1 /* 2 * Copyright (C) 2014 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_COMPILER_OPTIMIZING_CODE_GENERATOR_H_ 18 #define ART_COMPILER_OPTIMIZING_CODE_GENERATOR_H_ 19 20 #include "arch/instruction_set.h" 21 #include "arch/instruction_set_features.h" 22 #include "base/arena_containers.h" 23 #include "base/arena_object.h" 24 #include "base/bit_field.h" 25 #include "base/bit_utils.h" 26 #include "base/enums.h" 27 #include "dex/string_reference.h" 28 #include "dex/type_reference.h" 29 #include "globals.h" 30 #include "graph_visualizer.h" 31 #include "locations.h" 32 #include "memory_region.h" 33 #include "nodes.h" 34 #include "optimizing_compiler_stats.h" 35 #include "read_barrier_option.h" 36 #include "stack.h" 37 #include "stack_map.h" 38 #include "utils/label.h" 39 40 namespace art { 41 42 // Binary encoding of 2^32 for type double. 43 static int64_t constexpr k2Pow32EncodingForDouble = INT64_C(0x41F0000000000000); 44 // Binary encoding of 2^31 for type double. 45 static int64_t constexpr k2Pow31EncodingForDouble = INT64_C(0x41E0000000000000); 46 47 // Minimum value for a primitive integer. 48 static int32_t constexpr kPrimIntMin = 0x80000000; 49 // Minimum value for a primitive long. 50 static int64_t constexpr kPrimLongMin = INT64_C(0x8000000000000000); 51 52 // Maximum value for a primitive integer. 53 static int32_t constexpr kPrimIntMax = 0x7fffffff; 54 // Maximum value for a primitive long. 55 static int64_t constexpr kPrimLongMax = INT64_C(0x7fffffffffffffff); 56 57 static constexpr ReadBarrierOption kCompilerReadBarrierOption = 58 kEmitCompilerReadBarrier ? kWithReadBarrier : kWithoutReadBarrier; 59 60 class Assembler; 61 class CodeGenerator; 62 class CompilerDriver; 63 class CompilerOptions; 64 class StackMapStream; 65 class ParallelMoveResolver; 66 67 namespace linker { 68 class LinkerPatch; 69 } // namespace linker 70 71 class CodeAllocator { 72 public: CodeAllocator()73 CodeAllocator() {} ~CodeAllocator()74 virtual ~CodeAllocator() {} 75 76 virtual uint8_t* Allocate(size_t size) = 0; 77 78 private: 79 DISALLOW_COPY_AND_ASSIGN(CodeAllocator); 80 }; 81 82 class SlowPathCode : public DeletableArenaObject<kArenaAllocSlowPaths> { 83 public: SlowPathCode(HInstruction * instruction)84 explicit SlowPathCode(HInstruction* instruction) : instruction_(instruction) { 85 for (size_t i = 0; i < kMaximumNumberOfExpectedRegisters; ++i) { 86 saved_core_stack_offsets_[i] = kRegisterNotSaved; 87 saved_fpu_stack_offsets_[i] = kRegisterNotSaved; 88 } 89 } 90 ~SlowPathCode()91 virtual ~SlowPathCode() {} 92 93 virtual void EmitNativeCode(CodeGenerator* codegen) = 0; 94 95 // Save live core and floating-point caller-save registers and 96 // update the stack mask in `locations` for registers holding object 97 // references. 98 virtual void SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations); 99 // Restore live core and floating-point caller-save registers. 100 virtual void RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations); 101 IsCoreRegisterSaved(int reg)102 bool IsCoreRegisterSaved(int reg) const { 103 return saved_core_stack_offsets_[reg] != kRegisterNotSaved; 104 } 105 IsFpuRegisterSaved(int reg)106 bool IsFpuRegisterSaved(int reg) const { 107 return saved_fpu_stack_offsets_[reg] != kRegisterNotSaved; 108 } 109 GetStackOffsetOfCoreRegister(int reg)110 uint32_t GetStackOffsetOfCoreRegister(int reg) const { 111 return saved_core_stack_offsets_[reg]; 112 } 113 GetStackOffsetOfFpuRegister(int reg)114 uint32_t GetStackOffsetOfFpuRegister(int reg) const { 115 return saved_fpu_stack_offsets_[reg]; 116 } 117 IsFatal()118 virtual bool IsFatal() const { return false; } 119 120 virtual const char* GetDescription() const = 0; 121 GetEntryLabel()122 Label* GetEntryLabel() { return &entry_label_; } GetExitLabel()123 Label* GetExitLabel() { return &exit_label_; } 124 GetInstruction()125 HInstruction* GetInstruction() const { 126 return instruction_; 127 } 128 GetDexPc()129 uint32_t GetDexPc() const { 130 return instruction_ != nullptr ? instruction_->GetDexPc() : kNoDexPc; 131 } 132 133 protected: 134 static constexpr size_t kMaximumNumberOfExpectedRegisters = 32; 135 static constexpr uint32_t kRegisterNotSaved = -1; 136 // The instruction where this slow path is happening. 137 HInstruction* instruction_; 138 uint32_t saved_core_stack_offsets_[kMaximumNumberOfExpectedRegisters]; 139 uint32_t saved_fpu_stack_offsets_[kMaximumNumberOfExpectedRegisters]; 140 141 private: 142 Label entry_label_; 143 Label exit_label_; 144 145 DISALLOW_COPY_AND_ASSIGN(SlowPathCode); 146 }; 147 148 class InvokeDexCallingConventionVisitor { 149 public: 150 virtual Location GetNextLocation(DataType::Type type) = 0; 151 virtual Location GetReturnLocation(DataType::Type type) const = 0; 152 virtual Location GetMethodLocation() const = 0; 153 154 protected: InvokeDexCallingConventionVisitor()155 InvokeDexCallingConventionVisitor() {} ~InvokeDexCallingConventionVisitor()156 virtual ~InvokeDexCallingConventionVisitor() {} 157 158 // The current index for core registers. 159 uint32_t gp_index_ = 0u; 160 // The current index for floating-point registers. 161 uint32_t float_index_ = 0u; 162 // The current stack index. 163 uint32_t stack_index_ = 0u; 164 165 private: 166 DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConventionVisitor); 167 }; 168 169 class FieldAccessCallingConvention { 170 public: 171 virtual Location GetObjectLocation() const = 0; 172 virtual Location GetFieldIndexLocation() const = 0; 173 virtual Location GetReturnLocation(DataType::Type type) const = 0; 174 virtual Location GetSetValueLocation(DataType::Type type, bool is_instance) const = 0; 175 virtual Location GetFpuLocation(DataType::Type type) const = 0; ~FieldAccessCallingConvention()176 virtual ~FieldAccessCallingConvention() {} 177 178 protected: FieldAccessCallingConvention()179 FieldAccessCallingConvention() {} 180 181 private: 182 DISALLOW_COPY_AND_ASSIGN(FieldAccessCallingConvention); 183 }; 184 185 class CodeGenerator : public DeletableArenaObject<kArenaAllocCodeGenerator> { 186 public: 187 // Compiles the graph to executable instructions. 188 void Compile(CodeAllocator* allocator); 189 static std::unique_ptr<CodeGenerator> Create(HGraph* graph, 190 InstructionSet instruction_set, 191 const InstructionSetFeatures& isa_features, 192 const CompilerOptions& compiler_options, 193 OptimizingCompilerStats* stats = nullptr); 194 virtual ~CodeGenerator(); 195 196 // Get the graph. This is the outermost graph, never the graph of a method being inlined. GetGraph()197 HGraph* GetGraph() const { return graph_; } 198 199 HBasicBlock* GetNextBlockToEmit() const; 200 HBasicBlock* FirstNonEmptyBlock(HBasicBlock* block) const; 201 bool GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const; 202 GetStackSlotOfParameter(HParameterValue * parameter)203 size_t GetStackSlotOfParameter(HParameterValue* parameter) const { 204 // Note that this follows the current calling convention. 205 return GetFrameSize() 206 + static_cast<size_t>(InstructionSetPointerSize(GetInstructionSet())) // Art method 207 + parameter->GetIndex() * kVRegSize; 208 } 209 210 virtual void Initialize() = 0; 211 virtual void Finalize(CodeAllocator* allocator); 212 virtual void EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches); 213 virtual void GenerateFrameEntry() = 0; 214 virtual void GenerateFrameExit() = 0; 215 virtual void Bind(HBasicBlock* block) = 0; 216 virtual void MoveConstant(Location destination, int32_t value) = 0; 217 virtual void MoveLocation(Location dst, Location src, DataType::Type dst_type) = 0; 218 virtual void AddLocationAsTemp(Location location, LocationSummary* locations) = 0; 219 220 virtual Assembler* GetAssembler() = 0; 221 virtual const Assembler& GetAssembler() const = 0; 222 virtual size_t GetWordSize() const = 0; 223 virtual size_t GetFloatingPointSpillSlotSize() const = 0; 224 virtual uintptr_t GetAddressOf(HBasicBlock* block) = 0; 225 void InitializeCodeGeneration(size_t number_of_spill_slots, 226 size_t maximum_safepoint_spill_size, 227 size_t number_of_out_slots, 228 const ArenaVector<HBasicBlock*>& block_order); 229 // Backends can override this as necessary. For most, no special alignment is required. GetPreferredSlotsAlignment()230 virtual uint32_t GetPreferredSlotsAlignment() const { return 1; } 231 GetFrameSize()232 uint32_t GetFrameSize() const { return frame_size_; } SetFrameSize(uint32_t size)233 void SetFrameSize(uint32_t size) { frame_size_ = size; } GetCoreSpillMask()234 uint32_t GetCoreSpillMask() const { return core_spill_mask_; } GetFpuSpillMask()235 uint32_t GetFpuSpillMask() const { return fpu_spill_mask_; } 236 GetNumberOfCoreRegisters()237 size_t GetNumberOfCoreRegisters() const { return number_of_core_registers_; } GetNumberOfFloatingPointRegisters()238 size_t GetNumberOfFloatingPointRegisters() const { return number_of_fpu_registers_; } 239 virtual void SetupBlockedRegisters() const = 0; 240 ComputeSpillMask()241 virtual void ComputeSpillMask() { 242 core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_; 243 DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved"; 244 fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_; 245 } 246 ComputeRegisterMask(const int * registers,size_t length)247 static uint32_t ComputeRegisterMask(const int* registers, size_t length) { 248 uint32_t mask = 0; 249 for (size_t i = 0, e = length; i < e; ++i) { 250 mask |= (1 << registers[i]); 251 } 252 return mask; 253 } 254 255 virtual void DumpCoreRegister(std::ostream& stream, int reg) const = 0; 256 virtual void DumpFloatingPointRegister(std::ostream& stream, int reg) const = 0; 257 virtual InstructionSet GetInstructionSet() const = 0; 258 GetCompilerOptions()259 const CompilerOptions& GetCompilerOptions() const { return compiler_options_; } 260 261 // Saves the register in the stack. Returns the size taken on stack. 262 virtual size_t SaveCoreRegister(size_t stack_index, uint32_t reg_id) = 0; 263 // Restores the register from the stack. Returns the size taken on stack. 264 virtual size_t RestoreCoreRegister(size_t stack_index, uint32_t reg_id) = 0; 265 266 virtual size_t SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) = 0; 267 virtual size_t RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) = 0; 268 269 virtual bool NeedsTwoRegisters(DataType::Type type) const = 0; 270 // Returns whether we should split long moves in parallel moves. ShouldSplitLongMoves()271 virtual bool ShouldSplitLongMoves() const { return false; } 272 GetNumberOfCoreCalleeSaveRegisters()273 size_t GetNumberOfCoreCalleeSaveRegisters() const { 274 return POPCOUNT(core_callee_save_mask_); 275 } 276 GetNumberOfCoreCallerSaveRegisters()277 size_t GetNumberOfCoreCallerSaveRegisters() const { 278 DCHECK_GE(GetNumberOfCoreRegisters(), GetNumberOfCoreCalleeSaveRegisters()); 279 return GetNumberOfCoreRegisters() - GetNumberOfCoreCalleeSaveRegisters(); 280 } 281 IsCoreCalleeSaveRegister(int reg)282 bool IsCoreCalleeSaveRegister(int reg) const { 283 return (core_callee_save_mask_ & (1 << reg)) != 0; 284 } 285 IsFloatingPointCalleeSaveRegister(int reg)286 bool IsFloatingPointCalleeSaveRegister(int reg) const { 287 return (fpu_callee_save_mask_ & (1 << reg)) != 0; 288 } 289 GetSlowPathSpills(LocationSummary * locations,bool core_registers)290 uint32_t GetSlowPathSpills(LocationSummary* locations, bool core_registers) const { 291 DCHECK(locations->OnlyCallsOnSlowPath() || 292 (locations->Intrinsified() && locations->CallsOnMainAndSlowPath() && 293 !locations->HasCustomSlowPathCallingConvention())); 294 uint32_t live_registers = core_registers 295 ? locations->GetLiveRegisters()->GetCoreRegisters() 296 : locations->GetLiveRegisters()->GetFloatingPointRegisters(); 297 if (locations->HasCustomSlowPathCallingConvention()) { 298 // Save only the live registers that the custom calling convention wants us to save. 299 uint32_t caller_saves = core_registers 300 ? locations->GetCustomSlowPathCallerSaves().GetCoreRegisters() 301 : locations->GetCustomSlowPathCallerSaves().GetFloatingPointRegisters(); 302 return live_registers & caller_saves; 303 } else { 304 // Default ABI, we need to spill non-callee-save live registers. 305 uint32_t callee_saves = core_registers ? core_callee_save_mask_ : fpu_callee_save_mask_; 306 return live_registers & ~callee_saves; 307 } 308 } 309 GetNumberOfSlowPathSpills(LocationSummary * locations,bool core_registers)310 size_t GetNumberOfSlowPathSpills(LocationSummary* locations, bool core_registers) const { 311 return POPCOUNT(GetSlowPathSpills(locations, core_registers)); 312 } 313 GetStackOffsetOfShouldDeoptimizeFlag()314 size_t GetStackOffsetOfShouldDeoptimizeFlag() const { 315 DCHECK(GetGraph()->HasShouldDeoptimizeFlag()); 316 DCHECK_GE(GetFrameSize(), FrameEntrySpillSize() + kShouldDeoptimizeFlagSize); 317 return GetFrameSize() - FrameEntrySpillSize() - kShouldDeoptimizeFlagSize; 318 } 319 320 // Record native to dex mapping for a suspend point. Required by runtime. 321 void RecordPcInfo(HInstruction* instruction, uint32_t dex_pc, SlowPathCode* slow_path = nullptr); 322 // Check whether we have already recorded mapping at this PC. 323 bool HasStackMapAtCurrentPc(); 324 // Record extra stack maps if we support native debugging. 325 void MaybeRecordNativeDebugInfo(HInstruction* instruction, 326 uint32_t dex_pc, 327 SlowPathCode* slow_path = nullptr); 328 329 bool CanMoveNullCheckToUser(HNullCheck* null_check); 330 void MaybeRecordImplicitNullCheck(HInstruction* instruction); 331 LocationSummary* CreateThrowingSlowPathLocations( 332 HInstruction* instruction, RegisterSet caller_saves = RegisterSet::Empty()); 333 void GenerateNullCheck(HNullCheck* null_check); 334 virtual void GenerateImplicitNullCheck(HNullCheck* null_check) = 0; 335 virtual void GenerateExplicitNullCheck(HNullCheck* null_check) = 0; 336 337 // Records a stack map which the runtime might use to set catch phi values 338 // during exception delivery. 339 // TODO: Replace with a catch-entering instruction that records the environment. 340 void RecordCatchBlockInfo(); 341 342 // Get the ScopedArenaAllocator used for codegen memory allocation. 343 ScopedArenaAllocator* GetScopedAllocator(); 344 345 void AddSlowPath(SlowPathCode* slow_path); 346 347 void BuildStackMaps(MemoryRegion stack_map_region, 348 MemoryRegion method_info_region, 349 const DexFile::CodeItem* code_item_for_osr_check); 350 void ComputeStackMapAndMethodInfoSize(size_t* stack_map_size, size_t* method_info_size); 351 size_t GetNumberOfJitRoots() const; 352 353 // Fills the `literals` array with literals collected during code generation. 354 // Also emits literal patches. 355 void EmitJitRoots(uint8_t* code, 356 Handle<mirror::ObjectArray<mirror::Object>> roots, 357 const uint8_t* roots_data) 358 REQUIRES_SHARED(Locks::mutator_lock_); 359 IsLeafMethod()360 bool IsLeafMethod() const { 361 return is_leaf_; 362 } 363 MarkNotLeaf()364 void MarkNotLeaf() { 365 is_leaf_ = false; 366 requires_current_method_ = true; 367 } 368 SetRequiresCurrentMethod()369 void SetRequiresCurrentMethod() { 370 requires_current_method_ = true; 371 } 372 RequiresCurrentMethod()373 bool RequiresCurrentMethod() const { 374 return requires_current_method_; 375 } 376 377 // Clears the spill slots taken by loop phis in the `LocationSummary` of the 378 // suspend check. This is called when the code generator generates code 379 // for the suspend check at the back edge (instead of where the suspend check 380 // is, which is the loop entry). At this point, the spill slots for the phis 381 // have not been written to. 382 void ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check, 383 HParallelMove* spills) const; 384 GetBlockedCoreRegisters()385 bool* GetBlockedCoreRegisters() const { return blocked_core_registers_; } GetBlockedFloatingPointRegisters()386 bool* GetBlockedFloatingPointRegisters() const { return blocked_fpu_registers_; } 387 IsBlockedCoreRegister(size_t i)388 bool IsBlockedCoreRegister(size_t i) { return blocked_core_registers_[i]; } IsBlockedFloatingPointRegister(size_t i)389 bool IsBlockedFloatingPointRegister(size_t i) { return blocked_fpu_registers_[i]; } 390 391 // Helper that returns the offset of the array's length field. 392 // Note: Besides the normal arrays, we also use the HArrayLength for 393 // accessing the String's `count` field in String intrinsics. 394 static uint32_t GetArrayLengthOffset(HArrayLength* array_length); 395 396 // Helper that returns the offset of the array's data. 397 // Note: Besides the normal arrays, we also use the HArrayGet for 398 // accessing the String's `value` field in String intrinsics. 399 static uint32_t GetArrayDataOffset(HArrayGet* array_get); 400 401 void EmitParallelMoves(Location from1, 402 Location to1, 403 DataType::Type type1, 404 Location from2, 405 Location to2, 406 DataType::Type type2); 407 InstanceOfNeedsReadBarrier(HInstanceOf * instance_of)408 static bool InstanceOfNeedsReadBarrier(HInstanceOf* instance_of) { 409 // Used only for kExactCheck, kAbstractClassCheck, kClassHierarchyCheck and kArrayObjectCheck. 410 DCHECK(instance_of->GetTypeCheckKind() == TypeCheckKind::kExactCheck || 411 instance_of->GetTypeCheckKind() == TypeCheckKind::kAbstractClassCheck || 412 instance_of->GetTypeCheckKind() == TypeCheckKind::kClassHierarchyCheck || 413 instance_of->GetTypeCheckKind() == TypeCheckKind::kArrayObjectCheck) 414 << instance_of->GetTypeCheckKind(); 415 // If the target class is in the boot image, it's non-moveable and it doesn't matter 416 // if we compare it with a from-space or to-space reference, the result is the same. 417 // It's OK to traverse a class hierarchy jumping between from-space and to-space. 418 return kEmitCompilerReadBarrier && !instance_of->GetTargetClass()->IsInBootImage(); 419 } 420 ReadBarrierOptionForInstanceOf(HInstanceOf * instance_of)421 static ReadBarrierOption ReadBarrierOptionForInstanceOf(HInstanceOf* instance_of) { 422 return InstanceOfNeedsReadBarrier(instance_of) ? kWithReadBarrier : kWithoutReadBarrier; 423 } 424 IsTypeCheckSlowPathFatal(HCheckCast * check_cast)425 static bool IsTypeCheckSlowPathFatal(HCheckCast* check_cast) { 426 switch (check_cast->GetTypeCheckKind()) { 427 case TypeCheckKind::kExactCheck: 428 case TypeCheckKind::kAbstractClassCheck: 429 case TypeCheckKind::kClassHierarchyCheck: 430 case TypeCheckKind::kArrayObjectCheck: 431 case TypeCheckKind::kInterfaceCheck: { 432 bool needs_read_barrier = 433 kEmitCompilerReadBarrier && !check_cast->GetTargetClass()->IsInBootImage(); 434 // We do not emit read barriers for HCheckCast, so we can get false negatives 435 // and the slow path shall re-check and simply return if the cast is actually OK. 436 return !needs_read_barrier; 437 } 438 case TypeCheckKind::kArrayCheck: 439 case TypeCheckKind::kUnresolvedCheck: 440 return false; 441 } 442 LOG(FATAL) << "Unreachable"; 443 UNREACHABLE(); 444 } 445 GetCheckCastCallKind(HCheckCast * check_cast)446 static LocationSummary::CallKind GetCheckCastCallKind(HCheckCast* check_cast) { 447 return (IsTypeCheckSlowPathFatal(check_cast) && !check_cast->CanThrowIntoCatchBlock()) 448 ? LocationSummary::kNoCall // In fact, call on a fatal (non-returning) slow path. 449 : LocationSummary::kCallOnSlowPath; 450 } 451 StoreNeedsWriteBarrier(DataType::Type type,HInstruction * value)452 static bool StoreNeedsWriteBarrier(DataType::Type type, HInstruction* value) { 453 // Check that null value is not represented as an integer constant. 454 DCHECK(type != DataType::Type::kReference || !value->IsIntConstant()); 455 return type == DataType::Type::kReference && !value->IsNullConstant(); 456 } 457 458 459 // Performs checks pertaining to an InvokeRuntime call. 460 void ValidateInvokeRuntime(QuickEntrypointEnum entrypoint, 461 HInstruction* instruction, 462 SlowPathCode* slow_path); 463 464 // Performs checks pertaining to an InvokeRuntimeWithoutRecordingPcInfo call. 465 static void ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction* instruction, 466 SlowPathCode* slow_path); 467 AddAllocatedRegister(Location location)468 void AddAllocatedRegister(Location location) { 469 allocated_registers_.Add(location); 470 } 471 HasAllocatedRegister(bool is_core,int reg)472 bool HasAllocatedRegister(bool is_core, int reg) const { 473 return is_core 474 ? allocated_registers_.ContainsCoreRegister(reg) 475 : allocated_registers_.ContainsFloatingPointRegister(reg); 476 } 477 478 void AllocateLocations(HInstruction* instruction); 479 480 // Tells whether the stack frame of the compiled method is 481 // considered "empty", that is either actually having a size of zero, 482 // or just containing the saved return address register. HasEmptyFrame()483 bool HasEmptyFrame() const { 484 return GetFrameSize() == (CallPushesPC() ? GetWordSize() : 0); 485 } 486 GetInt8ValueOf(HConstant * constant)487 static int8_t GetInt8ValueOf(HConstant* constant) { 488 DCHECK(constant->IsIntConstant()); 489 return constant->AsIntConstant()->GetValue(); 490 } 491 GetInt16ValueOf(HConstant * constant)492 static int16_t GetInt16ValueOf(HConstant* constant) { 493 DCHECK(constant->IsIntConstant()); 494 return constant->AsIntConstant()->GetValue(); 495 } 496 GetInt32ValueOf(HConstant * constant)497 static int32_t GetInt32ValueOf(HConstant* constant) { 498 if (constant->IsIntConstant()) { 499 return constant->AsIntConstant()->GetValue(); 500 } else if (constant->IsNullConstant()) { 501 return 0; 502 } else { 503 DCHECK(constant->IsFloatConstant()); 504 return bit_cast<int32_t, float>(constant->AsFloatConstant()->GetValue()); 505 } 506 } 507 GetInt64ValueOf(HConstant * constant)508 static int64_t GetInt64ValueOf(HConstant* constant) { 509 if (constant->IsIntConstant()) { 510 return constant->AsIntConstant()->GetValue(); 511 } else if (constant->IsNullConstant()) { 512 return 0; 513 } else if (constant->IsFloatConstant()) { 514 return bit_cast<int32_t, float>(constant->AsFloatConstant()->GetValue()); 515 } else if (constant->IsLongConstant()) { 516 return constant->AsLongConstant()->GetValue(); 517 } else { 518 DCHECK(constant->IsDoubleConstant()); 519 return bit_cast<int64_t, double>(constant->AsDoubleConstant()->GetValue()); 520 } 521 } 522 GetFirstRegisterSlotInSlowPath()523 size_t GetFirstRegisterSlotInSlowPath() const { 524 return first_register_slot_in_slow_path_; 525 } 526 FrameEntrySpillSize()527 uint32_t FrameEntrySpillSize() const { 528 return GetFpuSpillSize() + GetCoreSpillSize(); 529 } 530 531 virtual ParallelMoveResolver* GetMoveResolver() = 0; 532 533 static void CreateCommonInvokeLocationSummary( 534 HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor); 535 536 void GenerateInvokeStaticOrDirectRuntimeCall( 537 HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path); 538 void GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved* invoke); 539 540 void GenerateInvokePolymorphicCall(HInvokePolymorphic* invoke); 541 542 void CreateUnresolvedFieldLocationSummary( 543 HInstruction* field_access, 544 DataType::Type field_type, 545 const FieldAccessCallingConvention& calling_convention); 546 547 void GenerateUnresolvedFieldAccess( 548 HInstruction* field_access, 549 DataType::Type field_type, 550 uint32_t field_index, 551 uint32_t dex_pc, 552 const FieldAccessCallingConvention& calling_convention); 553 554 static void CreateLoadClassRuntimeCallLocationSummary(HLoadClass* cls, 555 Location runtime_type_index_location, 556 Location runtime_return_location); 557 void GenerateLoadClassRuntimeCall(HLoadClass* cls); 558 559 static void CreateSystemArrayCopyLocationSummary(HInvoke* invoke); 560 SetDisassemblyInformation(DisassemblyInformation * info)561 void SetDisassemblyInformation(DisassemblyInformation* info) { disasm_info_ = info; } GetDisassemblyInformation()562 DisassemblyInformation* GetDisassemblyInformation() const { return disasm_info_; } 563 564 virtual void InvokeRuntime(QuickEntrypointEnum entrypoint, 565 HInstruction* instruction, 566 uint32_t dex_pc, 567 SlowPathCode* slow_path = nullptr) = 0; 568 569 // Check if the desired_string_load_kind is supported. If it is, return it, 570 // otherwise return a fall-back kind that should be used instead. 571 virtual HLoadString::LoadKind GetSupportedLoadStringKind( 572 HLoadString::LoadKind desired_string_load_kind) = 0; 573 574 // Check if the desired_class_load_kind is supported. If it is, return it, 575 // otherwise return a fall-back kind that should be used instead. 576 virtual HLoadClass::LoadKind GetSupportedLoadClassKind( 577 HLoadClass::LoadKind desired_class_load_kind) = 0; 578 GetLoadStringCallKind(HLoadString * load)579 static LocationSummary::CallKind GetLoadStringCallKind(HLoadString* load) { 580 switch (load->GetLoadKind()) { 581 case HLoadString::LoadKind::kBssEntry: 582 DCHECK(load->NeedsEnvironment()); 583 return LocationSummary::kCallOnSlowPath; 584 case HLoadString::LoadKind::kRuntimeCall: 585 DCHECK(load->NeedsEnvironment()); 586 return LocationSummary::kCallOnMainOnly; 587 case HLoadString::LoadKind::kJitTableAddress: 588 DCHECK(!load->NeedsEnvironment()); 589 return kEmitCompilerReadBarrier 590 ? LocationSummary::kCallOnSlowPath 591 : LocationSummary::kNoCall; 592 break; 593 default: 594 DCHECK(!load->NeedsEnvironment()); 595 return LocationSummary::kNoCall; 596 } 597 } 598 599 // Check if the desired_dispatch_info is supported. If it is, return it, 600 // otherwise return a fall-back info that should be used instead. 601 virtual HInvokeStaticOrDirect::DispatchInfo GetSupportedInvokeStaticOrDirectDispatch( 602 const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, 603 HInvokeStaticOrDirect* invoke) = 0; 604 605 // Generate a call to a static or direct method. 606 virtual void GenerateStaticOrDirectCall( 607 HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path = nullptr) = 0; 608 // Generate a call to a virtual method. 609 virtual void GenerateVirtualCall( 610 HInvokeVirtual* invoke, Location temp, SlowPathCode* slow_path = nullptr) = 0; 611 612 // Copy the result of a call into the given target. 613 virtual void MoveFromReturnRegister(Location trg, DataType::Type type) = 0; 614 615 virtual void GenerateNop() = 0; 616 617 static QuickEntrypointEnum GetArrayAllocationEntrypoint(Handle<mirror::Class> array_klass); 618 619 protected: 620 // Patch info used for recording locations of required linker patches and their targets, 621 // i.e. target method, string, type or code identified by their dex file and index, 622 // or .data.bimg.rel.ro entries identified by the boot image offset. 623 template <typename LabelType> 624 struct PatchInfo { PatchInfoPatchInfo625 PatchInfo(const DexFile* dex_file, uint32_t off_or_idx) 626 : target_dex_file(dex_file), offset_or_index(off_or_idx), label() { } 627 628 // Target dex file or null for .data.bmig.rel.ro patches. 629 const DexFile* target_dex_file; 630 // Either the boot image offset (to write to .data.bmig.rel.ro) or string/type/method index. 631 uint32_t offset_or_index; 632 // Label for the instruction to patch. 633 LabelType label; 634 }; 635 636 CodeGenerator(HGraph* graph, 637 size_t number_of_core_registers, 638 size_t number_of_fpu_registers, 639 size_t number_of_register_pairs, 640 uint32_t core_callee_save_mask, 641 uint32_t fpu_callee_save_mask, 642 const CompilerOptions& compiler_options, 643 OptimizingCompilerStats* stats); 644 645 virtual HGraphVisitor* GetLocationBuilder() = 0; 646 virtual HGraphVisitor* GetInstructionVisitor() = 0; 647 648 // Returns the location of the first spilled entry for floating point registers, 649 // relative to the stack pointer. GetFpuSpillStart()650 uint32_t GetFpuSpillStart() const { 651 return GetFrameSize() - FrameEntrySpillSize(); 652 } 653 GetFpuSpillSize()654 uint32_t GetFpuSpillSize() const { 655 return POPCOUNT(fpu_spill_mask_) * GetFloatingPointSpillSlotSize(); 656 } 657 GetCoreSpillSize()658 uint32_t GetCoreSpillSize() const { 659 return POPCOUNT(core_spill_mask_) * GetWordSize(); 660 } 661 HasAllocatedCalleeSaveRegisters()662 virtual bool HasAllocatedCalleeSaveRegisters() const { 663 // We check the core registers against 1 because it always comprises the return PC. 664 return (POPCOUNT(allocated_registers_.GetCoreRegisters() & core_callee_save_mask_) != 1) 665 || (POPCOUNT(allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_) != 0); 666 } 667 CallPushesPC()668 bool CallPushesPC() const { 669 InstructionSet instruction_set = GetInstructionSet(); 670 return instruction_set == InstructionSet::kX86 || instruction_set == InstructionSet::kX86_64; 671 } 672 673 // Arm64 has its own type for a label, so we need to templatize these methods 674 // to share the logic. 675 676 template <typename LabelType> CommonInitializeLabels()677 LabelType* CommonInitializeLabels() { 678 // We use raw array allocations instead of ArenaVector<> because Labels are 679 // non-constructible and non-movable and as such cannot be held in a vector. 680 size_t size = GetGraph()->GetBlocks().size(); 681 LabelType* labels = 682 GetGraph()->GetAllocator()->AllocArray<LabelType>(size, kArenaAllocCodeGenerator); 683 for (size_t i = 0; i != size; ++i) { 684 new(labels + i) LabelType(); 685 } 686 return labels; 687 } 688 689 template <typename LabelType> CommonGetLabelOf(LabelType * raw_pointer_to_labels_array,HBasicBlock * block)690 LabelType* CommonGetLabelOf(LabelType* raw_pointer_to_labels_array, HBasicBlock* block) const { 691 block = FirstNonEmptyBlock(block); 692 return raw_pointer_to_labels_array + block->GetBlockId(); 693 } 694 GetCurrentSlowPath()695 SlowPathCode* GetCurrentSlowPath() { 696 return current_slow_path_; 697 } 698 699 StackMapStream* GetStackMapStream(); 700 701 void ReserveJitStringRoot(StringReference string_reference, Handle<mirror::String> string); 702 uint64_t GetJitStringRootIndex(StringReference string_reference); 703 void ReserveJitClassRoot(TypeReference type_reference, Handle<mirror::Class> klass); 704 uint64_t GetJitClassRootIndex(TypeReference type_reference); 705 706 // Emit the patches assocatied with JIT roots. Only applies to JIT compiled code. 707 virtual void EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data); 708 709 // Frame size required for this method. 710 uint32_t frame_size_; 711 uint32_t core_spill_mask_; 712 uint32_t fpu_spill_mask_; 713 uint32_t first_register_slot_in_slow_path_; 714 715 // Registers that were allocated during linear scan. 716 RegisterSet allocated_registers_; 717 718 // Arrays used when doing register allocation to know which 719 // registers we can allocate. `SetupBlockedRegisters` updates the 720 // arrays. 721 bool* const blocked_core_registers_; 722 bool* const blocked_fpu_registers_; 723 size_t number_of_core_registers_; 724 size_t number_of_fpu_registers_; 725 size_t number_of_register_pairs_; 726 const uint32_t core_callee_save_mask_; 727 const uint32_t fpu_callee_save_mask_; 728 729 // The order to use for code generation. 730 const ArenaVector<HBasicBlock*>* block_order_; 731 732 DisassemblyInformation* disasm_info_; 733 734 private: 735 class CodeGenerationData; 736 737 void InitializeCodeGenerationData(); 738 size_t GetStackOffsetOfSavedRegister(size_t index); 739 void GenerateSlowPaths(); 740 void BlockIfInRegister(Location location, bool is_out = false) const; 741 void EmitEnvironment(HEnvironment* environment, SlowPathCode* slow_path); 742 743 OptimizingCompilerStats* stats_; 744 745 HGraph* const graph_; 746 const CompilerOptions& compiler_options_; 747 748 // The current slow-path that we're generating code for. 749 SlowPathCode* current_slow_path_; 750 751 // The current block index in `block_order_` of the block 752 // we are generating code for. 753 size_t current_block_index_; 754 755 // Whether the method is a leaf method. 756 bool is_leaf_; 757 758 // Whether an instruction in the graph accesses the current method. 759 // TODO: Rename: this actually indicates that some instruction in the method 760 // needs the environment including a valid stack frame. 761 bool requires_current_method_; 762 763 // The CodeGenerationData contains a ScopedArenaAllocator intended for reusing the 764 // ArenaStack memory allocated in previous passes instead of adding to the memory 765 // held by the ArenaAllocator. This ScopedArenaAllocator is created in 766 // CodeGenerator::Compile() and remains alive until the CodeGenerator is destroyed. 767 std::unique_ptr<CodeGenerationData> code_generation_data_; 768 769 friend class OptimizingCFITest; 770 771 DISALLOW_COPY_AND_ASSIGN(CodeGenerator); 772 }; 773 774 template <typename C, typename F> 775 class CallingConvention { 776 public: CallingConvention(const C * registers,size_t number_of_registers,const F * fpu_registers,size_t number_of_fpu_registers,PointerSize pointer_size)777 CallingConvention(const C* registers, 778 size_t number_of_registers, 779 const F* fpu_registers, 780 size_t number_of_fpu_registers, 781 PointerSize pointer_size) 782 : registers_(registers), 783 number_of_registers_(number_of_registers), 784 fpu_registers_(fpu_registers), 785 number_of_fpu_registers_(number_of_fpu_registers), 786 pointer_size_(pointer_size) {} 787 GetNumberOfRegisters()788 size_t GetNumberOfRegisters() const { return number_of_registers_; } GetNumberOfFpuRegisters()789 size_t GetNumberOfFpuRegisters() const { return number_of_fpu_registers_; } 790 GetRegisterAt(size_t index)791 C GetRegisterAt(size_t index) const { 792 DCHECK_LT(index, number_of_registers_); 793 return registers_[index]; 794 } 795 GetFpuRegisterAt(size_t index)796 F GetFpuRegisterAt(size_t index) const { 797 DCHECK_LT(index, number_of_fpu_registers_); 798 return fpu_registers_[index]; 799 } 800 GetStackOffsetOf(size_t index)801 size_t GetStackOffsetOf(size_t index) const { 802 // We still reserve the space for parameters passed by registers. 803 // Add space for the method pointer. 804 return static_cast<size_t>(pointer_size_) + index * kVRegSize; 805 } 806 807 private: 808 const C* registers_; 809 const size_t number_of_registers_; 810 const F* fpu_registers_; 811 const size_t number_of_fpu_registers_; 812 const PointerSize pointer_size_; 813 814 DISALLOW_COPY_AND_ASSIGN(CallingConvention); 815 }; 816 817 /** 818 * A templated class SlowPathGenerator with a templated method NewSlowPath() 819 * that can be used by any code generator to share equivalent slow-paths with 820 * the objective of reducing generated code size. 821 * 822 * InstructionType: instruction that requires SlowPathCodeType 823 * SlowPathCodeType: subclass of SlowPathCode, with constructor SlowPathCodeType(InstructionType *) 824 */ 825 template <typename InstructionType> 826 class SlowPathGenerator { 827 static_assert(std::is_base_of<HInstruction, InstructionType>::value, 828 "InstructionType is not a subclass of art::HInstruction"); 829 830 public: SlowPathGenerator(HGraph * graph,CodeGenerator * codegen)831 SlowPathGenerator(HGraph* graph, CodeGenerator* codegen) 832 : graph_(graph), 833 codegen_(codegen), 834 slow_path_map_(std::less<uint32_t>(), 835 graph->GetAllocator()->Adapter(kArenaAllocSlowPaths)) {} 836 837 // Creates and adds a new slow-path, if needed, or returns existing one otherwise. 838 // Templating the method (rather than the whole class) on the slow-path type enables 839 // keeping this code at a generic, non architecture-specific place. 840 // 841 // NOTE: This approach assumes each InstructionType only generates one SlowPathCodeType. 842 // To relax this requirement, we would need some RTTI on the stored slow-paths, 843 // or template the class as a whole on SlowPathType. 844 template <typename SlowPathCodeType> NewSlowPath(InstructionType * instruction)845 SlowPathCodeType* NewSlowPath(InstructionType* instruction) { 846 static_assert(std::is_base_of<SlowPathCode, SlowPathCodeType>::value, 847 "SlowPathCodeType is not a subclass of art::SlowPathCode"); 848 static_assert(std::is_constructible<SlowPathCodeType, InstructionType*>::value, 849 "SlowPathCodeType is not constructible from InstructionType*"); 850 // Iterate over potential candidates for sharing. Currently, only same-typed 851 // slow-paths with exactly the same dex-pc are viable candidates. 852 // TODO: pass dex-pc/slow-path-type to run-time to allow even more sharing? 853 const uint32_t dex_pc = instruction->GetDexPc(); 854 auto iter = slow_path_map_.find(dex_pc); 855 if (iter != slow_path_map_.end()) { 856 const ArenaVector<std::pair<InstructionType*, SlowPathCode*>>& candidates = iter->second; 857 for (const auto& it : candidates) { 858 InstructionType* other_instruction = it.first; 859 SlowPathCodeType* other_slow_path = down_cast<SlowPathCodeType*>(it.second); 860 // Determine if the instructions allow for slow-path sharing. 861 if (HaveSameLiveRegisters(instruction, other_instruction) && 862 HaveSameStackMap(instruction, other_instruction)) { 863 // Can share: reuse existing one. 864 return other_slow_path; 865 } 866 } 867 } else { 868 // First time this dex-pc is seen. 869 iter = slow_path_map_.Put(dex_pc, 870 {{}, {graph_->GetAllocator()->Adapter(kArenaAllocSlowPaths)}}); 871 } 872 // Cannot share: create and add new slow-path for this particular dex-pc. 873 SlowPathCodeType* slow_path = 874 new (codegen_->GetScopedAllocator()) SlowPathCodeType(instruction); 875 iter->second.emplace_back(std::make_pair(instruction, slow_path)); 876 codegen_->AddSlowPath(slow_path); 877 return slow_path; 878 } 879 880 private: 881 // Tests if both instructions have same set of live physical registers. This ensures 882 // the slow-path has exactly the same preamble on saving these registers to stack. HaveSameLiveRegisters(const InstructionType * i1,const InstructionType * i2)883 bool HaveSameLiveRegisters(const InstructionType* i1, const InstructionType* i2) const { 884 const uint32_t core_spill = ~codegen_->GetCoreSpillMask(); 885 const uint32_t fpu_spill = ~codegen_->GetFpuSpillMask(); 886 RegisterSet* live1 = i1->GetLocations()->GetLiveRegisters(); 887 RegisterSet* live2 = i2->GetLocations()->GetLiveRegisters(); 888 return (((live1->GetCoreRegisters() & core_spill) == 889 (live2->GetCoreRegisters() & core_spill)) && 890 ((live1->GetFloatingPointRegisters() & fpu_spill) == 891 (live2->GetFloatingPointRegisters() & fpu_spill))); 892 } 893 894 // Tests if both instructions have the same stack map. This ensures the interpreter 895 // will find exactly the same dex-registers at the same entries. HaveSameStackMap(const InstructionType * i1,const InstructionType * i2)896 bool HaveSameStackMap(const InstructionType* i1, const InstructionType* i2) const { 897 DCHECK(i1->HasEnvironment()); 898 DCHECK(i2->HasEnvironment()); 899 // We conservatively test if the two instructions find exactly the same instructions 900 // and location in each dex-register. This guarantees they will have the same stack map. 901 HEnvironment* e1 = i1->GetEnvironment(); 902 HEnvironment* e2 = i2->GetEnvironment(); 903 if (e1->GetParent() != e2->GetParent() || e1->Size() != e2->Size()) { 904 return false; 905 } 906 for (size_t i = 0, sz = e1->Size(); i < sz; ++i) { 907 if (e1->GetInstructionAt(i) != e2->GetInstructionAt(i) || 908 !e1->GetLocationAt(i).Equals(e2->GetLocationAt(i))) { 909 return false; 910 } 911 } 912 return true; 913 } 914 915 HGraph* const graph_; 916 CodeGenerator* const codegen_; 917 918 // Map from dex-pc to vector of already existing instruction/slow-path pairs. 919 ArenaSafeMap<uint32_t, ArenaVector<std::pair<InstructionType*, SlowPathCode*>>> slow_path_map_; 920 921 DISALLOW_COPY_AND_ASSIGN(SlowPathGenerator); 922 }; 923 924 class InstructionCodeGenerator : public HGraphVisitor { 925 public: InstructionCodeGenerator(HGraph * graph,CodeGenerator * codegen)926 InstructionCodeGenerator(HGraph* graph, CodeGenerator* codegen) 927 : HGraphVisitor(graph), 928 deopt_slow_paths_(graph, codegen) {} 929 930 protected: 931 // Add slow-path generator for each instruction/slow-path combination that desires sharing. 932 // TODO: under current regime, only deopt sharing make sense; extend later. 933 SlowPathGenerator<HDeoptimize> deopt_slow_paths_; 934 }; 935 936 } // namespace art 937 938 #endif // ART_COMPILER_OPTIMIZING_CODE_GENERATOR_H_ 939