - in_vregs,
455 /* is_range */ true,
456 dex_file_->GetMethodShorty(method_idx),
457 /* clinit_check */ nullptr,
458 /* is_unresolved */ false);
459
460 // Add the return instruction.
461 if (return_type_ == DataType::Type::kVoid) {
462 AppendInstruction(new (allocator_) HReturnVoid());
463 } else {
464 AppendInstruction(new (allocator_) HReturn(invoke));
465 }
466
467 // Fill the exit block.
468 DCHECK_EQ(current_block_->GetSingleSuccessor(), graph_->GetExitBlock());
469 current_block_ = graph_->GetExitBlock();
470 InitializeBlockLocals();
471 AppendInstruction(new (allocator_) HExit());
472 }
473
FindNativeDebugInfoLocations()474 ArenaBitVector* HInstructionBuilder::FindNativeDebugInfoLocations() {
475 // The callback gets called when the line number changes.
476 // In other words, it marks the start of new java statement.
477 struct Callback {
478 static bool Position(void* ctx, const DexFile::PositionInfo& entry) {
479 static_cast<ArenaBitVector*>(ctx)->SetBit(entry.address_);
480 return false;
481 }
482 };
483 ArenaBitVector* locations = ArenaBitVector::Create(local_allocator_,
484 code_item_accessor_.InsnsSizeInCodeUnits(),
485 /* expandable */ false,
486 kArenaAllocGraphBuilder);
487 locations->ClearAllBits();
488 dex_file_->DecodeDebugPositionInfo(code_item_accessor_.DebugInfoOffset(),
489 Callback::Position,
490 locations);
491 // Instruction-specific tweaks.
492 for (const DexInstructionPcPair& inst : code_item_accessor_) {
493 switch (inst->Opcode()) {
494 case Instruction::MOVE_EXCEPTION: {
495 // Stop in native debugger after the exception has been moved.
496 // The compiler also expects the move at the start of basic block so
497 // we do not want to interfere by inserting native-debug-info before it.
498 locations->ClearBit(inst.DexPc());
499 DexInstructionIterator next = std::next(DexInstructionIterator(inst));
500 DCHECK(next.DexPc() != inst.DexPc());
501 if (next != code_item_accessor_.end()) {
502 locations->SetBit(next.DexPc());
503 }
504 break;
505 }
506 default:
507 break;
508 }
509 }
510 return locations;
511 }
512
LoadLocal(uint32_t reg_number,DataType::Type type) const513 HInstruction* HInstructionBuilder::LoadLocal(uint32_t reg_number, DataType::Type type) const {
514 HInstruction* value = (*current_locals_)[reg_number];
515 DCHECK(value != nullptr);
516
517 // If the operation requests a specific type, we make sure its input is of that type.
518 if (type != value->GetType()) {
519 if (DataType::IsFloatingPointType(type)) {
520 value = ssa_builder_->GetFloatOrDoubleEquivalent(value, type);
521 } else if (type == DataType::Type::kReference) {
522 value = ssa_builder_->GetReferenceTypeEquivalent(value);
523 }
524 DCHECK(value != nullptr);
525 }
526
527 return value;
528 }
529
UpdateLocal(uint32_t reg_number,HInstruction * stored_value)530 void HInstructionBuilder::UpdateLocal(uint32_t reg_number, HInstruction* stored_value) {
531 DataType::Type stored_type = stored_value->GetType();
532 DCHECK_NE(stored_type, DataType::Type::kVoid);
533
534 // Storing into vreg `reg_number` may implicitly invalidate the surrounding
535 // registers. Consider the following cases:
536 // (1) Storing a wide value must overwrite previous values in both `reg_number`
537 // and `reg_number+1`. We store `nullptr` in `reg_number+1`.
538 // (2) If vreg `reg_number-1` holds a wide value, writing into `reg_number`
539 // must invalidate it. We store `nullptr` in `reg_number-1`.
540 // Consequently, storing a wide value into the high vreg of another wide value
541 // will invalidate both `reg_number-1` and `reg_number+1`.
542
543 if (reg_number != 0) {
544 HInstruction* local_low = (*current_locals_)[reg_number - 1];
545 if (local_low != nullptr && DataType::Is64BitType(local_low->GetType())) {
546 // The vreg we are storing into was previously the high vreg of a pair.
547 // We need to invalidate its low vreg.
548 DCHECK((*current_locals_)[reg_number] == nullptr);
549 (*current_locals_)[reg_number - 1] = nullptr;
550 }
551 }
552
553 (*current_locals_)[reg_number] = stored_value;
554 if (DataType::Is64BitType(stored_type)) {
555 // We are storing a pair. Invalidate the instruction in the high vreg.
556 (*current_locals_)[reg_number + 1] = nullptr;
557 }
558 }
559
InitializeParameters()560 void HInstructionBuilder::InitializeParameters() {
561 DCHECK(current_block_->IsEntryBlock());
562
563 // outer_compilation_unit_ is null only when unit testing.
564 if (outer_compilation_unit_ == nullptr) {
565 return;
566 }
567
568 const char* shorty = dex_compilation_unit_->GetShorty();
569 uint16_t number_of_parameters = graph_->GetNumberOfInVRegs();
570 uint16_t locals_index = graph_->GetNumberOfLocalVRegs();
571 uint16_t parameter_index = 0;
572
573 const DexFile::MethodId& referrer_method_id =
574 dex_file_->GetMethodId(dex_compilation_unit_->GetDexMethodIndex());
575 if (!dex_compilation_unit_->IsStatic()) {
576 // Add the implicit 'this' argument, not expressed in the signature.
577 HParameterValue* parameter = new (allocator_) HParameterValue(*dex_file_,
578 referrer_method_id.class_idx_,
579 parameter_index++,
580 DataType::Type::kReference,
581 /* is_this */ true);
582 AppendInstruction(parameter);
583 UpdateLocal(locals_index++, parameter);
584 number_of_parameters--;
585 current_this_parameter_ = parameter;
586 } else {
587 DCHECK(current_this_parameter_ == nullptr);
588 }
589
590 const DexFile::ProtoId& proto = dex_file_->GetMethodPrototype(referrer_method_id);
591 const DexFile::TypeList* arg_types = dex_file_->GetProtoParameters(proto);
592 for (int i = 0, shorty_pos = 1; i < number_of_parameters; i++) {
593 HParameterValue* parameter = new (allocator_) HParameterValue(
594 *dex_file_,
595 arg_types->GetTypeItem(shorty_pos - 1).type_idx_,
596 parameter_index++,
597 DataType::FromShorty(shorty[shorty_pos]),
598 /* is_this */ false);
599 ++shorty_pos;
600 AppendInstruction(parameter);
601 // Store the parameter value in the local that the dex code will use
602 // to reference that parameter.
603 UpdateLocal(locals_index++, parameter);
604 if (DataType::Is64BitType(parameter->GetType())) {
605 i++;
606 locals_index++;
607 parameter_index++;
608 }
609 }
610 }
611
612 template<typename T>
If_22t(const Instruction & instruction,uint32_t dex_pc)613 void HInstructionBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) {
614 HInstruction* first = LoadLocal(instruction.VRegA(), DataType::Type::kInt32);
615 HInstruction* second = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
616 T* comparison = new (allocator_) T(first, second, dex_pc);
617 AppendInstruction(comparison);
618 AppendInstruction(new (allocator_) HIf(comparison, dex_pc));
619 current_block_ = nullptr;
620 }
621
622 template<typename T>
If_21t(const Instruction & instruction,uint32_t dex_pc)623 void HInstructionBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) {
624 HInstruction* value = LoadLocal(instruction.VRegA(), DataType::Type::kInt32);
625 T* comparison = new (allocator_) T(value, graph_->GetIntConstant(0, dex_pc), dex_pc);
626 AppendInstruction(comparison);
627 AppendInstruction(new (allocator_) HIf(comparison, dex_pc));
628 current_block_ = nullptr;
629 }
630
631 template<typename T>
Unop_12x(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)632 void HInstructionBuilder::Unop_12x(const Instruction& instruction,
633 DataType::Type type,
634 uint32_t dex_pc) {
635 HInstruction* first = LoadLocal(instruction.VRegB(), type);
636 AppendInstruction(new (allocator_) T(type, first, dex_pc));
637 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
638 }
639
Conversion_12x(const Instruction & instruction,DataType::Type input_type,DataType::Type result_type,uint32_t dex_pc)640 void HInstructionBuilder::Conversion_12x(const Instruction& instruction,
641 DataType::Type input_type,
642 DataType::Type result_type,
643 uint32_t dex_pc) {
644 HInstruction* first = LoadLocal(instruction.VRegB(), input_type);
645 AppendInstruction(new (allocator_) HTypeConversion(result_type, first, dex_pc));
646 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
647 }
648
649 template<typename T>
Binop_23x(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)650 void HInstructionBuilder::Binop_23x(const Instruction& instruction,
651 DataType::Type type,
652 uint32_t dex_pc) {
653 HInstruction* first = LoadLocal(instruction.VRegB(), type);
654 HInstruction* second = LoadLocal(instruction.VRegC(), type);
655 AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
656 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
657 }
658
659 template<typename T>
Binop_23x_shift(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)660 void HInstructionBuilder::Binop_23x_shift(const Instruction& instruction,
661 DataType::Type type,
662 uint32_t dex_pc) {
663 HInstruction* first = LoadLocal(instruction.VRegB(), type);
664 HInstruction* second = LoadLocal(instruction.VRegC(), DataType::Type::kInt32);
665 AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
666 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
667 }
668
Binop_23x_cmp(const Instruction & instruction,DataType::Type type,ComparisonBias bias,uint32_t dex_pc)669 void HInstructionBuilder::Binop_23x_cmp(const Instruction& instruction,
670 DataType::Type type,
671 ComparisonBias bias,
672 uint32_t dex_pc) {
673 HInstruction* first = LoadLocal(instruction.VRegB(), type);
674 HInstruction* second = LoadLocal(instruction.VRegC(), type);
675 AppendInstruction(new (allocator_) HCompare(type, first, second, bias, dex_pc));
676 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
677 }
678
679 template<typename T>
Binop_12x_shift(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)680 void HInstructionBuilder::Binop_12x_shift(const Instruction& instruction,
681 DataType::Type type,
682 uint32_t dex_pc) {
683 HInstruction* first = LoadLocal(instruction.VRegA(), type);
684 HInstruction* second = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
685 AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
686 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
687 }
688
689 template<typename T>
Binop_12x(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)690 void HInstructionBuilder::Binop_12x(const Instruction& instruction,
691 DataType::Type type,
692 uint32_t dex_pc) {
693 HInstruction* first = LoadLocal(instruction.VRegA(), type);
694 HInstruction* second = LoadLocal(instruction.VRegB(), type);
695 AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
696 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
697 }
698
699 template<typename T>
Binop_22s(const Instruction & instruction,bool reverse,uint32_t dex_pc)700 void HInstructionBuilder::Binop_22s(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
701 HInstruction* first = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
702 HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s(), dex_pc);
703 if (reverse) {
704 std::swap(first, second);
705 }
706 AppendInstruction(new (allocator_) T(DataType::Type::kInt32, first, second, dex_pc));
707 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
708 }
709
710 template<typename T>
Binop_22b(const Instruction & instruction,bool reverse,uint32_t dex_pc)711 void HInstructionBuilder::Binop_22b(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
712 HInstruction* first = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
713 HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b(), dex_pc);
714 if (reverse) {
715 std::swap(first, second);
716 }
717 AppendInstruction(new (allocator_) T(DataType::Type::kInt32, first, second, dex_pc));
718 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
719 }
720
721 // Does the method being compiled need any constructor barriers being inserted?
722 // (Always 'false' for methods that aren't <init>.)
RequiresConstructorBarrier(const DexCompilationUnit * cu,CompilerDriver * driver)723 static bool RequiresConstructorBarrier(const DexCompilationUnit* cu, CompilerDriver* driver) {
724 // Can be null in unit tests only.
725 if (UNLIKELY(cu == nullptr)) {
726 return false;
727 }
728
729 Thread* self = Thread::Current();
730 return cu->IsConstructor()
731 && !cu->IsStatic()
732 // RequiresConstructorBarrier must only be queried for <init> methods;
733 // it's effectively "false" for every other method.
734 //
735 // See CompilerDriver::RequiresConstructBarrier for more explanation.
736 && driver->RequiresConstructorBarrier(self, cu->GetDexFile(), cu->GetClassDefIndex());
737 }
738
739 // Returns true if `block` has only one successor which starts at the next
740 // dex_pc after `instruction` at `dex_pc`.
IsFallthroughInstruction(const Instruction & instruction,uint32_t dex_pc,HBasicBlock * block)741 static bool IsFallthroughInstruction(const Instruction& instruction,
742 uint32_t dex_pc,
743 HBasicBlock* block) {
744 uint32_t next_dex_pc = dex_pc + instruction.SizeInCodeUnits();
745 return block->GetSingleSuccessor()->GetDexPc() == next_dex_pc;
746 }
747
BuildSwitch(const Instruction & instruction,uint32_t dex_pc)748 void HInstructionBuilder::BuildSwitch(const Instruction& instruction, uint32_t dex_pc) {
749 HInstruction* value = LoadLocal(instruction.VRegA(), DataType::Type::kInt32);
750 DexSwitchTable table(instruction, dex_pc);
751
752 if (table.GetNumEntries() == 0) {
753 // Empty Switch. Code falls through to the next block.
754 DCHECK(IsFallthroughInstruction(instruction, dex_pc, current_block_));
755 AppendInstruction(new (allocator_) HGoto(dex_pc));
756 } else if (table.ShouldBuildDecisionTree()) {
757 for (DexSwitchTableIterator it(table); !it.Done(); it.Advance()) {
758 HInstruction* case_value = graph_->GetIntConstant(it.CurrentKey(), dex_pc);
759 HEqual* comparison = new (allocator_) HEqual(value, case_value, dex_pc);
760 AppendInstruction(comparison);
761 AppendInstruction(new (allocator_) HIf(comparison, dex_pc));
762
763 if (!it.IsLast()) {
764 current_block_ = FindBlockStartingAt(it.GetDexPcForCurrentIndex());
765 }
766 }
767 } else {
768 AppendInstruction(
769 new (allocator_) HPackedSwitch(table.GetEntryAt(0), table.GetNumEntries(), value, dex_pc));
770 }
771
772 current_block_ = nullptr;
773 }
774
BuildReturn(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)775 void HInstructionBuilder::BuildReturn(const Instruction& instruction,
776 DataType::Type type,
777 uint32_t dex_pc) {
778 if (type == DataType::Type::kVoid) {
779 // Only <init> (which is a return-void) could possibly have a constructor fence.
780 // This may insert additional redundant constructor fences from the super constructors.
781 // TODO: remove redundant constructor fences (b/36656456).
782 if (RequiresConstructorBarrier(dex_compilation_unit_, compiler_driver_)) {
783 // Compiling instance constructor.
784 DCHECK_STREQ("<init>", graph_->GetMethodName());
785
786 HInstruction* fence_target = current_this_parameter_;
787 DCHECK(fence_target != nullptr);
788
789 AppendInstruction(new (allocator_) HConstructorFence(fence_target, dex_pc, allocator_));
790 MaybeRecordStat(
791 compilation_stats_,
792 MethodCompilationStat::kConstructorFenceGeneratedFinal);
793 }
794 AppendInstruction(new (allocator_) HReturnVoid(dex_pc));
795 } else {
796 DCHECK(!RequiresConstructorBarrier(dex_compilation_unit_, compiler_driver_));
797 HInstruction* value = LoadLocal(instruction.VRegA(), type);
798 AppendInstruction(new (allocator_) HReturn(value, dex_pc));
799 }
800 current_block_ = nullptr;
801 }
802
GetInvokeTypeFromOpCode(Instruction::Code opcode)803 static InvokeType GetInvokeTypeFromOpCode(Instruction::Code opcode) {
804 switch (opcode) {
805 case Instruction::INVOKE_STATIC:
806 case Instruction::INVOKE_STATIC_RANGE:
807 return kStatic;
808 case Instruction::INVOKE_DIRECT:
809 case Instruction::INVOKE_DIRECT_RANGE:
810 return kDirect;
811 case Instruction::INVOKE_VIRTUAL:
812 case Instruction::INVOKE_VIRTUAL_QUICK:
813 case Instruction::INVOKE_VIRTUAL_RANGE:
814 case Instruction::INVOKE_VIRTUAL_RANGE_QUICK:
815 return kVirtual;
816 case Instruction::INVOKE_INTERFACE:
817 case Instruction::INVOKE_INTERFACE_RANGE:
818 return kInterface;
819 case Instruction::INVOKE_SUPER_RANGE:
820 case Instruction::INVOKE_SUPER:
821 return kSuper;
822 default:
823 LOG(FATAL) << "Unexpected invoke opcode: " << opcode;
824 UNREACHABLE();
825 }
826 }
827
ResolveMethod(uint16_t method_idx,InvokeType invoke_type)828 ArtMethod* HInstructionBuilder::ResolveMethod(uint16_t method_idx, InvokeType invoke_type) {
829 ScopedObjectAccess soa(Thread::Current());
830
831 ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker();
832 Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader();
833
834 ArtMethod* resolved_method =
835 class_linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
836 method_idx,
837 dex_compilation_unit_->GetDexCache(),
838 class_loader,
839 graph_->GetArtMethod(),
840 invoke_type);
841
842 if (UNLIKELY(resolved_method == nullptr)) {
843 // Clean up any exception left by type resolution.
844 soa.Self()->ClearException();
845 return nullptr;
846 }
847
848 // The referrer may be unresolved for AOT if we're compiling a class that cannot be
849 // resolved because, for example, we don't find a superclass in the classpath.
850 if (graph_->GetArtMethod() == nullptr) {
851 // The class linker cannot check access without a referrer, so we have to do it.
852 // Fall back to HInvokeUnresolved if the method isn't public.
853 if (!resolved_method->IsPublic()) {
854 return nullptr;
855 }
856 }
857
858 // We have to special case the invoke-super case, as ClassLinker::ResolveMethod does not.
859 // We need to look at the referrer's super class vtable. We need to do this to know if we need to
860 // make this an invoke-unresolved to handle cross-dex invokes or abstract super methods, both of
861 // which require runtime handling.
862 if (invoke_type == kSuper) {
863 ObjPtr<mirror::Class> compiling_class = GetCompilingClass();
864 if (compiling_class == nullptr) {
865 // We could not determine the method's class we need to wait until runtime.
866 DCHECK(Runtime::Current()->IsAotCompiler());
867 return nullptr;
868 }
869 ObjPtr<mirror::Class> referenced_class = class_linker->LookupResolvedType(
870 dex_compilation_unit_->GetDexFile()->GetMethodId(method_idx).class_idx_,
871 dex_compilation_unit_->GetDexCache().Get(),
872 class_loader.Get());
873 DCHECK(referenced_class != nullptr); // We have already resolved a method from this class.
874 if (!referenced_class->IsAssignableFrom(compiling_class)) {
875 // We cannot statically determine the target method. The runtime will throw a
876 // NoSuchMethodError on this one.
877 return nullptr;
878 }
879 ArtMethod* actual_method;
880 if (referenced_class->IsInterface()) {
881 actual_method = referenced_class->FindVirtualMethodForInterfaceSuper(
882 resolved_method, class_linker->GetImagePointerSize());
883 } else {
884 uint16_t vtable_index = resolved_method->GetMethodIndex();
885 actual_method = compiling_class->GetSuperClass()->GetVTableEntry(
886 vtable_index, class_linker->GetImagePointerSize());
887 }
888 if (actual_method != resolved_method &&
889 !IsSameDexFile(*actual_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) {
890 // The back-end code generator relies on this check in order to ensure that it will not
891 // attempt to read the dex_cache with a dex_method_index that is not from the correct
892 // dex_file. If we didn't do this check then the dex_method_index will not be updated in the
893 // builder, which means that the code-generator (and compiler driver during sharpening and
894 // inliner, maybe) might invoke an incorrect method.
895 // TODO: The actual method could still be referenced in the current dex file, so we
896 // could try locating it.
897 // TODO: Remove the dex_file restriction.
898 return nullptr;
899 }
900 if (!actual_method->IsInvokable()) {
901 // Fail if the actual method cannot be invoked. Otherwise, the runtime resolution stub
902 // could resolve the callee to the wrong method.
903 return nullptr;
904 }
905 resolved_method = actual_method;
906 }
907
908 return resolved_method;
909 }
910
IsStringConstructor(ArtMethod * method)911 static bool IsStringConstructor(ArtMethod* method) {
912 ScopedObjectAccess soa(Thread::Current());
913 return method->GetDeclaringClass()->IsStringClass() && method->IsConstructor();
914 }
915
BuildInvoke(const Instruction & instruction,uint32_t dex_pc,uint32_t method_idx,uint32_t number_of_vreg_arguments,bool is_range,uint32_t * args,uint32_t register_index)916 bool HInstructionBuilder::BuildInvoke(const Instruction& instruction,
917 uint32_t dex_pc,
918 uint32_t method_idx,
919 uint32_t number_of_vreg_arguments,
920 bool is_range,
921 uint32_t* args,
922 uint32_t register_index) {
923 InvokeType invoke_type = GetInvokeTypeFromOpCode(instruction.Opcode());
924 const char* descriptor = dex_file_->GetMethodShorty(method_idx);
925 DataType::Type return_type = DataType::FromShorty(descriptor[0]);
926
927 // Remove the return type from the 'proto'.
928 size_t number_of_arguments = strlen(descriptor) - 1;
929 if (invoke_type != kStatic) { // instance call
930 // One extra argument for 'this'.
931 number_of_arguments++;
932 }
933
934 ArtMethod* resolved_method = ResolveMethod(method_idx, invoke_type);
935
936 if (UNLIKELY(resolved_method == nullptr)) {
937 MaybeRecordStat(compilation_stats_,
938 MethodCompilationStat::kUnresolvedMethod);
939 HInvoke* invoke = new (allocator_) HInvokeUnresolved(allocator_,
940 number_of_arguments,
941 return_type,
942 dex_pc,
943 method_idx,
944 invoke_type);
945 return HandleInvoke(invoke,
946 number_of_vreg_arguments,
947 args,
948 register_index,
949 is_range,
950 descriptor,
951 nullptr, /* clinit_check */
952 true /* is_unresolved */);
953 }
954
955 // Replace calls to String.<init> with StringFactory.
956 if (IsStringConstructor(resolved_method)) {
957 uint32_t string_init_entry_point = WellKnownClasses::StringInitToEntryPoint(resolved_method);
958 HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
959 HInvokeStaticOrDirect::MethodLoadKind::kStringInit,
960 HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
961 dchecked_integral_cast<uint64_t>(string_init_entry_point)
962 };
963 ScopedObjectAccess soa(Thread::Current());
964 MethodReference target_method(resolved_method->GetDexFile(),
965 resolved_method->GetDexMethodIndex());
966 // We pass null for the resolved_method to ensure optimizations
967 // don't rely on it.
968 HInvoke* invoke = new (allocator_) HInvokeStaticOrDirect(
969 allocator_,
970 number_of_arguments - 1,
971 DataType::Type::kReference /*return_type */,
972 dex_pc,
973 method_idx,
974 nullptr /* resolved_method */,
975 dispatch_info,
976 invoke_type,
977 target_method,
978 HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit);
979 return HandleStringInit(invoke,
980 number_of_vreg_arguments,
981 args,
982 register_index,
983 is_range,
984 descriptor);
985 }
986
987 // Potential class initialization check, in the case of a static method call.
988 HClinitCheck* clinit_check = nullptr;
989 HInvoke* invoke = nullptr;
990 if (invoke_type == kDirect || invoke_type == kStatic || invoke_type == kSuper) {
991 // By default, consider that the called method implicitly requires
992 // an initialization check of its declaring method.
993 HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement
994 = HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit;
995 ScopedObjectAccess soa(Thread::Current());
996 if (invoke_type == kStatic) {
997 clinit_check = ProcessClinitCheckForInvoke(
998 dex_pc, resolved_method, &clinit_check_requirement);
999 } else if (invoke_type == kSuper) {
1000 if (IsSameDexFile(*resolved_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) {
1001 // Update the method index to the one resolved. Note that this may be a no-op if
1002 // we resolved to the method referenced by the instruction.
1003 method_idx = resolved_method->GetDexMethodIndex();
1004 }
1005 }
1006
1007 HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
1008 HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall,
1009 HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
1010 0u
1011 };
1012 MethodReference target_method(resolved_method->GetDexFile(),
1013 resolved_method->GetDexMethodIndex());
1014 invoke = new (allocator_) HInvokeStaticOrDirect(allocator_,
1015 number_of_arguments,
1016 return_type,
1017 dex_pc,
1018 method_idx,
1019 resolved_method,
1020 dispatch_info,
1021 invoke_type,
1022 target_method,
1023 clinit_check_requirement);
1024 } else if (invoke_type == kVirtual) {
1025 ScopedObjectAccess soa(Thread::Current()); // Needed for the method index
1026 invoke = new (allocator_) HInvokeVirtual(allocator_,
1027 number_of_arguments,
1028 return_type,
1029 dex_pc,
1030 method_idx,
1031 resolved_method,
1032 resolved_method->GetMethodIndex());
1033 } else {
1034 DCHECK_EQ(invoke_type, kInterface);
1035 ScopedObjectAccess soa(Thread::Current()); // Needed for the IMT index.
1036 invoke = new (allocator_) HInvokeInterface(allocator_,
1037 number_of_arguments,
1038 return_type,
1039 dex_pc,
1040 method_idx,
1041 resolved_method,
1042 ImTable::GetImtIndex(resolved_method));
1043 }
1044
1045 return HandleInvoke(invoke,
1046 number_of_vreg_arguments,
1047 args,
1048 register_index,
1049 is_range,
1050 descriptor,
1051 clinit_check,
1052 false /* is_unresolved */);
1053 }
1054
BuildInvokePolymorphic(const Instruction & instruction ATTRIBUTE_UNUSED,uint32_t dex_pc,uint32_t method_idx,uint32_t proto_idx,uint32_t number_of_vreg_arguments,bool is_range,uint32_t * args,uint32_t register_index)1055 bool HInstructionBuilder::BuildInvokePolymorphic(const Instruction& instruction ATTRIBUTE_UNUSED,
1056 uint32_t dex_pc,
1057 uint32_t method_idx,
1058 uint32_t proto_idx,
1059 uint32_t number_of_vreg_arguments,
1060 bool is_range,
1061 uint32_t* args,
1062 uint32_t register_index) {
1063 const char* descriptor = dex_file_->GetShorty(proto_idx);
1064 DCHECK_EQ(1 + ArtMethod::NumArgRegisters(descriptor), number_of_vreg_arguments);
1065 DataType::Type return_type = DataType::FromShorty(descriptor[0]);
1066 size_t number_of_arguments = strlen(descriptor);
1067 HInvoke* invoke = new (allocator_) HInvokePolymorphic(allocator_,
1068 number_of_arguments,
1069 return_type,
1070 dex_pc,
1071 method_idx);
1072 return HandleInvoke(invoke,
1073 number_of_vreg_arguments,
1074 args,
1075 register_index,
1076 is_range,
1077 descriptor,
1078 nullptr /* clinit_check */,
1079 false /* is_unresolved */);
1080 }
1081
BuildNewInstance(dex::TypeIndex type_index,uint32_t dex_pc)1082 HNewInstance* HInstructionBuilder::BuildNewInstance(dex::TypeIndex type_index, uint32_t dex_pc) {
1083 ScopedObjectAccess soa(Thread::Current());
1084
1085 HLoadClass* load_class = BuildLoadClass(type_index, dex_pc);
1086
1087 HInstruction* cls = load_class;
1088 Handle<mirror::Class> klass = load_class->GetClass();
1089
1090 if (!IsInitialized(klass)) {
1091 cls = new (allocator_) HClinitCheck(load_class, dex_pc);
1092 AppendInstruction(cls);
1093 }
1094
1095 // Only the access check entrypoint handles the finalizable class case. If we
1096 // need access checks, then we haven't resolved the method and the class may
1097 // again be finalizable.
1098 QuickEntrypointEnum entrypoint = kQuickAllocObjectInitialized;
1099 if (load_class->NeedsAccessCheck() || klass->IsFinalizable() || !klass->IsInstantiable()) {
1100 entrypoint = kQuickAllocObjectWithChecks;
1101 }
1102
1103 // Consider classes we haven't resolved as potentially finalizable.
1104 bool finalizable = (klass == nullptr) || klass->IsFinalizable();
1105
1106 HNewInstance* new_instance = new (allocator_) HNewInstance(
1107 cls,
1108 dex_pc,
1109 type_index,
1110 *dex_compilation_unit_->GetDexFile(),
1111 finalizable,
1112 entrypoint);
1113 AppendInstruction(new_instance);
1114
1115 return new_instance;
1116 }
1117
BuildConstructorFenceForAllocation(HInstruction * allocation)1118 void HInstructionBuilder::BuildConstructorFenceForAllocation(HInstruction* allocation) {
1119 DCHECK(allocation != nullptr &&
1120 (allocation->IsNewInstance() ||
1121 allocation->IsNewArray())); // corresponding to "new" keyword in JLS.
1122
1123 if (allocation->IsNewInstance()) {
1124 // STRING SPECIAL HANDLING:
1125 // -------------------------------
1126 // Strings have a real HNewInstance node but they end up always having 0 uses.
1127 // All uses of a String HNewInstance are always transformed to replace their input
1128 // of the HNewInstance with an input of the invoke to StringFactory.
1129 //
1130 // Do not emit an HConstructorFence here since it can inhibit some String new-instance
1131 // optimizations (to pass checker tests that rely on those optimizations).
1132 HNewInstance* new_inst = allocation->AsNewInstance();
1133 HLoadClass* load_class = new_inst->GetLoadClass();
1134
1135 Thread* self = Thread::Current();
1136 ScopedObjectAccess soa(self);
1137 StackHandleScope<1> hs(self);
1138 Handle<mirror::Class> klass = load_class->GetClass();
1139 if (klass != nullptr && klass->IsStringClass()) {
1140 return;
1141 // Note: Do not use allocation->IsStringAlloc which requires
1142 // a valid ReferenceTypeInfo, but that doesn't get made until after reference type
1143 // propagation (and instruction builder is too early).
1144 }
1145 // (In terms of correctness, the StringFactory needs to provide its own
1146 // default initialization barrier, see below.)
1147 }
1148
1149 // JLS 17.4.5 "Happens-before Order" describes:
1150 //
1151 // The default initialization of any object happens-before any other actions (other than
1152 // default-writes) of a program.
1153 //
1154 // In our implementation the default initialization of an object to type T means
1155 // setting all of its initial data (object[0..size)) to 0, and setting the
1156 // object's class header (i.e. object.getClass() == T.class).
1157 //
1158 // In practice this fence ensures that the writes to the object header
1159 // are visible to other threads if this object escapes the current thread.
1160 // (and in theory the 0-initializing, but that happens automatically
1161 // when new memory pages are mapped in by the OS).
1162 HConstructorFence* ctor_fence =
1163 new (allocator_) HConstructorFence(allocation, allocation->GetDexPc(), allocator_);
1164 AppendInstruction(ctor_fence);
1165 MaybeRecordStat(
1166 compilation_stats_,
1167 MethodCompilationStat::kConstructorFenceGeneratedNew);
1168 }
1169
IsSubClass(ObjPtr<mirror::Class> to_test,ObjPtr<mirror::Class> super_class)1170 static bool IsSubClass(ObjPtr<mirror::Class> to_test, ObjPtr<mirror::Class> super_class)
1171 REQUIRES_SHARED(Locks::mutator_lock_) {
1172 return to_test != nullptr && !to_test->IsInterface() && to_test->IsSubClass(super_class);
1173 }
1174
IsInitialized(Handle<mirror::Class> cls) const1175 bool HInstructionBuilder::IsInitialized(Handle<mirror::Class> cls) const {
1176 if (cls == nullptr) {
1177 return false;
1178 }
1179
1180 // `CanAssumeClassIsLoaded` will return true if we're JITting, or will
1181 // check whether the class is in an image for the AOT compilation.
1182 if (cls->IsInitialized() &&
1183 compiler_driver_->CanAssumeClassIsLoaded(cls.Get())) {
1184 return true;
1185 }
1186
1187 if (IsSubClass(GetOutermostCompilingClass(), cls.Get())) {
1188 return true;
1189 }
1190
1191 // TODO: We should walk over the inlined methods, but we don't pass
1192 // that information to the builder.
1193 if (IsSubClass(GetCompilingClass(), cls.Get())) {
1194 return true;
1195 }
1196
1197 return false;
1198 }
1199
ProcessClinitCheckForInvoke(uint32_t dex_pc,ArtMethod * resolved_method,HInvokeStaticOrDirect::ClinitCheckRequirement * clinit_check_requirement)1200 HClinitCheck* HInstructionBuilder::ProcessClinitCheckForInvoke(
1201 uint32_t dex_pc,
1202 ArtMethod* resolved_method,
1203 HInvokeStaticOrDirect::ClinitCheckRequirement* clinit_check_requirement) {
1204 Handle<mirror::Class> klass = handles_->NewHandle(resolved_method->GetDeclaringClass());
1205
1206 HClinitCheck* clinit_check = nullptr;
1207 if (IsInitialized(klass)) {
1208 *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
1209 } else {
1210 HLoadClass* cls = BuildLoadClass(klass->GetDexTypeIndex(),
1211 klass->GetDexFile(),
1212 klass,
1213 dex_pc,
1214 /* needs_access_check */ false);
1215 if (cls != nullptr) {
1216 *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit;
1217 clinit_check = new (allocator_) HClinitCheck(cls, dex_pc);
1218 AppendInstruction(clinit_check);
1219 }
1220 }
1221 return clinit_check;
1222 }
1223
SetupInvokeArguments(HInvoke * invoke,uint32_t number_of_vreg_arguments,uint32_t * args,uint32_t register_index,bool is_range,const char * descriptor,size_t start_index,size_t * argument_index)1224 bool HInstructionBuilder::SetupInvokeArguments(HInvoke* invoke,
1225 uint32_t number_of_vreg_arguments,
1226 uint32_t* args,
1227 uint32_t register_index,
1228 bool is_range,
1229 const char* descriptor,
1230 size_t start_index,
1231 size_t* argument_index) {
1232 uint32_t descriptor_index = 1; // Skip the return type.
1233
1234 for (size_t i = start_index;
1235 // Make sure we don't go over the expected arguments or over the number of
1236 // dex registers given. If the instruction was seen as dead by the verifier,
1237 // it hasn't been properly checked.
1238 (i < number_of_vreg_arguments) && (*argument_index < invoke->GetNumberOfArguments());
1239 i++, (*argument_index)++) {
1240 DataType::Type type = DataType::FromShorty(descriptor[descriptor_index++]);
1241 bool is_wide = (type == DataType::Type::kInt64) || (type == DataType::Type::kFloat64);
1242 if (!is_range
1243 && is_wide
1244 && ((i + 1 == number_of_vreg_arguments) || (args[i] + 1 != args[i + 1]))) {
1245 // Longs and doubles should be in pairs, that is, sequential registers. The verifier should
1246 // reject any class where this is violated. However, the verifier only does these checks
1247 // on non trivially dead instructions, so we just bailout the compilation.
1248 VLOG(compiler) << "Did not compile "
1249 << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
1250 << " because of non-sequential dex register pair in wide argument";
1251 MaybeRecordStat(compilation_stats_,
1252 MethodCompilationStat::kNotCompiledMalformedOpcode);
1253 return false;
1254 }
1255 HInstruction* arg = LoadLocal(is_range ? register_index + i : args[i], type);
1256 invoke->SetArgumentAt(*argument_index, arg);
1257 if (is_wide) {
1258 i++;
1259 }
1260 }
1261
1262 if (*argument_index != invoke->GetNumberOfArguments()) {
1263 VLOG(compiler) << "Did not compile "
1264 << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
1265 << " because of wrong number of arguments in invoke instruction";
1266 MaybeRecordStat(compilation_stats_,
1267 MethodCompilationStat::kNotCompiledMalformedOpcode);
1268 return false;
1269 }
1270
1271 if (invoke->IsInvokeStaticOrDirect() &&
1272 HInvokeStaticOrDirect::NeedsCurrentMethodInput(
1273 invoke->AsInvokeStaticOrDirect()->GetMethodLoadKind())) {
1274 invoke->SetArgumentAt(*argument_index, graph_->GetCurrentMethod());
1275 (*argument_index)++;
1276 }
1277
1278 return true;
1279 }
1280
HandleInvoke(HInvoke * invoke,uint32_t number_of_vreg_arguments,uint32_t * args,uint32_t register_index,bool is_range,const char * descriptor,HClinitCheck * clinit_check,bool is_unresolved)1281 bool HInstructionBuilder::HandleInvoke(HInvoke* invoke,
1282 uint32_t number_of_vreg_arguments,
1283 uint32_t* args,
1284 uint32_t register_index,
1285 bool is_range,
1286 const char* descriptor,
1287 HClinitCheck* clinit_check,
1288 bool is_unresolved) {
1289 DCHECK(!invoke->IsInvokeStaticOrDirect() || !invoke->AsInvokeStaticOrDirect()->IsStringInit());
1290
1291 size_t start_index = 0;
1292 size_t argument_index = 0;
1293 if (invoke->GetInvokeType() != InvokeType::kStatic) { // Instance call.
1294 uint32_t obj_reg = is_range ? register_index : args[0];
1295 HInstruction* arg = is_unresolved
1296 ? LoadLocal(obj_reg, DataType::Type::kReference)
1297 : LoadNullCheckedLocal(obj_reg, invoke->GetDexPc());
1298 invoke->SetArgumentAt(0, arg);
1299 start_index = 1;
1300 argument_index = 1;
1301 }
1302
1303 if (!SetupInvokeArguments(invoke,
1304 number_of_vreg_arguments,
1305 args,
1306 register_index,
1307 is_range,
1308 descriptor,
1309 start_index,
1310 &argument_index)) {
1311 return false;
1312 }
1313
1314 if (clinit_check != nullptr) {
1315 // Add the class initialization check as last input of `invoke`.
1316 DCHECK(invoke->IsInvokeStaticOrDirect());
1317 DCHECK(invoke->AsInvokeStaticOrDirect()->GetClinitCheckRequirement()
1318 == HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit);
1319 invoke->SetArgumentAt(argument_index, clinit_check);
1320 argument_index++;
1321 }
1322
1323 AppendInstruction(invoke);
1324 latest_result_ = invoke;
1325
1326 return true;
1327 }
1328
HandleStringInit(HInvoke * invoke,uint32_t number_of_vreg_arguments,uint32_t * args,uint32_t register_index,bool is_range,const char * descriptor)1329 bool HInstructionBuilder::HandleStringInit(HInvoke* invoke,
1330 uint32_t number_of_vreg_arguments,
1331 uint32_t* args,
1332 uint32_t register_index,
1333 bool is_range,
1334 const char* descriptor) {
1335 DCHECK(invoke->IsInvokeStaticOrDirect());
1336 DCHECK(invoke->AsInvokeStaticOrDirect()->IsStringInit());
1337
1338 size_t start_index = 1;
1339 size_t argument_index = 0;
1340 if (!SetupInvokeArguments(invoke,
1341 number_of_vreg_arguments,
1342 args,
1343 register_index,
1344 is_range,
1345 descriptor,
1346 start_index,
1347 &argument_index)) {
1348 return false;
1349 }
1350
1351 AppendInstruction(invoke);
1352
1353 // This is a StringFactory call, not an actual String constructor. Its result
1354 // replaces the empty String pre-allocated by NewInstance.
1355 uint32_t orig_this_reg = is_range ? register_index : args[0];
1356 HInstruction* arg_this = LoadLocal(orig_this_reg, DataType::Type::kReference);
1357
1358 // Replacing the NewInstance might render it redundant. Keep a list of these
1359 // to be visited once it is clear whether it is has remaining uses.
1360 if (arg_this->IsNewInstance()) {
1361 ssa_builder_->AddUninitializedString(arg_this->AsNewInstance());
1362 } else {
1363 DCHECK(arg_this->IsPhi());
1364 // NewInstance is not the direct input of the StringFactory call. It might
1365 // be redundant but optimizing this case is not worth the effort.
1366 }
1367
1368 // Walk over all vregs and replace any occurrence of `arg_this` with `invoke`.
1369 for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) {
1370 if ((*current_locals_)[vreg] == arg_this) {
1371 (*current_locals_)[vreg] = invoke;
1372 }
1373 }
1374
1375 return true;
1376 }
1377
GetFieldAccessType(const DexFile & dex_file,uint16_t field_index)1378 static DataType::Type GetFieldAccessType(const DexFile& dex_file, uint16_t field_index) {
1379 const DexFile::FieldId& field_id = dex_file.GetFieldId(field_index);
1380 const char* type = dex_file.GetFieldTypeDescriptor(field_id);
1381 return DataType::FromShorty(type[0]);
1382 }
1383
BuildInstanceFieldAccess(const Instruction & instruction,uint32_t dex_pc,bool is_put,size_t quicken_index)1384 bool HInstructionBuilder::BuildInstanceFieldAccess(const Instruction& instruction,
1385 uint32_t dex_pc,
1386 bool is_put,
1387 size_t quicken_index) {
1388 uint32_t source_or_dest_reg = instruction.VRegA_22c();
1389 uint32_t obj_reg = instruction.VRegB_22c();
1390 uint16_t field_index;
1391 if (instruction.IsQuickened()) {
1392 if (!CanDecodeQuickenedInfo()) {
1393 VLOG(compiler) << "Not compiled: Could not decode quickened instruction "
1394 << instruction.Opcode();
1395 return false;
1396 }
1397 field_index = LookupQuickenedInfo(quicken_index);
1398 } else {
1399 field_index = instruction.VRegC_22c();
1400 }
1401
1402 ScopedObjectAccess soa(Thread::Current());
1403 ArtField* resolved_field = ResolveField(field_index, /* is_static */ false, is_put);
1404
1405 // Generate an explicit null check on the reference, unless the field access
1406 // is unresolved. In that case, we rely on the runtime to perform various
1407 // checks first, followed by a null check.
1408 HInstruction* object = (resolved_field == nullptr)
1409 ? LoadLocal(obj_reg, DataType::Type::kReference)
1410 : LoadNullCheckedLocal(obj_reg, dex_pc);
1411
1412 DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index);
1413 if (is_put) {
1414 HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
1415 HInstruction* field_set = nullptr;
1416 if (resolved_field == nullptr) {
1417 MaybeRecordStat(compilation_stats_,
1418 MethodCompilationStat::kUnresolvedField);
1419 field_set = new (allocator_) HUnresolvedInstanceFieldSet(object,
1420 value,
1421 field_type,
1422 field_index,
1423 dex_pc);
1424 } else {
1425 uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
1426 field_set = new (allocator_) HInstanceFieldSet(object,
1427 value,
1428 resolved_field,
1429 field_type,
1430 resolved_field->GetOffset(),
1431 resolved_field->IsVolatile(),
1432 field_index,
1433 class_def_index,
1434 *dex_file_,
1435 dex_pc);
1436 }
1437 AppendInstruction(field_set);
1438 } else {
1439 HInstruction* field_get = nullptr;
1440 if (resolved_field == nullptr) {
1441 MaybeRecordStat(compilation_stats_,
1442 MethodCompilationStat::kUnresolvedField);
1443 field_get = new (allocator_) HUnresolvedInstanceFieldGet(object,
1444 field_type,
1445 field_index,
1446 dex_pc);
1447 } else {
1448 uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
1449 field_get = new (allocator_) HInstanceFieldGet(object,
1450 resolved_field,
1451 field_type,
1452 resolved_field->GetOffset(),
1453 resolved_field->IsVolatile(),
1454 field_index,
1455 class_def_index,
1456 *dex_file_,
1457 dex_pc);
1458 }
1459 AppendInstruction(field_get);
1460 UpdateLocal(source_or_dest_reg, field_get);
1461 }
1462
1463 return true;
1464 }
1465
GetClassFrom(CompilerDriver * driver,const DexCompilationUnit & compilation_unit)1466 static ObjPtr<mirror::Class> GetClassFrom(CompilerDriver* driver,
1467 const DexCompilationUnit& compilation_unit) {
1468 ScopedObjectAccess soa(Thread::Current());
1469 Handle<mirror::ClassLoader> class_loader = compilation_unit.GetClassLoader();
1470 Handle<mirror::DexCache> dex_cache = compilation_unit.GetDexCache();
1471
1472 return driver->ResolveCompilingMethodsClass(soa, dex_cache, class_loader, &compilation_unit);
1473 }
1474
GetOutermostCompilingClass() const1475 ObjPtr<mirror::Class> HInstructionBuilder::GetOutermostCompilingClass() const {
1476 return GetClassFrom(compiler_driver_, *outer_compilation_unit_);
1477 }
1478
GetCompilingClass() const1479 ObjPtr<mirror::Class> HInstructionBuilder::GetCompilingClass() const {
1480 return GetClassFrom(compiler_driver_, *dex_compilation_unit_);
1481 }
1482
IsOutermostCompilingClass(dex::TypeIndex type_index) const1483 bool HInstructionBuilder::IsOutermostCompilingClass(dex::TypeIndex type_index) const {
1484 ScopedObjectAccess soa(Thread::Current());
1485 StackHandleScope<2> hs(soa.Self());
1486 Handle<mirror::DexCache> dex_cache = dex_compilation_unit_->GetDexCache();
1487 Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader();
1488 Handle<mirror::Class> cls(hs.NewHandle(compiler_driver_->ResolveClass(
1489 soa, dex_cache, class_loader, type_index, dex_compilation_unit_)));
1490 Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
1491
1492 // GetOutermostCompilingClass returns null when the class is unresolved
1493 // (e.g. if it derives from an unresolved class). This is bogus knowing that
1494 // we are compiling it.
1495 // When this happens we cannot establish a direct relation between the current
1496 // class and the outer class, so we return false.
1497 // (Note that this is only used for optimizing invokes and field accesses)
1498 return (cls != nullptr) && (outer_class.Get() == cls.Get());
1499 }
1500
BuildUnresolvedStaticFieldAccess(const Instruction & instruction,uint32_t dex_pc,bool is_put,DataType::Type field_type)1501 void HInstructionBuilder::BuildUnresolvedStaticFieldAccess(const Instruction& instruction,
1502 uint32_t dex_pc,
1503 bool is_put,
1504 DataType::Type field_type) {
1505 uint32_t source_or_dest_reg = instruction.VRegA_21c();
1506 uint16_t field_index = instruction.VRegB_21c();
1507
1508 if (is_put) {
1509 HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
1510 AppendInstruction(
1511 new (allocator_) HUnresolvedStaticFieldSet(value, field_type, field_index, dex_pc));
1512 } else {
1513 AppendInstruction(new (allocator_) HUnresolvedStaticFieldGet(field_type, field_index, dex_pc));
1514 UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
1515 }
1516 }
1517
ResolveField(uint16_t field_idx,bool is_static,bool is_put)1518 ArtField* HInstructionBuilder::ResolveField(uint16_t field_idx, bool is_static, bool is_put) {
1519 ScopedObjectAccess soa(Thread::Current());
1520 StackHandleScope<2> hs(soa.Self());
1521
1522 ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker();
1523 Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader();
1524 Handle<mirror::Class> compiling_class(hs.NewHandle(GetCompilingClass()));
1525
1526 ArtField* resolved_field = class_linker->ResolveField(field_idx,
1527 dex_compilation_unit_->GetDexCache(),
1528 class_loader,
1529 is_static);
1530 if (UNLIKELY(resolved_field == nullptr)) {
1531 // Clean up any exception left by type resolution.
1532 soa.Self()->ClearException();
1533 return nullptr;
1534 }
1535
1536 // Check static/instance. The class linker has a fast path for looking into the dex cache
1537 // and does not check static/instance if it hits it.
1538 if (UNLIKELY(resolved_field->IsStatic() != is_static)) {
1539 return nullptr;
1540 }
1541
1542 // Check access.
1543 if (compiling_class == nullptr) {
1544 if (!resolved_field->IsPublic()) {
1545 return nullptr;
1546 }
1547 } else if (!compiling_class->CanAccessResolvedField(resolved_field->GetDeclaringClass(),
1548 resolved_field,
1549 dex_compilation_unit_->GetDexCache().Get(),
1550 field_idx)) {
1551 return nullptr;
1552 }
1553
1554 if (is_put &&
1555 resolved_field->IsFinal() &&
1556 (compiling_class.Get() != resolved_field->GetDeclaringClass())) {
1557 // Final fields can only be updated within their own class.
1558 // TODO: Only allow it in constructors. b/34966607.
1559 return nullptr;
1560 }
1561
1562 return resolved_field;
1563 }
1564
BuildStaticFieldAccess(const Instruction & instruction,uint32_t dex_pc,bool is_put)1565 void HInstructionBuilder::BuildStaticFieldAccess(const Instruction& instruction,
1566 uint32_t dex_pc,
1567 bool is_put) {
1568 uint32_t source_or_dest_reg = instruction.VRegA_21c();
1569 uint16_t field_index = instruction.VRegB_21c();
1570
1571 ScopedObjectAccess soa(Thread::Current());
1572 ArtField* resolved_field = ResolveField(field_index, /* is_static */ true, is_put);
1573
1574 if (resolved_field == nullptr) {
1575 MaybeRecordStat(compilation_stats_,
1576 MethodCompilationStat::kUnresolvedField);
1577 DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index);
1578 BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
1579 return;
1580 }
1581
1582 DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index);
1583
1584 Handle<mirror::Class> klass = handles_->NewHandle(resolved_field->GetDeclaringClass());
1585 HLoadClass* constant = BuildLoadClass(klass->GetDexTypeIndex(),
1586 klass->GetDexFile(),
1587 klass,
1588 dex_pc,
1589 /* needs_access_check */ false);
1590
1591 if (constant == nullptr) {
1592 // The class cannot be referenced from this compiled code. Generate
1593 // an unresolved access.
1594 MaybeRecordStat(compilation_stats_,
1595 MethodCompilationStat::kUnresolvedFieldNotAFastAccess);
1596 BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
1597 return;
1598 }
1599
1600 HInstruction* cls = constant;
1601 if (!IsInitialized(klass)) {
1602 cls = new (allocator_) HClinitCheck(constant, dex_pc);
1603 AppendInstruction(cls);
1604 }
1605
1606 uint16_t class_def_index = klass->GetDexClassDefIndex();
1607 if (is_put) {
1608 // We need to keep the class alive before loading the value.
1609 HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
1610 DCHECK_EQ(HPhi::ToPhiType(value->GetType()), HPhi::ToPhiType(field_type));
1611 AppendInstruction(new (allocator_) HStaticFieldSet(cls,
1612 value,
1613 resolved_field,
1614 field_type,
1615 resolved_field->GetOffset(),
1616 resolved_field->IsVolatile(),
1617 field_index,
1618 class_def_index,
1619 *dex_file_,
1620 dex_pc));
1621 } else {
1622 AppendInstruction(new (allocator_) HStaticFieldGet(cls,
1623 resolved_field,
1624 field_type,
1625 resolved_field->GetOffset(),
1626 resolved_field->IsVolatile(),
1627 field_index,
1628 class_def_index,
1629 *dex_file_,
1630 dex_pc));
1631 UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
1632 }
1633 }
1634
BuildCheckedDivRem(uint16_t out_vreg,uint16_t first_vreg,int64_t second_vreg_or_constant,uint32_t dex_pc,DataType::Type type,bool second_is_constant,bool isDiv)1635 void HInstructionBuilder::BuildCheckedDivRem(uint16_t out_vreg,
1636 uint16_t first_vreg,
1637 int64_t second_vreg_or_constant,
1638 uint32_t dex_pc,
1639 DataType::Type type,
1640 bool second_is_constant,
1641 bool isDiv) {
1642 DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
1643
1644 HInstruction* first = LoadLocal(first_vreg, type);
1645 HInstruction* second = nullptr;
1646 if (second_is_constant) {
1647 if (type == DataType::Type::kInt32) {
1648 second = graph_->GetIntConstant(second_vreg_or_constant, dex_pc);
1649 } else {
1650 second = graph_->GetLongConstant(second_vreg_or_constant, dex_pc);
1651 }
1652 } else {
1653 second = LoadLocal(second_vreg_or_constant, type);
1654 }
1655
1656 if (!second_is_constant
1657 || (type == DataType::Type::kInt32 && second->AsIntConstant()->GetValue() == 0)
1658 || (type == DataType::Type::kInt64 && second->AsLongConstant()->GetValue() == 0)) {
1659 second = new (allocator_) HDivZeroCheck(second, dex_pc);
1660 AppendInstruction(second);
1661 }
1662
1663 if (isDiv) {
1664 AppendInstruction(new (allocator_) HDiv(type, first, second, dex_pc));
1665 } else {
1666 AppendInstruction(new (allocator_) HRem(type, first, second, dex_pc));
1667 }
1668 UpdateLocal(out_vreg, current_block_->GetLastInstruction());
1669 }
1670
BuildArrayAccess(const Instruction & instruction,uint32_t dex_pc,bool is_put,DataType::Type anticipated_type)1671 void HInstructionBuilder::BuildArrayAccess(const Instruction& instruction,
1672 uint32_t dex_pc,
1673 bool is_put,
1674 DataType::Type anticipated_type) {
1675 uint8_t source_or_dest_reg = instruction.VRegA_23x();
1676 uint8_t array_reg = instruction.VRegB_23x();
1677 uint8_t index_reg = instruction.VRegC_23x();
1678
1679 HInstruction* object = LoadNullCheckedLocal(array_reg, dex_pc);
1680 HInstruction* length = new (allocator_) HArrayLength(object, dex_pc);
1681 AppendInstruction(length);
1682 HInstruction* index = LoadLocal(index_reg, DataType::Type::kInt32);
1683 index = new (allocator_) HBoundsCheck(index, length, dex_pc);
1684 AppendInstruction(index);
1685 if (is_put) {
1686 HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type);
1687 // TODO: Insert a type check node if the type is Object.
1688 HArraySet* aset = new (allocator_) HArraySet(object, index, value, anticipated_type, dex_pc);
1689 ssa_builder_->MaybeAddAmbiguousArraySet(aset);
1690 AppendInstruction(aset);
1691 } else {
1692 HArrayGet* aget = new (allocator_) HArrayGet(object, index, anticipated_type, dex_pc);
1693 ssa_builder_->MaybeAddAmbiguousArrayGet(aget);
1694 AppendInstruction(aget);
1695 UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
1696 }
1697 graph_->SetHasBoundsChecks(true);
1698 }
1699
BuildFilledNewArray(uint32_t dex_pc,dex::TypeIndex type_index,uint32_t number_of_vreg_arguments,bool is_range,uint32_t * args,uint32_t register_index)1700 HNewArray* HInstructionBuilder::BuildFilledNewArray(uint32_t dex_pc,
1701 dex::TypeIndex type_index,
1702 uint32_t number_of_vreg_arguments,
1703 bool is_range,
1704 uint32_t* args,
1705 uint32_t register_index) {
1706 HInstruction* length = graph_->GetIntConstant(number_of_vreg_arguments, dex_pc);
1707 HLoadClass* cls = BuildLoadClass(type_index, dex_pc);
1708 HNewArray* const object = new (allocator_) HNewArray(cls, length, dex_pc);
1709 AppendInstruction(object);
1710
1711 const char* descriptor = dex_file_->StringByTypeIdx(type_index);
1712 DCHECK_EQ(descriptor[0], '[') << descriptor;
1713 char primitive = descriptor[1];
1714 DCHECK(primitive == 'I'
1715 || primitive == 'L'
1716 || primitive == '[') << descriptor;
1717 bool is_reference_array = (primitive == 'L') || (primitive == '[');
1718 DataType::Type type = is_reference_array ? DataType::Type::kReference : DataType::Type::kInt32;
1719
1720 for (size_t i = 0; i < number_of_vreg_arguments; ++i) {
1721 HInstruction* value = LoadLocal(is_range ? register_index + i : args[i], type);
1722 HInstruction* index = graph_->GetIntConstant(i, dex_pc);
1723 HArraySet* aset = new (allocator_) HArraySet(object, index, value, type, dex_pc);
1724 ssa_builder_->MaybeAddAmbiguousArraySet(aset);
1725 AppendInstruction(aset);
1726 }
1727 latest_result_ = object;
1728
1729 return object;
1730 }
1731
1732 template <typename T>
BuildFillArrayData(HInstruction * object,const T * data,uint32_t element_count,DataType::Type anticipated_type,uint32_t dex_pc)1733 void HInstructionBuilder::BuildFillArrayData(HInstruction* object,
1734 const T* data,
1735 uint32_t element_count,
1736 DataType::Type anticipated_type,
1737 uint32_t dex_pc) {
1738 for (uint32_t i = 0; i < element_count; ++i) {
1739 HInstruction* index = graph_->GetIntConstant(i, dex_pc);
1740 HInstruction* value = graph_->GetIntConstant(data[i], dex_pc);
1741 HArraySet* aset = new (allocator_) HArraySet(object, index, value, anticipated_type, dex_pc);
1742 ssa_builder_->MaybeAddAmbiguousArraySet(aset);
1743 AppendInstruction(aset);
1744 }
1745 }
1746
BuildFillArrayData(const Instruction & instruction,uint32_t dex_pc)1747 void HInstructionBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) {
1748 HInstruction* array = LoadNullCheckedLocal(instruction.VRegA_31t(), dex_pc);
1749
1750 int32_t payload_offset = instruction.VRegB_31t() + dex_pc;
1751 const Instruction::ArrayDataPayload* payload =
1752 reinterpret_cast<const Instruction::ArrayDataPayload*>(
1753 code_item_accessor_.Insns() + payload_offset);
1754 const uint8_t* data = payload->data;
1755 uint32_t element_count = payload->element_count;
1756
1757 if (element_count == 0u) {
1758 // For empty payload we emit only the null check above.
1759 return;
1760 }
1761
1762 HInstruction* length = new (allocator_) HArrayLength(array, dex_pc);
1763 AppendInstruction(length);
1764
1765 // Implementation of this DEX instruction seems to be that the bounds check is
1766 // done before doing any stores.
1767 HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1, dex_pc);
1768 AppendInstruction(new (allocator_) HBoundsCheck(last_index, length, dex_pc));
1769
1770 switch (payload->element_width) {
1771 case 1:
1772 BuildFillArrayData(array,
1773 reinterpret_cast<const int8_t*>(data),
1774 element_count,
1775 DataType::Type::kInt8,
1776 dex_pc);
1777 break;
1778 case 2:
1779 BuildFillArrayData(array,
1780 reinterpret_cast<const int16_t*>(data),
1781 element_count,
1782 DataType::Type::kInt16,
1783 dex_pc);
1784 break;
1785 case 4:
1786 BuildFillArrayData(array,
1787 reinterpret_cast<const int32_t*>(data),
1788 element_count,
1789 DataType::Type::kInt32,
1790 dex_pc);
1791 break;
1792 case 8:
1793 BuildFillWideArrayData(array,
1794 reinterpret_cast<const int64_t*>(data),
1795 element_count,
1796 dex_pc);
1797 break;
1798 default:
1799 LOG(FATAL) << "Unknown element width for " << payload->element_width;
1800 }
1801 graph_->SetHasBoundsChecks(true);
1802 }
1803
BuildFillWideArrayData(HInstruction * object,const int64_t * data,uint32_t element_count,uint32_t dex_pc)1804 void HInstructionBuilder::BuildFillWideArrayData(HInstruction* object,
1805 const int64_t* data,
1806 uint32_t element_count,
1807 uint32_t dex_pc) {
1808 for (uint32_t i = 0; i < element_count; ++i) {
1809 HInstruction* index = graph_->GetIntConstant(i, dex_pc);
1810 HInstruction* value = graph_->GetLongConstant(data[i], dex_pc);
1811 HArraySet* aset =
1812 new (allocator_) HArraySet(object, index, value, DataType::Type::kInt64, dex_pc);
1813 ssa_builder_->MaybeAddAmbiguousArraySet(aset);
1814 AppendInstruction(aset);
1815 }
1816 }
1817
ComputeTypeCheckKind(Handle<mirror::Class> cls)1818 static TypeCheckKind ComputeTypeCheckKind(Handle<mirror::Class> cls)
1819 REQUIRES_SHARED(Locks::mutator_lock_) {
1820 if (cls == nullptr) {
1821 return TypeCheckKind::kUnresolvedCheck;
1822 } else if (cls->IsInterface()) {
1823 return TypeCheckKind::kInterfaceCheck;
1824 } else if (cls->IsArrayClass()) {
1825 if (cls->GetComponentType()->IsObjectClass()) {
1826 return TypeCheckKind::kArrayObjectCheck;
1827 } else if (cls->CannotBeAssignedFromOtherTypes()) {
1828 return TypeCheckKind::kExactCheck;
1829 } else {
1830 return TypeCheckKind::kArrayCheck;
1831 }
1832 } else if (cls->IsFinal()) {
1833 return TypeCheckKind::kExactCheck;
1834 } else if (cls->IsAbstract()) {
1835 return TypeCheckKind::kAbstractClassCheck;
1836 } else {
1837 return TypeCheckKind::kClassHierarchyCheck;
1838 }
1839 }
1840
BuildLoadString(dex::StringIndex string_index,uint32_t dex_pc)1841 void HInstructionBuilder::BuildLoadString(dex::StringIndex string_index, uint32_t dex_pc) {
1842 HLoadString* load_string =
1843 new (allocator_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc);
1844 HSharpening::ProcessLoadString(load_string,
1845 code_generator_,
1846 compiler_driver_,
1847 *dex_compilation_unit_,
1848 handles_);
1849 AppendInstruction(load_string);
1850 }
1851
BuildLoadClass(dex::TypeIndex type_index,uint32_t dex_pc)1852 HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index, uint32_t dex_pc) {
1853 ScopedObjectAccess soa(Thread::Current());
1854 const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
1855 Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader();
1856 Handle<mirror::Class> klass = handles_->NewHandle(compiler_driver_->ResolveClass(
1857 soa, dex_compilation_unit_->GetDexCache(), class_loader, type_index, dex_compilation_unit_));
1858
1859 bool needs_access_check = true;
1860 if (klass != nullptr) {
1861 if (klass->IsPublic()) {
1862 needs_access_check = false;
1863 } else {
1864 ObjPtr<mirror::Class> compiling_class = GetCompilingClass();
1865 if (compiling_class != nullptr && compiling_class->CanAccess(klass.Get())) {
1866 needs_access_check = false;
1867 }
1868 }
1869 }
1870
1871 return BuildLoadClass(type_index, dex_file, klass, dex_pc, needs_access_check);
1872 }
1873
BuildLoadClass(dex::TypeIndex type_index,const DexFile & dex_file,Handle<mirror::Class> klass,uint32_t dex_pc,bool needs_access_check)1874 HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index,
1875 const DexFile& dex_file,
1876 Handle<mirror::Class> klass,
1877 uint32_t dex_pc,
1878 bool needs_access_check) {
1879 // Try to find a reference in the compiling dex file.
1880 const DexFile* actual_dex_file = &dex_file;
1881 if (!IsSameDexFile(dex_file, *dex_compilation_unit_->GetDexFile())) {
1882 dex::TypeIndex local_type_index =
1883 klass->FindTypeIndexInOtherDexFile(*dex_compilation_unit_->GetDexFile());
1884 if (local_type_index.IsValid()) {
1885 type_index = local_type_index;
1886 actual_dex_file = dex_compilation_unit_->GetDexFile();
1887 }
1888 }
1889
1890 // Note: `klass` must be from `handles_`.
1891 HLoadClass* load_class = new (allocator_) HLoadClass(
1892 graph_->GetCurrentMethod(),
1893 type_index,
1894 *actual_dex_file,
1895 klass,
1896 klass != nullptr && (klass.Get() == GetOutermostCompilingClass()),
1897 dex_pc,
1898 needs_access_check);
1899
1900 HLoadClass::LoadKind load_kind = HSharpening::ComputeLoadClassKind(load_class,
1901 code_generator_,
1902 compiler_driver_,
1903 *dex_compilation_unit_);
1904
1905 if (load_kind == HLoadClass::LoadKind::kInvalid) {
1906 // We actually cannot reference this class, we're forced to bail.
1907 return nullptr;
1908 }
1909 // Load kind must be set before inserting the instruction into the graph.
1910 load_class->SetLoadKind(load_kind);
1911 AppendInstruction(load_class);
1912 return load_class;
1913 }
1914
BuildTypeCheck(const Instruction & instruction,uint8_t destination,uint8_t reference,dex::TypeIndex type_index,uint32_t dex_pc)1915 void HInstructionBuilder::BuildTypeCheck(const Instruction& instruction,
1916 uint8_t destination,
1917 uint8_t reference,
1918 dex::TypeIndex type_index,
1919 uint32_t dex_pc) {
1920 HInstruction* object = LoadLocal(reference, DataType::Type::kReference);
1921 HLoadClass* cls = BuildLoadClass(type_index, dex_pc);
1922
1923 ScopedObjectAccess soa(Thread::Current());
1924 TypeCheckKind check_kind = ComputeTypeCheckKind(cls->GetClass());
1925 if (instruction.Opcode() == Instruction::INSTANCE_OF) {
1926 AppendInstruction(new (allocator_) HInstanceOf(object, cls, check_kind, dex_pc));
1927 UpdateLocal(destination, current_block_->GetLastInstruction());
1928 } else {
1929 DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST);
1930 // We emit a CheckCast followed by a BoundType. CheckCast is a statement
1931 // which may throw. If it succeeds BoundType sets the new type of `object`
1932 // for all subsequent uses.
1933 AppendInstruction(new (allocator_) HCheckCast(object, cls, check_kind, dex_pc));
1934 AppendInstruction(new (allocator_) HBoundType(object, dex_pc));
1935 UpdateLocal(reference, current_block_->GetLastInstruction());
1936 }
1937 }
1938
NeedsAccessCheck(dex::TypeIndex type_index,bool * finalizable) const1939 bool HInstructionBuilder::NeedsAccessCheck(dex::TypeIndex type_index, bool* finalizable) const {
1940 return !compiler_driver_->CanAccessInstantiableTypeWithoutChecks(
1941 LookupReferrerClass(), LookupResolvedType(type_index, *dex_compilation_unit_), finalizable);
1942 }
1943
CanDecodeQuickenedInfo() const1944 bool HInstructionBuilder::CanDecodeQuickenedInfo() const {
1945 return !quicken_info_.IsNull();
1946 }
1947
LookupQuickenedInfo(uint32_t quicken_index)1948 uint16_t HInstructionBuilder::LookupQuickenedInfo(uint32_t quicken_index) {
1949 DCHECK(CanDecodeQuickenedInfo());
1950 return quicken_info_.GetData(quicken_index);
1951 }
1952
ProcessDexInstruction(const Instruction & instruction,uint32_t dex_pc,size_t quicken_index)1953 bool HInstructionBuilder::ProcessDexInstruction(const Instruction& instruction,
1954 uint32_t dex_pc,
1955 size_t quicken_index) {
1956 switch (instruction.Opcode()) {
1957 case Instruction::CONST_4: {
1958 int32_t register_index = instruction.VRegA();
1959 HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n(), dex_pc);
1960 UpdateLocal(register_index, constant);
1961 break;
1962 }
1963
1964 case Instruction::CONST_16: {
1965 int32_t register_index = instruction.VRegA();
1966 HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s(), dex_pc);
1967 UpdateLocal(register_index, constant);
1968 break;
1969 }
1970
1971 case Instruction::CONST: {
1972 int32_t register_index = instruction.VRegA();
1973 HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i(), dex_pc);
1974 UpdateLocal(register_index, constant);
1975 break;
1976 }
1977
1978 case Instruction::CONST_HIGH16: {
1979 int32_t register_index = instruction.VRegA();
1980 HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16, dex_pc);
1981 UpdateLocal(register_index, constant);
1982 break;
1983 }
1984
1985 case Instruction::CONST_WIDE_16: {
1986 int32_t register_index = instruction.VRegA();
1987 // Get 16 bits of constant value, sign extended to 64 bits.
1988 int64_t value = instruction.VRegB_21s();
1989 value <<= 48;
1990 value >>= 48;
1991 HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
1992 UpdateLocal(register_index, constant);
1993 break;
1994 }
1995
1996 case Instruction::CONST_WIDE_32: {
1997 int32_t register_index = instruction.VRegA();
1998 // Get 32 bits of constant value, sign extended to 64 bits.
1999 int64_t value = instruction.VRegB_31i();
2000 value <<= 32;
2001 value >>= 32;
2002 HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
2003 UpdateLocal(register_index, constant);
2004 break;
2005 }
2006
2007 case Instruction::CONST_WIDE: {
2008 int32_t register_index = instruction.VRegA();
2009 HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l(), dex_pc);
2010 UpdateLocal(register_index, constant);
2011 break;
2012 }
2013
2014 case Instruction::CONST_WIDE_HIGH16: {
2015 int32_t register_index = instruction.VRegA();
2016 int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48;
2017 HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
2018 UpdateLocal(register_index, constant);
2019 break;
2020 }
2021
2022 // Note that the SSA building will refine the types.
2023 case Instruction::MOVE:
2024 case Instruction::MOVE_FROM16:
2025 case Instruction::MOVE_16: {
2026 HInstruction* value = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
2027 UpdateLocal(instruction.VRegA(), value);
2028 break;
2029 }
2030
2031 // Note that the SSA building will refine the types.
2032 case Instruction::MOVE_WIDE:
2033 case Instruction::MOVE_WIDE_FROM16:
2034 case Instruction::MOVE_WIDE_16: {
2035 HInstruction* value = LoadLocal(instruction.VRegB(), DataType::Type::kInt64);
2036 UpdateLocal(instruction.VRegA(), value);
2037 break;
2038 }
2039
2040 case Instruction::MOVE_OBJECT:
2041 case Instruction::MOVE_OBJECT_16:
2042 case Instruction::MOVE_OBJECT_FROM16: {
2043 // The verifier has no notion of a null type, so a move-object of constant 0
2044 // will lead to the same constant 0 in the destination register. To mimic
2045 // this behavior, we just pretend we haven't seen a type change (int to reference)
2046 // for the 0 constant and phis. We rely on our type propagation to eventually get the
2047 // types correct.
2048 uint32_t reg_number = instruction.VRegB();
2049 HInstruction* value = (*current_locals_)[reg_number];
2050 if (value->IsIntConstant()) {
2051 DCHECK_EQ(value->AsIntConstant()->GetValue(), 0);
2052 } else if (value->IsPhi()) {
2053 DCHECK(value->GetType() == DataType::Type::kInt32 ||
2054 value->GetType() == DataType::Type::kReference);
2055 } else {
2056 value = LoadLocal(reg_number, DataType::Type::kReference);
2057 }
2058 UpdateLocal(instruction.VRegA(), value);
2059 break;
2060 }
2061
2062 case Instruction::RETURN_VOID_NO_BARRIER:
2063 case Instruction::RETURN_VOID: {
2064 BuildReturn(instruction, DataType::Type::kVoid, dex_pc);
2065 break;
2066 }
2067
2068 #define IF_XX(comparison, cond) \
2069 case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \
2070 case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break
2071
2072 IF_XX(HEqual, EQ);
2073 IF_XX(HNotEqual, NE);
2074 IF_XX(HLessThan, LT);
2075 IF_XX(HLessThanOrEqual, LE);
2076 IF_XX(HGreaterThan, GT);
2077 IF_XX(HGreaterThanOrEqual, GE);
2078
2079 case Instruction::GOTO:
2080 case Instruction::GOTO_16:
2081 case Instruction::GOTO_32: {
2082 AppendInstruction(new (allocator_) HGoto(dex_pc));
2083 current_block_ = nullptr;
2084 break;
2085 }
2086
2087 case Instruction::RETURN: {
2088 BuildReturn(instruction, return_type_, dex_pc);
2089 break;
2090 }
2091
2092 case Instruction::RETURN_OBJECT: {
2093 BuildReturn(instruction, return_type_, dex_pc);
2094 break;
2095 }
2096
2097 case Instruction::RETURN_WIDE: {
2098 BuildReturn(instruction, return_type_, dex_pc);
2099 break;
2100 }
2101
2102 case Instruction::INVOKE_DIRECT:
2103 case Instruction::INVOKE_INTERFACE:
2104 case Instruction::INVOKE_STATIC:
2105 case Instruction::INVOKE_SUPER:
2106 case Instruction::INVOKE_VIRTUAL:
2107 case Instruction::INVOKE_VIRTUAL_QUICK: {
2108 uint16_t method_idx;
2109 if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_QUICK) {
2110 if (!CanDecodeQuickenedInfo()) {
2111 VLOG(compiler) << "Not compiled: Could not decode quickened instruction "
2112 << instruction.Opcode();
2113 return false;
2114 }
2115 method_idx = LookupQuickenedInfo(quicken_index);
2116 } else {
2117 method_idx = instruction.VRegB_35c();
2118 }
2119 uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
2120 uint32_t args[5];
2121 instruction.GetVarArgs(args);
2122 if (!BuildInvoke(instruction, dex_pc, method_idx,
2123 number_of_vreg_arguments, false, args, -1)) {
2124 return false;
2125 }
2126 break;
2127 }
2128
2129 case Instruction::INVOKE_DIRECT_RANGE:
2130 case Instruction::INVOKE_INTERFACE_RANGE:
2131 case Instruction::INVOKE_STATIC_RANGE:
2132 case Instruction::INVOKE_SUPER_RANGE:
2133 case Instruction::INVOKE_VIRTUAL_RANGE:
2134 case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2135 uint16_t method_idx;
2136 if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK) {
2137 if (!CanDecodeQuickenedInfo()) {
2138 VLOG(compiler) << "Not compiled: Could not decode quickened instruction "
2139 << instruction.Opcode();
2140 return false;
2141 }
2142 method_idx = LookupQuickenedInfo(quicken_index);
2143 } else {
2144 method_idx = instruction.VRegB_3rc();
2145 }
2146 uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
2147 uint32_t register_index = instruction.VRegC();
2148 if (!BuildInvoke(instruction, dex_pc, method_idx,
2149 number_of_vreg_arguments, true, nullptr, register_index)) {
2150 return false;
2151 }
2152 break;
2153 }
2154
2155 case Instruction::INVOKE_POLYMORPHIC: {
2156 uint16_t method_idx = instruction.VRegB_45cc();
2157 uint16_t proto_idx = instruction.VRegH_45cc();
2158 uint32_t number_of_vreg_arguments = instruction.VRegA_45cc();
2159 uint32_t args[5];
2160 instruction.GetVarArgs(args);
2161 return BuildInvokePolymorphic(instruction,
2162 dex_pc,
2163 method_idx,
2164 proto_idx,
2165 number_of_vreg_arguments,
2166 false,
2167 args,
2168 -1);
2169 }
2170
2171 case Instruction::INVOKE_POLYMORPHIC_RANGE: {
2172 uint16_t method_idx = instruction.VRegB_4rcc();
2173 uint16_t proto_idx = instruction.VRegH_4rcc();
2174 uint32_t number_of_vreg_arguments = instruction.VRegA_4rcc();
2175 uint32_t register_index = instruction.VRegC_4rcc();
2176 return BuildInvokePolymorphic(instruction,
2177 dex_pc,
2178 method_idx,
2179 proto_idx,
2180 number_of_vreg_arguments,
2181 true,
2182 nullptr,
2183 register_index);
2184 }
2185
2186 case Instruction::NEG_INT: {
2187 Unop_12x<HNeg>(instruction, DataType::Type::kInt32, dex_pc);
2188 break;
2189 }
2190
2191 case Instruction::NEG_LONG: {
2192 Unop_12x<HNeg>(instruction, DataType::Type::kInt64, dex_pc);
2193 break;
2194 }
2195
2196 case Instruction::NEG_FLOAT: {
2197 Unop_12x<HNeg>(instruction, DataType::Type::kFloat32, dex_pc);
2198 break;
2199 }
2200
2201 case Instruction::NEG_DOUBLE: {
2202 Unop_12x<HNeg>(instruction, DataType::Type::kFloat64, dex_pc);
2203 break;
2204 }
2205
2206 case Instruction::NOT_INT: {
2207 Unop_12x<HNot>(instruction, DataType::Type::kInt32, dex_pc);
2208 break;
2209 }
2210
2211 case Instruction::NOT_LONG: {
2212 Unop_12x<HNot>(instruction, DataType::Type::kInt64, dex_pc);
2213 break;
2214 }
2215
2216 case Instruction::INT_TO_LONG: {
2217 Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt64, dex_pc);
2218 break;
2219 }
2220
2221 case Instruction::INT_TO_FLOAT: {
2222 Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kFloat32, dex_pc);
2223 break;
2224 }
2225
2226 case Instruction::INT_TO_DOUBLE: {
2227 Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kFloat64, dex_pc);
2228 break;
2229 }
2230
2231 case Instruction::LONG_TO_INT: {
2232 Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kInt32, dex_pc);
2233 break;
2234 }
2235
2236 case Instruction::LONG_TO_FLOAT: {
2237 Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kFloat32, dex_pc);
2238 break;
2239 }
2240
2241 case Instruction::LONG_TO_DOUBLE: {
2242 Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kFloat64, dex_pc);
2243 break;
2244 }
2245
2246 case Instruction::FLOAT_TO_INT: {
2247 Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kInt32, dex_pc);
2248 break;
2249 }
2250
2251 case Instruction::FLOAT_TO_LONG: {
2252 Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kInt64, dex_pc);
2253 break;
2254 }
2255
2256 case Instruction::FLOAT_TO_DOUBLE: {
2257 Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kFloat64, dex_pc);
2258 break;
2259 }
2260
2261 case Instruction::DOUBLE_TO_INT: {
2262 Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kInt32, dex_pc);
2263 break;
2264 }
2265
2266 case Instruction::DOUBLE_TO_LONG: {
2267 Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kInt64, dex_pc);
2268 break;
2269 }
2270
2271 case Instruction::DOUBLE_TO_FLOAT: {
2272 Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kFloat32, dex_pc);
2273 break;
2274 }
2275
2276 case Instruction::INT_TO_BYTE: {
2277 Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt8, dex_pc);
2278 break;
2279 }
2280
2281 case Instruction::INT_TO_SHORT: {
2282 Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt16, dex_pc);
2283 break;
2284 }
2285
2286 case Instruction::INT_TO_CHAR: {
2287 Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kUint16, dex_pc);
2288 break;
2289 }
2290
2291 case Instruction::ADD_INT: {
2292 Binop_23x<HAdd>(instruction, DataType::Type::kInt32, dex_pc);
2293 break;
2294 }
2295
2296 case Instruction::ADD_LONG: {
2297 Binop_23x<HAdd>(instruction, DataType::Type::kInt64, dex_pc);
2298 break;
2299 }
2300
2301 case Instruction::ADD_DOUBLE: {
2302 Binop_23x<HAdd>(instruction, DataType::Type::kFloat64, dex_pc);
2303 break;
2304 }
2305
2306 case Instruction::ADD_FLOAT: {
2307 Binop_23x<HAdd>(instruction, DataType::Type::kFloat32, dex_pc);
2308 break;
2309 }
2310
2311 case Instruction::SUB_INT: {
2312 Binop_23x<HSub>(instruction, DataType::Type::kInt32, dex_pc);
2313 break;
2314 }
2315
2316 case Instruction::SUB_LONG: {
2317 Binop_23x<HSub>(instruction, DataType::Type::kInt64, dex_pc);
2318 break;
2319 }
2320
2321 case Instruction::SUB_FLOAT: {
2322 Binop_23x<HSub>(instruction, DataType::Type::kFloat32, dex_pc);
2323 break;
2324 }
2325
2326 case Instruction::SUB_DOUBLE: {
2327 Binop_23x<HSub>(instruction, DataType::Type::kFloat64, dex_pc);
2328 break;
2329 }
2330
2331 case Instruction::ADD_INT_2ADDR: {
2332 Binop_12x<HAdd>(instruction, DataType::Type::kInt32, dex_pc);
2333 break;
2334 }
2335
2336 case Instruction::MUL_INT: {
2337 Binop_23x<HMul>(instruction, DataType::Type::kInt32, dex_pc);
2338 break;
2339 }
2340
2341 case Instruction::MUL_LONG: {
2342 Binop_23x<HMul>(instruction, DataType::Type::kInt64, dex_pc);
2343 break;
2344 }
2345
2346 case Instruction::MUL_FLOAT: {
2347 Binop_23x<HMul>(instruction, DataType::Type::kFloat32, dex_pc);
2348 break;
2349 }
2350
2351 case Instruction::MUL_DOUBLE: {
2352 Binop_23x<HMul>(instruction, DataType::Type::kFloat64, dex_pc);
2353 break;
2354 }
2355
2356 case Instruction::DIV_INT: {
2357 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2358 dex_pc, DataType::Type::kInt32, false, true);
2359 break;
2360 }
2361
2362 case Instruction::DIV_LONG: {
2363 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2364 dex_pc, DataType::Type::kInt64, false, true);
2365 break;
2366 }
2367
2368 case Instruction::DIV_FLOAT: {
2369 Binop_23x<HDiv>(instruction, DataType::Type::kFloat32, dex_pc);
2370 break;
2371 }
2372
2373 case Instruction::DIV_DOUBLE: {
2374 Binop_23x<HDiv>(instruction, DataType::Type::kFloat64, dex_pc);
2375 break;
2376 }
2377
2378 case Instruction::REM_INT: {
2379 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2380 dex_pc, DataType::Type::kInt32, false, false);
2381 break;
2382 }
2383
2384 case Instruction::REM_LONG: {
2385 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2386 dex_pc, DataType::Type::kInt64, false, false);
2387 break;
2388 }
2389
2390 case Instruction::REM_FLOAT: {
2391 Binop_23x<HRem>(instruction, DataType::Type::kFloat32, dex_pc);
2392 break;
2393 }
2394
2395 case Instruction::REM_DOUBLE: {
2396 Binop_23x<HRem>(instruction, DataType::Type::kFloat64, dex_pc);
2397 break;
2398 }
2399
2400 case Instruction::AND_INT: {
2401 Binop_23x<HAnd>(instruction, DataType::Type::kInt32, dex_pc);
2402 break;
2403 }
2404
2405 case Instruction::AND_LONG: {
2406 Binop_23x<HAnd>(instruction, DataType::Type::kInt64, dex_pc);
2407 break;
2408 }
2409
2410 case Instruction::SHL_INT: {
2411 Binop_23x_shift<HShl>(instruction, DataType::Type::kInt32, dex_pc);
2412 break;
2413 }
2414
2415 case Instruction::SHL_LONG: {
2416 Binop_23x_shift<HShl>(instruction, DataType::Type::kInt64, dex_pc);
2417 break;
2418 }
2419
2420 case Instruction::SHR_INT: {
2421 Binop_23x_shift<HShr>(instruction, DataType::Type::kInt32, dex_pc);
2422 break;
2423 }
2424
2425 case Instruction::SHR_LONG: {
2426 Binop_23x_shift<HShr>(instruction, DataType::Type::kInt64, dex_pc);
2427 break;
2428 }
2429
2430 case Instruction::USHR_INT: {
2431 Binop_23x_shift<HUShr>(instruction, DataType::Type::kInt32, dex_pc);
2432 break;
2433 }
2434
2435 case Instruction::USHR_LONG: {
2436 Binop_23x_shift<HUShr>(instruction, DataType::Type::kInt64, dex_pc);
2437 break;
2438 }
2439
2440 case Instruction::OR_INT: {
2441 Binop_23x<HOr>(instruction, DataType::Type::kInt32, dex_pc);
2442 break;
2443 }
2444
2445 case Instruction::OR_LONG: {
2446 Binop_23x<HOr>(instruction, DataType::Type::kInt64, dex_pc);
2447 break;
2448 }
2449
2450 case Instruction::XOR_INT: {
2451 Binop_23x<HXor>(instruction, DataType::Type::kInt32, dex_pc);
2452 break;
2453 }
2454
2455 case Instruction::XOR_LONG: {
2456 Binop_23x<HXor>(instruction, DataType::Type::kInt64, dex_pc);
2457 break;
2458 }
2459
2460 case Instruction::ADD_LONG_2ADDR: {
2461 Binop_12x<HAdd>(instruction, DataType::Type::kInt64, dex_pc);
2462 break;
2463 }
2464
2465 case Instruction::ADD_DOUBLE_2ADDR: {
2466 Binop_12x<HAdd>(instruction, DataType::Type::kFloat64, dex_pc);
2467 break;
2468 }
2469
2470 case Instruction::ADD_FLOAT_2ADDR: {
2471 Binop_12x<HAdd>(instruction, DataType::Type::kFloat32, dex_pc);
2472 break;
2473 }
2474
2475 case Instruction::SUB_INT_2ADDR: {
2476 Binop_12x<HSub>(instruction, DataType::Type::kInt32, dex_pc);
2477 break;
2478 }
2479
2480 case Instruction::SUB_LONG_2ADDR: {
2481 Binop_12x<HSub>(instruction, DataType::Type::kInt64, dex_pc);
2482 break;
2483 }
2484
2485 case Instruction::SUB_FLOAT_2ADDR: {
2486 Binop_12x<HSub>(instruction, DataType::Type::kFloat32, dex_pc);
2487 break;
2488 }
2489
2490 case Instruction::SUB_DOUBLE_2ADDR: {
2491 Binop_12x<HSub>(instruction, DataType::Type::kFloat64, dex_pc);
2492 break;
2493 }
2494
2495 case Instruction::MUL_INT_2ADDR: {
2496 Binop_12x<HMul>(instruction, DataType::Type::kInt32, dex_pc);
2497 break;
2498 }
2499
2500 case Instruction::MUL_LONG_2ADDR: {
2501 Binop_12x<HMul>(instruction, DataType::Type::kInt64, dex_pc);
2502 break;
2503 }
2504
2505 case Instruction::MUL_FLOAT_2ADDR: {
2506 Binop_12x<HMul>(instruction, DataType::Type::kFloat32, dex_pc);
2507 break;
2508 }
2509
2510 case Instruction::MUL_DOUBLE_2ADDR: {
2511 Binop_12x<HMul>(instruction, DataType::Type::kFloat64, dex_pc);
2512 break;
2513 }
2514
2515 case Instruction::DIV_INT_2ADDR: {
2516 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2517 dex_pc, DataType::Type::kInt32, false, true);
2518 break;
2519 }
2520
2521 case Instruction::DIV_LONG_2ADDR: {
2522 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2523 dex_pc, DataType::Type::kInt64, false, true);
2524 break;
2525 }
2526
2527 case Instruction::REM_INT_2ADDR: {
2528 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2529 dex_pc, DataType::Type::kInt32, false, false);
2530 break;
2531 }
2532
2533 case Instruction::REM_LONG_2ADDR: {
2534 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2535 dex_pc, DataType::Type::kInt64, false, false);
2536 break;
2537 }
2538
2539 case Instruction::REM_FLOAT_2ADDR: {
2540 Binop_12x<HRem>(instruction, DataType::Type::kFloat32, dex_pc);
2541 break;
2542 }
2543
2544 case Instruction::REM_DOUBLE_2ADDR: {
2545 Binop_12x<HRem>(instruction, DataType::Type::kFloat64, dex_pc);
2546 break;
2547 }
2548
2549 case Instruction::SHL_INT_2ADDR: {
2550 Binop_12x_shift<HShl>(instruction, DataType::Type::kInt32, dex_pc);
2551 break;
2552 }
2553
2554 case Instruction::SHL_LONG_2ADDR: {
2555 Binop_12x_shift<HShl>(instruction, DataType::Type::kInt64, dex_pc);
2556 break;
2557 }
2558
2559 case Instruction::SHR_INT_2ADDR: {
2560 Binop_12x_shift<HShr>(instruction, DataType::Type::kInt32, dex_pc);
2561 break;
2562 }
2563
2564 case Instruction::SHR_LONG_2ADDR: {
2565 Binop_12x_shift<HShr>(instruction, DataType::Type::kInt64, dex_pc);
2566 break;
2567 }
2568
2569 case Instruction::USHR_INT_2ADDR: {
2570 Binop_12x_shift<HUShr>(instruction, DataType::Type::kInt32, dex_pc);
2571 break;
2572 }
2573
2574 case Instruction::USHR_LONG_2ADDR: {
2575 Binop_12x_shift<HUShr>(instruction, DataType::Type::kInt64, dex_pc);
2576 break;
2577 }
2578
2579 case Instruction::DIV_FLOAT_2ADDR: {
2580 Binop_12x<HDiv>(instruction, DataType::Type::kFloat32, dex_pc);
2581 break;
2582 }
2583
2584 case Instruction::DIV_DOUBLE_2ADDR: {
2585 Binop_12x<HDiv>(instruction, DataType::Type::kFloat64, dex_pc);
2586 break;
2587 }
2588
2589 case Instruction::AND_INT_2ADDR: {
2590 Binop_12x<HAnd>(instruction, DataType::Type::kInt32, dex_pc);
2591 break;
2592 }
2593
2594 case Instruction::AND_LONG_2ADDR: {
2595 Binop_12x<HAnd>(instruction, DataType::Type::kInt64, dex_pc);
2596 break;
2597 }
2598
2599 case Instruction::OR_INT_2ADDR: {
2600 Binop_12x<HOr>(instruction, DataType::Type::kInt32, dex_pc);
2601 break;
2602 }
2603
2604 case Instruction::OR_LONG_2ADDR: {
2605 Binop_12x<HOr>(instruction, DataType::Type::kInt64, dex_pc);
2606 break;
2607 }
2608
2609 case Instruction::XOR_INT_2ADDR: {
2610 Binop_12x<HXor>(instruction, DataType::Type::kInt32, dex_pc);
2611 break;
2612 }
2613
2614 case Instruction::XOR_LONG_2ADDR: {
2615 Binop_12x<HXor>(instruction, DataType::Type::kInt64, dex_pc);
2616 break;
2617 }
2618
2619 case Instruction::ADD_INT_LIT16: {
2620 Binop_22s<HAdd>(instruction, false, dex_pc);
2621 break;
2622 }
2623
2624 case Instruction::AND_INT_LIT16: {
2625 Binop_22s<HAnd>(instruction, false, dex_pc);
2626 break;
2627 }
2628
2629 case Instruction::OR_INT_LIT16: {
2630 Binop_22s<HOr>(instruction, false, dex_pc);
2631 break;
2632 }
2633
2634 case Instruction::XOR_INT_LIT16: {
2635 Binop_22s<HXor>(instruction, false, dex_pc);
2636 break;
2637 }
2638
2639 case Instruction::RSUB_INT: {
2640 Binop_22s<HSub>(instruction, true, dex_pc);
2641 break;
2642 }
2643
2644 case Instruction::MUL_INT_LIT16: {
2645 Binop_22s<HMul>(instruction, false, dex_pc);
2646 break;
2647 }
2648
2649 case Instruction::ADD_INT_LIT8: {
2650 Binop_22b<HAdd>(instruction, false, dex_pc);
2651 break;
2652 }
2653
2654 case Instruction::AND_INT_LIT8: {
2655 Binop_22b<HAnd>(instruction, false, dex_pc);
2656 break;
2657 }
2658
2659 case Instruction::OR_INT_LIT8: {
2660 Binop_22b<HOr>(instruction, false, dex_pc);
2661 break;
2662 }
2663
2664 case Instruction::XOR_INT_LIT8: {
2665 Binop_22b<HXor>(instruction, false, dex_pc);
2666 break;
2667 }
2668
2669 case Instruction::RSUB_INT_LIT8: {
2670 Binop_22b<HSub>(instruction, true, dex_pc);
2671 break;
2672 }
2673
2674 case Instruction::MUL_INT_LIT8: {
2675 Binop_22b<HMul>(instruction, false, dex_pc);
2676 break;
2677 }
2678
2679 case Instruction::DIV_INT_LIT16:
2680 case Instruction::DIV_INT_LIT8: {
2681 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2682 dex_pc, DataType::Type::kInt32, true, true);
2683 break;
2684 }
2685
2686 case Instruction::REM_INT_LIT16:
2687 case Instruction::REM_INT_LIT8: {
2688 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2689 dex_pc, DataType::Type::kInt32, true, false);
2690 break;
2691 }
2692
2693 case Instruction::SHL_INT_LIT8: {
2694 Binop_22b<HShl>(instruction, false, dex_pc);
2695 break;
2696 }
2697
2698 case Instruction::SHR_INT_LIT8: {
2699 Binop_22b<HShr>(instruction, false, dex_pc);
2700 break;
2701 }
2702
2703 case Instruction::USHR_INT_LIT8: {
2704 Binop_22b<HUShr>(instruction, false, dex_pc);
2705 break;
2706 }
2707
2708 case Instruction::NEW_INSTANCE: {
2709 HNewInstance* new_instance =
2710 BuildNewInstance(dex::TypeIndex(instruction.VRegB_21c()), dex_pc);
2711 DCHECK(new_instance != nullptr);
2712
2713 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
2714 BuildConstructorFenceForAllocation(new_instance);
2715 break;
2716 }
2717
2718 case Instruction::NEW_ARRAY: {
2719 dex::TypeIndex type_index(instruction.VRegC_22c());
2720 HInstruction* length = LoadLocal(instruction.VRegB_22c(), DataType::Type::kInt32);
2721 HLoadClass* cls = BuildLoadClass(type_index, dex_pc);
2722
2723 HNewArray* new_array = new (allocator_) HNewArray(cls, length, dex_pc);
2724 AppendInstruction(new_array);
2725 UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction());
2726 BuildConstructorFenceForAllocation(new_array);
2727 break;
2728 }
2729
2730 case Instruction::FILLED_NEW_ARRAY: {
2731 uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
2732 dex::TypeIndex type_index(instruction.VRegB_35c());
2733 uint32_t args[5];
2734 instruction.GetVarArgs(args);
2735 HNewArray* new_array = BuildFilledNewArray(dex_pc,
2736 type_index,
2737 number_of_vreg_arguments,
2738 /* is_range */ false,
2739 args,
2740 /* register_index */ 0);
2741 BuildConstructorFenceForAllocation(new_array);
2742 break;
2743 }
2744
2745 case Instruction::FILLED_NEW_ARRAY_RANGE: {
2746 uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
2747 dex::TypeIndex type_index(instruction.VRegB_3rc());
2748 uint32_t register_index = instruction.VRegC_3rc();
2749 HNewArray* new_array = BuildFilledNewArray(dex_pc,
2750 type_index,
2751 number_of_vreg_arguments,
2752 /* is_range */ true,
2753 /* args*/ nullptr,
2754 register_index);
2755 BuildConstructorFenceForAllocation(new_array);
2756 break;
2757 }
2758
2759 case Instruction::FILL_ARRAY_DATA: {
2760 BuildFillArrayData(instruction, dex_pc);
2761 break;
2762 }
2763
2764 case Instruction::MOVE_RESULT:
2765 case Instruction::MOVE_RESULT_WIDE:
2766 case Instruction::MOVE_RESULT_OBJECT: {
2767 DCHECK(latest_result_ != nullptr);
2768 UpdateLocal(instruction.VRegA(), latest_result_);
2769 latest_result_ = nullptr;
2770 break;
2771 }
2772
2773 case Instruction::CMP_LONG: {
2774 Binop_23x_cmp(instruction, DataType::Type::kInt64, ComparisonBias::kNoBias, dex_pc);
2775 break;
2776 }
2777
2778 case Instruction::CMPG_FLOAT: {
2779 Binop_23x_cmp(instruction, DataType::Type::kFloat32, ComparisonBias::kGtBias, dex_pc);
2780 break;
2781 }
2782
2783 case Instruction::CMPG_DOUBLE: {
2784 Binop_23x_cmp(instruction, DataType::Type::kFloat64, ComparisonBias::kGtBias, dex_pc);
2785 break;
2786 }
2787
2788 case Instruction::CMPL_FLOAT: {
2789 Binop_23x_cmp(instruction, DataType::Type::kFloat32, ComparisonBias::kLtBias, dex_pc);
2790 break;
2791 }
2792
2793 case Instruction::CMPL_DOUBLE: {
2794 Binop_23x_cmp(instruction, DataType::Type::kFloat64, ComparisonBias::kLtBias, dex_pc);
2795 break;
2796 }
2797
2798 case Instruction::NOP:
2799 break;
2800
2801 case Instruction::IGET:
2802 case Instruction::IGET_QUICK:
2803 case Instruction::IGET_WIDE:
2804 case Instruction::IGET_WIDE_QUICK:
2805 case Instruction::IGET_OBJECT:
2806 case Instruction::IGET_OBJECT_QUICK:
2807 case Instruction::IGET_BOOLEAN:
2808 case Instruction::IGET_BOOLEAN_QUICK:
2809 case Instruction::IGET_BYTE:
2810 case Instruction::IGET_BYTE_QUICK:
2811 case Instruction::IGET_CHAR:
2812 case Instruction::IGET_CHAR_QUICK:
2813 case Instruction::IGET_SHORT:
2814 case Instruction::IGET_SHORT_QUICK: {
2815 if (!BuildInstanceFieldAccess(instruction, dex_pc, /* is_put */ false, quicken_index)) {
2816 return false;
2817 }
2818 break;
2819 }
2820
2821 case Instruction::IPUT:
2822 case Instruction::IPUT_QUICK:
2823 case Instruction::IPUT_WIDE:
2824 case Instruction::IPUT_WIDE_QUICK:
2825 case Instruction::IPUT_OBJECT:
2826 case Instruction::IPUT_OBJECT_QUICK:
2827 case Instruction::IPUT_BOOLEAN:
2828 case Instruction::IPUT_BOOLEAN_QUICK:
2829 case Instruction::IPUT_BYTE:
2830 case Instruction::IPUT_BYTE_QUICK:
2831 case Instruction::IPUT_CHAR:
2832 case Instruction::IPUT_CHAR_QUICK:
2833 case Instruction::IPUT_SHORT:
2834 case Instruction::IPUT_SHORT_QUICK: {
2835 if (!BuildInstanceFieldAccess(instruction, dex_pc, /* is_put */ true, quicken_index)) {
2836 return false;
2837 }
2838 break;
2839 }
2840
2841 case Instruction::SGET:
2842 case Instruction::SGET_WIDE:
2843 case Instruction::SGET_OBJECT:
2844 case Instruction::SGET_BOOLEAN:
2845 case Instruction::SGET_BYTE:
2846 case Instruction::SGET_CHAR:
2847 case Instruction::SGET_SHORT: {
2848 BuildStaticFieldAccess(instruction, dex_pc, /* is_put */ false);
2849 break;
2850 }
2851
2852 case Instruction::SPUT:
2853 case Instruction::SPUT_WIDE:
2854 case Instruction::SPUT_OBJECT:
2855 case Instruction::SPUT_BOOLEAN:
2856 case Instruction::SPUT_BYTE:
2857 case Instruction::SPUT_CHAR:
2858 case Instruction::SPUT_SHORT: {
2859 BuildStaticFieldAccess(instruction, dex_pc, /* is_put */ true);
2860 break;
2861 }
2862
2863 #define ARRAY_XX(kind, anticipated_type) \
2864 case Instruction::AGET##kind: { \
2865 BuildArrayAccess(instruction, dex_pc, false, anticipated_type); \
2866 break; \
2867 } \
2868 case Instruction::APUT##kind: { \
2869 BuildArrayAccess(instruction, dex_pc, true, anticipated_type); \
2870 break; \
2871 }
2872
2873 ARRAY_XX(, DataType::Type::kInt32);
2874 ARRAY_XX(_WIDE, DataType::Type::kInt64);
2875 ARRAY_XX(_OBJECT, DataType::Type::kReference);
2876 ARRAY_XX(_BOOLEAN, DataType::Type::kBool);
2877 ARRAY_XX(_BYTE, DataType::Type::kInt8);
2878 ARRAY_XX(_CHAR, DataType::Type::kUint16);
2879 ARRAY_XX(_SHORT, DataType::Type::kInt16);
2880
2881 case Instruction::ARRAY_LENGTH: {
2882 HInstruction* object = LoadNullCheckedLocal(instruction.VRegB_12x(), dex_pc);
2883 AppendInstruction(new (allocator_) HArrayLength(object, dex_pc));
2884 UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction());
2885 break;
2886 }
2887
2888 case Instruction::CONST_STRING: {
2889 dex::StringIndex string_index(instruction.VRegB_21c());
2890 BuildLoadString(string_index, dex_pc);
2891 UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
2892 break;
2893 }
2894
2895 case Instruction::CONST_STRING_JUMBO: {
2896 dex::StringIndex string_index(instruction.VRegB_31c());
2897 BuildLoadString(string_index, dex_pc);
2898 UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction());
2899 break;
2900 }
2901
2902 case Instruction::CONST_CLASS: {
2903 dex::TypeIndex type_index(instruction.VRegB_21c());
2904 BuildLoadClass(type_index, dex_pc);
2905 UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
2906 break;
2907 }
2908
2909 case Instruction::MOVE_EXCEPTION: {
2910 AppendInstruction(new (allocator_) HLoadException(dex_pc));
2911 UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction());
2912 AppendInstruction(new (allocator_) HClearException(dex_pc));
2913 break;
2914 }
2915
2916 case Instruction::THROW: {
2917 HInstruction* exception = LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference);
2918 AppendInstruction(new (allocator_) HThrow(exception, dex_pc));
2919 // We finished building this block. Set the current block to null to avoid
2920 // adding dead instructions to it.
2921 current_block_ = nullptr;
2922 break;
2923 }
2924
2925 case Instruction::INSTANCE_OF: {
2926 uint8_t destination = instruction.VRegA_22c();
2927 uint8_t reference = instruction.VRegB_22c();
2928 dex::TypeIndex type_index(instruction.VRegC_22c());
2929 BuildTypeCheck(instruction, destination, reference, type_index, dex_pc);
2930 break;
2931 }
2932
2933 case Instruction::CHECK_CAST: {
2934 uint8_t reference = instruction.VRegA_21c();
2935 dex::TypeIndex type_index(instruction.VRegB_21c());
2936 BuildTypeCheck(instruction, -1, reference, type_index, dex_pc);
2937 break;
2938 }
2939
2940 case Instruction::MONITOR_ENTER: {
2941 AppendInstruction(new (allocator_) HMonitorOperation(
2942 LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference),
2943 HMonitorOperation::OperationKind::kEnter,
2944 dex_pc));
2945 break;
2946 }
2947
2948 case Instruction::MONITOR_EXIT: {
2949 AppendInstruction(new (allocator_) HMonitorOperation(
2950 LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference),
2951 HMonitorOperation::OperationKind::kExit,
2952 dex_pc));
2953 break;
2954 }
2955
2956 case Instruction::SPARSE_SWITCH:
2957 case Instruction::PACKED_SWITCH: {
2958 BuildSwitch(instruction, dex_pc);
2959 break;
2960 }
2961
2962 default:
2963 VLOG(compiler) << "Did not compile "
2964 << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
2965 << " because of unhandled instruction "
2966 << instruction.Name();
2967 MaybeRecordStat(compilation_stats_,
2968 MethodCompilationStat::kNotCompiledUnhandledInstruction);
2969 return false;
2970 }
2971 return true;
2972 } // NOLINT(readability/fn_size)
2973
LookupResolvedType(dex::TypeIndex type_index,const DexCompilationUnit & compilation_unit) const2974 ObjPtr<mirror::Class> HInstructionBuilder::LookupResolvedType(
2975 dex::TypeIndex type_index,
2976 const DexCompilationUnit& compilation_unit) const {
2977 return compilation_unit.GetClassLinker()->LookupResolvedType(
2978 type_index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get());
2979 }
2980
LookupReferrerClass() const2981 ObjPtr<mirror::Class> HInstructionBuilder::LookupReferrerClass() const {
2982 // TODO: Cache the result in a Handle<mirror::Class>.
2983 const DexFile::MethodId& method_id =
2984 dex_compilation_unit_->GetDexFile()->GetMethodId(dex_compilation_unit_->GetDexMethodIndex());
2985 return LookupResolvedType(method_id.class_idx_, *dex_compilation_unit_);
2986 }
2987
2988 } // namespace art
2989