1 // powerpc.cc -- powerpc target support for gold.
2 
3 // Copyright (C) 2008-2016 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 //        and David Edelsohn <edelsohn@gnu.org>
6 
7 // This file is part of gold.
8 
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13 
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18 
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23 
24 #include "gold.h"
25 
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44 
45 namespace
46 {
47 
48 using namespace gold;
49 
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52 
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55 
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58 
59 template<int size, bool big_endian>
60 class Output_data_glink;
61 
62 template<int size, bool big_endian>
63 class Stub_table;
64 
65 template<int size, bool big_endian>
66 class Output_data_save_res;
67 
68 template<int size, bool big_endian>
69 class Target_powerpc;
70 
71 struct Stub_table_owner
72 {
Stub_table_owner__anon34c063400111::Stub_table_owner73   Stub_table_owner()
74     : output_section(NULL), owner(NULL)
75   { }
76 
77   Output_section* output_section;
78   const Output_section::Input_section* owner;
79 };
80 
81 inline bool
82 is_branch_reloc(unsigned int r_type);
83 
84 template<int size, bool big_endian>
85 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
86 {
87 public:
88   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
89   typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
90   typedef Unordered_map<Address, Section_refs> Access_from;
91 
Powerpc_relobj(const std::string & name,Input_file * input_file,off_t offset,const typename elfcpp::Ehdr<size,big_endian> & ehdr)92   Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
93 		 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
94     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
95       special_(0), relatoc_(0), toc_(0), no_toc_opt_(),
96       has_small_toc_reloc_(false), opd_valid_(false), opd_ent_(),
97       access_from_map_(), has14_(), stub_table_index_(),
98       e_flags_(ehdr.get_e_flags()), st_other_()
99   {
100     this->set_abiversion(0);
101   }
102 
~Powerpc_relobj()103   ~Powerpc_relobj()
104   { }
105 
106   // Read the symbols then set up st_other vector.
107   void
108   do_read_symbols(Read_symbols_data*);
109 
110   // Arrange to always relocate .toc first.
111   virtual void
112   do_relocate_sections(
113       const Symbol_table* symtab, const Layout* layout,
114       const unsigned char* pshdrs, Output_file* of,
115       typename Sized_relobj_file<size, big_endian>::Views* pviews);
116 
117   // The .toc section index.
118   unsigned int
toc_shndx() const119   toc_shndx() const
120   {
121     return this->toc_;
122   }
123 
124   // Mark .toc entry at OFF as not optimizable.
125   void
set_no_toc_opt(Address off)126   set_no_toc_opt(Address off)
127   {
128     if (this->no_toc_opt_.empty())
129       this->no_toc_opt_.resize(this->section_size(this->toc_shndx())
130 			       / (size / 8));
131     off /= size / 8;
132     if (off < this->no_toc_opt_.size())
133       this->no_toc_opt_[off] = true;
134   }
135 
136   // Mark the entire .toc as not optimizable.
137   void
set_no_toc_opt()138   set_no_toc_opt()
139   {
140     this->no_toc_opt_.resize(1);
141     this->no_toc_opt_[0] = true;
142   }
143 
144   // Return true if code using the .toc entry at OFF should not be edited.
145   bool
no_toc_opt(Address off) const146   no_toc_opt(Address off) const
147   {
148     if (this->no_toc_opt_.empty())
149       return false;
150     off /= size / 8;
151     if (off >= this->no_toc_opt_.size())
152       return true;
153     return this->no_toc_opt_[off];
154   }
155 
156   // The .got2 section shndx.
157   unsigned int
got2_shndx() const158   got2_shndx() const
159   {
160     if (size == 32)
161       return this->special_;
162     else
163       return 0;
164   }
165 
166   // The .opd section shndx.
167   unsigned int
opd_shndx() const168   opd_shndx() const
169   {
170     if (size == 32)
171       return 0;
172     else
173       return this->special_;
174   }
175 
176   // Init OPD entry arrays.
177   void
init_opd(size_t opd_size)178   init_opd(size_t opd_size)
179   {
180     size_t count = this->opd_ent_ndx(opd_size);
181     this->opd_ent_.resize(count);
182   }
183 
184   // Return section and offset of function entry for .opd + R_OFF.
185   unsigned int
get_opd_ent(Address r_off,Address * value=NULL) const186   get_opd_ent(Address r_off, Address* value = NULL) const
187   {
188     size_t ndx = this->opd_ent_ndx(r_off);
189     gold_assert(ndx < this->opd_ent_.size());
190     gold_assert(this->opd_ent_[ndx].shndx != 0);
191     if (value != NULL)
192       *value = this->opd_ent_[ndx].off;
193     return this->opd_ent_[ndx].shndx;
194   }
195 
196   // Set section and offset of function entry for .opd + R_OFF.
197   void
set_opd_ent(Address r_off,unsigned int shndx,Address value)198   set_opd_ent(Address r_off, unsigned int shndx, Address value)
199   {
200     size_t ndx = this->opd_ent_ndx(r_off);
201     gold_assert(ndx < this->opd_ent_.size());
202     this->opd_ent_[ndx].shndx = shndx;
203     this->opd_ent_[ndx].off = value;
204   }
205 
206   // Return discard flag for .opd + R_OFF.
207   bool
get_opd_discard(Address r_off) const208   get_opd_discard(Address r_off) const
209   {
210     size_t ndx = this->opd_ent_ndx(r_off);
211     gold_assert(ndx < this->opd_ent_.size());
212     return this->opd_ent_[ndx].discard;
213   }
214 
215   // Set discard flag for .opd + R_OFF.
216   void
set_opd_discard(Address r_off)217   set_opd_discard(Address r_off)
218   {
219     size_t ndx = this->opd_ent_ndx(r_off);
220     gold_assert(ndx < this->opd_ent_.size());
221     this->opd_ent_[ndx].discard = true;
222   }
223 
224   bool
opd_valid() const225   opd_valid() const
226   { return this->opd_valid_; }
227 
228   void
set_opd_valid()229   set_opd_valid()
230   { this->opd_valid_ = true; }
231 
232   // Examine .rela.opd to build info about function entry points.
233   void
234   scan_opd_relocs(size_t reloc_count,
235 		  const unsigned char* prelocs,
236 		  const unsigned char* plocal_syms);
237 
238   // Returns true if a code sequence loading a TOC entry can be
239   // converted into code calculating a TOC pointer relative offset.
240   bool
241   make_toc_relative(Target_powerpc<size, big_endian>* target,
242 		    Address* value);
243 
244   // Perform the Sized_relobj_file method, then set up opd info from
245   // .opd relocs.
246   void
247   do_read_relocs(Read_relocs_data*);
248 
249   bool
250   do_find_special_sections(Read_symbols_data* sd);
251 
252   // Adjust this local symbol value.  Return false if the symbol
253   // should be discarded from the output file.
254   bool
do_adjust_local_symbol(Symbol_value<size> * lv) const255   do_adjust_local_symbol(Symbol_value<size>* lv) const
256   {
257     if (size == 64 && this->opd_shndx() != 0)
258       {
259 	bool is_ordinary;
260 	if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
261 	  return true;
262 	if (this->get_opd_discard(lv->input_value()))
263 	  return false;
264       }
265     return true;
266   }
267 
268   Access_from*
access_from_map()269   access_from_map()
270   { return &this->access_from_map_; }
271 
272   // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
273   // section at DST_OFF.
274   void
add_reference(Relobj * src_obj,unsigned int src_indx,typename elfcpp::Elf_types<size>::Elf_Addr dst_off)275   add_reference(Relobj* src_obj,
276 		unsigned int src_indx,
277 		typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
278   {
279     Section_id src_id(src_obj, src_indx);
280     this->access_from_map_[dst_off].insert(src_id);
281   }
282 
283   // Add a reference to the code section specified by the .opd entry
284   // at DST_OFF
285   void
add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)286   add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
287   {
288     size_t ndx = this->opd_ent_ndx(dst_off);
289     if (ndx >= this->opd_ent_.size())
290       this->opd_ent_.resize(ndx + 1);
291     this->opd_ent_[ndx].gc_mark = true;
292   }
293 
294   void
process_gc_mark(Symbol_table * symtab)295   process_gc_mark(Symbol_table* symtab)
296   {
297     for (size_t i = 0; i < this->opd_ent_.size(); i++)
298       if (this->opd_ent_[i].gc_mark)
299 	{
300 	  unsigned int shndx = this->opd_ent_[i].shndx;
301 	  symtab->gc()->worklist().push_back(Section_id(this, shndx));
302 	}
303   }
304 
305   // Return offset in output GOT section that this object will use
306   // as a TOC pointer.  Won't be just a constant with multi-toc support.
307   Address
toc_base_offset() const308   toc_base_offset() const
309   { return 0x8000; }
310 
311   void
set_has_small_toc_reloc()312   set_has_small_toc_reloc()
313   { has_small_toc_reloc_ = true; }
314 
315   bool
has_small_toc_reloc() const316   has_small_toc_reloc() const
317   { return has_small_toc_reloc_; }
318 
319   void
set_has_14bit_branch(unsigned int shndx)320   set_has_14bit_branch(unsigned int shndx)
321   {
322     if (shndx >= this->has14_.size())
323       this->has14_.resize(shndx + 1);
324     this->has14_[shndx] = true;
325   }
326 
327   bool
has_14bit_branch(unsigned int shndx) const328   has_14bit_branch(unsigned int shndx) const
329   { return shndx < this->has14_.size() && this->has14_[shndx];  }
330 
331   void
set_stub_table(unsigned int shndx,unsigned int stub_index)332   set_stub_table(unsigned int shndx, unsigned int stub_index)
333   {
334     if (shndx >= this->stub_table_index_.size())
335       this->stub_table_index_.resize(shndx + 1, -1);
336     this->stub_table_index_[shndx] = stub_index;
337   }
338 
339   Stub_table<size, big_endian>*
stub_table(unsigned int shndx)340   stub_table(unsigned int shndx)
341   {
342     if (shndx < this->stub_table_index_.size())
343       {
344 	Target_powerpc<size, big_endian>* target
345 	  = static_cast<Target_powerpc<size, big_endian>*>(
346 	      parameters->sized_target<size, big_endian>());
347 	unsigned int indx = this->stub_table_index_[shndx];
348 	if (indx < target->stub_tables().size())
349 	  return target->stub_tables()[indx];
350       }
351     return NULL;
352   }
353 
354   void
clear_stub_table()355   clear_stub_table()
356   {
357     this->stub_table_index_.clear();
358   }
359 
360   int
abiversion() const361   abiversion() const
362   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
363 
364   // Set ABI version for input and output
365   void
366   set_abiversion(int ver);
367 
368   unsigned int
ppc64_local_entry_offset(const Symbol * sym) const369   ppc64_local_entry_offset(const Symbol* sym) const
370   { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
371 
372   unsigned int
ppc64_local_entry_offset(unsigned int symndx) const373   ppc64_local_entry_offset(unsigned int symndx) const
374   { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
375 
376 private:
377   struct Opd_ent
378   {
379     unsigned int shndx;
380     bool discard : 1;
381     bool gc_mark : 1;
382     Address off;
383   };
384 
385   // Return index into opd_ent_ array for .opd entry at OFF.
386   // .opd entries are 24 bytes long, but they can be spaced 16 bytes
387   // apart when the language doesn't use the last 8-byte word, the
388   // environment pointer.  Thus dividing the entry section offset by
389   // 16 will give an index into opd_ent_ that works for either layout
390   // of .opd.  (It leaves some elements of the vector unused when .opd
391   // entries are spaced 24 bytes apart, but we don't know the spacing
392   // until relocations are processed, and in any case it is possible
393   // for an object to have some entries spaced 16 bytes apart and
394   // others 24 bytes apart.)
395   size_t
opd_ent_ndx(size_t off) const396   opd_ent_ndx(size_t off) const
397   { return off >> 4;}
398 
399   // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
400   unsigned int special_;
401 
402   // For 64-bit the .rela.toc and .toc section shdnx.
403   unsigned int relatoc_;
404   unsigned int toc_;
405 
406   // For 64-bit, an array with one entry per 64-bit word in the .toc
407   // section, set if accesses using that word cannot be optimised.
408   std::vector<bool> no_toc_opt_;
409 
410   // For 64-bit, whether this object uses small model relocs to access
411   // the toc.
412   bool has_small_toc_reloc_;
413 
414   // Set at the start of gc_process_relocs, when we know opd_ent_
415   // vector is valid.  The flag could be made atomic and set in
416   // do_read_relocs with memory_order_release and then tested with
417   // memory_order_acquire, potentially resulting in fewer entries in
418   // access_from_map_.
419   bool opd_valid_;
420 
421   // The first 8-byte word of an OPD entry gives the address of the
422   // entry point of the function.  Relocatable object files have a
423   // relocation on this word.  The following vector records the
424   // section and offset specified by these relocations.
425   std::vector<Opd_ent> opd_ent_;
426 
427   // References made to this object's .opd section when running
428   // gc_process_relocs for another object, before the opd_ent_ vector
429   // is valid for this object.
430   Access_from access_from_map_;
431 
432   // Whether input section has a 14-bit branch reloc.
433   std::vector<bool> has14_;
434 
435   // The stub table to use for a given input section.
436   std::vector<unsigned int> stub_table_index_;
437 
438   // Header e_flags
439   elfcpp::Elf_Word e_flags_;
440 
441   // ELF st_other field for local symbols.
442   std::vector<unsigned char> st_other_;
443 };
444 
445 template<int size, bool big_endian>
446 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
447 {
448 public:
449   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
450 
Powerpc_dynobj(const std::string & name,Input_file * input_file,off_t offset,const typename elfcpp::Ehdr<size,big_endian> & ehdr)451   Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
452 		 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
453     : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
454       opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
455   {
456     this->set_abiversion(0);
457   }
458 
~Powerpc_dynobj()459   ~Powerpc_dynobj()
460   { }
461 
462   // Call Sized_dynobj::do_read_symbols to read the symbols then
463   // read .opd from a dynamic object, filling in opd_ent_ vector,
464   void
465   do_read_symbols(Read_symbols_data*);
466 
467   // The .opd section shndx.
468   unsigned int
opd_shndx() const469   opd_shndx() const
470   {
471     return this->opd_shndx_;
472   }
473 
474   // The .opd section address.
475   Address
opd_address() const476   opd_address() const
477   {
478     return this->opd_address_;
479   }
480 
481   // Init OPD entry arrays.
482   void
init_opd(size_t opd_size)483   init_opd(size_t opd_size)
484   {
485     size_t count = this->opd_ent_ndx(opd_size);
486     this->opd_ent_.resize(count);
487   }
488 
489   // Return section and offset of function entry for .opd + R_OFF.
490   unsigned int
get_opd_ent(Address r_off,Address * value=NULL) const491   get_opd_ent(Address r_off, Address* value = NULL) const
492   {
493     size_t ndx = this->opd_ent_ndx(r_off);
494     gold_assert(ndx < this->opd_ent_.size());
495     gold_assert(this->opd_ent_[ndx].shndx != 0);
496     if (value != NULL)
497       *value = this->opd_ent_[ndx].off;
498     return this->opd_ent_[ndx].shndx;
499   }
500 
501   // Set section and offset of function entry for .opd + R_OFF.
502   void
set_opd_ent(Address r_off,unsigned int shndx,Address value)503   set_opd_ent(Address r_off, unsigned int shndx, Address value)
504   {
505     size_t ndx = this->opd_ent_ndx(r_off);
506     gold_assert(ndx < this->opd_ent_.size());
507     this->opd_ent_[ndx].shndx = shndx;
508     this->opd_ent_[ndx].off = value;
509   }
510 
511   int
abiversion() const512   abiversion() const
513   { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
514 
515   // Set ABI version for input and output.
516   void
517   set_abiversion(int ver);
518 
519 private:
520   // Used to specify extent of executable sections.
521   struct Sec_info
522   {
Sec_info__anon34c063400111::Powerpc_dynobj::Sec_info523     Sec_info(Address start_, Address len_, unsigned int shndx_)
524       : start(start_), len(len_), shndx(shndx_)
525     { }
526 
527     bool
operator <__anon34c063400111::Powerpc_dynobj::Sec_info528     operator<(const Sec_info& that) const
529     { return this->start < that.start; }
530 
531     Address start;
532     Address len;
533     unsigned int shndx;
534   };
535 
536   struct Opd_ent
537   {
538     unsigned int shndx;
539     Address off;
540   };
541 
542   // Return index into opd_ent_ array for .opd entry at OFF.
543   size_t
opd_ent_ndx(size_t off) const544   opd_ent_ndx(size_t off) const
545   { return off >> 4;}
546 
547   // For 64-bit the .opd section shndx and address.
548   unsigned int opd_shndx_;
549   Address opd_address_;
550 
551   // The first 8-byte word of an OPD entry gives the address of the
552   // entry point of the function.  Records the section and offset
553   // corresponding to the address.  Note that in dynamic objects,
554   // offset is *not* relative to the section.
555   std::vector<Opd_ent> opd_ent_;
556 
557   // Header e_flags
558   elfcpp::Elf_Word e_flags_;
559 };
560 
561 // Powerpc_copy_relocs class.  Needed to peek at dynamic relocs the
562 // base class will emit.
563 
564 template<int sh_type, int size, bool big_endian>
565 class Powerpc_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
566 {
567  public:
Powerpc_copy_relocs()568   Powerpc_copy_relocs()
569     : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_POWERPC_COPY)
570   { }
571 
572   // Emit any saved relocations which turn out to be needed.  This is
573   // called after all the relocs have been scanned.
574   void
575   emit(Output_data_reloc<sh_type, true, size, big_endian>*);
576 };
577 
578 template<int size, bool big_endian>
579 class Target_powerpc : public Sized_target<size, big_endian>
580 {
581  public:
582   typedef
583     Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
584   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
585   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
586   static const Address invalid_address = static_cast<Address>(0) - 1;
587   // Offset of tp and dtp pointers from start of TLS block.
588   static const Address tp_offset = 0x7000;
589   static const Address dtp_offset = 0x8000;
590 
Target_powerpc()591   Target_powerpc()
592     : Sized_target<size, big_endian>(&powerpc_info),
593       got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
594       glink_(NULL), rela_dyn_(NULL), copy_relocs_(),
595       tlsld_got_offset_(-1U),
596       stub_tables_(), branch_lookup_table_(), branch_info_(),
597       plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0),
598       stub_group_size_(0), savres_section_(0)
599   {
600   }
601 
602   // Process the relocations to determine unreferenced sections for
603   // garbage collection.
604   void
605   gc_process_relocs(Symbol_table* symtab,
606 		    Layout* layout,
607 		    Sized_relobj_file<size, big_endian>* object,
608 		    unsigned int data_shndx,
609 		    unsigned int sh_type,
610 		    const unsigned char* prelocs,
611 		    size_t reloc_count,
612 		    Output_section* output_section,
613 		    bool needs_special_offset_handling,
614 		    size_t local_symbol_count,
615 		    const unsigned char* plocal_symbols);
616 
617   // Scan the relocations to look for symbol adjustments.
618   void
619   scan_relocs(Symbol_table* symtab,
620 	      Layout* layout,
621 	      Sized_relobj_file<size, big_endian>* object,
622 	      unsigned int data_shndx,
623 	      unsigned int sh_type,
624 	      const unsigned char* prelocs,
625 	      size_t reloc_count,
626 	      Output_section* output_section,
627 	      bool needs_special_offset_handling,
628 	      size_t local_symbol_count,
629 	      const unsigned char* plocal_symbols);
630 
631   // Map input .toc section to output .got section.
632   const char*
do_output_section_name(const Relobj *,const char * name,size_t * plen) const633   do_output_section_name(const Relobj*, const char* name, size_t* plen) const
634   {
635     if (size == 64 && strcmp(name, ".toc") == 0)
636       {
637 	*plen = 4;
638 	return ".got";
639       }
640     return NULL;
641   }
642 
643   // Provide linker defined save/restore functions.
644   void
645   define_save_restore_funcs(Layout*, Symbol_table*);
646 
647   // No stubs unless a final link.
648   bool
do_may_relax() const649   do_may_relax() const
650   { return !parameters->options().relocatable(); }
651 
652   bool
653   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
654 
655   void
656   do_plt_fde_location(const Output_data*, unsigned char*,
657 		      uint64_t*, off_t*) const;
658 
659   // Stash info about branches, for stub generation.
660   void
push_branch(Powerpc_relobj<size,big_endian> * ppc_object,unsigned int data_shndx,Address r_offset,unsigned int r_type,unsigned int r_sym,Address addend)661   push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
662 	      unsigned int data_shndx, Address r_offset,
663 	      unsigned int r_type, unsigned int r_sym, Address addend)
664   {
665     Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
666     this->branch_info_.push_back(info);
667     if (r_type == elfcpp::R_POWERPC_REL14
668 	|| r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
669 	|| r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
670       ppc_object->set_has_14bit_branch(data_shndx);
671   }
672 
673   void
674   do_define_standard_symbols(Symbol_table*, Layout*);
675 
676   // Finalize the sections.
677   void
678   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
679 
680   // Return the value to use for a dynamic which requires special
681   // treatment.
682   uint64_t
683   do_dynsym_value(const Symbol*) const;
684 
685   // Return the PLT address to use for a local symbol.
686   uint64_t
687   do_plt_address_for_local(const Relobj*, unsigned int) const;
688 
689   // Return the PLT address to use for a global symbol.
690   uint64_t
691   do_plt_address_for_global(const Symbol*) const;
692 
693   // Return the offset to use for the GOT_INDX'th got entry which is
694   // for a local tls symbol specified by OBJECT, SYMNDX.
695   int64_t
696   do_tls_offset_for_local(const Relobj* object,
697 			  unsigned int symndx,
698 			  unsigned int got_indx) const;
699 
700   // Return the offset to use for the GOT_INDX'th got entry which is
701   // for global tls symbol GSYM.
702   int64_t
703   do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
704 
705   void
706   do_function_location(Symbol_location*) const;
707 
708   bool
do_can_check_for_function_pointers() const709   do_can_check_for_function_pointers() const
710   { return true; }
711 
712   // Adjust -fsplit-stack code which calls non-split-stack code.
713   void
714   do_calls_non_split(Relobj* object, unsigned int shndx,
715 		     section_offset_type fnoffset, section_size_type fnsize,
716 		     const unsigned char* prelocs, size_t reloc_count,
717 		     unsigned char* view, section_size_type view_size,
718 		     std::string* from, std::string* to) const;
719 
720   // Relocate a section.
721   void
722   relocate_section(const Relocate_info<size, big_endian>*,
723 		   unsigned int sh_type,
724 		   const unsigned char* prelocs,
725 		   size_t reloc_count,
726 		   Output_section* output_section,
727 		   bool needs_special_offset_handling,
728 		   unsigned char* view,
729 		   Address view_address,
730 		   section_size_type view_size,
731 		   const Reloc_symbol_changes*);
732 
733   // Scan the relocs during a relocatable link.
734   void
735   scan_relocatable_relocs(Symbol_table* symtab,
736 			  Layout* layout,
737 			  Sized_relobj_file<size, big_endian>* object,
738 			  unsigned int data_shndx,
739 			  unsigned int sh_type,
740 			  const unsigned char* prelocs,
741 			  size_t reloc_count,
742 			  Output_section* output_section,
743 			  bool needs_special_offset_handling,
744 			  size_t local_symbol_count,
745 			  const unsigned char* plocal_symbols,
746 			  Relocatable_relocs*);
747 
748   // Scan the relocs for --emit-relocs.
749   void
750   emit_relocs_scan(Symbol_table* symtab,
751 		   Layout* layout,
752 		   Sized_relobj_file<size, big_endian>* object,
753 		   unsigned int data_shndx,
754 		   unsigned int sh_type,
755 		   const unsigned char* prelocs,
756 		   size_t reloc_count,
757 		   Output_section* output_section,
758 		   bool needs_special_offset_handling,
759 		   size_t local_symbol_count,
760 		   const unsigned char* plocal_syms,
761 		   Relocatable_relocs* rr);
762 
763   // Emit relocations for a section.
764   void
765   relocate_relocs(const Relocate_info<size, big_endian>*,
766 		  unsigned int sh_type,
767 		  const unsigned char* prelocs,
768 		  size_t reloc_count,
769 		  Output_section* output_section,
770 		  typename elfcpp::Elf_types<size>::Elf_Off
771                     offset_in_output_section,
772 		  unsigned char*,
773 		  Address view_address,
774 		  section_size_type,
775 		  unsigned char* reloc_view,
776 		  section_size_type reloc_view_size);
777 
778   // Return whether SYM is defined by the ABI.
779   bool
do_is_defined_by_abi(const Symbol * sym) const780   do_is_defined_by_abi(const Symbol* sym) const
781   {
782     return strcmp(sym->name(), "__tls_get_addr") == 0;
783   }
784 
785   // Return the size of the GOT section.
786   section_size_type
got_size() const787   got_size() const
788   {
789     gold_assert(this->got_ != NULL);
790     return this->got_->data_size();
791   }
792 
793   // Get the PLT section.
794   const Output_data_plt_powerpc<size, big_endian>*
plt_section() const795   plt_section() const
796   {
797     gold_assert(this->plt_ != NULL);
798     return this->plt_;
799   }
800 
801   // Get the IPLT section.
802   const Output_data_plt_powerpc<size, big_endian>*
iplt_section() const803   iplt_section() const
804   {
805     gold_assert(this->iplt_ != NULL);
806     return this->iplt_;
807   }
808 
809   // Get the .glink section.
810   const Output_data_glink<size, big_endian>*
glink_section() const811   glink_section() const
812   {
813     gold_assert(this->glink_ != NULL);
814     return this->glink_;
815   }
816 
817   Output_data_glink<size, big_endian>*
glink_section()818   glink_section()
819   {
820     gold_assert(this->glink_ != NULL);
821     return this->glink_;
822   }
823 
has_glink() const824   bool has_glink() const
825   { return this->glink_ != NULL; }
826 
827   // Get the GOT section.
828   const Output_data_got_powerpc<size, big_endian>*
got_section() const829   got_section() const
830   {
831     gold_assert(this->got_ != NULL);
832     return this->got_;
833   }
834 
835   // Get the GOT section, creating it if necessary.
836   Output_data_got_powerpc<size, big_endian>*
837   got_section(Symbol_table*, Layout*);
838 
839   Object*
840   do_make_elf_object(const std::string&, Input_file*, off_t,
841 		     const elfcpp::Ehdr<size, big_endian>&);
842 
843   // Return the number of entries in the GOT.
844   unsigned int
got_entry_count() const845   got_entry_count() const
846   {
847     if (this->got_ == NULL)
848       return 0;
849     return this->got_size() / (size / 8);
850   }
851 
852   // Return the number of entries in the PLT.
853   unsigned int
854   plt_entry_count() const;
855 
856   // Return the offset of the first non-reserved PLT entry.
857   unsigned int
first_plt_entry_offset() const858   first_plt_entry_offset() const
859   {
860     if (size == 32)
861       return 0;
862     if (this->abiversion() >= 2)
863       return 16;
864     return 24;
865   }
866 
867   // Return the size of each PLT entry.
868   unsigned int
plt_entry_size() const869   plt_entry_size() const
870   {
871     if (size == 32)
872       return 4;
873     if (this->abiversion() >= 2)
874       return 8;
875     return 24;
876   }
877 
878   Output_data_save_res<size, big_endian>*
savres_section() const879   savres_section() const
880   {
881     return this->savres_section_;
882   }
883 
884   // Add any special sections for this symbol to the gc work list.
885   // For powerpc64, this adds the code section of a function
886   // descriptor.
887   void
888   do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
889 
890   // Handle target specific gc actions when adding a gc reference from
891   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
892   // and DST_OFF.  For powerpc64, this adds a referenc to the code
893   // section of a function descriptor.
894   void
895   do_gc_add_reference(Symbol_table* symtab,
896 		      Relobj* src_obj,
897 		      unsigned int src_shndx,
898 		      Relobj* dst_obj,
899 		      unsigned int dst_shndx,
900 		      Address dst_off) const;
901 
902   typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
903   const Stub_tables&
stub_tables() const904   stub_tables() const
905   { return this->stub_tables_; }
906 
907   const Output_data_brlt_powerpc<size, big_endian>*
brlt_section() const908   brlt_section() const
909   { return this->brlt_section_; }
910 
911   void
add_branch_lookup_table(Address to)912   add_branch_lookup_table(Address to)
913   {
914     unsigned int off = this->branch_lookup_table_.size() * (size / 8);
915     this->branch_lookup_table_.insert(std::make_pair(to, off));
916   }
917 
918   Address
find_branch_lookup_table(Address to)919   find_branch_lookup_table(Address to)
920   {
921     typename Branch_lookup_table::const_iterator p
922       = this->branch_lookup_table_.find(to);
923     return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
924   }
925 
926   void
write_branch_lookup_table(unsigned char * oview)927   write_branch_lookup_table(unsigned char *oview)
928   {
929     for (typename Branch_lookup_table::const_iterator p
930 	   = this->branch_lookup_table_.begin();
931 	 p != this->branch_lookup_table_.end();
932 	 ++p)
933       {
934 	elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
935       }
936   }
937 
938   bool
plt_thread_safe() const939   plt_thread_safe() const
940   { return this->plt_thread_safe_; }
941 
942   int
abiversion() const943   abiversion () const
944   { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
945 
946   void
set_abiversion(int ver)947   set_abiversion (int ver)
948   {
949     elfcpp::Elf_Word flags = this->processor_specific_flags();
950     flags &= ~elfcpp::EF_PPC64_ABI;
951     flags |= ver & elfcpp::EF_PPC64_ABI;
952     this->set_processor_specific_flags(flags);
953   }
954 
955   // Offset to to save stack slot
956   int
stk_toc() const957   stk_toc () const
958   { return this->abiversion() < 2 ? 40 : 24; }
959 
960  private:
961 
962   class Track_tls
963   {
964   public:
965     enum Tls_get_addr
966     {
967       NOT_EXPECTED = 0,
968       EXPECTED = 1,
969       SKIP = 2,
970       NORMAL = 3
971     };
972 
Track_tls()973     Track_tls()
974       : tls_get_addr_(NOT_EXPECTED),
975 	relinfo_(NULL), relnum_(0), r_offset_(0)
976     { }
977 
~Track_tls()978     ~Track_tls()
979     {
980       if (this->tls_get_addr_ != NOT_EXPECTED)
981 	this->missing();
982     }
983 
984     void
missing(void)985     missing(void)
986     {
987       if (this->relinfo_ != NULL)
988 	gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
989 			       _("missing expected __tls_get_addr call"));
990     }
991 
992     void
expect_tls_get_addr_call(const Relocate_info<size,big_endian> * relinfo,size_t relnum,Address r_offset)993     expect_tls_get_addr_call(
994 	const Relocate_info<size, big_endian>* relinfo,
995 	size_t relnum,
996 	Address r_offset)
997     {
998       this->tls_get_addr_ = EXPECTED;
999       this->relinfo_ = relinfo;
1000       this->relnum_ = relnum;
1001       this->r_offset_ = r_offset;
1002     }
1003 
1004     void
expect_tls_get_addr_call()1005     expect_tls_get_addr_call()
1006     { this->tls_get_addr_ = EXPECTED; }
1007 
1008     void
skip_next_tls_get_addr_call()1009     skip_next_tls_get_addr_call()
1010     {this->tls_get_addr_ = SKIP; }
1011 
1012     Tls_get_addr
maybe_skip_tls_get_addr_call(unsigned int r_type,const Symbol * gsym)1013     maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
1014     {
1015       bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
1016 			   || r_type == elfcpp::R_PPC_PLTREL24)
1017 			  && gsym != NULL
1018 			  && strcmp(gsym->name(), "__tls_get_addr") == 0);
1019       Tls_get_addr last_tls = this->tls_get_addr_;
1020       this->tls_get_addr_ = NOT_EXPECTED;
1021       if (is_tls_call && last_tls != EXPECTED)
1022 	return last_tls;
1023       else if (!is_tls_call && last_tls != NOT_EXPECTED)
1024 	{
1025 	  this->missing();
1026 	  return EXPECTED;
1027 	}
1028       return NORMAL;
1029     }
1030 
1031   private:
1032     // What we're up to regarding calls to __tls_get_addr.
1033     // On powerpc, the branch and link insn making a call to
1034     // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
1035     // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
1036     // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
1037     // The marker relocation always comes first, and has the same
1038     // symbol as the reloc on the insn setting up the __tls_get_addr
1039     // argument.  This ties the arg setup insn with the call insn,
1040     // allowing ld to safely optimize away the call.  We check that
1041     // every call to __tls_get_addr has a marker relocation, and that
1042     // every marker relocation is on a call to __tls_get_addr.
1043     Tls_get_addr tls_get_addr_;
1044     // Info about the last reloc for error message.
1045     const Relocate_info<size, big_endian>* relinfo_;
1046     size_t relnum_;
1047     Address r_offset_;
1048   };
1049 
1050   // The class which scans relocations.
1051   class Scan : protected Track_tls
1052   {
1053   public:
1054     typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1055 
Scan()1056     Scan()
1057       : Track_tls(), issued_non_pic_error_(false)
1058     { }
1059 
1060     static inline int
1061     get_reference_flags(unsigned int r_type, const Target_powerpc* target);
1062 
1063     inline void
1064     local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
1065 	  Sized_relobj_file<size, big_endian>* object,
1066 	  unsigned int data_shndx,
1067 	  Output_section* output_section,
1068 	  const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1069 	  const elfcpp::Sym<size, big_endian>& lsym,
1070 	  bool is_discarded);
1071 
1072     inline void
1073     global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
1074 	   Sized_relobj_file<size, big_endian>* object,
1075 	   unsigned int data_shndx,
1076 	   Output_section* output_section,
1077 	   const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1078 	   Symbol* gsym);
1079 
1080     inline bool
local_reloc_may_be_function_pointer(Symbol_table *,Layout *,Target_powerpc *,Sized_relobj_file<size,big_endian> * relobj,unsigned int,Output_section *,const elfcpp::Rela<size,big_endian> &,unsigned int r_type,const elfcpp::Sym<size,big_endian> &)1081     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1082 					Target_powerpc* ,
1083 					Sized_relobj_file<size, big_endian>* relobj,
1084 					unsigned int ,
1085 					Output_section* ,
1086 					const elfcpp::Rela<size, big_endian>& ,
1087 					unsigned int r_type,
1088 					const elfcpp::Sym<size, big_endian>&)
1089     {
1090       // PowerPC64 .opd is not folded, so any identical function text
1091       // may be folded and we'll still keep function addresses distinct.
1092       // That means no reloc is of concern here.
1093       if (size == 64)
1094 	{
1095 	  Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1096 	    <Powerpc_relobj<size, big_endian>*>(relobj);
1097 	  if (ppcobj->abiversion() == 1)
1098 	    return false;
1099 	}
1100       // For 32-bit and ELFv2, conservatively assume anything but calls to
1101       // function code might be taking the address of the function.
1102       return !is_branch_reloc(r_type);
1103     }
1104 
1105     inline bool
global_reloc_may_be_function_pointer(Symbol_table *,Layout *,Target_powerpc *,Sized_relobj_file<size,big_endian> * relobj,unsigned int,Output_section *,const elfcpp::Rela<size,big_endian> &,unsigned int r_type,Symbol *)1106     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1107 					 Target_powerpc* ,
1108 					 Sized_relobj_file<size, big_endian>* relobj,
1109 					 unsigned int ,
1110 					 Output_section* ,
1111 					 const elfcpp::Rela<size, big_endian>& ,
1112 					 unsigned int r_type,
1113 					 Symbol*)
1114     {
1115       // As above.
1116       if (size == 64)
1117 	{
1118 	  Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1119 	    <Powerpc_relobj<size, big_endian>*>(relobj);
1120 	  if (ppcobj->abiversion() == 1)
1121 	    return false;
1122 	}
1123       return !is_branch_reloc(r_type);
1124     }
1125 
1126     static bool
1127     reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1128 			      Sized_relobj_file<size, big_endian>* object,
1129 			      unsigned int r_type, bool report_err);
1130 
1131   private:
1132     static void
1133     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1134 			    unsigned int r_type);
1135 
1136     static void
1137     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1138 			     unsigned int r_type, Symbol*);
1139 
1140     static void
1141     generate_tls_call(Symbol_table* symtab, Layout* layout,
1142 		      Target_powerpc* target);
1143 
1144     void
1145     check_non_pic(Relobj*, unsigned int r_type);
1146 
1147     // Whether we have issued an error about a non-PIC compilation.
1148     bool issued_non_pic_error_;
1149   };
1150 
1151   bool
1152   symval_for_branch(const Symbol_table* symtab,
1153 		    const Sized_symbol<size>* gsym,
1154 		    Powerpc_relobj<size, big_endian>* object,
1155 		    Address *value, unsigned int *dest_shndx);
1156 
1157   // The class which implements relocation.
1158   class Relocate : protected Track_tls
1159   {
1160    public:
1161     // Use 'at' branch hints when true, 'y' when false.
1162     // FIXME maybe: set this with an option.
1163     static const bool is_isa_v2 = true;
1164 
Relocate()1165     Relocate()
1166       : Track_tls()
1167     { }
1168 
1169     // Do a relocation.  Return false if the caller should not issue
1170     // any warnings about this relocation.
1171     inline bool
1172     relocate(const Relocate_info<size, big_endian>*, unsigned int,
1173 	     Target_powerpc*, Output_section*, size_t, const unsigned char*,
1174 	     const Sized_symbol<size>*, const Symbol_value<size>*,
1175 	     unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1176 	     section_size_type);
1177   };
1178 
1179   class Relocate_comdat_behavior
1180   {
1181    public:
1182     // Decide what the linker should do for relocations that refer to
1183     // discarded comdat sections.
1184     inline Comdat_behavior
get(const char * name)1185     get(const char* name)
1186     {
1187       gold::Default_comdat_behavior default_behavior;
1188       Comdat_behavior ret = default_behavior.get(name);
1189       if (ret == CB_WARNING)
1190 	{
1191 	  if (size == 32
1192 	      && (strcmp(name, ".fixup") == 0
1193 		  || strcmp(name, ".got2") == 0))
1194 	    ret = CB_IGNORE;
1195 	  if (size == 64
1196 	      && (strcmp(name, ".opd") == 0
1197 		  || strcmp(name, ".toc") == 0
1198 		  || strcmp(name, ".toc1") == 0))
1199 	    ret = CB_IGNORE;
1200 	}
1201       return ret;
1202     }
1203   };
1204 
1205   // Optimize the TLS relocation type based on what we know about the
1206   // symbol.  IS_FINAL is true if the final address of this symbol is
1207   // known at link time.
1208 
1209   tls::Tls_optimization
optimize_tls_gd(bool is_final)1210   optimize_tls_gd(bool is_final)
1211   {
1212     // If we are generating a shared library, then we can't do anything
1213     // in the linker.
1214     if (parameters->options().shared())
1215       return tls::TLSOPT_NONE;
1216 
1217     if (!is_final)
1218       return tls::TLSOPT_TO_IE;
1219     return tls::TLSOPT_TO_LE;
1220   }
1221 
1222   tls::Tls_optimization
optimize_tls_ld()1223   optimize_tls_ld()
1224   {
1225     if (parameters->options().shared())
1226       return tls::TLSOPT_NONE;
1227 
1228     return tls::TLSOPT_TO_LE;
1229   }
1230 
1231   tls::Tls_optimization
optimize_tls_ie(bool is_final)1232   optimize_tls_ie(bool is_final)
1233   {
1234     if (!is_final || parameters->options().shared())
1235       return tls::TLSOPT_NONE;
1236 
1237     return tls::TLSOPT_TO_LE;
1238   }
1239 
1240   // Create glink.
1241   void
1242   make_glink_section(Layout*);
1243 
1244   // Create the PLT section.
1245   void
1246   make_plt_section(Symbol_table*, Layout*);
1247 
1248   void
1249   make_iplt_section(Symbol_table*, Layout*);
1250 
1251   void
1252   make_brlt_section(Layout*);
1253 
1254   // Create a PLT entry for a global symbol.
1255   void
1256   make_plt_entry(Symbol_table*, Layout*, Symbol*);
1257 
1258   // Create a PLT entry for a local IFUNC symbol.
1259   void
1260   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1261 			     Sized_relobj_file<size, big_endian>*,
1262 			     unsigned int);
1263 
1264 
1265   // Create a GOT entry for local dynamic __tls_get_addr.
1266   unsigned int
1267   tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1268 		   Sized_relobj_file<size, big_endian>* object);
1269 
1270   unsigned int
tlsld_got_offset() const1271   tlsld_got_offset() const
1272   {
1273     return this->tlsld_got_offset_;
1274   }
1275 
1276   // Get the dynamic reloc section, creating it if necessary.
1277   Reloc_section*
1278   rela_dyn_section(Layout*);
1279 
1280   // Similarly, but for ifunc symbols get the one for ifunc.
1281   Reloc_section*
1282   rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1283 
1284   // Copy a relocation against a global symbol.
1285   void
copy_reloc(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int shndx,Output_section * output_section,Symbol * sym,const elfcpp::Rela<size,big_endian> & reloc)1286   copy_reloc(Symbol_table* symtab, Layout* layout,
1287 	     Sized_relobj_file<size, big_endian>* object,
1288 	     unsigned int shndx, Output_section* output_section,
1289 	     Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1290   {
1291     unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1292     this->copy_relocs_.copy_reloc(symtab, layout,
1293 				  symtab->get_sized_symbol<size>(sym),
1294 				  object, shndx, output_section,
1295 				  r_type, reloc.get_r_offset(),
1296 				  reloc.get_r_addend(),
1297 				  this->rela_dyn_section(layout));
1298   }
1299 
1300   // Look over all the input sections, deciding where to place stubs.
1301   void
1302   group_sections(Layout*, const Task*, bool);
1303 
1304   // Sort output sections by address.
1305   struct Sort_sections
1306   {
1307     bool
operator ()__anon34c063400111::Target_powerpc::Sort_sections1308     operator()(const Output_section* sec1, const Output_section* sec2)
1309     { return sec1->address() < sec2->address(); }
1310   };
1311 
1312   class Branch_info
1313   {
1314    public:
Branch_info(Powerpc_relobj<size,big_endian> * ppc_object,unsigned int data_shndx,Address r_offset,unsigned int r_type,unsigned int r_sym,Address addend)1315     Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1316 		unsigned int data_shndx,
1317 		Address r_offset,
1318 		unsigned int r_type,
1319 		unsigned int r_sym,
1320 		Address addend)
1321       : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1322 	r_type_(r_type), r_sym_(r_sym), addend_(addend)
1323     { }
1324 
~Branch_info()1325     ~Branch_info()
1326     { }
1327 
1328     // If this branch needs a plt call stub, or a long branch stub, make one.
1329     bool
1330     make_stub(Stub_table<size, big_endian>*,
1331 	      Stub_table<size, big_endian>*,
1332 	      Symbol_table*) const;
1333 
1334    private:
1335     // The branch location..
1336     Powerpc_relobj<size, big_endian>* object_;
1337     unsigned int shndx_;
1338     Address offset_;
1339     // ..and the branch type and destination.
1340     unsigned int r_type_;
1341     unsigned int r_sym_;
1342     Address addend_;
1343   };
1344 
1345   // Information about this specific target which we pass to the
1346   // general Target structure.
1347   static Target::Target_info powerpc_info;
1348 
1349   // The types of GOT entries needed for this platform.
1350   // These values are exposed to the ABI in an incremental link.
1351   // Do not renumber existing values without changing the version
1352   // number of the .gnu_incremental_inputs section.
1353   enum Got_type
1354   {
1355     GOT_TYPE_STANDARD,
1356     GOT_TYPE_TLSGD,	// double entry for @got@tlsgd
1357     GOT_TYPE_DTPREL,	// entry for @got@dtprel
1358     GOT_TYPE_TPREL	// entry for @got@tprel
1359   };
1360 
1361   // The GOT section.
1362   Output_data_got_powerpc<size, big_endian>* got_;
1363   // The PLT section.  This is a container for a table of addresses,
1364   // and their relocations.  Each address in the PLT has a dynamic
1365   // relocation (R_*_JMP_SLOT) and each address will have a
1366   // corresponding entry in .glink for lazy resolution of the PLT.
1367   // ppc32 initialises the PLT to point at the .glink entry, while
1368   // ppc64 leaves this to ld.so.  To make a call via the PLT, the
1369   // linker adds a stub that loads the PLT entry into ctr then
1370   // branches to ctr.  There may be more than one stub for each PLT
1371   // entry.  DT_JMPREL points at the first PLT dynamic relocation and
1372   // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1373   Output_data_plt_powerpc<size, big_endian>* plt_;
1374   // The IPLT section.  Like plt_, this is a container for a table of
1375   // addresses and their relocations, specifically for STT_GNU_IFUNC
1376   // functions that resolve locally (STT_GNU_IFUNC functions that
1377   // don't resolve locally go in PLT).  Unlike plt_, these have no
1378   // entry in .glink for lazy resolution, and the relocation section
1379   // does not have a 1-1 correspondence with IPLT addresses.  In fact,
1380   // the relocation section may contain relocations against
1381   // STT_GNU_IFUNC symbols at locations outside of IPLT.  The
1382   // relocation section will appear at the end of other dynamic
1383   // relocations, so that ld.so applies these relocations after other
1384   // dynamic relocations.  In a static executable, the relocation
1385   // section is emitted and marked with __rela_iplt_start and
1386   // __rela_iplt_end symbols.
1387   Output_data_plt_powerpc<size, big_endian>* iplt_;
1388   // Section holding long branch destinations.
1389   Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1390   // The .glink section.
1391   Output_data_glink<size, big_endian>* glink_;
1392   // The dynamic reloc section.
1393   Reloc_section* rela_dyn_;
1394   // Relocs saved to avoid a COPY reloc.
1395   Powerpc_copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1396   // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1397   unsigned int tlsld_got_offset_;
1398 
1399   Stub_tables stub_tables_;
1400   typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1401   Branch_lookup_table branch_lookup_table_;
1402 
1403   typedef std::vector<Branch_info> Branches;
1404   Branches branch_info_;
1405 
1406   bool plt_thread_safe_;
1407 
1408   bool relax_failed_;
1409   int relax_fail_count_;
1410   int32_t stub_group_size_;
1411 
1412   Output_data_save_res<size, big_endian> *savres_section_;
1413 };
1414 
1415 template<>
1416 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1417 {
1418   32,			// size
1419   true,			// is_big_endian
1420   elfcpp::EM_PPC,	// machine_code
1421   false,		// has_make_symbol
1422   false,		// has_resolve
1423   false,		// has_code_fill
1424   true,			// is_default_stack_executable
1425   false,		// can_icf_inline_merge_sections
1426   '\0',			// wrap_char
1427   "/usr/lib/ld.so.1",	// dynamic_linker
1428   0x10000000,		// default_text_segment_address
1429   64 * 1024,		// abi_pagesize (overridable by -z max-page-size)
1430   4 * 1024,		// common_pagesize (overridable by -z common-page-size)
1431   false,		// isolate_execinstr
1432   0,			// rosegment_gap
1433   elfcpp::SHN_UNDEF,	// small_common_shndx
1434   elfcpp::SHN_UNDEF,	// large_common_shndx
1435   0,			// small_common_section_flags
1436   0,			// large_common_section_flags
1437   NULL,			// attributes_section
1438   NULL,			// attributes_vendor
1439   "_start",		// entry_symbol_name
1440   32,			// hash_entry_size
1441 };
1442 
1443 template<>
1444 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1445 {
1446   32,			// size
1447   false,		// is_big_endian
1448   elfcpp::EM_PPC,	// machine_code
1449   false,		// has_make_symbol
1450   false,		// has_resolve
1451   false,		// has_code_fill
1452   true,			// is_default_stack_executable
1453   false,		// can_icf_inline_merge_sections
1454   '\0',			// wrap_char
1455   "/usr/lib/ld.so.1",	// dynamic_linker
1456   0x10000000,		// default_text_segment_address
1457   64 * 1024,		// abi_pagesize (overridable by -z max-page-size)
1458   4 * 1024,		// common_pagesize (overridable by -z common-page-size)
1459   false,		// isolate_execinstr
1460   0,			// rosegment_gap
1461   elfcpp::SHN_UNDEF,	// small_common_shndx
1462   elfcpp::SHN_UNDEF,	// large_common_shndx
1463   0,			// small_common_section_flags
1464   0,			// large_common_section_flags
1465   NULL,			// attributes_section
1466   NULL,			// attributes_vendor
1467   "_start",		// entry_symbol_name
1468   32,			// hash_entry_size
1469 };
1470 
1471 template<>
1472 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1473 {
1474   64,			// size
1475   true,			// is_big_endian
1476   elfcpp::EM_PPC64,	// machine_code
1477   false,		// has_make_symbol
1478   false,		// has_resolve
1479   false,		// has_code_fill
1480   true,			// is_default_stack_executable
1481   false,		// can_icf_inline_merge_sections
1482   '\0',			// wrap_char
1483   "/usr/lib/ld.so.1",	// dynamic_linker
1484   0x10000000,		// default_text_segment_address
1485   64 * 1024,		// abi_pagesize (overridable by -z max-page-size)
1486   4 * 1024,		// common_pagesize (overridable by -z common-page-size)
1487   false,		// isolate_execinstr
1488   0,			// rosegment_gap
1489   elfcpp::SHN_UNDEF,	// small_common_shndx
1490   elfcpp::SHN_UNDEF,	// large_common_shndx
1491   0,			// small_common_section_flags
1492   0,			// large_common_section_flags
1493   NULL,			// attributes_section
1494   NULL,			// attributes_vendor
1495   "_start",		// entry_symbol_name
1496   32,			// hash_entry_size
1497 };
1498 
1499 template<>
1500 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1501 {
1502   64,			// size
1503   false,		// is_big_endian
1504   elfcpp::EM_PPC64,	// machine_code
1505   false,		// has_make_symbol
1506   false,		// has_resolve
1507   false,		// has_code_fill
1508   true,			// is_default_stack_executable
1509   false,		// can_icf_inline_merge_sections
1510   '\0',			// wrap_char
1511   "/usr/lib/ld.so.1",	// dynamic_linker
1512   0x10000000,		// default_text_segment_address
1513   64 * 1024,		// abi_pagesize (overridable by -z max-page-size)
1514   4 * 1024,		// common_pagesize (overridable by -z common-page-size)
1515   false,		// isolate_execinstr
1516   0,			// rosegment_gap
1517   elfcpp::SHN_UNDEF,	// small_common_shndx
1518   elfcpp::SHN_UNDEF,	// large_common_shndx
1519   0,			// small_common_section_flags
1520   0,			// large_common_section_flags
1521   NULL,			// attributes_section
1522   NULL,			// attributes_vendor
1523   "_start",		// entry_symbol_name
1524   32,			// hash_entry_size
1525 };
1526 
1527 inline bool
is_branch_reloc(unsigned int r_type)1528 is_branch_reloc(unsigned int r_type)
1529 {
1530   return (r_type == elfcpp::R_POWERPC_REL24
1531 	  || r_type == elfcpp::R_PPC_PLTREL24
1532 	  || r_type == elfcpp::R_PPC_LOCAL24PC
1533 	  || r_type == elfcpp::R_POWERPC_REL14
1534 	  || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1535 	  || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1536 	  || r_type == elfcpp::R_POWERPC_ADDR24
1537 	  || r_type == elfcpp::R_POWERPC_ADDR14
1538 	  || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1539 	  || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1540 }
1541 
1542 // If INSN is an opcode that may be used with an @tls operand, return
1543 // the transformed insn for TLS optimisation, otherwise return 0.  If
1544 // REG is non-zero only match an insn with RB or RA equal to REG.
1545 uint32_t
at_tls_transform(uint32_t insn,unsigned int reg)1546 at_tls_transform(uint32_t insn, unsigned int reg)
1547 {
1548   if ((insn & (0x3f << 26)) != 31 << 26)
1549     return 0;
1550 
1551   unsigned int rtra;
1552   if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1553     rtra = insn & ((1 << 26) - (1 << 16));
1554   else if (((insn >> 16) & 0x1f) == reg)
1555     rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1556   else
1557     return 0;
1558 
1559   if ((insn & (0x3ff << 1)) == 266 << 1)
1560     // add -> addi
1561     insn = 14 << 26;
1562   else if ((insn & (0x1f << 1)) == 23 << 1
1563 	   && ((insn & (0x1f << 6)) < 14 << 6
1564 	       || ((insn & (0x1f << 6)) >= 16 << 6
1565 		   && (insn & (0x1f << 6)) < 24 << 6)))
1566     // load and store indexed -> dform
1567     insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1568   else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1569     // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1570     insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1571   else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1572     // lwax -> lwa
1573     insn = (58 << 26) | 2;
1574   else
1575     return 0;
1576   insn |= rtra;
1577   return insn;
1578 }
1579 
1580 
1581 template<int size, bool big_endian>
1582 class Powerpc_relocate_functions
1583 {
1584 public:
1585   enum Overflow_check
1586   {
1587     CHECK_NONE,
1588     CHECK_SIGNED,
1589     CHECK_UNSIGNED,
1590     CHECK_BITFIELD,
1591     CHECK_LOW_INSN,
1592     CHECK_HIGH_INSN
1593   };
1594 
1595   enum Status
1596   {
1597     STATUS_OK,
1598     STATUS_OVERFLOW
1599   };
1600 
1601 private:
1602   typedef Powerpc_relocate_functions<size, big_endian> This;
1603   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1604   typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedAddress;
1605 
1606   template<int valsize>
1607   static inline bool
has_overflow_signed(Address value)1608   has_overflow_signed(Address value)
1609   {
1610     // limit = 1 << (valsize - 1) without shift count exceeding size of type
1611     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1612     limit <<= ((valsize - 1) >> 1);
1613     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1614     return value + limit > (limit << 1) - 1;
1615   }
1616 
1617   template<int valsize>
1618   static inline bool
has_overflow_unsigned(Address value)1619   has_overflow_unsigned(Address value)
1620   {
1621     Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1622     limit <<= ((valsize - 1) >> 1);
1623     limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1624     return value > (limit << 1) - 1;
1625   }
1626 
1627   template<int valsize>
1628   static inline bool
has_overflow_bitfield(Address value)1629   has_overflow_bitfield(Address value)
1630   {
1631     return (has_overflow_unsigned<valsize>(value)
1632 	    && has_overflow_signed<valsize>(value));
1633   }
1634 
1635   template<int valsize>
1636   static inline Status
overflowed(Address value,Overflow_check overflow)1637   overflowed(Address value, Overflow_check overflow)
1638   {
1639     if (overflow == CHECK_SIGNED)
1640       {
1641 	if (has_overflow_signed<valsize>(value))
1642 	  return STATUS_OVERFLOW;
1643       }
1644     else if (overflow == CHECK_UNSIGNED)
1645       {
1646 	if (has_overflow_unsigned<valsize>(value))
1647 	  return STATUS_OVERFLOW;
1648       }
1649     else if (overflow == CHECK_BITFIELD)
1650       {
1651 	if (has_overflow_bitfield<valsize>(value))
1652 	  return STATUS_OVERFLOW;
1653       }
1654     return STATUS_OK;
1655   }
1656 
1657   // Do a simple RELA relocation
1658   template<int fieldsize, int valsize>
1659   static inline Status
rela(unsigned char * view,Address value,Overflow_check overflow)1660   rela(unsigned char* view, Address value, Overflow_check overflow)
1661   {
1662     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1663     Valtype* wv = reinterpret_cast<Valtype*>(view);
1664     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1665     return overflowed<valsize>(value, overflow);
1666   }
1667 
1668   template<int fieldsize, int valsize>
1669   static inline Status
rela(unsigned char * view,unsigned int right_shift,typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,Address value,Overflow_check overflow)1670   rela(unsigned char* view,
1671        unsigned int right_shift,
1672        typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1673        Address value,
1674        Overflow_check overflow)
1675   {
1676     typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1677     Valtype* wv = reinterpret_cast<Valtype*>(view);
1678     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1679     Valtype reloc = value >> right_shift;
1680     val &= ~dst_mask;
1681     reloc &= dst_mask;
1682     elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1683     return overflowed<valsize>(value >> right_shift, overflow);
1684   }
1685 
1686   // Do a simple RELA relocation, unaligned.
1687   template<int fieldsize, int valsize>
1688   static inline Status
rela_ua(unsigned char * view,Address value,Overflow_check overflow)1689   rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1690   {
1691     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1692     return overflowed<valsize>(value, overflow);
1693   }
1694 
1695   template<int fieldsize, int valsize>
1696   static inline Status
rela_ua(unsigned char * view,unsigned int right_shift,typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,Address value,Overflow_check overflow)1697   rela_ua(unsigned char* view,
1698 	  unsigned int right_shift,
1699 	  typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1700 	  Address value,
1701 	  Overflow_check overflow)
1702   {
1703     typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1704       Valtype;
1705     Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1706     Valtype reloc = value >> right_shift;
1707     val &= ~dst_mask;
1708     reloc &= dst_mask;
1709     elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1710     return overflowed<valsize>(value >> right_shift, overflow);
1711   }
1712 
1713 public:
1714   // R_PPC64_ADDR64: (Symbol + Addend)
1715   static inline void
addr64(unsigned char * view,Address value)1716   addr64(unsigned char* view, Address value)
1717   { This::template rela<64,64>(view, value, CHECK_NONE); }
1718 
1719   // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1720   static inline void
addr64_u(unsigned char * view,Address value)1721   addr64_u(unsigned char* view, Address value)
1722   { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1723 
1724   // R_POWERPC_ADDR32: (Symbol + Addend)
1725   static inline Status
addr32(unsigned char * view,Address value,Overflow_check overflow)1726   addr32(unsigned char* view, Address value, Overflow_check overflow)
1727   { return This::template rela<32,32>(view, value, overflow); }
1728 
1729   // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1730   static inline Status
addr32_u(unsigned char * view,Address value,Overflow_check overflow)1731   addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1732   { return This::template rela_ua<32,32>(view, value, overflow); }
1733 
1734   // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1735   static inline Status
addr24(unsigned char * view,Address value,Overflow_check overflow)1736   addr24(unsigned char* view, Address value, Overflow_check overflow)
1737   {
1738     Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1739 					     value, overflow);
1740     if (overflow != CHECK_NONE && (value & 3) != 0)
1741       stat = STATUS_OVERFLOW;
1742     return stat;
1743   }
1744 
1745   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1746   static inline Status
addr16(unsigned char * view,Address value,Overflow_check overflow)1747   addr16(unsigned char* view, Address value, Overflow_check overflow)
1748   { return This::template rela<16,16>(view, value, overflow); }
1749 
1750   // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1751   static inline Status
addr16_u(unsigned char * view,Address value,Overflow_check overflow)1752   addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1753   { return This::template rela_ua<16,16>(view, value, overflow); }
1754 
1755   // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1756   static inline Status
addr16_ds(unsigned char * view,Address value,Overflow_check overflow)1757   addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1758   {
1759     Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1760     if ((value & 3) != 0)
1761       stat = STATUS_OVERFLOW;
1762     return stat;
1763   }
1764 
1765   // R_POWERPC_ADDR16_DQ: (Symbol + Addend) & 0xfff0
1766   static inline Status
addr16_dq(unsigned char * view,Address value,Overflow_check overflow)1767   addr16_dq(unsigned char* view, Address value, Overflow_check overflow)
1768   {
1769     Status stat = This::template rela<16,16>(view, 0, 0xfff0, value, overflow);
1770     if ((value & 15) != 0)
1771       stat = STATUS_OVERFLOW;
1772     return stat;
1773   }
1774 
1775   // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1776   static inline void
addr16_hi(unsigned char * view,Address value)1777   addr16_hi(unsigned char* view, Address value)
1778   { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1779 
1780   // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1781   static inline void
addr16_ha(unsigned char * view,Address value)1782   addr16_ha(unsigned char* view, Address value)
1783   { This::addr16_hi(view, value + 0x8000); }
1784 
1785   // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1786   static inline void
addr16_hi2(unsigned char * view,Address value)1787   addr16_hi2(unsigned char* view, Address value)
1788   { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1789 
1790   // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1791   static inline void
addr16_ha2(unsigned char * view,Address value)1792   addr16_ha2(unsigned char* view, Address value)
1793   { This::addr16_hi2(view, value + 0x8000); }
1794 
1795   // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1796   static inline void
addr16_hi3(unsigned char * view,Address value)1797   addr16_hi3(unsigned char* view, Address value)
1798   { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1799 
1800   // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1801   static inline void
addr16_ha3(unsigned char * view,Address value)1802   addr16_ha3(unsigned char* view, Address value)
1803   { This::addr16_hi3(view, value + 0x8000); }
1804 
1805   // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1806   static inline Status
addr14(unsigned char * view,Address value,Overflow_check overflow)1807   addr14(unsigned char* view, Address value, Overflow_check overflow)
1808   {
1809     Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1810     if (overflow != CHECK_NONE && (value & 3) != 0)
1811       stat = STATUS_OVERFLOW;
1812     return stat;
1813   }
1814 
1815   // R_POWERPC_REL16DX_HA
1816   static inline Status
addr16dx_ha(unsigned char * view,Address value,Overflow_check overflow)1817   addr16dx_ha(unsigned char *view, Address value, Overflow_check overflow)
1818   {
1819     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
1820     Valtype* wv = reinterpret_cast<Valtype*>(view);
1821     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
1822     value += 0x8000;
1823     value = static_cast<SignedAddress>(value) >> 16;
1824     val |= (value & 0xffc1) | ((value & 0x3e) << 15);
1825     elfcpp::Swap<32, big_endian>::writeval(wv, val);
1826     return overflowed<16>(value, overflow);
1827   }
1828 };
1829 
1830 // Set ABI version for input and output.
1831 
1832 template<int size, bool big_endian>
1833 void
set_abiversion(int ver)1834 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1835 {
1836   this->e_flags_ |= ver;
1837   if (this->abiversion() != 0)
1838     {
1839       Target_powerpc<size, big_endian>* target =
1840 	static_cast<Target_powerpc<size, big_endian>*>(
1841 	   parameters->sized_target<size, big_endian>());
1842       if (target->abiversion() == 0)
1843 	target->set_abiversion(this->abiversion());
1844       else if (target->abiversion() != this->abiversion())
1845 	gold_error(_("%s: ABI version %d is not compatible "
1846 		     "with ABI version %d output"),
1847 		   this->name().c_str(),
1848 		   this->abiversion(), target->abiversion());
1849 
1850     }
1851 }
1852 
1853 // Stash away the index of .got2, .opd, .rela.toc, and .toc in a
1854 // relocatable object, if such sections exists.
1855 
1856 template<int size, bool big_endian>
1857 bool
do_find_special_sections(Read_symbols_data * sd)1858 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1859     Read_symbols_data* sd)
1860 {
1861   const unsigned char* const pshdrs = sd->section_headers->data();
1862   const unsigned char* namesu = sd->section_names->data();
1863   const char* names = reinterpret_cast<const char*>(namesu);
1864   section_size_type names_size = sd->section_names_size;
1865   const unsigned char* s;
1866 
1867   s = this->template find_shdr<size, big_endian>(pshdrs,
1868 						 size == 32 ? ".got2" : ".opd",
1869 						 names, names_size, NULL);
1870   if (s != NULL)
1871     {
1872       unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1873       this->special_ = ndx;
1874       if (size == 64)
1875 	{
1876 	  if (this->abiversion() == 0)
1877 	    this->set_abiversion(1);
1878 	  else if (this->abiversion() > 1)
1879 	    gold_error(_("%s: .opd invalid in abiv%d"),
1880 		       this->name().c_str(), this->abiversion());
1881 	}
1882     }
1883   if (size == 64)
1884     {
1885       s = this->template find_shdr<size, big_endian>(pshdrs, ".rela.toc",
1886 						     names, names_size, NULL);
1887       if (s != NULL)
1888 	{
1889 	  unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1890 	  this->relatoc_ = ndx;
1891 	  typename elfcpp::Shdr<size, big_endian> shdr(s);
1892 	  this->toc_ = this->adjust_shndx(shdr.get_sh_info());
1893 	}
1894     }
1895   return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1896 }
1897 
1898 // Examine .rela.opd to build info about function entry points.
1899 
1900 template<int size, bool big_endian>
1901 void
scan_opd_relocs(size_t reloc_count,const unsigned char * prelocs,const unsigned char * plocal_syms)1902 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1903     size_t reloc_count,
1904     const unsigned char* prelocs,
1905     const unsigned char* plocal_syms)
1906 {
1907   if (size == 64)
1908     {
1909       typedef typename elfcpp::Rela<size, big_endian> Reltype;
1910       const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
1911       const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1912       Address expected_off = 0;
1913       bool regular = true;
1914       unsigned int opd_ent_size = 0;
1915 
1916       for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1917 	{
1918 	  Reltype reloc(prelocs);
1919 	  typename elfcpp::Elf_types<size>::Elf_WXword r_info
1920 	    = reloc.get_r_info();
1921 	  unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1922 	  if (r_type == elfcpp::R_PPC64_ADDR64)
1923 	    {
1924 	      unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1925 	      typename elfcpp::Elf_types<size>::Elf_Addr value;
1926 	      bool is_ordinary;
1927 	      unsigned int shndx;
1928 	      if (r_sym < this->local_symbol_count())
1929 		{
1930 		  typename elfcpp::Sym<size, big_endian>
1931 		    lsym(plocal_syms + r_sym * sym_size);
1932 		  shndx = lsym.get_st_shndx();
1933 		  shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1934 		  value = lsym.get_st_value();
1935 		}
1936 	      else
1937 		shndx = this->symbol_section_and_value(r_sym, &value,
1938 						       &is_ordinary);
1939 	      this->set_opd_ent(reloc.get_r_offset(), shndx,
1940 				value + reloc.get_r_addend());
1941 	      if (i == 2)
1942 		{
1943 		  expected_off = reloc.get_r_offset();
1944 		  opd_ent_size = expected_off;
1945 		}
1946 	      else if (expected_off != reloc.get_r_offset())
1947 		regular = false;
1948 	      expected_off += opd_ent_size;
1949 	    }
1950 	  else if (r_type == elfcpp::R_PPC64_TOC)
1951 	    {
1952 	      if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1953 		regular = false;
1954 	    }
1955 	  else
1956 	    {
1957 	      gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1958 			   this->name().c_str(), r_type);
1959 	      regular = false;
1960 	    }
1961 	}
1962       if (reloc_count <= 2)
1963 	opd_ent_size = this->section_size(this->opd_shndx());
1964       if (opd_ent_size != 24 && opd_ent_size != 16)
1965 	regular = false;
1966       if (!regular)
1967 	{
1968 	  gold_warning(_("%s: .opd is not a regular array of opd entries"),
1969 		       this->name().c_str());
1970 	  opd_ent_size = 0;
1971 	}
1972     }
1973 }
1974 
1975 // Returns true if a code sequence loading the TOC entry at VALUE
1976 // relative to the TOC pointer can be converted into code calculating
1977 // a TOC pointer relative offset.
1978 // If so, the TOC pointer relative offset is stored to VALUE.
1979 
1980 template<int size, bool big_endian>
1981 bool
make_toc_relative(Target_powerpc<size,big_endian> * target,Address * value)1982 Powerpc_relobj<size, big_endian>::make_toc_relative(
1983     Target_powerpc<size, big_endian>* target,
1984     Address* value)
1985 {
1986   if (size != 64)
1987     return false;
1988 
1989   // With -mcmodel=medium code it is quite possible to have
1990   // toc-relative relocs referring to objects outside the TOC.
1991   // Don't try to look at a non-existent TOC.
1992   if (this->toc_shndx() == 0)
1993     return false;
1994 
1995   // Convert VALUE back to an address by adding got_base (see below),
1996   // then to an offset in the TOC by subtracting the TOC output
1997   // section address and the TOC output offset.  Since this TOC output
1998   // section and the got output section are one and the same, we can
1999   // omit adding and subtracting the output section address.
2000   Address off = (*value + this->toc_base_offset()
2001 		 - this->output_section_offset(this->toc_shndx()));
2002   // Is this offset in the TOC?  -mcmodel=medium code may be using
2003   // TOC relative access to variables outside the TOC.  Those of
2004   // course can't be optimized.  We also don't try to optimize code
2005   // that is using a different object's TOC.
2006   if (off >= this->section_size(this->toc_shndx()))
2007     return false;
2008 
2009   if (this->no_toc_opt(off))
2010     return false;
2011 
2012   section_size_type vlen;
2013   unsigned char* view = this->get_output_view(this->toc_shndx(), &vlen);
2014   Address addr = elfcpp::Swap<size, big_endian>::readval(view + off);
2015   // The TOC pointer
2016   Address got_base = (target->got_section()->output_section()->address()
2017 		      + this->toc_base_offset());
2018   addr -= got_base;
2019   if (addr + (uint64_t) 0x80008000 >= (uint64_t) 1 << 32)
2020     return false;
2021 
2022   *value = addr;
2023   return true;
2024 }
2025 
2026 // Perform the Sized_relobj_file method, then set up opd info from
2027 // .opd relocs.
2028 
2029 template<int size, bool big_endian>
2030 void
do_read_relocs(Read_relocs_data * rd)2031 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
2032 {
2033   Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
2034   if (size == 64)
2035     {
2036       for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
2037 	   p != rd->relocs.end();
2038 	   ++p)
2039 	{
2040 	  if (p->data_shndx == this->opd_shndx())
2041 	    {
2042 	      uint64_t opd_size = this->section_size(this->opd_shndx());
2043 	      gold_assert(opd_size == static_cast<size_t>(opd_size));
2044 	      if (opd_size != 0)
2045 		{
2046 		  this->init_opd(opd_size);
2047 		  this->scan_opd_relocs(p->reloc_count, p->contents->data(),
2048 					rd->local_symbols->data());
2049 		}
2050 	      break;
2051 	    }
2052 	}
2053     }
2054 }
2055 
2056 // Read the symbols then set up st_other vector.
2057 
2058 template<int size, bool big_endian>
2059 void
do_read_symbols(Read_symbols_data * sd)2060 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
2061 {
2062   this->base_read_symbols(sd);
2063   if (size == 64)
2064     {
2065       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2066       const unsigned char* const pshdrs = sd->section_headers->data();
2067       const unsigned int loccount = this->do_local_symbol_count();
2068       if (loccount != 0)
2069 	{
2070 	  this->st_other_.resize(loccount);
2071 	  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2072 	  off_t locsize = loccount * sym_size;
2073 	  const unsigned int symtab_shndx = this->symtab_shndx();
2074 	  const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
2075 	  typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
2076 	  const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
2077 						      locsize, true, false);
2078 	  psyms += sym_size;
2079 	  for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2080 	    {
2081 	      elfcpp::Sym<size, big_endian> sym(psyms);
2082 	      unsigned char st_other = sym.get_st_other();
2083 	      this->st_other_[i] = st_other;
2084 	      if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
2085 		{
2086 		  if (this->abiversion() == 0)
2087 		    this->set_abiversion(2);
2088 		  else if (this->abiversion() < 2)
2089 		    gold_error(_("%s: local symbol %d has invalid st_other"
2090 				 " for ABI version 1"),
2091 			       this->name().c_str(), i);
2092 		}
2093 	    }
2094 	}
2095     }
2096 }
2097 
2098 template<int size, bool big_endian>
2099 void
set_abiversion(int ver)2100 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
2101 {
2102   this->e_flags_ |= ver;
2103   if (this->abiversion() != 0)
2104     {
2105       Target_powerpc<size, big_endian>* target =
2106 	static_cast<Target_powerpc<size, big_endian>*>(
2107 	  parameters->sized_target<size, big_endian>());
2108       if (target->abiversion() == 0)
2109 	target->set_abiversion(this->abiversion());
2110       else if (target->abiversion() != this->abiversion())
2111 	gold_error(_("%s: ABI version %d is not compatible "
2112 		     "with ABI version %d output"),
2113 		   this->name().c_str(),
2114 		   this->abiversion(), target->abiversion());
2115 
2116     }
2117 }
2118 
2119 // Call Sized_dynobj::base_read_symbols to read the symbols then
2120 // read .opd from a dynamic object, filling in opd_ent_ vector,
2121 
2122 template<int size, bool big_endian>
2123 void
do_read_symbols(Read_symbols_data * sd)2124 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
2125 {
2126   this->base_read_symbols(sd);
2127   if (size == 64)
2128     {
2129       const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2130       const unsigned char* const pshdrs = sd->section_headers->data();
2131       const unsigned char* namesu = sd->section_names->data();
2132       const char* names = reinterpret_cast<const char*>(namesu);
2133       const unsigned char* s = NULL;
2134       const unsigned char* opd;
2135       section_size_type opd_size;
2136 
2137       // Find and read .opd section.
2138       while (1)
2139 	{
2140 	  s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
2141 							 sd->section_names_size,
2142 							 s);
2143 	  if (s == NULL)
2144 	    return;
2145 
2146 	  typename elfcpp::Shdr<size, big_endian> shdr(s);
2147 	  if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2148 	      && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
2149 	    {
2150 	      if (this->abiversion() == 0)
2151 		this->set_abiversion(1);
2152 	      else if (this->abiversion() > 1)
2153 		gold_error(_("%s: .opd invalid in abiv%d"),
2154 			   this->name().c_str(), this->abiversion());
2155 
2156 	      this->opd_shndx_ = (s - pshdrs) / shdr_size;
2157 	      this->opd_address_ = shdr.get_sh_addr();
2158 	      opd_size = convert_to_section_size_type(shdr.get_sh_size());
2159 	      opd = this->get_view(shdr.get_sh_offset(), opd_size,
2160 				   true, false);
2161 	      break;
2162 	    }
2163 	}
2164 
2165       // Build set of executable sections.
2166       // Using a set is probably overkill.  There is likely to be only
2167       // a few executable sections, typically .init, .text and .fini,
2168       // and they are generally grouped together.
2169       typedef std::set<Sec_info> Exec_sections;
2170       Exec_sections exec_sections;
2171       s = pshdrs;
2172       for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2173 	{
2174 	  typename elfcpp::Shdr<size, big_endian> shdr(s);
2175 	  if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2176 	      && ((shdr.get_sh_flags()
2177 		   & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2178 		  == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2179 	      && shdr.get_sh_size() != 0)
2180 	    {
2181 	      exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2182 					    shdr.get_sh_size(), i));
2183 	    }
2184 	}
2185       if (exec_sections.empty())
2186 	return;
2187 
2188       // Look over the OPD entries.  This is complicated by the fact
2189       // that some binaries will use two-word entries while others
2190       // will use the standard three-word entries.  In most cases
2191       // the third word (the environment pointer for languages like
2192       // Pascal) is unused and will be zero.  If the third word is
2193       // used it should not be pointing into executable sections,
2194       // I think.
2195       this->init_opd(opd_size);
2196       for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2197 	{
2198 	  typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2199 	  const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2200 	  Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2201 	  if (val == 0)
2202 	    // Chances are that this is the third word of an OPD entry.
2203 	    continue;
2204 	  typename Exec_sections::const_iterator e
2205 	    = exec_sections.upper_bound(Sec_info(val, 0, 0));
2206 	  if (e != exec_sections.begin())
2207 	    {
2208 	      --e;
2209 	      if (e->start <= val && val < e->start + e->len)
2210 		{
2211 		  // We have an address in an executable section.
2212 		  // VAL ought to be the function entry, set it up.
2213 		  this->set_opd_ent(p - opd, e->shndx, val);
2214 		  // Skip second word of OPD entry, the TOC pointer.
2215 		  p += 8;
2216 		}
2217 	    }
2218 	  // If we didn't match any executable sections, we likely
2219 	  // have a non-zero third word in the OPD entry.
2220 	}
2221     }
2222 }
2223 
2224 // Relocate sections.
2225 
2226 template<int size, bool big_endian>
2227 void
do_relocate_sections(const Symbol_table * symtab,const Layout * layout,const unsigned char * pshdrs,Output_file * of,typename Sized_relobj_file<size,big_endian>::Views * pviews)2228 Powerpc_relobj<size, big_endian>::do_relocate_sections(
2229     const Symbol_table* symtab, const Layout* layout,
2230     const unsigned char* pshdrs, Output_file* of,
2231     typename Sized_relobj_file<size, big_endian>::Views* pviews)
2232 {
2233   unsigned int start = 1;
2234   if (size == 64
2235       && this->relatoc_ != 0
2236       && !parameters->options().relocatable())
2237     {
2238       // Relocate .toc first.
2239       this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2240 				   this->relatoc_, this->relatoc_);
2241       this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2242 				   1, this->relatoc_ - 1);
2243       start = this->relatoc_ + 1;
2244     }
2245   this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2246 			       start, this->shnum() - 1);
2247 }
2248 
2249 // Set up some symbols.
2250 
2251 template<int size, bool big_endian>
2252 void
do_define_standard_symbols(Symbol_table * symtab,Layout * layout)2253 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2254     Symbol_table* symtab,
2255     Layout* layout)
2256 {
2257   if (size == 32)
2258     {
2259       // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2260       // undefined when scanning relocs (and thus requires
2261       // non-relative dynamic relocs).  The proper value will be
2262       // updated later.
2263       Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2264       if (gotsym != NULL && gotsym->is_undefined())
2265 	{
2266 	  Target_powerpc<size, big_endian>* target =
2267 	    static_cast<Target_powerpc<size, big_endian>*>(
2268 		parameters->sized_target<size, big_endian>());
2269 	  Output_data_got_powerpc<size, big_endian>* got
2270 	    = target->got_section(symtab, layout);
2271 	  symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2272 					Symbol_table::PREDEFINED,
2273 					got, 0, 0,
2274 					elfcpp::STT_OBJECT,
2275 					elfcpp::STB_LOCAL,
2276 					elfcpp::STV_HIDDEN, 0,
2277 					false, false);
2278 	}
2279 
2280       // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2281       Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2282       if (sdasym != NULL && sdasym->is_undefined())
2283 	{
2284 	  Output_data_space* sdata = new Output_data_space(4, "** sdata");
2285 	  Output_section* os
2286 	    = layout->add_output_section_data(".sdata", 0,
2287 					      elfcpp::SHF_ALLOC
2288 					      | elfcpp::SHF_WRITE,
2289 					      sdata, ORDER_SMALL_DATA, false);
2290 	  symtab->define_in_output_data("_SDA_BASE_", NULL,
2291 					Symbol_table::PREDEFINED,
2292 					os, 32768, 0, elfcpp::STT_OBJECT,
2293 					elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2294 					0, false, false);
2295 	}
2296     }
2297   else
2298     {
2299       // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2300       Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2301       if (gotsym != NULL && gotsym->is_undefined())
2302 	{
2303 	  Target_powerpc<size, big_endian>* target =
2304 	    static_cast<Target_powerpc<size, big_endian>*>(
2305 		parameters->sized_target<size, big_endian>());
2306 	  Output_data_got_powerpc<size, big_endian>* got
2307 	    = target->got_section(symtab, layout);
2308 	  symtab->define_in_output_data(".TOC.", NULL,
2309 					Symbol_table::PREDEFINED,
2310 					got, 0x8000, 0,
2311 					elfcpp::STT_OBJECT,
2312 					elfcpp::STB_LOCAL,
2313 					elfcpp::STV_HIDDEN, 0,
2314 					false, false);
2315 	}
2316     }
2317 }
2318 
2319 // Set up PowerPC target specific relobj.
2320 
2321 template<int size, bool big_endian>
2322 Object*
do_make_elf_object(const std::string & name,Input_file * input_file,off_t offset,const elfcpp::Ehdr<size,big_endian> & ehdr)2323 Target_powerpc<size, big_endian>::do_make_elf_object(
2324     const std::string& name,
2325     Input_file* input_file,
2326     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2327 {
2328   int et = ehdr.get_e_type();
2329   // ET_EXEC files are valid input for --just-symbols/-R,
2330   // and we treat them as relocatable objects.
2331   if (et == elfcpp::ET_REL
2332       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2333     {
2334       Powerpc_relobj<size, big_endian>* obj =
2335 	new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2336       obj->setup();
2337       return obj;
2338     }
2339   else if (et == elfcpp::ET_DYN)
2340     {
2341       Powerpc_dynobj<size, big_endian>* obj =
2342 	new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2343       obj->setup();
2344       return obj;
2345     }
2346   else
2347     {
2348       gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2349       return NULL;
2350     }
2351 }
2352 
2353 template<int size, bool big_endian>
2354 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2355 {
2356 public:
2357   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2358   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2359 
Output_data_got_powerpc(Symbol_table * symtab,Layout * layout)2360   Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2361     : Output_data_got<size, big_endian>(),
2362       symtab_(symtab), layout_(layout),
2363       header_ent_cnt_(size == 32 ? 3 : 1),
2364       header_index_(size == 32 ? 0x2000 : 0)
2365   {
2366     if (size == 64)
2367       this->set_addralign(256);
2368   }
2369 
2370   // Override all the Output_data_got methods we use so as to first call
2371   // reserve_ent().
2372   bool
add_global(Symbol * gsym,unsigned int got_type)2373   add_global(Symbol* gsym, unsigned int got_type)
2374   {
2375     this->reserve_ent();
2376     return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2377   }
2378 
2379   bool
add_global_plt(Symbol * gsym,unsigned int got_type)2380   add_global_plt(Symbol* gsym, unsigned int got_type)
2381   {
2382     this->reserve_ent();
2383     return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2384   }
2385 
2386   bool
add_global_tls(Symbol * gsym,unsigned int got_type)2387   add_global_tls(Symbol* gsym, unsigned int got_type)
2388   { return this->add_global_plt(gsym, got_type); }
2389 
2390   void
add_global_with_rel(Symbol * gsym,unsigned int got_type,Output_data_reloc_generic * rel_dyn,unsigned int r_type)2391   add_global_with_rel(Symbol* gsym, unsigned int got_type,
2392 		      Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2393   {
2394     this->reserve_ent();
2395     Output_data_got<size, big_endian>::
2396       add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2397   }
2398 
2399   void
add_global_pair_with_rel(Symbol * gsym,unsigned int got_type,Output_data_reloc_generic * rel_dyn,unsigned int r_type_1,unsigned int r_type_2)2400   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2401 			   Output_data_reloc_generic* rel_dyn,
2402 			   unsigned int r_type_1, unsigned int r_type_2)
2403   {
2404     this->reserve_ent(2);
2405     Output_data_got<size, big_endian>::
2406       add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2407   }
2408 
2409   bool
add_local(Relobj * object,unsigned int sym_index,unsigned int got_type)2410   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2411   {
2412     this->reserve_ent();
2413     return Output_data_got<size, big_endian>::add_local(object, sym_index,
2414 							got_type);
2415   }
2416 
2417   bool
add_local_plt(Relobj * object,unsigned int sym_index,unsigned int got_type)2418   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2419   {
2420     this->reserve_ent();
2421     return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2422 							    got_type);
2423   }
2424 
2425   bool
add_local_tls(Relobj * object,unsigned int sym_index,unsigned int got_type)2426   add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2427   { return this->add_local_plt(object, sym_index, got_type); }
2428 
2429   void
add_local_tls_pair(Relobj * object,unsigned int sym_index,unsigned int got_type,Output_data_reloc_generic * rel_dyn,unsigned int r_type)2430   add_local_tls_pair(Relobj* object, unsigned int sym_index,
2431 		     unsigned int got_type,
2432 		     Output_data_reloc_generic* rel_dyn,
2433 		     unsigned int r_type)
2434   {
2435     this->reserve_ent(2);
2436     Output_data_got<size, big_endian>::
2437       add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2438   }
2439 
2440   unsigned int
add_constant(Valtype constant)2441   add_constant(Valtype constant)
2442   {
2443     this->reserve_ent();
2444     return Output_data_got<size, big_endian>::add_constant(constant);
2445   }
2446 
2447   unsigned int
add_constant_pair(Valtype c1,Valtype c2)2448   add_constant_pair(Valtype c1, Valtype c2)
2449   {
2450     this->reserve_ent(2);
2451     return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2452   }
2453 
2454   // Offset of _GLOBAL_OFFSET_TABLE_.
2455   unsigned int
g_o_t() const2456   g_o_t() const
2457   {
2458     return this->got_offset(this->header_index_);
2459   }
2460 
2461   // Offset of base used to access the GOT/TOC.
2462   // The got/toc pointer reg will be set to this value.
2463   Valtype
got_base_offset(const Powerpc_relobj<size,big_endian> * object) const2464   got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2465   {
2466     if (size == 32)
2467       return this->g_o_t();
2468     else
2469       return (this->output_section()->address()
2470 	      + object->toc_base_offset()
2471 	      - this->address());
2472   }
2473 
2474   // Ensure our GOT has a header.
2475   void
set_final_data_size()2476   set_final_data_size()
2477   {
2478     if (this->header_ent_cnt_ != 0)
2479       this->make_header();
2480     Output_data_got<size, big_endian>::set_final_data_size();
2481   }
2482 
2483   // First word of GOT header needs some values that are not
2484   // handled by Output_data_got so poke them in here.
2485   // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2486   void
do_write(Output_file * of)2487   do_write(Output_file* of)
2488   {
2489     Valtype val = 0;
2490     if (size == 32 && this->layout_->dynamic_data() != NULL)
2491       val = this->layout_->dynamic_section()->address();
2492     if (size == 64)
2493       val = this->output_section()->address() + 0x8000;
2494     this->replace_constant(this->header_index_, val);
2495     Output_data_got<size, big_endian>::do_write(of);
2496   }
2497 
2498 private:
2499   void
reserve_ent(unsigned int cnt=1)2500   reserve_ent(unsigned int cnt = 1)
2501   {
2502     if (this->header_ent_cnt_ == 0)
2503       return;
2504     if (this->num_entries() + cnt > this->header_index_)
2505       this->make_header();
2506   }
2507 
2508   void
make_header()2509   make_header()
2510   {
2511     this->header_ent_cnt_ = 0;
2512     this->header_index_ = this->num_entries();
2513     if (size == 32)
2514       {
2515 	Output_data_got<size, big_endian>::add_constant(0);
2516 	Output_data_got<size, big_endian>::add_constant(0);
2517 	Output_data_got<size, big_endian>::add_constant(0);
2518 
2519 	// Define _GLOBAL_OFFSET_TABLE_ at the header
2520 	Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2521 	if (gotsym != NULL)
2522 	  {
2523 	    Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2524 	    sym->set_value(this->g_o_t());
2525 	  }
2526 	else
2527 	  this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2528 					       Symbol_table::PREDEFINED,
2529 					       this, this->g_o_t(), 0,
2530 					       elfcpp::STT_OBJECT,
2531 					       elfcpp::STB_LOCAL,
2532 					       elfcpp::STV_HIDDEN, 0,
2533 					       false, false);
2534       }
2535     else
2536       Output_data_got<size, big_endian>::add_constant(0);
2537   }
2538 
2539   // Stashed pointers.
2540   Symbol_table* symtab_;
2541   Layout* layout_;
2542 
2543   // GOT header size.
2544   unsigned int header_ent_cnt_;
2545   // GOT header index.
2546   unsigned int header_index_;
2547 };
2548 
2549 // Get the GOT section, creating it if necessary.
2550 
2551 template<int size, bool big_endian>
2552 Output_data_got_powerpc<size, big_endian>*
got_section(Symbol_table * symtab,Layout * layout)2553 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2554 					      Layout* layout)
2555 {
2556   if (this->got_ == NULL)
2557     {
2558       gold_assert(symtab != NULL && layout != NULL);
2559 
2560       this->got_
2561 	= new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2562 
2563       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2564 				      elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2565 				      this->got_, ORDER_DATA, false);
2566     }
2567 
2568   return this->got_;
2569 }
2570 
2571 // Get the dynamic reloc section, creating it if necessary.
2572 
2573 template<int size, bool big_endian>
2574 typename Target_powerpc<size, big_endian>::Reloc_section*
rela_dyn_section(Layout * layout)2575 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2576 {
2577   if (this->rela_dyn_ == NULL)
2578     {
2579       gold_assert(layout != NULL);
2580       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2581       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2582 				      elfcpp::SHF_ALLOC, this->rela_dyn_,
2583 				      ORDER_DYNAMIC_RELOCS, false);
2584     }
2585   return this->rela_dyn_;
2586 }
2587 
2588 // Similarly, but for ifunc symbols get the one for ifunc.
2589 
2590 template<int size, bool big_endian>
2591 typename Target_powerpc<size, big_endian>::Reloc_section*
rela_dyn_section(Symbol_table * symtab,Layout * layout,bool for_ifunc)2592 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2593 						   Layout* layout,
2594 						   bool for_ifunc)
2595 {
2596   if (!for_ifunc)
2597     return this->rela_dyn_section(layout);
2598 
2599   if (this->iplt_ == NULL)
2600     this->make_iplt_section(symtab, layout);
2601   return this->iplt_->rel_plt();
2602 }
2603 
2604 class Stub_control
2605 {
2606  public:
2607   // Determine the stub group size.  The group size is the absolute
2608   // value of the parameter --stub-group-size.  If --stub-group-size
2609   // is passed a negative value, we restrict stubs to be always after
2610   // the stubbed branches.
Stub_control(int32_t size,bool no_size_errors,bool multi_os)2611   Stub_control(int32_t size, bool no_size_errors, bool multi_os)
2612     : stub_group_size_(abs(size)), stubs_always_after_branch_(size < 0),
2613       suppress_size_errors_(no_size_errors), multi_os_(multi_os),
2614       state_(NO_GROUP), group_size_(0), group_start_addr_(0),
2615       owner_(NULL), output_section_(NULL)
2616   {
2617   }
2618 
2619   // Return true iff input section can be handled by current stub
2620   // group.
2621   bool
2622   can_add_to_stub_group(Output_section* o,
2623 			const Output_section::Input_section* i,
2624 			bool has14);
2625 
2626   const Output_section::Input_section*
owner()2627   owner()
2628   { return owner_; }
2629 
2630   Output_section*
output_section()2631   output_section()
2632   { return output_section_; }
2633 
2634   void
set_output_and_owner(Output_section * o,const Output_section::Input_section * i)2635   set_output_and_owner(Output_section* o,
2636 		       const Output_section::Input_section* i)
2637   {
2638     this->output_section_ = o;
2639     this->owner_ = i;
2640   }
2641 
2642  private:
2643   typedef enum
2644   {
2645     // Initial state.
2646     NO_GROUP,
2647     // Adding group sections before the stubs.
2648     FINDING_STUB_SECTION,
2649     // Adding group sections after the stubs.
2650     HAS_STUB_SECTION
2651   } State;
2652 
2653   uint32_t stub_group_size_;
2654   bool stubs_always_after_branch_;
2655   bool suppress_size_errors_;
2656   // True if a stub group can serve multiple output sections.
2657   bool multi_os_;
2658   State state_;
2659   // Current max size of group.  Starts at stub_group_size_ but is
2660   // reduced to stub_group_size_/1024 on seeing a section with
2661   // external conditional branches.
2662   uint32_t group_size_;
2663   uint64_t group_start_addr_;
2664   // owner_ and output_section_ specify the section to which stubs are
2665   // attached.  The stubs are placed at the end of this section.
2666   const Output_section::Input_section* owner_;
2667   Output_section* output_section_;
2668 };
2669 
2670 // Return true iff input section can be handled by current stub
2671 // group.  Sections are presented to this function in order,
2672 // so the first section is the head of the group.
2673 
2674 bool
can_add_to_stub_group(Output_section * o,const Output_section::Input_section * i,bool has14)2675 Stub_control::can_add_to_stub_group(Output_section* o,
2676 				    const Output_section::Input_section* i,
2677 				    bool has14)
2678 {
2679   bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2680   uint64_t this_size;
2681   uint64_t start_addr = o->address();
2682 
2683   if (whole_sec)
2684     // .init and .fini sections are pasted together to form a single
2685     // function.  We can't be adding stubs in the middle of the function.
2686     this_size = o->data_size();
2687   else
2688     {
2689       start_addr += i->relobj()->output_section_offset(i->shndx());
2690       this_size = i->data_size();
2691     }
2692 
2693   uint64_t end_addr = start_addr + this_size;
2694   uint32_t group_size = this->stub_group_size_;
2695   if (has14)
2696     this->group_size_ = group_size = group_size >> 10;
2697 
2698   if (this_size > group_size && !this->suppress_size_errors_)
2699     gold_warning(_("%s:%s exceeds group size"),
2700 		 i->relobj()->name().c_str(),
2701 		 i->relobj()->section_name(i->shndx()).c_str());
2702 
2703   gold_debug(DEBUG_TARGET, "maybe add%s %s:%s size=%#llx total=%#llx",
2704 	     has14 ? " 14bit" : "",
2705 	     i->relobj()->name().c_str(),
2706 	     i->relobj()->section_name(i->shndx()).c_str(),
2707 	     (long long) this_size,
2708 	     (this->state_ == NO_GROUP
2709 	      ? this_size
2710 	      : (long long) end_addr - this->group_start_addr_));
2711 
2712   if (this->state_ == NO_GROUP)
2713     {
2714       // Only here on very first use of Stub_control
2715       this->owner_ = i;
2716       this->output_section_ = o;
2717       this->state_ = FINDING_STUB_SECTION;
2718       this->group_size_ = group_size;
2719       this->group_start_addr_ = start_addr;
2720       return true;
2721     }
2722   else if (!this->multi_os_ && this->output_section_ != o)
2723     ;
2724   else if (this->state_ == HAS_STUB_SECTION)
2725     {
2726       // Can we add this section, which is after the stubs, to the
2727       // group?
2728       if (end_addr - this->group_start_addr_ <= this->group_size_)
2729 	return true;
2730     }
2731   else if (this->state_ == FINDING_STUB_SECTION)
2732     {
2733       if ((whole_sec && this->output_section_ == o)
2734 	  || end_addr - this->group_start_addr_ <= this->group_size_)
2735 	{
2736 	  // Stubs are added at the end of "owner_".
2737 	  this->owner_ = i;
2738 	  this->output_section_ = o;
2739 	  return true;
2740 	}
2741       // The group before the stubs has reached maximum size.
2742       // Now see about adding sections after the stubs to the
2743       // group.  If the current section has a 14-bit branch and
2744       // the group before the stubs exceeds group_size_ (because
2745       // they didn't have 14-bit branches), don't add sections
2746       // after the stubs:  The size of stubs for such a large
2747       // group may exceed the reach of a 14-bit branch.
2748       if (!this->stubs_always_after_branch_
2749 	  && this_size <= this->group_size_
2750 	  && start_addr - this->group_start_addr_ <= this->group_size_)
2751 	{
2752 	  gold_debug(DEBUG_TARGET, "adding after stubs");
2753 	  this->state_ = HAS_STUB_SECTION;
2754 	  this->group_start_addr_ = start_addr;
2755 	  return true;
2756 	}
2757     }
2758   else
2759     gold_unreachable();
2760 
2761   gold_debug(DEBUG_TARGET,
2762 	     !this->multi_os_ && this->output_section_ != o
2763 	     ? "nope, new output section\n"
2764 	     : "nope, didn't fit\n");
2765 
2766   // The section fails to fit in the current group.  Set up a few
2767   // things for the next group.  owner_ and output_section_ will be
2768   // set later after we've retrieved those values for the current
2769   // group.
2770   this->state_ = FINDING_STUB_SECTION;
2771   this->group_size_ = group_size;
2772   this->group_start_addr_ = start_addr;
2773   return false;
2774 }
2775 
2776 // Look over all the input sections, deciding where to place stubs.
2777 
2778 template<int size, bool big_endian>
2779 void
group_sections(Layout * layout,const Task *,bool no_size_errors)2780 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2781 						 const Task*,
2782 						 bool no_size_errors)
2783 {
2784   Stub_control stub_control(this->stub_group_size_, no_size_errors,
2785 			    parameters->options().stub_group_multi());
2786 
2787   // Group input sections and insert stub table
2788   Stub_table_owner* table_owner = NULL;
2789   std::vector<Stub_table_owner*> tables;
2790   Layout::Section_list section_list;
2791   layout->get_executable_sections(&section_list);
2792   std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2793   for (Layout::Section_list::iterator o = section_list.begin();
2794        o != section_list.end();
2795        ++o)
2796     {
2797       typedef Output_section::Input_section_list Input_section_list;
2798       for (Input_section_list::const_iterator i
2799 	     = (*o)->input_sections().begin();
2800 	   i != (*o)->input_sections().end();
2801 	   ++i)
2802 	{
2803 	  if (i->is_input_section()
2804 	      || i->is_relaxed_input_section())
2805 	    {
2806 	      Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2807 		<Powerpc_relobj<size, big_endian>*>(i->relobj());
2808 	      bool has14 = ppcobj->has_14bit_branch(i->shndx());
2809 	      if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2810 		{
2811 		  table_owner->output_section = stub_control.output_section();
2812 		  table_owner->owner = stub_control.owner();
2813 		  stub_control.set_output_and_owner(*o, &*i);
2814 		  table_owner = NULL;
2815 		}
2816 	      if (table_owner == NULL)
2817 		{
2818 		  table_owner = new Stub_table_owner;
2819 		  tables.push_back(table_owner);
2820 		}
2821 	      ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2822 	    }
2823 	}
2824     }
2825   if (table_owner != NULL)
2826     {
2827       table_owner->output_section = stub_control.output_section();
2828       table_owner->owner = stub_control.owner();;
2829     }
2830   for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
2831        t != tables.end();
2832        ++t)
2833     {
2834       Stub_table<size, big_endian>* stub_table;
2835 
2836       if ((*t)->owner->is_input_section())
2837 	stub_table = new Stub_table<size, big_endian>(this,
2838 						      (*t)->output_section,
2839 						      (*t)->owner);
2840       else if ((*t)->owner->is_relaxed_input_section())
2841 	stub_table = static_cast<Stub_table<size, big_endian>*>(
2842 			(*t)->owner->relaxed_input_section());
2843       else
2844 	gold_unreachable();
2845       this->stub_tables_.push_back(stub_table);
2846       delete *t;
2847     }
2848 }
2849 
2850 static unsigned long
max_branch_delta(unsigned int r_type)2851 max_branch_delta (unsigned int r_type)
2852 {
2853   if (r_type == elfcpp::R_POWERPC_REL14
2854       || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
2855       || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2856     return 1L << 15;
2857   if (r_type == elfcpp::R_POWERPC_REL24
2858       || r_type == elfcpp::R_PPC_PLTREL24
2859       || r_type == elfcpp::R_PPC_LOCAL24PC)
2860     return 1L << 25;
2861   return 0;
2862 }
2863 
2864 // If this branch needs a plt call stub, or a long branch stub, make one.
2865 
2866 template<int size, bool big_endian>
2867 bool
make_stub(Stub_table<size,big_endian> * stub_table,Stub_table<size,big_endian> * ifunc_stub_table,Symbol_table * symtab) const2868 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2869     Stub_table<size, big_endian>* stub_table,
2870     Stub_table<size, big_endian>* ifunc_stub_table,
2871     Symbol_table* symtab) const
2872 {
2873   Symbol* sym = this->object_->global_symbol(this->r_sym_);
2874   if (sym != NULL && sym->is_forwarder())
2875     sym = symtab->resolve_forwards(sym);
2876   const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2877   Target_powerpc<size, big_endian>* target =
2878     static_cast<Target_powerpc<size, big_endian>*>(
2879       parameters->sized_target<size, big_endian>());
2880   bool ok = true;
2881 
2882   if (gsym != NULL
2883       ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2884       : this->object_->local_has_plt_offset(this->r_sym_))
2885     {
2886       if (size == 64
2887 	  && gsym != NULL
2888 	  && target->abiversion() >= 2
2889 	  && !parameters->options().output_is_position_independent()
2890 	  && !is_branch_reloc(this->r_type_))
2891 	target->glink_section()->add_global_entry(gsym);
2892       else
2893 	{
2894 	  if (stub_table == NULL)
2895 	    stub_table = this->object_->stub_table(this->shndx_);
2896 	  if (stub_table == NULL)
2897 	    {
2898 	      // This is a ref from a data section to an ifunc symbol.
2899 	      stub_table = ifunc_stub_table;
2900 	    }
2901 	  gold_assert(stub_table != NULL);
2902 	  Address from = this->object_->get_output_section_offset(this->shndx_);
2903 	  if (from != invalid_address)
2904 	    from += (this->object_->output_section(this->shndx_)->address()
2905 		     + this->offset_);
2906 	  if (gsym != NULL)
2907 	    ok = stub_table->add_plt_call_entry(from,
2908 						this->object_, gsym,
2909 						this->r_type_, this->addend_);
2910 	  else
2911 	    ok = stub_table->add_plt_call_entry(from,
2912 						this->object_, this->r_sym_,
2913 						this->r_type_, this->addend_);
2914 	}
2915     }
2916   else
2917     {
2918       Address max_branch_offset = max_branch_delta(this->r_type_);
2919       if (max_branch_offset == 0)
2920 	return true;
2921       Address from = this->object_->get_output_section_offset(this->shndx_);
2922       gold_assert(from != invalid_address);
2923       from += (this->object_->output_section(this->shndx_)->address()
2924 	       + this->offset_);
2925       Address to;
2926       if (gsym != NULL)
2927 	{
2928 	  switch (gsym->source())
2929 	    {
2930 	    case Symbol::FROM_OBJECT:
2931 	      {
2932 		Object* symobj = gsym->object();
2933 		if (symobj->is_dynamic()
2934 		    || symobj->pluginobj() != NULL)
2935 		  return true;
2936 		bool is_ordinary;
2937 		unsigned int shndx = gsym->shndx(&is_ordinary);
2938 		if (shndx == elfcpp::SHN_UNDEF)
2939 		  return true;
2940 	      }
2941 	      break;
2942 
2943 	    case Symbol::IS_UNDEFINED:
2944 	      return true;
2945 
2946 	    default:
2947 	      break;
2948 	    }
2949 	  Symbol_table::Compute_final_value_status status;
2950 	  to = symtab->compute_final_value<size>(gsym, &status);
2951 	  if (status != Symbol_table::CFVS_OK)
2952 	    return true;
2953 	  if (size == 64)
2954 	    to += this->object_->ppc64_local_entry_offset(gsym);
2955 	}
2956       else
2957 	{
2958 	  const Symbol_value<size>* psymval
2959 	    = this->object_->local_symbol(this->r_sym_);
2960 	  Symbol_value<size> symval;
2961 	  if (psymval->is_section_symbol())
2962 	    symval.set_is_section_symbol();
2963 	  typedef Sized_relobj_file<size, big_endian> ObjType;
2964 	  typename ObjType::Compute_final_local_value_status status
2965 	    = this->object_->compute_final_local_value(this->r_sym_, psymval,
2966 						       &symval, symtab);
2967 	  if (status != ObjType::CFLV_OK
2968 	      || !symval.has_output_value())
2969 	    return true;
2970 	  to = symval.value(this->object_, 0);
2971 	  if (size == 64)
2972 	    to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2973 	}
2974       if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
2975 	to += this->addend_;
2976       if (stub_table == NULL)
2977 	stub_table = this->object_->stub_table(this->shndx_);
2978       if (size == 64 && target->abiversion() < 2)
2979 	{
2980 	  unsigned int dest_shndx;
2981 	  if (!target->symval_for_branch(symtab, gsym, this->object_,
2982 					 &to, &dest_shndx))
2983 	    return true;
2984 	}
2985       Address delta = to - from;
2986       if (delta + max_branch_offset >= 2 * max_branch_offset)
2987 	{
2988 	  if (stub_table == NULL)
2989 	    {
2990 	      gold_warning(_("%s:%s: branch in non-executable section,"
2991 			     " no long branch stub for you"),
2992 			   this->object_->name().c_str(),
2993 			   this->object_->section_name(this->shndx_).c_str());
2994 	      return true;
2995 	    }
2996 	  bool save_res = (size == 64
2997 			   && gsym != NULL
2998 			   && gsym->source() == Symbol::IN_OUTPUT_DATA
2999 			   && gsym->output_data() == target->savres_section());
3000 	  ok = stub_table->add_long_branch_entry(this->object_,
3001 						 this->r_type_,
3002 						 from, to, save_res);
3003 	}
3004     }
3005   if (!ok)
3006     gold_debug(DEBUG_TARGET,
3007 	       "branch at %s:%s+%#lx\n"
3008 	       "can't reach stub attached to %s:%s",
3009 	       this->object_->name().c_str(),
3010 	       this->object_->section_name(this->shndx_).c_str(),
3011 	       (unsigned long) this->offset_,
3012 	       stub_table->relobj()->name().c_str(),
3013 	       stub_table->relobj()->section_name(stub_table->shndx()).c_str());
3014 
3015   return ok;
3016 }
3017 
3018 // Relaxation hook.  This is where we do stub generation.
3019 
3020 template<int size, bool big_endian>
3021 bool
do_relax(int pass,const Input_objects *,Symbol_table * symtab,Layout * layout,const Task * task)3022 Target_powerpc<size, big_endian>::do_relax(int pass,
3023 					   const Input_objects*,
3024 					   Symbol_table* symtab,
3025 					   Layout* layout,
3026 					   const Task* task)
3027 {
3028   unsigned int prev_brlt_size = 0;
3029   if (pass == 1)
3030     {
3031       bool thread_safe
3032 	= this->abiversion() < 2 && parameters->options().plt_thread_safe();
3033       if (size == 64
3034 	  && this->abiversion() < 2
3035 	  && !thread_safe
3036 	  && !parameters->options().user_set_plt_thread_safe())
3037 	{
3038 	  static const char* const thread_starter[] =
3039 	    {
3040 	      "pthread_create",
3041 	      /* libstdc++ */
3042 	      "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
3043 	      /* librt */
3044 	      "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
3045 	      "mq_notify", "create_timer",
3046 	      /* libanl */
3047 	      "getaddrinfo_a",
3048 	      /* libgomp */
3049 	      "GOMP_parallel",
3050 	      "GOMP_parallel_start",
3051 	      "GOMP_parallel_loop_static",
3052 	      "GOMP_parallel_loop_static_start",
3053 	      "GOMP_parallel_loop_dynamic",
3054 	      "GOMP_parallel_loop_dynamic_start",
3055 	      "GOMP_parallel_loop_guided",
3056 	      "GOMP_parallel_loop_guided_start",
3057 	      "GOMP_parallel_loop_runtime",
3058 	      "GOMP_parallel_loop_runtime_start",
3059 	      "GOMP_parallel_sections",
3060 	      "GOMP_parallel_sections_start",
3061 	      /* libgo */
3062 	      "__go_go",
3063 	    };
3064 
3065 	  if (parameters->options().shared())
3066 	    thread_safe = true;
3067 	  else
3068 	    {
3069 	      for (unsigned int i = 0;
3070 		   i < sizeof(thread_starter) / sizeof(thread_starter[0]);
3071 		   i++)
3072 		{
3073 		  Symbol* sym = symtab->lookup(thread_starter[i], NULL);
3074 		  thread_safe = (sym != NULL
3075 				 && sym->in_reg()
3076 				 && sym->in_real_elf());
3077 		  if (thread_safe)
3078 		    break;
3079 		}
3080 	    }
3081 	}
3082       this->plt_thread_safe_ = thread_safe;
3083     }
3084 
3085   if (pass == 1)
3086     {
3087       this->stub_group_size_ = parameters->options().stub_group_size();
3088       bool no_size_errors = true;
3089       if (this->stub_group_size_ == 1)
3090 	this->stub_group_size_ = 0x1c00000;
3091       else if (this->stub_group_size_ == -1)
3092 	this->stub_group_size_ = -0x1e00000;
3093       else
3094 	no_size_errors = false;
3095       this->group_sections(layout, task, no_size_errors);
3096     }
3097   else if (this->relax_failed_ && this->relax_fail_count_ < 3)
3098     {
3099       this->branch_lookup_table_.clear();
3100       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3101 	   p != this->stub_tables_.end();
3102 	   ++p)
3103 	{
3104 	  (*p)->clear_stubs(true);
3105 	}
3106       this->stub_tables_.clear();
3107       this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
3108       gold_info(_("%s: stub group size is too large; retrying with %#x"),
3109 		program_name, this->stub_group_size_);
3110       this->group_sections(layout, task, true);
3111     }
3112 
3113   // We need address of stub tables valid for make_stub.
3114   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3115        p != this->stub_tables_.end();
3116        ++p)
3117     {
3118       const Powerpc_relobj<size, big_endian>* object
3119 	= static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
3120       Address off = object->get_output_section_offset((*p)->shndx());
3121       gold_assert(off != invalid_address);
3122       Output_section* os = (*p)->output_section();
3123       (*p)->set_address_and_size(os, off);
3124     }
3125 
3126   if (pass != 1)
3127     {
3128       // Clear plt call stubs, long branch stubs and branch lookup table.
3129       prev_brlt_size = this->branch_lookup_table_.size();
3130       this->branch_lookup_table_.clear();
3131       for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3132 	   p != this->stub_tables_.end();
3133 	   ++p)
3134 	{
3135 	  (*p)->clear_stubs(false);
3136 	}
3137     }
3138 
3139   // Build all the stubs.
3140   this->relax_failed_ = false;
3141   Stub_table<size, big_endian>* ifunc_stub_table
3142     = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
3143   Stub_table<size, big_endian>* one_stub_table
3144     = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
3145   for (typename Branches::const_iterator b = this->branch_info_.begin();
3146        b != this->branch_info_.end();
3147        b++)
3148     {
3149       if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
3150 	  && !this->relax_failed_)
3151 	{
3152 	  this->relax_failed_ = true;
3153 	  this->relax_fail_count_++;
3154 	  if (this->relax_fail_count_ < 3)
3155 	    return true;
3156 	}
3157     }
3158 
3159   // Did anything change size?
3160   unsigned int num_huge_branches = this->branch_lookup_table_.size();
3161   bool again = num_huge_branches != prev_brlt_size;
3162   if (size == 64 && num_huge_branches != 0)
3163     this->make_brlt_section(layout);
3164   if (size == 64 && again)
3165     this->brlt_section_->set_current_size(num_huge_branches);
3166 
3167   typedef Unordered_set<Output_section*> Output_sections;
3168   Output_sections os_need_update;
3169   for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3170        p != this->stub_tables_.end();
3171        ++p)
3172     {
3173       if ((*p)->size_update())
3174 	{
3175 	  again = true;
3176 	  (*p)->add_eh_frame(layout);
3177 	  os_need_update.insert((*p)->output_section());
3178 	}
3179     }
3180 
3181   // Set output section offsets for all input sections in an output
3182   // section that just changed size.  Anything past the stubs will
3183   // need updating.
3184   for (typename Output_sections::iterator p = os_need_update.begin();
3185        p != os_need_update.end();
3186        p++)
3187     {
3188       Output_section* os = *p;
3189       Address off = 0;
3190       typedef Output_section::Input_section_list Input_section_list;
3191       for (Input_section_list::const_iterator i = os->input_sections().begin();
3192 	   i != os->input_sections().end();
3193 	   ++i)
3194 	{
3195 	  off = align_address(off, i->addralign());
3196 	  if (i->is_input_section() || i->is_relaxed_input_section())
3197 	    i->relobj()->set_section_offset(i->shndx(), off);
3198 	  if (i->is_relaxed_input_section())
3199 	    {
3200 	      Stub_table<size, big_endian>* stub_table
3201 		= static_cast<Stub_table<size, big_endian>*>(
3202 		    i->relaxed_input_section());
3203 	      Address stub_table_size = stub_table->set_address_and_size(os, off);
3204 	      off += stub_table_size;
3205 	      // After a few iterations, set current stub table size
3206 	      // as min size threshold, so later stub tables can only
3207 	      // grow in size.
3208 	      if (pass >= 4)
3209 		stub_table->set_min_size_threshold(stub_table_size);
3210 	    }
3211 	  else
3212 	    off += i->data_size();
3213 	}
3214       // If .branch_lt is part of this output section, then we have
3215       // just done the offset adjustment.
3216       os->clear_section_offsets_need_adjustment();
3217     }
3218 
3219   if (size == 64
3220       && !again
3221       && num_huge_branches != 0
3222       && parameters->options().output_is_position_independent())
3223     {
3224       // Fill in the BRLT relocs.
3225       this->brlt_section_->reset_brlt_sizes();
3226       for (typename Branch_lookup_table::const_iterator p
3227 	     = this->branch_lookup_table_.begin();
3228 	   p != this->branch_lookup_table_.end();
3229 	   ++p)
3230 	{
3231 	  this->brlt_section_->add_reloc(p->first, p->second);
3232 	}
3233       this->brlt_section_->finalize_brlt_sizes();
3234     }
3235   return again;
3236 }
3237 
3238 template<int size, bool big_endian>
3239 void
do_plt_fde_location(const Output_data * plt,unsigned char * oview,uint64_t * paddress,off_t * plen) const3240 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
3241 						      unsigned char* oview,
3242 						      uint64_t* paddress,
3243 						      off_t* plen) const
3244 {
3245   uint64_t address = plt->address();
3246   off_t len = plt->data_size();
3247 
3248   if (plt == this->glink_)
3249     {
3250       // See Output_data_glink::do_write() for glink contents.
3251       if (len == 0)
3252 	{
3253 	  gold_assert(parameters->doing_static_link());
3254 	  // Static linking may need stubs, to support ifunc and long
3255 	  // branches.  We need to create an output section for
3256 	  // .eh_frame early in the link process, to have a place to
3257 	  // attach stub .eh_frame info.  We also need to have
3258 	  // registered a CIE that matches the stub CIE.  Both of
3259 	  // these requirements are satisfied by creating an FDE and
3260 	  // CIE for .glink, even though static linking will leave
3261 	  // .glink zero length.
3262 	  // ??? Hopefully generating an FDE with a zero address range
3263 	  // won't confuse anything that consumes .eh_frame info.
3264 	}
3265       else if (size == 64)
3266 	{
3267 	  // There is one word before __glink_PLTresolve
3268 	  address += 8;
3269 	  len -= 8;
3270 	}
3271       else if (parameters->options().output_is_position_independent())
3272 	{
3273 	  // There are two FDEs for a position independent glink.
3274 	  // The first covers the branch table, the second
3275 	  // __glink_PLTresolve at the end of glink.
3276 	  off_t resolve_size = this->glink_->pltresolve_size;
3277 	  if (oview[9] == elfcpp::DW_CFA_nop)
3278 	    len -= resolve_size;
3279 	  else
3280 	    {
3281 	      address += len - resolve_size;
3282 	      len = resolve_size;
3283 	    }
3284 	}
3285     }
3286   else
3287     {
3288       // Must be a stub table.
3289       const Stub_table<size, big_endian>* stub_table
3290 	= static_cast<const Stub_table<size, big_endian>*>(plt);
3291       uint64_t stub_address = stub_table->stub_address();
3292       len -= stub_address - address;
3293       address = stub_address;
3294     }
3295 
3296   *paddress = address;
3297   *plen = len;
3298 }
3299 
3300 // A class to handle the PLT data.
3301 
3302 template<int size, bool big_endian>
3303 class Output_data_plt_powerpc : public Output_section_data_build
3304 {
3305  public:
3306   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3307 			    size, big_endian> Reloc_section;
3308 
Output_data_plt_powerpc(Target_powerpc<size,big_endian> * targ,Reloc_section * plt_rel,const char * name)3309   Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3310 			  Reloc_section* plt_rel,
3311 			  const char* name)
3312     : Output_section_data_build(size == 32 ? 4 : 8),
3313       rel_(plt_rel),
3314       targ_(targ),
3315       name_(name)
3316   { }
3317 
3318   // Add an entry to the PLT.
3319   void
3320   add_entry(Symbol*);
3321 
3322   void
3323   add_ifunc_entry(Symbol*);
3324 
3325   void
3326   add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3327 
3328   // Return the .rela.plt section data.
3329   Reloc_section*
rel_plt() const3330   rel_plt() const
3331   {
3332     return this->rel_;
3333   }
3334 
3335   // Return the number of PLT entries.
3336   unsigned int
entry_count() const3337   entry_count() const
3338   {
3339     if (this->current_data_size() == 0)
3340       return 0;
3341     return ((this->current_data_size() - this->first_plt_entry_offset())
3342 	    / this->plt_entry_size());
3343   }
3344 
3345  protected:
3346   void
do_adjust_output_section(Output_section * os)3347   do_adjust_output_section(Output_section* os)
3348   {
3349     os->set_entsize(0);
3350   }
3351 
3352   // Write to a map file.
3353   void
do_print_to_mapfile(Mapfile * mapfile) const3354   do_print_to_mapfile(Mapfile* mapfile) const
3355   { mapfile->print_output_data(this, this->name_); }
3356 
3357  private:
3358   // Return the offset of the first non-reserved PLT entry.
3359   unsigned int
first_plt_entry_offset() const3360   first_plt_entry_offset() const
3361   {
3362     // IPLT has no reserved entry.
3363     if (this->name_[3] == 'I')
3364       return 0;
3365     return this->targ_->first_plt_entry_offset();
3366   }
3367 
3368   // Return the size of each PLT entry.
3369   unsigned int
plt_entry_size() const3370   plt_entry_size() const
3371   {
3372     return this->targ_->plt_entry_size();
3373   }
3374 
3375   // Write out the PLT data.
3376   void
3377   do_write(Output_file*);
3378 
3379   // The reloc section.
3380   Reloc_section* rel_;
3381   // Allows access to .glink for do_write.
3382   Target_powerpc<size, big_endian>* targ_;
3383   // What to report in map file.
3384   const char *name_;
3385 };
3386 
3387 // Add an entry to the PLT.
3388 
3389 template<int size, bool big_endian>
3390 void
add_entry(Symbol * gsym)3391 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3392 {
3393   if (!gsym->has_plt_offset())
3394     {
3395       section_size_type off = this->current_data_size();
3396       if (off == 0)
3397 	off += this->first_plt_entry_offset();
3398       gsym->set_plt_offset(off);
3399       gsym->set_needs_dynsym_entry();
3400       unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3401       this->rel_->add_global(gsym, dynrel, this, off, 0);
3402       off += this->plt_entry_size();
3403       this->set_current_data_size(off);
3404     }
3405 }
3406 
3407 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3408 
3409 template<int size, bool big_endian>
3410 void
add_ifunc_entry(Symbol * gsym)3411 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3412 {
3413   if (!gsym->has_plt_offset())
3414     {
3415       section_size_type off = this->current_data_size();
3416       gsym->set_plt_offset(off);
3417       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3418       if (size == 64 && this->targ_->abiversion() < 2)
3419 	dynrel = elfcpp::R_PPC64_JMP_IREL;
3420       this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3421       off += this->plt_entry_size();
3422       this->set_current_data_size(off);
3423     }
3424 }
3425 
3426 // Add an entry for a local ifunc symbol to the IPLT.
3427 
3428 template<int size, bool big_endian>
3429 void
add_local_ifunc_entry(Sized_relobj_file<size,big_endian> * relobj,unsigned int local_sym_index)3430 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3431     Sized_relobj_file<size, big_endian>* relobj,
3432     unsigned int local_sym_index)
3433 {
3434   if (!relobj->local_has_plt_offset(local_sym_index))
3435     {
3436       section_size_type off = this->current_data_size();
3437       relobj->set_local_plt_offset(local_sym_index, off);
3438       unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3439       if (size == 64 && this->targ_->abiversion() < 2)
3440 	dynrel = elfcpp::R_PPC64_JMP_IREL;
3441       this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3442 					      this, off, 0);
3443       off += this->plt_entry_size();
3444       this->set_current_data_size(off);
3445     }
3446 }
3447 
3448 static const uint32_t add_0_11_11	= 0x7c0b5a14;
3449 static const uint32_t add_2_2_11	= 0x7c425a14;
3450 static const uint32_t add_2_2_12	= 0x7c426214;
3451 static const uint32_t add_3_3_2		= 0x7c631214;
3452 static const uint32_t add_3_3_13	= 0x7c636a14;
3453 static const uint32_t add_11_0_11	= 0x7d605a14;
3454 static const uint32_t add_11_2_11	= 0x7d625a14;
3455 static const uint32_t add_11_11_2	= 0x7d6b1214;
3456 static const uint32_t addi_0_12		= 0x380c0000;
3457 static const uint32_t addi_2_2		= 0x38420000;
3458 static const uint32_t addi_3_3		= 0x38630000;
3459 static const uint32_t addi_11_11	= 0x396b0000;
3460 static const uint32_t addi_12_1		= 0x39810000;
3461 static const uint32_t addi_12_12	= 0x398c0000;
3462 static const uint32_t addis_0_2		= 0x3c020000;
3463 static const uint32_t addis_0_13	= 0x3c0d0000;
3464 static const uint32_t addis_2_12	= 0x3c4c0000;
3465 static const uint32_t addis_11_2	= 0x3d620000;
3466 static const uint32_t addis_11_11	= 0x3d6b0000;
3467 static const uint32_t addis_11_30	= 0x3d7e0000;
3468 static const uint32_t addis_12_1	= 0x3d810000;
3469 static const uint32_t addis_12_2	= 0x3d820000;
3470 static const uint32_t addis_12_12	= 0x3d8c0000;
3471 static const uint32_t b			= 0x48000000;
3472 static const uint32_t bcl_20_31		= 0x429f0005;
3473 static const uint32_t bctr		= 0x4e800420;
3474 static const uint32_t blr		= 0x4e800020;
3475 static const uint32_t bnectr_p4		= 0x4ce20420;
3476 static const uint32_t cmpld_7_12_0	= 0x7fac0040;
3477 static const uint32_t cmpldi_2_0	= 0x28220000;
3478 static const uint32_t cror_15_15_15	= 0x4def7b82;
3479 static const uint32_t cror_31_31_31	= 0x4ffffb82;
3480 static const uint32_t ld_0_1		= 0xe8010000;
3481 static const uint32_t ld_0_12		= 0xe80c0000;
3482 static const uint32_t ld_2_1		= 0xe8410000;
3483 static const uint32_t ld_2_2		= 0xe8420000;
3484 static const uint32_t ld_2_11		= 0xe84b0000;
3485 static const uint32_t ld_2_12		= 0xe84c0000;
3486 static const uint32_t ld_11_2		= 0xe9620000;
3487 static const uint32_t ld_11_11		= 0xe96b0000;
3488 static const uint32_t ld_12_2		= 0xe9820000;
3489 static const uint32_t ld_12_11		= 0xe98b0000;
3490 static const uint32_t ld_12_12		= 0xe98c0000;
3491 static const uint32_t lfd_0_1		= 0xc8010000;
3492 static const uint32_t li_0_0		= 0x38000000;
3493 static const uint32_t li_12_0		= 0x39800000;
3494 static const uint32_t lis_0		= 0x3c000000;
3495 static const uint32_t lis_2		= 0x3c400000;
3496 static const uint32_t lis_11		= 0x3d600000;
3497 static const uint32_t lis_12		= 0x3d800000;
3498 static const uint32_t lvx_0_12_0	= 0x7c0c00ce;
3499 static const uint32_t lwz_0_12		= 0x800c0000;
3500 static const uint32_t lwz_11_11		= 0x816b0000;
3501 static const uint32_t lwz_11_30		= 0x817e0000;
3502 static const uint32_t lwz_12_12		= 0x818c0000;
3503 static const uint32_t lwzu_0_12		= 0x840c0000;
3504 static const uint32_t mflr_0		= 0x7c0802a6;
3505 static const uint32_t mflr_11		= 0x7d6802a6;
3506 static const uint32_t mflr_12		= 0x7d8802a6;
3507 static const uint32_t mtctr_0		= 0x7c0903a6;
3508 static const uint32_t mtctr_11		= 0x7d6903a6;
3509 static const uint32_t mtctr_12		= 0x7d8903a6;
3510 static const uint32_t mtlr_0		= 0x7c0803a6;
3511 static const uint32_t mtlr_12		= 0x7d8803a6;
3512 static const uint32_t nop		= 0x60000000;
3513 static const uint32_t ori_0_0_0		= 0x60000000;
3514 static const uint32_t srdi_0_0_2	= 0x7800f082;
3515 static const uint32_t std_0_1		= 0xf8010000;
3516 static const uint32_t std_0_12		= 0xf80c0000;
3517 static const uint32_t std_2_1		= 0xf8410000;
3518 static const uint32_t stfd_0_1		= 0xd8010000;
3519 static const uint32_t stvx_0_12_0	= 0x7c0c01ce;
3520 static const uint32_t sub_11_11_12	= 0x7d6c5850;
3521 static const uint32_t sub_12_12_11	= 0x7d8b6050;
3522 static const uint32_t xor_2_12_12	= 0x7d826278;
3523 static const uint32_t xor_11_12_12	= 0x7d8b6278;
3524 
3525 // Write out the PLT.
3526 
3527 template<int size, bool big_endian>
3528 void
do_write(Output_file * of)3529 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3530 {
3531   if (size == 32 && this->name_[3] != 'I')
3532     {
3533       const section_size_type offset = this->offset();
3534       const section_size_type oview_size
3535 	= convert_to_section_size_type(this->data_size());
3536       unsigned char* const oview = of->get_output_view(offset, oview_size);
3537       unsigned char* pov = oview;
3538       unsigned char* endpov = oview + oview_size;
3539 
3540       // The address of the .glink branch table
3541       const Output_data_glink<size, big_endian>* glink
3542 	= this->targ_->glink_section();
3543       elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3544 
3545       while (pov < endpov)
3546 	{
3547 	  elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3548 	  pov += 4;
3549 	  branch_tab += 4;
3550 	}
3551 
3552       of->write_output_view(offset, oview_size, oview);
3553     }
3554 }
3555 
3556 // Create the PLT section.
3557 
3558 template<int size, bool big_endian>
3559 void
make_plt_section(Symbol_table * symtab,Layout * layout)3560 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3561 						   Layout* layout)
3562 {
3563   if (this->plt_ == NULL)
3564     {
3565       if (this->got_ == NULL)
3566 	this->got_section(symtab, layout);
3567 
3568       if (this->glink_ == NULL)
3569 	make_glink_section(layout);
3570 
3571       // Ensure that .rela.dyn always appears before .rela.plt  This is
3572       // necessary due to how, on PowerPC and some other targets, .rela.dyn
3573       // needs to include .rela.plt in its range.
3574       this->rela_dyn_section(layout);
3575 
3576       Reloc_section* plt_rel = new Reloc_section(false);
3577       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3578 				      elfcpp::SHF_ALLOC, plt_rel,
3579 				      ORDER_DYNAMIC_PLT_RELOCS, false);
3580       this->plt_
3581 	= new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3582 							"** PLT");
3583       layout->add_output_section_data(".plt",
3584 				      (size == 32
3585 				       ? elfcpp::SHT_PROGBITS
3586 				       : elfcpp::SHT_NOBITS),
3587 				      elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3588 				      this->plt_,
3589 				      (size == 32
3590 				       ? ORDER_SMALL_DATA
3591 				       : ORDER_SMALL_BSS),
3592 				      false);
3593 
3594       Output_section* rela_plt_os = plt_rel->output_section();
3595       rela_plt_os->set_info_section(this->plt_->output_section());
3596     }
3597 }
3598 
3599 // Create the IPLT section.
3600 
3601 template<int size, bool big_endian>
3602 void
make_iplt_section(Symbol_table * symtab,Layout * layout)3603 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3604 						    Layout* layout)
3605 {
3606   if (this->iplt_ == NULL)
3607     {
3608       this->make_plt_section(symtab, layout);
3609 
3610       Reloc_section* iplt_rel = new Reloc_section(false);
3611       if (this->rela_dyn_->output_section())
3612 	this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3613       this->iplt_
3614 	= new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3615 							"** IPLT");
3616       if (this->plt_->output_section())
3617 	this->plt_->output_section()->add_output_section_data(this->iplt_);
3618     }
3619 }
3620 
3621 // A section for huge long branch addresses, similar to plt section.
3622 
3623 template<int size, bool big_endian>
3624 class Output_data_brlt_powerpc : public Output_section_data_build
3625 {
3626  public:
3627   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3628   typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3629 			    size, big_endian> Reloc_section;
3630 
Output_data_brlt_powerpc(Target_powerpc<size,big_endian> * targ,Reloc_section * brlt_rel)3631   Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3632 			   Reloc_section* brlt_rel)
3633     : Output_section_data_build(size == 32 ? 4 : 8),
3634       rel_(brlt_rel),
3635       targ_(targ)
3636   { }
3637 
3638   void
reset_brlt_sizes()3639   reset_brlt_sizes()
3640   {
3641     this->reset_data_size();
3642     this->rel_->reset_data_size();
3643   }
3644 
3645   void
finalize_brlt_sizes()3646   finalize_brlt_sizes()
3647   {
3648     this->finalize_data_size();
3649     this->rel_->finalize_data_size();
3650   }
3651 
3652   // Add a reloc for an entry in the BRLT.
3653   void
add_reloc(Address to,unsigned int off)3654   add_reloc(Address to, unsigned int off)
3655   { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3656 
3657   // Update section and reloc section size.
3658   void
set_current_size(unsigned int num_branches)3659   set_current_size(unsigned int num_branches)
3660   {
3661     this->reset_address_and_file_offset();
3662     this->set_current_data_size(num_branches * 16);
3663     this->finalize_data_size();
3664     Output_section* os = this->output_section();
3665     os->set_section_offsets_need_adjustment();
3666     if (this->rel_ != NULL)
3667       {
3668 	const unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
3669 	this->rel_->reset_address_and_file_offset();
3670 	this->rel_->set_current_data_size(num_branches * reloc_size);
3671 	this->rel_->finalize_data_size();
3672 	Output_section* os = this->rel_->output_section();
3673 	os->set_section_offsets_need_adjustment();
3674       }
3675   }
3676 
3677  protected:
3678   void
do_adjust_output_section(Output_section * os)3679   do_adjust_output_section(Output_section* os)
3680   {
3681     os->set_entsize(0);
3682   }
3683 
3684   // Write to a map file.
3685   void
do_print_to_mapfile(Mapfile * mapfile) const3686   do_print_to_mapfile(Mapfile* mapfile) const
3687   { mapfile->print_output_data(this, "** BRLT"); }
3688 
3689  private:
3690   // Write out the BRLT data.
3691   void
3692   do_write(Output_file*);
3693 
3694   // The reloc section.
3695   Reloc_section* rel_;
3696   Target_powerpc<size, big_endian>* targ_;
3697 };
3698 
3699 // Make the branch lookup table section.
3700 
3701 template<int size, bool big_endian>
3702 void
make_brlt_section(Layout * layout)3703 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3704 {
3705   if (size == 64 && this->brlt_section_ == NULL)
3706     {
3707       Reloc_section* brlt_rel = NULL;
3708       bool is_pic = parameters->options().output_is_position_independent();
3709       if (is_pic)
3710 	{
3711 	  // When PIC we can't fill in .branch_lt (like .plt it can be
3712 	  // a bss style section) but must initialise at runtime via
3713 	  // dynamic relocations.
3714 	  this->rela_dyn_section(layout);
3715 	  brlt_rel = new Reloc_section(false);
3716 	  if (this->rela_dyn_->output_section())
3717 	    this->rela_dyn_->output_section()
3718 	      ->add_output_section_data(brlt_rel);
3719 	}
3720       this->brlt_section_
3721 	= new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3722       if (this->plt_ && is_pic && this->plt_->output_section())
3723 	this->plt_->output_section()
3724 	  ->add_output_section_data(this->brlt_section_);
3725       else
3726 	layout->add_output_section_data(".branch_lt",
3727 					(is_pic ? elfcpp::SHT_NOBITS
3728 					 : elfcpp::SHT_PROGBITS),
3729 					elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3730 					this->brlt_section_,
3731 					(is_pic ? ORDER_SMALL_BSS
3732 					 : ORDER_SMALL_DATA),
3733 					false);
3734     }
3735 }
3736 
3737 // Write out .branch_lt when non-PIC.
3738 
3739 template<int size, bool big_endian>
3740 void
do_write(Output_file * of)3741 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3742 {
3743   if (size == 64 && !parameters->options().output_is_position_independent())
3744     {
3745       const section_size_type offset = this->offset();
3746       const section_size_type oview_size
3747 	= convert_to_section_size_type(this->data_size());
3748       unsigned char* const oview = of->get_output_view(offset, oview_size);
3749 
3750       this->targ_->write_branch_lookup_table(oview);
3751       of->write_output_view(offset, oview_size, oview);
3752     }
3753 }
3754 
3755 static inline uint32_t
l(uint32_t a)3756 l(uint32_t a)
3757 {
3758   return a & 0xffff;
3759 }
3760 
3761 static inline uint32_t
hi(uint32_t a)3762 hi(uint32_t a)
3763 {
3764   return l(a >> 16);
3765 }
3766 
3767 static inline uint32_t
ha(uint32_t a)3768 ha(uint32_t a)
3769 {
3770   return hi(a + 0x8000);
3771 }
3772 
3773 template<int size>
3774 struct Eh_cie
3775 {
3776   static const unsigned char eh_frame_cie[12];
3777 };
3778 
3779 template<int size>
3780 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3781 {
3782   1,					// CIE version.
3783   'z', 'R', 0,				// Augmentation string.
3784   4,					// Code alignment.
3785   0x80 - size / 8 ,			// Data alignment.
3786   65,					// RA reg.
3787   1,					// Augmentation size.
3788   (elfcpp::DW_EH_PE_pcrel
3789    | elfcpp::DW_EH_PE_sdata4),		// FDE encoding.
3790   elfcpp::DW_CFA_def_cfa, 1, 0		// def_cfa: r1 offset 0.
3791 };
3792 
3793 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3794 static const unsigned char glink_eh_frame_fde_64v1[] =
3795 {
3796   0, 0, 0, 0,				// Replaced with offset to .glink.
3797   0, 0, 0, 0,				// Replaced with size of .glink.
3798   0,					// Augmentation size.
3799   elfcpp::DW_CFA_advance_loc + 1,
3800   elfcpp::DW_CFA_register, 65, 12,
3801   elfcpp::DW_CFA_advance_loc + 4,
3802   elfcpp::DW_CFA_restore_extended, 65
3803 };
3804 
3805 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3806 static const unsigned char glink_eh_frame_fde_64v2[] =
3807 {
3808   0, 0, 0, 0,				// Replaced with offset to .glink.
3809   0, 0, 0, 0,				// Replaced with size of .glink.
3810   0,					// Augmentation size.
3811   elfcpp::DW_CFA_advance_loc + 1,
3812   elfcpp::DW_CFA_register, 65, 0,
3813   elfcpp::DW_CFA_advance_loc + 4,
3814   elfcpp::DW_CFA_restore_extended, 65
3815 };
3816 
3817 // Describe __glink_PLTresolve use of LR, 32-bit version.
3818 static const unsigned char glink_eh_frame_fde_32[] =
3819 {
3820   0, 0, 0, 0,				// Replaced with offset to .glink.
3821   0, 0, 0, 0,				// Replaced with size of .glink.
3822   0,					// Augmentation size.
3823   elfcpp::DW_CFA_advance_loc + 2,
3824   elfcpp::DW_CFA_register, 65, 0,
3825   elfcpp::DW_CFA_advance_loc + 4,
3826   elfcpp::DW_CFA_restore_extended, 65
3827 };
3828 
3829 static const unsigned char default_fde[] =
3830 {
3831   0, 0, 0, 0,				// Replaced with offset to stubs.
3832   0, 0, 0, 0,				// Replaced with size of stubs.
3833   0,					// Augmentation size.
3834   elfcpp::DW_CFA_nop,			// Pad.
3835   elfcpp::DW_CFA_nop,
3836   elfcpp::DW_CFA_nop
3837 };
3838 
3839 template<bool big_endian>
3840 static inline void
write_insn(unsigned char * p,uint32_t v)3841 write_insn(unsigned char* p, uint32_t v)
3842 {
3843   elfcpp::Swap<32, big_endian>::writeval(p, v);
3844 }
3845 
3846 // Stub_table holds information about plt and long branch stubs.
3847 // Stubs are built in an area following some input section determined
3848 // by group_sections().  This input section is converted to a relaxed
3849 // input section allowing it to be resized to accommodate the stubs
3850 
3851 template<int size, bool big_endian>
3852 class Stub_table : public Output_relaxed_input_section
3853 {
3854  public:
3855   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3856   static const Address invalid_address = static_cast<Address>(0) - 1;
3857 
Stub_table(Target_powerpc<size,big_endian> * targ,Output_section * output_section,const Output_section::Input_section * owner)3858   Stub_table(Target_powerpc<size, big_endian>* targ,
3859 	     Output_section* output_section,
3860 	     const Output_section::Input_section* owner)
3861     : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
3862 				   owner->relobj()
3863 				   ->section_addralign(owner->shndx())),
3864       targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3865       orig_data_size_(owner->current_data_size()),
3866       plt_size_(0), last_plt_size_(0),
3867       branch_size_(0), last_branch_size_(0), min_size_threshold_(0),
3868       eh_frame_added_(false), need_save_res_(false)
3869   {
3870     this->set_output_section(output_section);
3871 
3872     std::vector<Output_relaxed_input_section*> new_relaxed;
3873     new_relaxed.push_back(this);
3874     output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3875   }
3876 
3877   // Add a plt call stub.
3878   bool
3879   add_plt_call_entry(Address,
3880 		     const Sized_relobj_file<size, big_endian>*,
3881 		     const Symbol*,
3882 		     unsigned int,
3883 		     Address);
3884 
3885   bool
3886   add_plt_call_entry(Address,
3887 		     const Sized_relobj_file<size, big_endian>*,
3888 		     unsigned int,
3889 		     unsigned int,
3890 		     Address);
3891 
3892   // Find a given plt call stub.
3893   Address
3894   find_plt_call_entry(const Symbol*) const;
3895 
3896   Address
3897   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3898 		      unsigned int) const;
3899 
3900   Address
3901   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3902 		      const Symbol*,
3903 		      unsigned int,
3904 		      Address) const;
3905 
3906   Address
3907   find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3908 		      unsigned int,
3909 		      unsigned int,
3910 		      Address) const;
3911 
3912   // Add a long branch stub.
3913   bool
3914   add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3915 			unsigned int, Address, Address, bool);
3916 
3917   Address
3918   find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3919 			 Address) const;
3920 
3921   bool
can_reach_stub(Address from,unsigned int off,unsigned int r_type)3922   can_reach_stub(Address from, unsigned int off, unsigned int r_type)
3923   {
3924     Address max_branch_offset = max_branch_delta(r_type);
3925     if (max_branch_offset == 0)
3926       return true;
3927     gold_assert(from != invalid_address);
3928     Address loc = off + this->stub_address();
3929     return loc - from + max_branch_offset < 2 * max_branch_offset;
3930   }
3931 
3932   void
clear_stubs(bool all)3933   clear_stubs(bool all)
3934   {
3935     this->plt_call_stubs_.clear();
3936     this->plt_size_ = 0;
3937     this->long_branch_stubs_.clear();
3938     this->branch_size_ = 0;
3939     this->need_save_res_ = false;
3940     if (all)
3941       {
3942 	this->last_plt_size_ = 0;
3943 	this->last_branch_size_ = 0;
3944       }
3945   }
3946 
3947   Address
set_address_and_size(const Output_section * os,Address off)3948   set_address_and_size(const Output_section* os, Address off)
3949   {
3950     Address start_off = off;
3951     off += this->orig_data_size_;
3952     Address my_size = this->plt_size_ + this->branch_size_;
3953     if (this->need_save_res_)
3954       my_size += this->targ_->savres_section()->data_size();
3955     if (my_size != 0)
3956       off = align_address(off, this->stub_align());
3957     // Include original section size and alignment padding in size
3958     my_size += off - start_off;
3959     // Ensure new size is always larger than min size
3960     // threshold. Alignment requirement is included in "my_size", so
3961     // increase "my_size" does not invalidate alignment.
3962     if (my_size < this->min_size_threshold_)
3963       my_size = this->min_size_threshold_;
3964     this->reset_address_and_file_offset();
3965     this->set_current_data_size(my_size);
3966     this->set_address_and_file_offset(os->address() + start_off,
3967 				      os->offset() + start_off);
3968     return my_size;
3969   }
3970 
3971   Address
stub_address() const3972   stub_address() const
3973   {
3974     return align_address(this->address() + this->orig_data_size_,
3975 			 this->stub_align());
3976   }
3977 
3978   Address
stub_offset() const3979   stub_offset() const
3980   {
3981     return align_address(this->offset() + this->orig_data_size_,
3982 			 this->stub_align());
3983   }
3984 
3985   section_size_type
plt_size() const3986   plt_size() const
3987   { return this->plt_size_; }
3988 
set_min_size_threshold(Address min_size)3989   void set_min_size_threshold(Address min_size)
3990   { this->min_size_threshold_ = min_size; }
3991 
3992   bool
size_update()3993   size_update()
3994   {
3995     Output_section* os = this->output_section();
3996     if (os->addralign() < this->stub_align())
3997       {
3998 	os->set_addralign(this->stub_align());
3999 	// FIXME: get rid of the insane checkpointing.
4000 	// We can't increase alignment of the input section to which
4001 	// stubs are attached;  The input section may be .init which
4002 	// is pasted together with other .init sections to form a
4003 	// function.  Aligning might insert zero padding resulting in
4004 	// sigill.  However we do need to increase alignment of the
4005 	// output section so that the align_address() on offset in
4006 	// set_address_and_size() adds the same padding as the
4007 	// align_address() on address in stub_address().
4008 	// What's more, we need this alignment for the layout done in
4009 	// relaxation_loop_body() so that the output section starts at
4010 	// a suitably aligned address.
4011 	os->checkpoint_set_addralign(this->stub_align());
4012       }
4013     if (this->last_plt_size_ != this->plt_size_
4014 	|| this->last_branch_size_ != this->branch_size_)
4015       {
4016 	this->last_plt_size_ = this->plt_size_;
4017 	this->last_branch_size_ = this->branch_size_;
4018 	return true;
4019       }
4020     return false;
4021   }
4022 
4023   // Add .eh_frame info for this stub section.  Unlike other linker
4024   // generated .eh_frame this is added late in the link, because we
4025   // only want the .eh_frame info if this particular stub section is
4026   // non-empty.
4027   void
add_eh_frame(Layout * layout)4028   add_eh_frame(Layout* layout)
4029   {
4030     if (!this->eh_frame_added_)
4031       {
4032 	if (!parameters->options().ld_generated_unwind_info())
4033 	  return;
4034 
4035 	// Since we add stub .eh_frame info late, it must be placed
4036 	// after all other linker generated .eh_frame info so that
4037 	// merge mapping need not be updated for input sections.
4038 	// There is no provision to use a different CIE to that used
4039 	// by .glink.
4040 	if (!this->targ_->has_glink())
4041 	  return;
4042 
4043 	layout->add_eh_frame_for_plt(this,
4044 				     Eh_cie<size>::eh_frame_cie,
4045 				     sizeof (Eh_cie<size>::eh_frame_cie),
4046 				     default_fde,
4047 				     sizeof (default_fde));
4048 	this->eh_frame_added_ = true;
4049       }
4050   }
4051 
4052   Target_powerpc<size, big_endian>*
targ() const4053   targ() const
4054   { return targ_; }
4055 
4056  private:
4057   class Plt_stub_ent;
4058   class Plt_stub_ent_hash;
4059   typedef Unordered_map<Plt_stub_ent, unsigned int,
4060 			Plt_stub_ent_hash> Plt_stub_entries;
4061 
4062   // Alignment of stub section.
4063   unsigned int
stub_align() const4064   stub_align() const
4065   {
4066     if (size == 32)
4067       return 16;
4068     unsigned int min_align = 32;
4069     unsigned int user_align = 1 << parameters->options().plt_align();
4070     return std::max(user_align, min_align);
4071   }
4072 
4073   // Return the plt offset for the given call stub.
4074   Address
plt_off(typename Plt_stub_entries::const_iterator p,bool * is_iplt) const4075   plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
4076   {
4077     const Symbol* gsym = p->first.sym_;
4078     if (gsym != NULL)
4079       {
4080 	*is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
4081 		    && gsym->can_use_relative_reloc(false));
4082 	return gsym->plt_offset();
4083       }
4084     else
4085       {
4086 	*is_iplt = true;
4087 	const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
4088 	unsigned int local_sym_index = p->first.locsym_;
4089 	return relobj->local_plt_offset(local_sym_index);
4090       }
4091   }
4092 
4093   // Size of a given plt call stub.
4094   unsigned int
plt_call_size(typename Plt_stub_entries::const_iterator p) const4095   plt_call_size(typename Plt_stub_entries::const_iterator p) const
4096   {
4097     if (size == 32)
4098       return 16;
4099 
4100     bool is_iplt;
4101     Address plt_addr = this->plt_off(p, &is_iplt);
4102     if (is_iplt)
4103       plt_addr += this->targ_->iplt_section()->address();
4104     else
4105       plt_addr += this->targ_->plt_section()->address();
4106     Address got_addr = this->targ_->got_section()->output_section()->address();
4107     const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4108       <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
4109     got_addr += ppcobj->toc_base_offset();
4110     Address off = plt_addr - got_addr;
4111     unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
4112     if (this->targ_->abiversion() < 2)
4113       {
4114 	bool static_chain = parameters->options().plt_static_chain();
4115 	bool thread_safe = this->targ_->plt_thread_safe();
4116 	bytes += (4
4117 		  + 4 * static_chain
4118 		  + 8 * thread_safe
4119 		  + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
4120       }
4121     unsigned int align = 1 << parameters->options().plt_align();
4122     if (align > 1)
4123       bytes = (bytes + align - 1) & -align;
4124     return bytes;
4125   }
4126 
4127   // Return long branch stub size.
4128   unsigned int
branch_stub_size(Address to)4129   branch_stub_size(Address to)
4130   {
4131     Address loc
4132       = this->stub_address() + this->last_plt_size_ + this->branch_size_;
4133     if (to - loc + (1 << 25) < 2 << 25)
4134       return 4;
4135     if (size == 64 || !parameters->options().output_is_position_independent())
4136       return 16;
4137     return 32;
4138   }
4139 
4140   // Write out stubs.
4141   void
4142   do_write(Output_file*);
4143 
4144   // Plt call stub keys.
4145   class Plt_stub_ent
4146   {
4147   public:
Plt_stub_ent(const Symbol * sym)4148     Plt_stub_ent(const Symbol* sym)
4149       : sym_(sym), object_(0), addend_(0), locsym_(0)
4150     { }
4151 
Plt_stub_ent(const Sized_relobj_file<size,big_endian> * object,unsigned int locsym_index)4152     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
4153 		 unsigned int locsym_index)
4154       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4155     { }
4156 
Plt_stub_ent(const Sized_relobj_file<size,big_endian> * object,const Symbol * sym,unsigned int r_type,Address addend)4157     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
4158 		 const Symbol* sym,
4159 		 unsigned int r_type,
4160 		 Address addend)
4161       : sym_(sym), object_(0), addend_(0), locsym_(0)
4162     {
4163       if (size != 32)
4164 	this->addend_ = addend;
4165       else if (parameters->options().output_is_position_independent()
4166 	       && r_type == elfcpp::R_PPC_PLTREL24)
4167 	{
4168 	  this->addend_ = addend;
4169 	  if (this->addend_ >= 32768)
4170 	    this->object_ = object;
4171 	}
4172     }
4173 
Plt_stub_ent(const Sized_relobj_file<size,big_endian> * object,unsigned int locsym_index,unsigned int r_type,Address addend)4174     Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
4175 		 unsigned int locsym_index,
4176 		 unsigned int r_type,
4177 		 Address addend)
4178       : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4179     {
4180       if (size != 32)
4181 	this->addend_ = addend;
4182       else if (parameters->options().output_is_position_independent()
4183 	       && r_type == elfcpp::R_PPC_PLTREL24)
4184 	this->addend_ = addend;
4185     }
4186 
operator ==(const Plt_stub_ent & that) const4187     bool operator==(const Plt_stub_ent& that) const
4188     {
4189       return (this->sym_ == that.sym_
4190 	      && this->object_ == that.object_
4191 	      && this->addend_ == that.addend_
4192 	      && this->locsym_ == that.locsym_);
4193     }
4194 
4195     const Symbol* sym_;
4196     const Sized_relobj_file<size, big_endian>* object_;
4197     typename elfcpp::Elf_types<size>::Elf_Addr addend_;
4198     unsigned int locsym_;
4199   };
4200 
4201   class Plt_stub_ent_hash
4202   {
4203   public:
operator ()(const Plt_stub_ent & ent) const4204     size_t operator()(const Plt_stub_ent& ent) const
4205     {
4206       return (reinterpret_cast<uintptr_t>(ent.sym_)
4207 	      ^ reinterpret_cast<uintptr_t>(ent.object_)
4208 	      ^ ent.addend_
4209 	      ^ ent.locsym_);
4210     }
4211   };
4212 
4213   // Long branch stub keys.
4214   class Branch_stub_ent
4215   {
4216   public:
Branch_stub_ent(const Powerpc_relobj<size,big_endian> * obj,Address to,bool save_res)4217     Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj,
4218 		    Address to, bool save_res)
4219       : dest_(to), toc_base_off_(0), save_res_(save_res)
4220     {
4221       if (size == 64)
4222 	toc_base_off_ = obj->toc_base_offset();
4223     }
4224 
operator ==(const Branch_stub_ent & that) const4225     bool operator==(const Branch_stub_ent& that) const
4226     {
4227       return (this->dest_ == that.dest_
4228 	      && (size == 32
4229 		  || this->toc_base_off_ == that.toc_base_off_));
4230     }
4231 
4232     Address dest_;
4233     unsigned int toc_base_off_;
4234     bool save_res_;
4235   };
4236 
4237   class Branch_stub_ent_hash
4238   {
4239   public:
operator ()(const Branch_stub_ent & ent) const4240     size_t operator()(const Branch_stub_ent& ent) const
4241     { return ent.dest_ ^ ent.toc_base_off_; }
4242   };
4243 
4244   // In a sane world this would be a global.
4245   Target_powerpc<size, big_endian>* targ_;
4246   // Map sym/object/addend to stub offset.
4247   Plt_stub_entries plt_call_stubs_;
4248   // Map destination address to stub offset.
4249   typedef Unordered_map<Branch_stub_ent, unsigned int,
4250 			Branch_stub_ent_hash> Branch_stub_entries;
4251   Branch_stub_entries long_branch_stubs_;
4252   // size of input section
4253   section_size_type orig_data_size_;
4254   // size of stubs
4255   section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
4256   // Some rare cases cause (PR/20529) fluctuation in stub table
4257   // size, which leads to an endless relax loop. This is to be fixed
4258   // by, after the first few iterations, allowing only increase of
4259   // stub table size. This variable sets the minimal possible size of
4260   // a stub table, it is zero for the first few iterations, then
4261   // increases monotonically.
4262   Address min_size_threshold_;
4263   // Whether .eh_frame info has been created for this stub section.
4264   bool eh_frame_added_;
4265   // Set if this stub group needs a copy of out-of-line register
4266   // save/restore functions.
4267   bool need_save_res_;
4268 };
4269 
4270 // Add a plt call stub, if we do not already have one for this
4271 // sym/object/addend combo.
4272 
4273 template<int size, bool big_endian>
4274 bool
add_plt_call_entry(Address from,const Sized_relobj_file<size,big_endian> * object,const Symbol * gsym,unsigned int r_type,Address addend)4275 Stub_table<size, big_endian>::add_plt_call_entry(
4276     Address from,
4277     const Sized_relobj_file<size, big_endian>* object,
4278     const Symbol* gsym,
4279     unsigned int r_type,
4280     Address addend)
4281 {
4282   Plt_stub_ent ent(object, gsym, r_type, addend);
4283   unsigned int off = this->plt_size_;
4284   std::pair<typename Plt_stub_entries::iterator, bool> p
4285     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4286   if (p.second)
4287     this->plt_size_ = off + this->plt_call_size(p.first);
4288   return this->can_reach_stub(from, off, r_type);
4289 }
4290 
4291 template<int size, bool big_endian>
4292 bool
add_plt_call_entry(Address from,const Sized_relobj_file<size,big_endian> * object,unsigned int locsym_index,unsigned int r_type,Address addend)4293 Stub_table<size, big_endian>::add_plt_call_entry(
4294     Address from,
4295     const Sized_relobj_file<size, big_endian>* object,
4296     unsigned int locsym_index,
4297     unsigned int r_type,
4298     Address addend)
4299 {
4300   Plt_stub_ent ent(object, locsym_index, r_type, addend);
4301   unsigned int off = this->plt_size_;
4302   std::pair<typename Plt_stub_entries::iterator, bool> p
4303     = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4304   if (p.second)
4305     this->plt_size_ = off + this->plt_call_size(p.first);
4306   return this->can_reach_stub(from, off, r_type);
4307 }
4308 
4309 // Find a plt call stub.
4310 
4311 template<int size, bool big_endian>
4312 typename Stub_table<size, big_endian>::Address
find_plt_call_entry(const Sized_relobj_file<size,big_endian> * object,const Symbol * gsym,unsigned int r_type,Address addend) const4313 Stub_table<size, big_endian>::find_plt_call_entry(
4314     const Sized_relobj_file<size, big_endian>* object,
4315     const Symbol* gsym,
4316     unsigned int r_type,
4317     Address addend) const
4318 {
4319   Plt_stub_ent ent(object, gsym, r_type, addend);
4320   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4321   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4322 }
4323 
4324 template<int size, bool big_endian>
4325 typename Stub_table<size, big_endian>::Address
find_plt_call_entry(const Symbol * gsym) const4326 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4327 {
4328   Plt_stub_ent ent(gsym);
4329   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4330   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4331 }
4332 
4333 template<int size, bool big_endian>
4334 typename Stub_table<size, big_endian>::Address
find_plt_call_entry(const Sized_relobj_file<size,big_endian> * object,unsigned int locsym_index,unsigned int r_type,Address addend) const4335 Stub_table<size, big_endian>::find_plt_call_entry(
4336     const Sized_relobj_file<size, big_endian>* object,
4337     unsigned int locsym_index,
4338     unsigned int r_type,
4339     Address addend) const
4340 {
4341   Plt_stub_ent ent(object, locsym_index, r_type, addend);
4342   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4343   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4344 }
4345 
4346 template<int size, bool big_endian>
4347 typename Stub_table<size, big_endian>::Address
find_plt_call_entry(const Sized_relobj_file<size,big_endian> * object,unsigned int locsym_index) const4348 Stub_table<size, big_endian>::find_plt_call_entry(
4349     const Sized_relobj_file<size, big_endian>* object,
4350     unsigned int locsym_index) const
4351 {
4352   Plt_stub_ent ent(object, locsym_index);
4353   typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4354   return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4355 }
4356 
4357 // Add a long branch stub if we don't already have one to given
4358 // destination.
4359 
4360 template<int size, bool big_endian>
4361 bool
add_long_branch_entry(const Powerpc_relobj<size,big_endian> * object,unsigned int r_type,Address from,Address to,bool save_res)4362 Stub_table<size, big_endian>::add_long_branch_entry(
4363     const Powerpc_relobj<size, big_endian>* object,
4364     unsigned int r_type,
4365     Address from,
4366     Address to,
4367     bool save_res)
4368 {
4369   Branch_stub_ent ent(object, to, save_res);
4370   Address off = this->branch_size_;
4371   if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
4372     {
4373       if (save_res)
4374 	this->need_save_res_ = true;
4375       else
4376 	{
4377 	  unsigned int stub_size = this->branch_stub_size(to);
4378 	  this->branch_size_ = off + stub_size;
4379 	  if (size == 64 && stub_size != 4)
4380 	    this->targ_->add_branch_lookup_table(to);
4381 	}
4382     }
4383   return this->can_reach_stub(from, off, r_type);
4384 }
4385 
4386 // Find long branch stub offset.
4387 
4388 template<int size, bool big_endian>
4389 typename Stub_table<size, big_endian>::Address
find_long_branch_entry(const Powerpc_relobj<size,big_endian> * object,Address to) const4390 Stub_table<size, big_endian>::find_long_branch_entry(
4391     const Powerpc_relobj<size, big_endian>* object,
4392     Address to) const
4393 {
4394   Branch_stub_ent ent(object, to, false);
4395   typename Branch_stub_entries::const_iterator p
4396     = this->long_branch_stubs_.find(ent);
4397   if (p == this->long_branch_stubs_.end())
4398     return invalid_address;
4399   if (p->first.save_res_)
4400     return to - this->targ_->savres_section()->address() + this->branch_size_;
4401   return p->second;
4402 }
4403 
4404 // A class to handle .glink.
4405 
4406 template<int size, bool big_endian>
4407 class Output_data_glink : public Output_section_data
4408 {
4409  public:
4410   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4411   static const Address invalid_address = static_cast<Address>(0) - 1;
4412   static const int pltresolve_size = 16*4;
4413 
Output_data_glink(Target_powerpc<size,big_endian> * targ)4414   Output_data_glink(Target_powerpc<size, big_endian>* targ)
4415     : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4416       end_branch_table_(), ge_size_(0)
4417   { }
4418 
4419   void
4420   add_eh_frame(Layout* layout);
4421 
4422   void
4423   add_global_entry(const Symbol*);
4424 
4425   Address
4426   find_global_entry(const Symbol*) const;
4427 
4428   Address
global_entry_address() const4429   global_entry_address() const
4430   {
4431     gold_assert(this->is_data_size_valid());
4432     unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4433     return this->address() + global_entry_off;
4434   }
4435 
4436  protected:
4437   // Write to a map file.
4438   void
do_print_to_mapfile(Mapfile * mapfile) const4439   do_print_to_mapfile(Mapfile* mapfile) const
4440   { mapfile->print_output_data(this, _("** glink")); }
4441 
4442  private:
4443   void
4444   set_final_data_size();
4445 
4446   // Write out .glink
4447   void
4448   do_write(Output_file*);
4449 
4450   // Allows access to .got and .plt for do_write.
4451   Target_powerpc<size, big_endian>* targ_;
4452 
4453   // Map sym to stub offset.
4454   typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4455   Global_entry_stub_entries global_entry_stubs_;
4456 
4457   unsigned int end_branch_table_, ge_size_;
4458 };
4459 
4460 template<int size, bool big_endian>
4461 void
add_eh_frame(Layout * layout)4462 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4463 {
4464   if (!parameters->options().ld_generated_unwind_info())
4465     return;
4466 
4467   if (size == 64)
4468     {
4469       if (this->targ_->abiversion() < 2)
4470 	layout->add_eh_frame_for_plt(this,
4471 				     Eh_cie<64>::eh_frame_cie,
4472 				     sizeof (Eh_cie<64>::eh_frame_cie),
4473 				     glink_eh_frame_fde_64v1,
4474 				     sizeof (glink_eh_frame_fde_64v1));
4475       else
4476 	layout->add_eh_frame_for_plt(this,
4477 				     Eh_cie<64>::eh_frame_cie,
4478 				     sizeof (Eh_cie<64>::eh_frame_cie),
4479 				     glink_eh_frame_fde_64v2,
4480 				     sizeof (glink_eh_frame_fde_64v2));
4481     }
4482   else
4483     {
4484       // 32-bit .glink can use the default since the CIE return
4485       // address reg, LR, is valid.
4486       layout->add_eh_frame_for_plt(this,
4487 				   Eh_cie<32>::eh_frame_cie,
4488 				   sizeof (Eh_cie<32>::eh_frame_cie),
4489 				   default_fde,
4490 				   sizeof (default_fde));
4491       // Except where LR is used in a PIC __glink_PLTresolve.
4492       if (parameters->options().output_is_position_independent())
4493 	layout->add_eh_frame_for_plt(this,
4494 				     Eh_cie<32>::eh_frame_cie,
4495 				     sizeof (Eh_cie<32>::eh_frame_cie),
4496 				     glink_eh_frame_fde_32,
4497 				     sizeof (glink_eh_frame_fde_32));
4498     }
4499 }
4500 
4501 template<int size, bool big_endian>
4502 void
add_global_entry(const Symbol * gsym)4503 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4504 {
4505   std::pair<typename Global_entry_stub_entries::iterator, bool> p
4506     = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4507   if (p.second)
4508     this->ge_size_ += 16;
4509 }
4510 
4511 template<int size, bool big_endian>
4512 typename Output_data_glink<size, big_endian>::Address
find_global_entry(const Symbol * gsym) const4513 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4514 {
4515   typename Global_entry_stub_entries::const_iterator p
4516     = this->global_entry_stubs_.find(gsym);
4517   return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4518 }
4519 
4520 template<int size, bool big_endian>
4521 void
set_final_data_size()4522 Output_data_glink<size, big_endian>::set_final_data_size()
4523 {
4524   unsigned int count = this->targ_->plt_entry_count();
4525   section_size_type total = 0;
4526 
4527   if (count != 0)
4528     {
4529       if (size == 32)
4530 	{
4531 	  // space for branch table
4532 	  total += 4 * (count - 1);
4533 
4534 	  total += -total & 15;
4535 	  total += this->pltresolve_size;
4536 	}
4537       else
4538 	{
4539 	  total += this->pltresolve_size;
4540 
4541 	  // space for branch table
4542 	  total += 4 * count;
4543 	  if (this->targ_->abiversion() < 2)
4544 	    {
4545 	      total += 4 * count;
4546 	      if (count > 0x8000)
4547 		total += 4 * (count - 0x8000);
4548 	    }
4549 	}
4550     }
4551   this->end_branch_table_ = total;
4552   total = (total + 15) & -16;
4553   total += this->ge_size_;
4554 
4555   this->set_data_size(total);
4556 }
4557 
4558 // Write out plt and long branch stub code.
4559 
4560 template<int size, bool big_endian>
4561 void
do_write(Output_file * of)4562 Stub_table<size, big_endian>::do_write(Output_file* of)
4563 {
4564   if (this->plt_call_stubs_.empty()
4565       && this->long_branch_stubs_.empty())
4566     return;
4567 
4568   const section_size_type start_off = this->offset();
4569   const section_size_type off = this->stub_offset();
4570   const section_size_type oview_size =
4571     convert_to_section_size_type(this->data_size() - (off - start_off));
4572   unsigned char* const oview = of->get_output_view(off, oview_size);
4573   unsigned char* p;
4574 
4575   if (size == 64)
4576     {
4577       const Output_data_got_powerpc<size, big_endian>* got
4578 	= this->targ_->got_section();
4579       Address got_os_addr = got->output_section()->address();
4580 
4581       if (!this->plt_call_stubs_.empty())
4582 	{
4583 	  // The base address of the .plt section.
4584 	  Address plt_base = this->targ_->plt_section()->address();
4585 	  Address iplt_base = invalid_address;
4586 
4587 	  // Write out plt call stubs.
4588 	  typename Plt_stub_entries::const_iterator cs;
4589 	  for (cs = this->plt_call_stubs_.begin();
4590 	       cs != this->plt_call_stubs_.end();
4591 	       ++cs)
4592 	    {
4593 	      bool is_iplt;
4594 	      Address pltoff = this->plt_off(cs, &is_iplt);
4595 	      Address plt_addr = pltoff;
4596 	      if (is_iplt)
4597 		{
4598 		  if (iplt_base == invalid_address)
4599 		    iplt_base = this->targ_->iplt_section()->address();
4600 		  plt_addr += iplt_base;
4601 		}
4602 	      else
4603 		plt_addr += plt_base;
4604 	      const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4605 		<const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4606 	      Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4607 	      Address off = plt_addr - got_addr;
4608 
4609 	      if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4610 		gold_error(_("%s: linkage table error against `%s'"),
4611 			   cs->first.object_->name().c_str(),
4612 			   cs->first.sym_->demangled_name().c_str());
4613 
4614 	      bool plt_load_toc = this->targ_->abiversion() < 2;
4615 	      bool static_chain
4616 		= plt_load_toc && parameters->options().plt_static_chain();
4617 	      bool thread_safe
4618 		= plt_load_toc && this->targ_->plt_thread_safe();
4619 	      bool use_fake_dep = false;
4620 	      Address cmp_branch_off = 0;
4621 	      if (thread_safe)
4622 		{
4623 		  unsigned int pltindex
4624 		    = ((pltoff - this->targ_->first_plt_entry_offset())
4625 		       / this->targ_->plt_entry_size());
4626 		  Address glinkoff
4627 		    = (this->targ_->glink_section()->pltresolve_size
4628 		       + pltindex * 8);
4629 		  if (pltindex > 32768)
4630 		    glinkoff += (pltindex - 32768) * 4;
4631 		  Address to
4632 		    = this->targ_->glink_section()->address() + glinkoff;
4633 		  Address from
4634 		    = (this->stub_address() + cs->second + 24
4635 		       + 4 * (ha(off) != 0)
4636 		       + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4637 		       + 4 * static_chain);
4638 		  cmp_branch_off = to - from;
4639 		  use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4640 		}
4641 
4642 	      p = oview + cs->second;
4643 	      if (ha(off) != 0)
4644 		{
4645 		  write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4646 		  p += 4;
4647 		  if (plt_load_toc)
4648 		    {
4649 		      write_insn<big_endian>(p, addis_11_2 + ha(off));
4650 		      p += 4;
4651 		      write_insn<big_endian>(p, ld_12_11 + l(off));
4652 		      p += 4;
4653 		    }
4654 		  else
4655 		    {
4656 		      write_insn<big_endian>(p, addis_12_2 + ha(off));
4657 		      p += 4;
4658 		      write_insn<big_endian>(p, ld_12_12 + l(off));
4659 		      p += 4;
4660 		    }
4661 		  if (plt_load_toc
4662 		      && ha(off + 8 + 8 * static_chain) != ha(off))
4663 		    {
4664 		      write_insn<big_endian>(p, addi_11_11 + l(off));
4665 		      p += 4;
4666 		      off = 0;
4667 		    }
4668 		  write_insn<big_endian>(p, mtctr_12);
4669 		  p += 4;
4670 		  if (plt_load_toc)
4671 		    {
4672 		      if (use_fake_dep)
4673 			{
4674 			  write_insn<big_endian>(p, xor_2_12_12);
4675 			  p += 4;
4676 			  write_insn<big_endian>(p, add_11_11_2);
4677 			  p += 4;
4678 			}
4679 		      write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4680 		      p += 4;
4681 		      if (static_chain)
4682 			{
4683 			  write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4684 			  p += 4;
4685 			}
4686 		    }
4687 		}
4688 	      else
4689 		{
4690 		  write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4691 		  p += 4;
4692 		  write_insn<big_endian>(p, ld_12_2 + l(off));
4693 		  p += 4;
4694 		  if (plt_load_toc
4695 		      && ha(off + 8 + 8 * static_chain) != ha(off))
4696 		    {
4697 		      write_insn<big_endian>(p, addi_2_2 + l(off));
4698 		      p += 4;
4699 		      off = 0;
4700 		    }
4701 		  write_insn<big_endian>(p, mtctr_12);
4702 		  p += 4;
4703 		  if (plt_load_toc)
4704 		    {
4705 		      if (use_fake_dep)
4706 			{
4707 			  write_insn<big_endian>(p, xor_11_12_12);
4708 			  p += 4;
4709 			  write_insn<big_endian>(p, add_2_2_11);
4710 			  p += 4;
4711 			}
4712 		      if (static_chain)
4713 			{
4714 			  write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4715 			  p += 4;
4716 			}
4717 		      write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4718 		      p += 4;
4719 		    }
4720 		}
4721 	      if (thread_safe && !use_fake_dep)
4722 		{
4723 		  write_insn<big_endian>(p, cmpldi_2_0);
4724 		  p += 4;
4725 		  write_insn<big_endian>(p, bnectr_p4);
4726 		  p += 4;
4727 		  write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4728 		}
4729 	      else
4730 		write_insn<big_endian>(p, bctr);
4731 	    }
4732 	}
4733 
4734       // Write out long branch stubs.
4735       typename Branch_stub_entries::const_iterator bs;
4736       for (bs = this->long_branch_stubs_.begin();
4737 	   bs != this->long_branch_stubs_.end();
4738 	   ++bs)
4739 	{
4740 	  if (bs->first.save_res_)
4741 	    continue;
4742 	  p = oview + this->plt_size_ + bs->second;
4743 	  Address loc = this->stub_address() + this->plt_size_ + bs->second;
4744 	  Address delta = bs->first.dest_ - loc;
4745 	  if (delta + (1 << 25) < 2 << 25)
4746 	    write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4747 	  else
4748 	    {
4749 	      Address brlt_addr
4750 		= this->targ_->find_branch_lookup_table(bs->first.dest_);
4751 	      gold_assert(brlt_addr != invalid_address);
4752 	      brlt_addr += this->targ_->brlt_section()->address();
4753 	      Address got_addr = got_os_addr + bs->first.toc_base_off_;
4754 	      Address brltoff = brlt_addr - got_addr;
4755 	      if (ha(brltoff) == 0)
4756 		{
4757 		  write_insn<big_endian>(p, ld_12_2 + l(brltoff)),	p += 4;
4758 		}
4759 	      else
4760 		{
4761 		  write_insn<big_endian>(p, addis_12_2 + ha(brltoff)),	p += 4;
4762 		  write_insn<big_endian>(p, ld_12_12 + l(brltoff)),	p += 4;
4763 		}
4764 	      write_insn<big_endian>(p, mtctr_12),			p += 4;
4765 	      write_insn<big_endian>(p, bctr);
4766 	    }
4767 	}
4768     }
4769   else
4770     {
4771       if (!this->plt_call_stubs_.empty())
4772 	{
4773 	  // The base address of the .plt section.
4774 	  Address plt_base = this->targ_->plt_section()->address();
4775 	  Address iplt_base = invalid_address;
4776 	  // The address of _GLOBAL_OFFSET_TABLE_.
4777 	  Address g_o_t = invalid_address;
4778 
4779 	  // Write out plt call stubs.
4780 	  typename Plt_stub_entries::const_iterator cs;
4781 	  for (cs = this->plt_call_stubs_.begin();
4782 	       cs != this->plt_call_stubs_.end();
4783 	       ++cs)
4784 	    {
4785 	      bool is_iplt;
4786 	      Address plt_addr = this->plt_off(cs, &is_iplt);
4787 	      if (is_iplt)
4788 		{
4789 		  if (iplt_base == invalid_address)
4790 		    iplt_base = this->targ_->iplt_section()->address();
4791 		  plt_addr += iplt_base;
4792 		}
4793 	      else
4794 		plt_addr += plt_base;
4795 
4796 	      p = oview + cs->second;
4797 	      if (parameters->options().output_is_position_independent())
4798 		{
4799 		  Address got_addr;
4800 		  const Powerpc_relobj<size, big_endian>* ppcobj
4801 		    = (static_cast<const Powerpc_relobj<size, big_endian>*>
4802 		       (cs->first.object_));
4803 		  if (ppcobj != NULL && cs->first.addend_ >= 32768)
4804 		    {
4805 		      unsigned int got2 = ppcobj->got2_shndx();
4806 		      got_addr = ppcobj->get_output_section_offset(got2);
4807 		      gold_assert(got_addr != invalid_address);
4808 		      got_addr += (ppcobj->output_section(got2)->address()
4809 				   + cs->first.addend_);
4810 		    }
4811 		  else
4812 		    {
4813 		      if (g_o_t == invalid_address)
4814 			{
4815 			  const Output_data_got_powerpc<size, big_endian>* got
4816 			    = this->targ_->got_section();
4817 			  g_o_t = got->address() + got->g_o_t();
4818 			}
4819 		      got_addr = g_o_t;
4820 		    }
4821 
4822 		  Address off = plt_addr - got_addr;
4823 		  if (ha(off) == 0)
4824 		    {
4825 		      write_insn<big_endian>(p +  0, lwz_11_30 + l(off));
4826 		      write_insn<big_endian>(p +  4, mtctr_11);
4827 		      write_insn<big_endian>(p +  8, bctr);
4828 		    }
4829 		  else
4830 		    {
4831 		      write_insn<big_endian>(p +  0, addis_11_30 + ha(off));
4832 		      write_insn<big_endian>(p +  4, lwz_11_11 + l(off));
4833 		      write_insn<big_endian>(p +  8, mtctr_11);
4834 		      write_insn<big_endian>(p + 12, bctr);
4835 		    }
4836 		}
4837 	      else
4838 		{
4839 		  write_insn<big_endian>(p +  0, lis_11 + ha(plt_addr));
4840 		  write_insn<big_endian>(p +  4, lwz_11_11 + l(plt_addr));
4841 		  write_insn<big_endian>(p +  8, mtctr_11);
4842 		  write_insn<big_endian>(p + 12, bctr);
4843 		}
4844 	    }
4845 	}
4846 
4847       // Write out long branch stubs.
4848       typename Branch_stub_entries::const_iterator bs;
4849       for (bs = this->long_branch_stubs_.begin();
4850 	   bs != this->long_branch_stubs_.end();
4851 	   ++bs)
4852 	{
4853 	  if (bs->first.save_res_)
4854 	    continue;
4855 	  p = oview + this->plt_size_ + bs->second;
4856 	  Address loc = this->stub_address() + this->plt_size_ + bs->second;
4857 	  Address delta = bs->first.dest_ - loc;
4858 	  if (delta + (1 << 25) < 2 << 25)
4859 	    write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4860 	  else if (!parameters->options().output_is_position_independent())
4861 	    {
4862 	      write_insn<big_endian>(p +  0, lis_12 + ha(bs->first.dest_));
4863 	      write_insn<big_endian>(p +  4, addi_12_12 + l(bs->first.dest_));
4864 	      write_insn<big_endian>(p +  8, mtctr_12);
4865 	      write_insn<big_endian>(p + 12, bctr);
4866 	    }
4867 	  else
4868 	    {
4869 	      delta -= 8;
4870 	      write_insn<big_endian>(p +  0, mflr_0);
4871 	      write_insn<big_endian>(p +  4, bcl_20_31);
4872 	      write_insn<big_endian>(p +  8, mflr_12);
4873 	      write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4874 	      write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4875 	      write_insn<big_endian>(p + 20, mtlr_0);
4876 	      write_insn<big_endian>(p + 24, mtctr_12);
4877 	      write_insn<big_endian>(p + 28, bctr);
4878 	    }
4879 	}
4880     }
4881   if (this->need_save_res_)
4882     {
4883       p = oview + this->plt_size_ + this->branch_size_;
4884       memcpy (p, this->targ_->savres_section()->contents(),
4885 	      this->targ_->savres_section()->data_size());
4886     }
4887 }
4888 
4889 // Write out .glink.
4890 
4891 template<int size, bool big_endian>
4892 void
do_write(Output_file * of)4893 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4894 {
4895   const section_size_type off = this->offset();
4896   const section_size_type oview_size =
4897     convert_to_section_size_type(this->data_size());
4898   unsigned char* const oview = of->get_output_view(off, oview_size);
4899   unsigned char* p;
4900 
4901   // The base address of the .plt section.
4902   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4903   Address plt_base = this->targ_->plt_section()->address();
4904 
4905   if (size == 64)
4906     {
4907       if (this->end_branch_table_ != 0)
4908 	{
4909 	  // Write pltresolve stub.
4910 	  p = oview;
4911 	  Address after_bcl = this->address() + 16;
4912 	  Address pltoff = plt_base - after_bcl;
4913 
4914 	  elfcpp::Swap<64, big_endian>::writeval(p, pltoff),	p += 8;
4915 
4916 	  if (this->targ_->abiversion() < 2)
4917 	    {
4918 	      write_insn<big_endian>(p, mflr_12),		p += 4;
4919 	      write_insn<big_endian>(p, bcl_20_31),		p += 4;
4920 	      write_insn<big_endian>(p, mflr_11),		p += 4;
4921 	      write_insn<big_endian>(p, ld_2_11 + l(-16)),	p += 4;
4922 	      write_insn<big_endian>(p, mtlr_12),		p += 4;
4923 	      write_insn<big_endian>(p, add_11_2_11),		p += 4;
4924 	      write_insn<big_endian>(p, ld_12_11 + 0),		p += 4;
4925 	      write_insn<big_endian>(p, ld_2_11 + 8),		p += 4;
4926 	      write_insn<big_endian>(p, mtctr_12),		p += 4;
4927 	      write_insn<big_endian>(p, ld_11_11 + 16),		p += 4;
4928 	    }
4929 	  else
4930 	    {
4931 	      write_insn<big_endian>(p, mflr_0),		p += 4;
4932 	      write_insn<big_endian>(p, bcl_20_31),		p += 4;
4933 	      write_insn<big_endian>(p, mflr_11),		p += 4;
4934 	      write_insn<big_endian>(p, ld_2_11 + l(-16)),	p += 4;
4935 	      write_insn<big_endian>(p, mtlr_0),		p += 4;
4936 	      write_insn<big_endian>(p, sub_12_12_11),		p += 4;
4937 	      write_insn<big_endian>(p, add_11_2_11),		p += 4;
4938 	      write_insn<big_endian>(p, addi_0_12 + l(-48)),	p += 4;
4939 	      write_insn<big_endian>(p, ld_12_11 + 0),		p += 4;
4940 	      write_insn<big_endian>(p, srdi_0_0_2),		p += 4;
4941 	      write_insn<big_endian>(p, mtctr_12),		p += 4;
4942 	      write_insn<big_endian>(p, ld_11_11 + 8),		p += 4;
4943 	    }
4944 	  write_insn<big_endian>(p, bctr),			p += 4;
4945 	  while (p < oview + this->pltresolve_size)
4946 	    write_insn<big_endian>(p, nop), p += 4;
4947 
4948 	  // Write lazy link call stubs.
4949 	  uint32_t indx = 0;
4950 	  while (p < oview + this->end_branch_table_)
4951 	    {
4952 	      if (this->targ_->abiversion() < 2)
4953 		{
4954 		  if (indx < 0x8000)
4955 		    {
4956 		      write_insn<big_endian>(p, li_0_0 + indx),		p += 4;
4957 		    }
4958 		  else
4959 		    {
4960 		      write_insn<big_endian>(p, lis_0 + hi(indx)),	p += 4;
4961 		      write_insn<big_endian>(p, ori_0_0_0 + l(indx)),	p += 4;
4962 		    }
4963 		}
4964 	      uint32_t branch_off = 8 - (p - oview);
4965 	      write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)),	p += 4;
4966 	      indx++;
4967 	    }
4968 	}
4969 
4970       Address plt_base = this->targ_->plt_section()->address();
4971       Address iplt_base = invalid_address;
4972       unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4973       Address global_entry_base = this->address() + global_entry_off;
4974       typename Global_entry_stub_entries::const_iterator ge;
4975       for (ge = this->global_entry_stubs_.begin();
4976 	   ge != this->global_entry_stubs_.end();
4977 	   ++ge)
4978 	{
4979 	  p = oview + global_entry_off + ge->second;
4980 	  Address plt_addr = ge->first->plt_offset();
4981 	  if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4982 	      && ge->first->can_use_relative_reloc(false))
4983 	    {
4984 	      if (iplt_base == invalid_address)
4985 		iplt_base = this->targ_->iplt_section()->address();
4986 	      plt_addr += iplt_base;
4987 	    }
4988 	  else
4989 	    plt_addr += plt_base;
4990 	  Address my_addr = global_entry_base + ge->second;
4991 	  Address off = plt_addr - my_addr;
4992 
4993 	  if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4994 	    gold_error(_("%s: linkage table error against `%s'"),
4995 		       ge->first->object()->name().c_str(),
4996 		       ge->first->demangled_name().c_str());
4997 
4998 	  write_insn<big_endian>(p, addis_12_12 + ha(off)),	p += 4;
4999 	  write_insn<big_endian>(p, ld_12_12 + l(off)),		p += 4;
5000 	  write_insn<big_endian>(p, mtctr_12),			p += 4;
5001 	  write_insn<big_endian>(p, bctr);
5002 	}
5003     }
5004   else
5005     {
5006       const Output_data_got_powerpc<size, big_endian>* got
5007 	= this->targ_->got_section();
5008       // The address of _GLOBAL_OFFSET_TABLE_.
5009       Address g_o_t = got->address() + got->g_o_t();
5010 
5011       // Write out pltresolve branch table.
5012       p = oview;
5013       unsigned int the_end = oview_size - this->pltresolve_size;
5014       unsigned char* end_p = oview + the_end;
5015       while (p < end_p - 8 * 4)
5016 	write_insn<big_endian>(p, b + end_p - p), p += 4;
5017       while (p < end_p)
5018 	write_insn<big_endian>(p, nop), p += 4;
5019 
5020       // Write out pltresolve call stub.
5021       if (parameters->options().output_is_position_independent())
5022 	{
5023 	  Address res0_off = 0;
5024 	  Address after_bcl_off = the_end + 12;
5025 	  Address bcl_res0 = after_bcl_off - res0_off;
5026 
5027 	  write_insn<big_endian>(p +  0, addis_11_11 + ha(bcl_res0));
5028 	  write_insn<big_endian>(p +  4, mflr_0);
5029 	  write_insn<big_endian>(p +  8, bcl_20_31);
5030 	  write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
5031 	  write_insn<big_endian>(p + 16, mflr_12);
5032 	  write_insn<big_endian>(p + 20, mtlr_0);
5033 	  write_insn<big_endian>(p + 24, sub_11_11_12);
5034 
5035 	  Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
5036 
5037 	  write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
5038 	  if (ha(got_bcl) == ha(got_bcl + 4))
5039 	    {
5040 	      write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
5041 	      write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
5042 	    }
5043 	  else
5044 	    {
5045 	      write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
5046 	      write_insn<big_endian>(p + 36, lwz_12_12 + 4);
5047 	    }
5048 	  write_insn<big_endian>(p + 40, mtctr_0);
5049 	  write_insn<big_endian>(p + 44, add_0_11_11);
5050 	  write_insn<big_endian>(p + 48, add_11_0_11);
5051 	  write_insn<big_endian>(p + 52, bctr);
5052 	  write_insn<big_endian>(p + 56, nop);
5053 	  write_insn<big_endian>(p + 60, nop);
5054 	}
5055       else
5056 	{
5057 	  Address res0 = this->address();
5058 
5059 	  write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
5060 	  write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
5061 	  if (ha(g_o_t + 4) == ha(g_o_t + 8))
5062 	    write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
5063 	  else
5064 	    write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
5065 	  write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
5066 	  write_insn<big_endian>(p + 16, mtctr_0);
5067 	  write_insn<big_endian>(p + 20, add_0_11_11);
5068 	  if (ha(g_o_t + 4) == ha(g_o_t + 8))
5069 	    write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
5070 	  else
5071 	    write_insn<big_endian>(p + 24, lwz_12_12 + 4);
5072 	  write_insn<big_endian>(p + 28, add_11_0_11);
5073 	  write_insn<big_endian>(p + 32, bctr);
5074 	  write_insn<big_endian>(p + 36, nop);
5075 	  write_insn<big_endian>(p + 40, nop);
5076 	  write_insn<big_endian>(p + 44, nop);
5077 	  write_insn<big_endian>(p + 48, nop);
5078 	  write_insn<big_endian>(p + 52, nop);
5079 	  write_insn<big_endian>(p + 56, nop);
5080 	  write_insn<big_endian>(p + 60, nop);
5081 	}
5082       p += 64;
5083     }
5084 
5085   of->write_output_view(off, oview_size, oview);
5086 }
5087 
5088 
5089 // A class to handle linker generated save/restore functions.
5090 
5091 template<int size, bool big_endian>
5092 class Output_data_save_res : public Output_section_data_build
5093 {
5094  public:
5095   Output_data_save_res(Symbol_table* symtab);
5096 
5097   const unsigned char*
contents() const5098   contents() const
5099   {
5100     return contents_;
5101   }
5102 
5103  protected:
5104   // Write to a map file.
5105   void
do_print_to_mapfile(Mapfile * mapfile) const5106   do_print_to_mapfile(Mapfile* mapfile) const
5107   { mapfile->print_output_data(this, _("** save/restore")); }
5108 
5109   void
5110   do_write(Output_file*);
5111 
5112  private:
5113   // The maximum size of save/restore contents.
5114   static const unsigned int savres_max = 218*4;
5115 
5116   void
5117   savres_define(Symbol_table* symtab,
5118 		const char *name,
5119 		unsigned int lo, unsigned int hi,
5120 		unsigned char* write_ent(unsigned char*, int),
5121 		unsigned char* write_tail(unsigned char*, int));
5122 
5123   unsigned char *contents_;
5124 };
5125 
5126 template<bool big_endian>
5127 static unsigned char*
savegpr0(unsigned char * p,int r)5128 savegpr0(unsigned char* p, int r)
5129 {
5130   uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5131   write_insn<big_endian>(p, insn);
5132   return p + 4;
5133 }
5134 
5135 template<bool big_endian>
5136 static unsigned char*
savegpr0_tail(unsigned char * p,int r)5137 savegpr0_tail(unsigned char* p, int r)
5138 {
5139   p = savegpr0<big_endian>(p, r);
5140   uint32_t insn = std_0_1 + 16;
5141   write_insn<big_endian>(p, insn);
5142   p = p + 4;
5143   write_insn<big_endian>(p, blr);
5144   return p + 4;
5145 }
5146 
5147 template<bool big_endian>
5148 static unsigned char*
restgpr0(unsigned char * p,int r)5149 restgpr0(unsigned char* p, int r)
5150 {
5151   uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5152   write_insn<big_endian>(p, insn);
5153   return p + 4;
5154 }
5155 
5156 template<bool big_endian>
5157 static unsigned char*
restgpr0_tail(unsigned char * p,int r)5158 restgpr0_tail(unsigned char* p, int r)
5159 {
5160   uint32_t insn = ld_0_1 + 16;
5161   write_insn<big_endian>(p, insn);
5162   p = p + 4;
5163   p = restgpr0<big_endian>(p, r);
5164   write_insn<big_endian>(p, mtlr_0);
5165   p = p + 4;
5166   if (r == 29)
5167     {
5168       p = restgpr0<big_endian>(p, 30);
5169       p = restgpr0<big_endian>(p, 31);
5170     }
5171   write_insn<big_endian>(p, blr);
5172   return p + 4;
5173 }
5174 
5175 template<bool big_endian>
5176 static unsigned char*
savegpr1(unsigned char * p,int r)5177 savegpr1(unsigned char* p, int r)
5178 {
5179   uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5180   write_insn<big_endian>(p, insn);
5181   return p + 4;
5182 }
5183 
5184 template<bool big_endian>
5185 static unsigned char*
savegpr1_tail(unsigned char * p,int r)5186 savegpr1_tail(unsigned char* p, int r)
5187 {
5188   p = savegpr1<big_endian>(p, r);
5189   write_insn<big_endian>(p, blr);
5190   return p + 4;
5191 }
5192 
5193 template<bool big_endian>
5194 static unsigned char*
restgpr1(unsigned char * p,int r)5195 restgpr1(unsigned char* p, int r)
5196 {
5197   uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5198   write_insn<big_endian>(p, insn);
5199   return p + 4;
5200 }
5201 
5202 template<bool big_endian>
5203 static unsigned char*
restgpr1_tail(unsigned char * p,int r)5204 restgpr1_tail(unsigned char* p, int r)
5205 {
5206   p = restgpr1<big_endian>(p, r);
5207   write_insn<big_endian>(p, blr);
5208   return p + 4;
5209 }
5210 
5211 template<bool big_endian>
5212 static unsigned char*
savefpr(unsigned char * p,int r)5213 savefpr(unsigned char* p, int r)
5214 {
5215   uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5216   write_insn<big_endian>(p, insn);
5217   return p + 4;
5218 }
5219 
5220 template<bool big_endian>
5221 static unsigned char*
savefpr0_tail(unsigned char * p,int r)5222 savefpr0_tail(unsigned char* p, int r)
5223 {
5224   p = savefpr<big_endian>(p, r);
5225   write_insn<big_endian>(p, std_0_1 + 16);
5226   p = p + 4;
5227   write_insn<big_endian>(p, blr);
5228   return p + 4;
5229 }
5230 
5231 template<bool big_endian>
5232 static unsigned char*
restfpr(unsigned char * p,int r)5233 restfpr(unsigned char* p, int r)
5234 {
5235   uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5236   write_insn<big_endian>(p, insn);
5237   return p + 4;
5238 }
5239 
5240 template<bool big_endian>
5241 static unsigned char*
restfpr0_tail(unsigned char * p,int r)5242 restfpr0_tail(unsigned char* p, int r)
5243 {
5244   write_insn<big_endian>(p, ld_0_1 + 16);
5245   p = p + 4;
5246   p = restfpr<big_endian>(p, r);
5247   write_insn<big_endian>(p, mtlr_0);
5248   p = p + 4;
5249   if (r == 29)
5250     {
5251       p = restfpr<big_endian>(p, 30);
5252       p = restfpr<big_endian>(p, 31);
5253     }
5254   write_insn<big_endian>(p, blr);
5255   return p + 4;
5256 }
5257 
5258 template<bool big_endian>
5259 static unsigned char*
savefpr1_tail(unsigned char * p,int r)5260 savefpr1_tail(unsigned char* p, int r)
5261 {
5262   p = savefpr<big_endian>(p, r);
5263   write_insn<big_endian>(p, blr);
5264   return p + 4;
5265 }
5266 
5267 template<bool big_endian>
5268 static unsigned char*
restfpr1_tail(unsigned char * p,int r)5269 restfpr1_tail(unsigned char* p, int r)
5270 {
5271   p = restfpr<big_endian>(p, r);
5272   write_insn<big_endian>(p, blr);
5273   return p + 4;
5274 }
5275 
5276 template<bool big_endian>
5277 static unsigned char*
savevr(unsigned char * p,int r)5278 savevr(unsigned char* p, int r)
5279 {
5280   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5281   write_insn<big_endian>(p, insn);
5282   p = p + 4;
5283   insn = stvx_0_12_0 + (r << 21);
5284   write_insn<big_endian>(p, insn);
5285   return p + 4;
5286 }
5287 
5288 template<bool big_endian>
5289 static unsigned char*
savevr_tail(unsigned char * p,int r)5290 savevr_tail(unsigned char* p, int r)
5291 {
5292   p = savevr<big_endian>(p, r);
5293   write_insn<big_endian>(p, blr);
5294   return p + 4;
5295 }
5296 
5297 template<bool big_endian>
5298 static unsigned char*
restvr(unsigned char * p,int r)5299 restvr(unsigned char* p, int r)
5300 {
5301   uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5302   write_insn<big_endian>(p, insn);
5303   p = p + 4;
5304   insn = lvx_0_12_0 + (r << 21);
5305   write_insn<big_endian>(p, insn);
5306   return p + 4;
5307 }
5308 
5309 template<bool big_endian>
5310 static unsigned char*
restvr_tail(unsigned char * p,int r)5311 restvr_tail(unsigned char* p, int r)
5312 {
5313   p = restvr<big_endian>(p, r);
5314   write_insn<big_endian>(p, blr);
5315   return p + 4;
5316 }
5317 
5318 
5319 template<int size, bool big_endian>
Output_data_save_res(Symbol_table * symtab)5320 Output_data_save_res<size, big_endian>::Output_data_save_res(
5321     Symbol_table* symtab)
5322   : Output_section_data_build(4),
5323     contents_(NULL)
5324 {
5325   this->savres_define(symtab,
5326 		      "_savegpr0_", 14, 31,
5327 		      savegpr0<big_endian>, savegpr0_tail<big_endian>);
5328   this->savres_define(symtab,
5329 		      "_restgpr0_", 14, 29,
5330 		      restgpr0<big_endian>, restgpr0_tail<big_endian>);
5331   this->savres_define(symtab,
5332 		      "_restgpr0_", 30, 31,
5333 		      restgpr0<big_endian>, restgpr0_tail<big_endian>);
5334   this->savres_define(symtab,
5335 		      "_savegpr1_", 14, 31,
5336 		      savegpr1<big_endian>, savegpr1_tail<big_endian>);
5337   this->savres_define(symtab,
5338 		      "_restgpr1_", 14, 31,
5339 		      restgpr1<big_endian>, restgpr1_tail<big_endian>);
5340   this->savres_define(symtab,
5341 		      "_savefpr_", 14, 31,
5342 		      savefpr<big_endian>, savefpr0_tail<big_endian>);
5343   this->savres_define(symtab,
5344 		      "_restfpr_", 14, 29,
5345 		      restfpr<big_endian>, restfpr0_tail<big_endian>);
5346   this->savres_define(symtab,
5347 		      "_restfpr_", 30, 31,
5348 		      restfpr<big_endian>, restfpr0_tail<big_endian>);
5349   this->savres_define(symtab,
5350 		      "._savef", 14, 31,
5351 		      savefpr<big_endian>, savefpr1_tail<big_endian>);
5352   this->savres_define(symtab,
5353 		      "._restf", 14, 31,
5354 		      restfpr<big_endian>, restfpr1_tail<big_endian>);
5355   this->savres_define(symtab,
5356 		      "_savevr_", 20, 31,
5357 		      savevr<big_endian>, savevr_tail<big_endian>);
5358   this->savres_define(symtab,
5359 		      "_restvr_", 20, 31,
5360 		      restvr<big_endian>, restvr_tail<big_endian>);
5361 }
5362 
5363 template<int size, bool big_endian>
5364 void
savres_define(Symbol_table * symtab,const char * name,unsigned int lo,unsigned int hi,unsigned char * write_ent (unsigned char *,int),unsigned char * write_tail (unsigned char *,int))5365 Output_data_save_res<size, big_endian>::savres_define(
5366     Symbol_table* symtab,
5367     const char *name,
5368     unsigned int lo, unsigned int hi,
5369     unsigned char* write_ent(unsigned char*, int),
5370     unsigned char* write_tail(unsigned char*, int))
5371 {
5372   size_t len = strlen(name);
5373   bool writing = false;
5374   char sym[16];
5375 
5376   memcpy(sym, name, len);
5377   sym[len + 2] = 0;
5378 
5379   for (unsigned int i = lo; i <= hi; i++)
5380     {
5381       sym[len + 0] = i / 10 + '0';
5382       sym[len + 1] = i % 10 + '0';
5383       Symbol* gsym = symtab->lookup(sym);
5384       bool refd = gsym != NULL && gsym->is_undefined();
5385       writing = writing || refd;
5386       if (writing)
5387 	{
5388 	  if (this->contents_ == NULL)
5389 	    this->contents_ = new unsigned char[this->savres_max];
5390 
5391 	  section_size_type value = this->current_data_size();
5392 	  unsigned char* p = this->contents_ + value;
5393 	  if (i != hi)
5394 	    p = write_ent(p, i);
5395 	  else
5396 	    p = write_tail(p, i);
5397 	  section_size_type cur_size = p - this->contents_;
5398 	  this->set_current_data_size(cur_size);
5399 	  if (refd)
5400 	    symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
5401 					  this, value, cur_size - value,
5402 					  elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
5403 					  elfcpp::STV_HIDDEN, 0, false, false);
5404 	}
5405     }
5406 }
5407 
5408 // Write out save/restore.
5409 
5410 template<int size, bool big_endian>
5411 void
do_write(Output_file * of)5412 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
5413 {
5414   const section_size_type off = this->offset();
5415   const section_size_type oview_size =
5416     convert_to_section_size_type(this->data_size());
5417   unsigned char* const oview = of->get_output_view(off, oview_size);
5418   memcpy(oview, this->contents_, oview_size);
5419   of->write_output_view(off, oview_size, oview);
5420 }
5421 
5422 
5423 // Create the glink section.
5424 
5425 template<int size, bool big_endian>
5426 void
make_glink_section(Layout * layout)5427 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
5428 {
5429   if (this->glink_ == NULL)
5430     {
5431       this->glink_ = new Output_data_glink<size, big_endian>(this);
5432       this->glink_->add_eh_frame(layout);
5433       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5434 				      elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5435 				      this->glink_, ORDER_TEXT, false);
5436     }
5437 }
5438 
5439 // Create a PLT entry for a global symbol.
5440 
5441 template<int size, bool big_endian>
5442 void
make_plt_entry(Symbol_table * symtab,Layout * layout,Symbol * gsym)5443 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5444 						 Layout* layout,
5445 						 Symbol* gsym)
5446 {
5447   if (gsym->type() == elfcpp::STT_GNU_IFUNC
5448       && gsym->can_use_relative_reloc(false))
5449     {
5450       if (this->iplt_ == NULL)
5451 	this->make_iplt_section(symtab, layout);
5452       this->iplt_->add_ifunc_entry(gsym);
5453     }
5454   else
5455     {
5456       if (this->plt_ == NULL)
5457 	this->make_plt_section(symtab, layout);
5458       this->plt_->add_entry(gsym);
5459     }
5460 }
5461 
5462 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5463 
5464 template<int size, bool big_endian>
5465 void
make_local_ifunc_plt_entry(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * relobj,unsigned int r_sym)5466 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5467     Symbol_table* symtab,
5468     Layout* layout,
5469     Sized_relobj_file<size, big_endian>* relobj,
5470     unsigned int r_sym)
5471 {
5472   if (this->iplt_ == NULL)
5473     this->make_iplt_section(symtab, layout);
5474   this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5475 }
5476 
5477 // Return the number of entries in the PLT.
5478 
5479 template<int size, bool big_endian>
5480 unsigned int
plt_entry_count() const5481 Target_powerpc<size, big_endian>::plt_entry_count() const
5482 {
5483   if (this->plt_ == NULL)
5484     return 0;
5485   return this->plt_->entry_count();
5486 }
5487 
5488 // Create a GOT entry for local dynamic __tls_get_addr calls.
5489 
5490 template<int size, bool big_endian>
5491 unsigned int
tlsld_got_offset(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object)5492 Target_powerpc<size, big_endian>::tlsld_got_offset(
5493     Symbol_table* symtab,
5494     Layout* layout,
5495     Sized_relobj_file<size, big_endian>* object)
5496 {
5497   if (this->tlsld_got_offset_ == -1U)
5498     {
5499       gold_assert(symtab != NULL && layout != NULL && object != NULL);
5500       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5501       Output_data_got_powerpc<size, big_endian>* got
5502 	= this->got_section(symtab, layout);
5503       unsigned int got_offset = got->add_constant_pair(0, 0);
5504       rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5505 			  got_offset, 0);
5506       this->tlsld_got_offset_ = got_offset;
5507     }
5508   return this->tlsld_got_offset_;
5509 }
5510 
5511 // Get the Reference_flags for a particular relocation.
5512 
5513 template<int size, bool big_endian>
5514 int
get_reference_flags(unsigned int r_type,const Target_powerpc * target)5515 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5516     unsigned int r_type,
5517     const Target_powerpc* target)
5518 {
5519   int ref = 0;
5520 
5521   switch (r_type)
5522     {
5523     case elfcpp::R_POWERPC_NONE:
5524     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5525     case elfcpp::R_POWERPC_GNU_VTENTRY:
5526     case elfcpp::R_PPC64_TOC:
5527       // No symbol reference.
5528       break;
5529 
5530     case elfcpp::R_PPC64_ADDR64:
5531     case elfcpp::R_PPC64_UADDR64:
5532     case elfcpp::R_POWERPC_ADDR32:
5533     case elfcpp::R_POWERPC_UADDR32:
5534     case elfcpp::R_POWERPC_ADDR16:
5535     case elfcpp::R_POWERPC_UADDR16:
5536     case elfcpp::R_POWERPC_ADDR16_LO:
5537     case elfcpp::R_POWERPC_ADDR16_HI:
5538     case elfcpp::R_POWERPC_ADDR16_HA:
5539       ref = Symbol::ABSOLUTE_REF;
5540       break;
5541 
5542     case elfcpp::R_POWERPC_ADDR24:
5543     case elfcpp::R_POWERPC_ADDR14:
5544     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5545     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5546       ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5547       break;
5548 
5549     case elfcpp::R_PPC64_REL64:
5550     case elfcpp::R_POWERPC_REL32:
5551     case elfcpp::R_PPC_LOCAL24PC:
5552     case elfcpp::R_POWERPC_REL16:
5553     case elfcpp::R_POWERPC_REL16_LO:
5554     case elfcpp::R_POWERPC_REL16_HI:
5555     case elfcpp::R_POWERPC_REL16_HA:
5556       ref = Symbol::RELATIVE_REF;
5557       break;
5558 
5559     case elfcpp::R_POWERPC_REL24:
5560     case elfcpp::R_PPC_PLTREL24:
5561     case elfcpp::R_POWERPC_REL14:
5562     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5563     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5564       ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5565       break;
5566 
5567     case elfcpp::R_POWERPC_GOT16:
5568     case elfcpp::R_POWERPC_GOT16_LO:
5569     case elfcpp::R_POWERPC_GOT16_HI:
5570     case elfcpp::R_POWERPC_GOT16_HA:
5571     case elfcpp::R_PPC64_GOT16_DS:
5572     case elfcpp::R_PPC64_GOT16_LO_DS:
5573     case elfcpp::R_PPC64_TOC16:
5574     case elfcpp::R_PPC64_TOC16_LO:
5575     case elfcpp::R_PPC64_TOC16_HI:
5576     case elfcpp::R_PPC64_TOC16_HA:
5577     case elfcpp::R_PPC64_TOC16_DS:
5578     case elfcpp::R_PPC64_TOC16_LO_DS:
5579       ref = Symbol::RELATIVE_REF;
5580       break;
5581 
5582     case elfcpp::R_POWERPC_GOT_TPREL16:
5583     case elfcpp::R_POWERPC_TLS:
5584       ref = Symbol::TLS_REF;
5585       break;
5586 
5587     case elfcpp::R_POWERPC_COPY:
5588     case elfcpp::R_POWERPC_GLOB_DAT:
5589     case elfcpp::R_POWERPC_JMP_SLOT:
5590     case elfcpp::R_POWERPC_RELATIVE:
5591     case elfcpp::R_POWERPC_DTPMOD:
5592     default:
5593       // Not expected.  We will give an error later.
5594       break;
5595     }
5596 
5597   if (size == 64 && target->abiversion() < 2)
5598     ref |= Symbol::FUNC_DESC_ABI;
5599   return ref;
5600 }
5601 
5602 // Report an unsupported relocation against a local symbol.
5603 
5604 template<int size, bool big_endian>
5605 void
unsupported_reloc_local(Sized_relobj_file<size,big_endian> * object,unsigned int r_type)5606 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5607     Sized_relobj_file<size, big_endian>* object,
5608     unsigned int r_type)
5609 {
5610   gold_error(_("%s: unsupported reloc %u against local symbol"),
5611 	     object->name().c_str(), r_type);
5612 }
5613 
5614 // We are about to emit a dynamic relocation of type R_TYPE.  If the
5615 // dynamic linker does not support it, issue an error.
5616 
5617 template<int size, bool big_endian>
5618 void
check_non_pic(Relobj * object,unsigned int r_type)5619 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5620 						      unsigned int r_type)
5621 {
5622   gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5623 
5624   // These are the relocation types supported by glibc for both 32-bit
5625   // and 64-bit powerpc.
5626   switch (r_type)
5627     {
5628     case elfcpp::R_POWERPC_NONE:
5629     case elfcpp::R_POWERPC_RELATIVE:
5630     case elfcpp::R_POWERPC_GLOB_DAT:
5631     case elfcpp::R_POWERPC_DTPMOD:
5632     case elfcpp::R_POWERPC_DTPREL:
5633     case elfcpp::R_POWERPC_TPREL:
5634     case elfcpp::R_POWERPC_JMP_SLOT:
5635     case elfcpp::R_POWERPC_COPY:
5636     case elfcpp::R_POWERPC_IRELATIVE:
5637     case elfcpp::R_POWERPC_ADDR32:
5638     case elfcpp::R_POWERPC_UADDR32:
5639     case elfcpp::R_POWERPC_ADDR24:
5640     case elfcpp::R_POWERPC_ADDR16:
5641     case elfcpp::R_POWERPC_UADDR16:
5642     case elfcpp::R_POWERPC_ADDR16_LO:
5643     case elfcpp::R_POWERPC_ADDR16_HI:
5644     case elfcpp::R_POWERPC_ADDR16_HA:
5645     case elfcpp::R_POWERPC_ADDR14:
5646     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5647     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5648     case elfcpp::R_POWERPC_REL32:
5649     case elfcpp::R_POWERPC_REL24:
5650     case elfcpp::R_POWERPC_TPREL16:
5651     case elfcpp::R_POWERPC_TPREL16_LO:
5652     case elfcpp::R_POWERPC_TPREL16_HI:
5653     case elfcpp::R_POWERPC_TPREL16_HA:
5654       return;
5655 
5656     default:
5657       break;
5658     }
5659 
5660   if (size == 64)
5661     {
5662       switch (r_type)
5663 	{
5664 	  // These are the relocation types supported only on 64-bit.
5665 	case elfcpp::R_PPC64_ADDR64:
5666 	case elfcpp::R_PPC64_UADDR64:
5667 	case elfcpp::R_PPC64_JMP_IREL:
5668 	case elfcpp::R_PPC64_ADDR16_DS:
5669 	case elfcpp::R_PPC64_ADDR16_LO_DS:
5670 	case elfcpp::R_PPC64_ADDR16_HIGH:
5671 	case elfcpp::R_PPC64_ADDR16_HIGHA:
5672 	case elfcpp::R_PPC64_ADDR16_HIGHER:
5673 	case elfcpp::R_PPC64_ADDR16_HIGHEST:
5674 	case elfcpp::R_PPC64_ADDR16_HIGHERA:
5675 	case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5676 	case elfcpp::R_PPC64_REL64:
5677 	case elfcpp::R_POWERPC_ADDR30:
5678 	case elfcpp::R_PPC64_TPREL16_DS:
5679 	case elfcpp::R_PPC64_TPREL16_LO_DS:
5680 	case elfcpp::R_PPC64_TPREL16_HIGH:
5681 	case elfcpp::R_PPC64_TPREL16_HIGHA:
5682 	case elfcpp::R_PPC64_TPREL16_HIGHER:
5683 	case elfcpp::R_PPC64_TPREL16_HIGHEST:
5684 	case elfcpp::R_PPC64_TPREL16_HIGHERA:
5685 	case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5686 	  return;
5687 
5688 	default:
5689 	  break;
5690 	}
5691     }
5692   else
5693     {
5694       switch (r_type)
5695 	{
5696 	  // These are the relocation types supported only on 32-bit.
5697 	  // ??? glibc ld.so doesn't need to support these.
5698 	case elfcpp::R_POWERPC_DTPREL16:
5699 	case elfcpp::R_POWERPC_DTPREL16_LO:
5700 	case elfcpp::R_POWERPC_DTPREL16_HI:
5701 	case elfcpp::R_POWERPC_DTPREL16_HA:
5702 	  return;
5703 
5704 	default:
5705 	  break;
5706 	}
5707     }
5708 
5709   // This prevents us from issuing more than one error per reloc
5710   // section.  But we can still wind up issuing more than one
5711   // error per object file.
5712   if (this->issued_non_pic_error_)
5713     return;
5714   gold_assert(parameters->options().output_is_position_independent());
5715   object->error(_("requires unsupported dynamic reloc; "
5716 		  "recompile with -fPIC"));
5717   this->issued_non_pic_error_ = true;
5718   return;
5719 }
5720 
5721 // Return whether we need to make a PLT entry for a relocation of the
5722 // given type against a STT_GNU_IFUNC symbol.
5723 
5724 template<int size, bool big_endian>
5725 bool
reloc_needs_plt_for_ifunc(Target_powerpc<size,big_endian> * target,Sized_relobj_file<size,big_endian> * object,unsigned int r_type,bool report_err)5726 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5727      Target_powerpc<size, big_endian>* target,
5728      Sized_relobj_file<size, big_endian>* object,
5729      unsigned int r_type,
5730      bool report_err)
5731 {
5732   // In non-pic code any reference will resolve to the plt call stub
5733   // for the ifunc symbol.
5734   if ((size == 32 || target->abiversion() >= 2)
5735       && !parameters->options().output_is_position_independent())
5736     return true;
5737 
5738   switch (r_type)
5739     {
5740     // Word size refs from data sections are OK, but don't need a PLT entry.
5741     case elfcpp::R_POWERPC_ADDR32:
5742     case elfcpp::R_POWERPC_UADDR32:
5743       if (size == 32)
5744 	return false;
5745       break;
5746 
5747     case elfcpp::R_PPC64_ADDR64:
5748     case elfcpp::R_PPC64_UADDR64:
5749       if (size == 64)
5750 	return false;
5751       break;
5752 
5753     // GOT refs are good, but also don't need a PLT entry.
5754     case elfcpp::R_POWERPC_GOT16:
5755     case elfcpp::R_POWERPC_GOT16_LO:
5756     case elfcpp::R_POWERPC_GOT16_HI:
5757     case elfcpp::R_POWERPC_GOT16_HA:
5758     case elfcpp::R_PPC64_GOT16_DS:
5759     case elfcpp::R_PPC64_GOT16_LO_DS:
5760       return false;
5761 
5762     // Function calls are good, and these do need a PLT entry.
5763     case elfcpp::R_POWERPC_ADDR24:
5764     case elfcpp::R_POWERPC_ADDR14:
5765     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5766     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5767     case elfcpp::R_POWERPC_REL24:
5768     case elfcpp::R_PPC_PLTREL24:
5769     case elfcpp::R_POWERPC_REL14:
5770     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5771     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5772       return true;
5773 
5774     default:
5775       break;
5776     }
5777 
5778   // Anything else is a problem.
5779   // If we are building a static executable, the libc startup function
5780   // responsible for applying indirect function relocations is going
5781   // to complain about the reloc type.
5782   // If we are building a dynamic executable, we will have a text
5783   // relocation.  The dynamic loader will set the text segment
5784   // writable and non-executable to apply text relocations.  So we'll
5785   // segfault when trying to run the indirection function to resolve
5786   // the reloc.
5787   if (report_err)
5788     gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5789 	       object->name().c_str(), r_type);
5790   return false;
5791 }
5792 
5793 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
5794 // reloc.
5795 
5796 static bool
ok_lo_toc_insn(uint32_t insn,unsigned int r_type)5797 ok_lo_toc_insn(uint32_t insn, unsigned int r_type)
5798 {
5799   return ((insn & (0x3f << 26)) == 12u << 26 /* addic */
5800 	  || (insn & (0x3f << 26)) == 14u << 26 /* addi */
5801 	  || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
5802 	  || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
5803 	  || (insn & (0x3f << 26)) == 36u << 26 /* stw */
5804 	  || (insn & (0x3f << 26)) == 38u << 26 /* stb */
5805 	  || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
5806 	  || (insn & (0x3f << 26)) == 42u << 26 /* lha */
5807 	  || (insn & (0x3f << 26)) == 44u << 26 /* sth */
5808 	  || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
5809 	  || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
5810 	  || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
5811 	  || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
5812 	  || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
5813 	  || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
5814 	  || (insn & (0x3f << 26)) == 56u << 26 /* lq,lfq */
5815 	  || ((insn & (0x3f << 26)) == 57u << 26 /* lxsd,lxssp,lfdp */
5816 	      /* Exclude lfqu by testing reloc.  If relocs are ever
5817 		 defined for the reduced D field in psq_lu then those
5818 		 will need testing too.  */
5819 	      && r_type != elfcpp::R_PPC64_TOC16_LO
5820 	      && r_type != elfcpp::R_POWERPC_GOT16_LO)
5821 	  || ((insn & (0x3f << 26)) == 58u << 26 /* ld,lwa */
5822 	      && (insn & 1) == 0)
5823 	  || (insn & (0x3f << 26)) == 60u << 26 /* stfq */
5824 	  || ((insn & (0x3f << 26)) == 61u << 26 /* lxv,stx{v,sd,ssp},stfdp */
5825 	      /* Exclude stfqu.  psq_stu as above for psq_lu.  */
5826 	      && r_type != elfcpp::R_PPC64_TOC16_LO
5827 	      && r_type != elfcpp::R_POWERPC_GOT16_LO)
5828 	  || ((insn & (0x3f << 26)) == 62u << 26 /* std,stq */
5829 	      && (insn & 1) == 0));
5830 }
5831 
5832 // Scan a relocation for a local symbol.
5833 
5834 template<int size, bool big_endian>
5835 inline void
local(Symbol_table * symtab,Layout * layout,Target_powerpc<size,big_endian> * target,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,Output_section * output_section,const elfcpp::Rela<size,big_endian> & reloc,unsigned int r_type,const elfcpp::Sym<size,big_endian> & lsym,bool is_discarded)5836 Target_powerpc<size, big_endian>::Scan::local(
5837     Symbol_table* symtab,
5838     Layout* layout,
5839     Target_powerpc<size, big_endian>* target,
5840     Sized_relobj_file<size, big_endian>* object,
5841     unsigned int data_shndx,
5842     Output_section* output_section,
5843     const elfcpp::Rela<size, big_endian>& reloc,
5844     unsigned int r_type,
5845     const elfcpp::Sym<size, big_endian>& lsym,
5846     bool is_discarded)
5847 {
5848   this->maybe_skip_tls_get_addr_call(r_type, NULL);
5849 
5850   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5851       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5852     {
5853       this->expect_tls_get_addr_call();
5854       const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5855       if (tls_type != tls::TLSOPT_NONE)
5856 	this->skip_next_tls_get_addr_call();
5857     }
5858   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5859 	   || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5860     {
5861       this->expect_tls_get_addr_call();
5862       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5863       if (tls_type != tls::TLSOPT_NONE)
5864 	this->skip_next_tls_get_addr_call();
5865     }
5866 
5867   Powerpc_relobj<size, big_endian>* ppc_object
5868     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5869 
5870   if (is_discarded)
5871     {
5872       if (size == 64
5873 	  && data_shndx == ppc_object->opd_shndx()
5874 	  && r_type == elfcpp::R_PPC64_ADDR64)
5875 	ppc_object->set_opd_discard(reloc.get_r_offset());
5876       return;
5877     }
5878 
5879   // A local STT_GNU_IFUNC symbol may require a PLT entry.
5880   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5881   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5882     {
5883       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5884       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5885 			  r_type, r_sym, reloc.get_r_addend());
5886       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5887     }
5888 
5889   switch (r_type)
5890     {
5891     case elfcpp::R_POWERPC_NONE:
5892     case elfcpp::R_POWERPC_GNU_VTINHERIT:
5893     case elfcpp::R_POWERPC_GNU_VTENTRY:
5894     case elfcpp::R_PPC64_TOCSAVE:
5895     case elfcpp::R_POWERPC_TLS:
5896     case elfcpp::R_PPC64_ENTRY:
5897       break;
5898 
5899     case elfcpp::R_PPC64_TOC:
5900       {
5901 	Output_data_got_powerpc<size, big_endian>* got
5902 	  = target->got_section(symtab, layout);
5903 	if (parameters->options().output_is_position_independent())
5904 	  {
5905 	    Address off = reloc.get_r_offset();
5906 	    if (size == 64
5907 		&& target->abiversion() < 2
5908 		&& data_shndx == ppc_object->opd_shndx()
5909 		&& ppc_object->get_opd_discard(off - 8))
5910 	      break;
5911 
5912 	    Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5913 	    Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5914 	    rela_dyn->add_output_section_relative(got->output_section(),
5915 						  elfcpp::R_POWERPC_RELATIVE,
5916 						  output_section,
5917 						  object, data_shndx, off,
5918 						  symobj->toc_base_offset());
5919 	  }
5920       }
5921       break;
5922 
5923     case elfcpp::R_PPC64_ADDR64:
5924     case elfcpp::R_PPC64_UADDR64:
5925     case elfcpp::R_POWERPC_ADDR32:
5926     case elfcpp::R_POWERPC_UADDR32:
5927     case elfcpp::R_POWERPC_ADDR24:
5928     case elfcpp::R_POWERPC_ADDR16:
5929     case elfcpp::R_POWERPC_ADDR16_LO:
5930     case elfcpp::R_POWERPC_ADDR16_HI:
5931     case elfcpp::R_POWERPC_ADDR16_HA:
5932     case elfcpp::R_POWERPC_UADDR16:
5933     case elfcpp::R_PPC64_ADDR16_HIGH:
5934     case elfcpp::R_PPC64_ADDR16_HIGHA:
5935     case elfcpp::R_PPC64_ADDR16_HIGHER:
5936     case elfcpp::R_PPC64_ADDR16_HIGHERA:
5937     case elfcpp::R_PPC64_ADDR16_HIGHEST:
5938     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5939     case elfcpp::R_PPC64_ADDR16_DS:
5940     case elfcpp::R_PPC64_ADDR16_LO_DS:
5941     case elfcpp::R_POWERPC_ADDR14:
5942     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5943     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5944       // If building a shared library (or a position-independent
5945       // executable), we need to create a dynamic relocation for
5946       // this location.
5947       if (parameters->options().output_is_position_independent()
5948 	  || (size == 64 && is_ifunc && target->abiversion() < 2))
5949 	{
5950 	  Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5951 							     is_ifunc);
5952 	  unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5953 	  if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5954 	      || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5955 	    {
5956 	      unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5957 				     : elfcpp::R_POWERPC_RELATIVE);
5958 	      rela_dyn->add_local_relative(object, r_sym, dynrel,
5959 					   output_section, data_shndx,
5960 					   reloc.get_r_offset(),
5961 					   reloc.get_r_addend(), false);
5962 	    }
5963 	  else if (lsym.get_st_type() != elfcpp::STT_SECTION)
5964 	    {
5965 	      check_non_pic(object, r_type);
5966 	      rela_dyn->add_local(object, r_sym, r_type, output_section,
5967 				  data_shndx, reloc.get_r_offset(),
5968 				  reloc.get_r_addend());
5969 	    }
5970 	  else
5971 	    {
5972 	      gold_assert(lsym.get_st_value() == 0);
5973 	      unsigned int shndx = lsym.get_st_shndx();
5974 	      bool is_ordinary;
5975 	      shndx = object->adjust_sym_shndx(r_sym, shndx,
5976 					       &is_ordinary);
5977 	      if (!is_ordinary)
5978 		object->error(_("section symbol %u has bad shndx %u"),
5979 			      r_sym, shndx);
5980 	      else
5981 		rela_dyn->add_local_section(object, shndx, r_type,
5982 					    output_section, data_shndx,
5983 					    reloc.get_r_offset());
5984 	    }
5985 	}
5986       break;
5987 
5988     case elfcpp::R_POWERPC_REL24:
5989     case elfcpp::R_PPC_PLTREL24:
5990     case elfcpp::R_PPC_LOCAL24PC:
5991     case elfcpp::R_POWERPC_REL14:
5992     case elfcpp::R_POWERPC_REL14_BRTAKEN:
5993     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5994       if (!is_ifunc)
5995 	{
5996 	  unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5997 	  target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5998 			      r_type, r_sym, reloc.get_r_addend());
5999 	}
6000       break;
6001 
6002     case elfcpp::R_PPC64_REL64:
6003     case elfcpp::R_POWERPC_REL32:
6004     case elfcpp::R_POWERPC_REL16:
6005     case elfcpp::R_POWERPC_REL16_LO:
6006     case elfcpp::R_POWERPC_REL16_HI:
6007     case elfcpp::R_POWERPC_REL16_HA:
6008     case elfcpp::R_POWERPC_REL16DX_HA:
6009     case elfcpp::R_POWERPC_SECTOFF:
6010     case elfcpp::R_POWERPC_SECTOFF_LO:
6011     case elfcpp::R_POWERPC_SECTOFF_HI:
6012     case elfcpp::R_POWERPC_SECTOFF_HA:
6013     case elfcpp::R_PPC64_SECTOFF_DS:
6014     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6015     case elfcpp::R_POWERPC_TPREL16:
6016     case elfcpp::R_POWERPC_TPREL16_LO:
6017     case elfcpp::R_POWERPC_TPREL16_HI:
6018     case elfcpp::R_POWERPC_TPREL16_HA:
6019     case elfcpp::R_PPC64_TPREL16_DS:
6020     case elfcpp::R_PPC64_TPREL16_LO_DS:
6021     case elfcpp::R_PPC64_TPREL16_HIGH:
6022     case elfcpp::R_PPC64_TPREL16_HIGHA:
6023     case elfcpp::R_PPC64_TPREL16_HIGHER:
6024     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6025     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6026     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6027     case elfcpp::R_POWERPC_DTPREL16:
6028     case elfcpp::R_POWERPC_DTPREL16_LO:
6029     case elfcpp::R_POWERPC_DTPREL16_HI:
6030     case elfcpp::R_POWERPC_DTPREL16_HA:
6031     case elfcpp::R_PPC64_DTPREL16_DS:
6032     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6033     case elfcpp::R_PPC64_DTPREL16_HIGH:
6034     case elfcpp::R_PPC64_DTPREL16_HIGHA:
6035     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6036     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6037     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6038     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6039     case elfcpp::R_PPC64_TLSGD:
6040     case elfcpp::R_PPC64_TLSLD:
6041     case elfcpp::R_PPC64_ADDR64_LOCAL:
6042       break;
6043 
6044     case elfcpp::R_POWERPC_GOT16:
6045     case elfcpp::R_POWERPC_GOT16_LO:
6046     case elfcpp::R_POWERPC_GOT16_HI:
6047     case elfcpp::R_POWERPC_GOT16_HA:
6048     case elfcpp::R_PPC64_GOT16_DS:
6049     case elfcpp::R_PPC64_GOT16_LO_DS:
6050       {
6051 	// The symbol requires a GOT entry.
6052 	Output_data_got_powerpc<size, big_endian>* got
6053 	  = target->got_section(symtab, layout);
6054 	unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6055 
6056 	if (!parameters->options().output_is_position_independent())
6057 	  {
6058 	    if (is_ifunc
6059 		&& (size == 32 || target->abiversion() >= 2))
6060 	      got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
6061 	    else
6062 	      got->add_local(object, r_sym, GOT_TYPE_STANDARD);
6063 	  }
6064 	else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
6065 	  {
6066 	    // If we are generating a shared object or a pie, this
6067 	    // symbol's GOT entry will be set by a dynamic relocation.
6068 	    unsigned int off;
6069 	    off = got->add_constant(0);
6070 	    object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
6071 
6072 	    Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
6073 							       is_ifunc);
6074 	    unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6075 				   : elfcpp::R_POWERPC_RELATIVE);
6076 	    rela_dyn->add_local_relative(object, r_sym, dynrel,
6077 					 got, off, 0, false);
6078 	  }
6079       }
6080       break;
6081 
6082     case elfcpp::R_PPC64_TOC16:
6083     case elfcpp::R_PPC64_TOC16_LO:
6084     case elfcpp::R_PPC64_TOC16_HI:
6085     case elfcpp::R_PPC64_TOC16_HA:
6086     case elfcpp::R_PPC64_TOC16_DS:
6087     case elfcpp::R_PPC64_TOC16_LO_DS:
6088       // We need a GOT section.
6089       target->got_section(symtab, layout);
6090       break;
6091 
6092     case elfcpp::R_POWERPC_GOT_TLSGD16:
6093     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6094     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6095     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6096       {
6097 	const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
6098 	if (tls_type == tls::TLSOPT_NONE)
6099 	  {
6100 	    Output_data_got_powerpc<size, big_endian>* got
6101 	      = target->got_section(symtab, layout);
6102 	    unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6103 	    Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6104 	    got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
6105 				    rela_dyn, elfcpp::R_POWERPC_DTPMOD);
6106 	  }
6107 	else if (tls_type == tls::TLSOPT_TO_LE)
6108 	  {
6109 	    // no GOT relocs needed for Local Exec.
6110 	  }
6111 	else
6112 	  gold_unreachable();
6113       }
6114       break;
6115 
6116     case elfcpp::R_POWERPC_GOT_TLSLD16:
6117     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6118     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6119     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6120       {
6121 	const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6122 	if (tls_type == tls::TLSOPT_NONE)
6123 	  target->tlsld_got_offset(symtab, layout, object);
6124 	else if (tls_type == tls::TLSOPT_TO_LE)
6125 	  {
6126 	    // no GOT relocs needed for Local Exec.
6127 	    if (parameters->options().emit_relocs())
6128 	      {
6129 		Output_section* os = layout->tls_segment()->first_section();
6130 		gold_assert(os != NULL);
6131 		os->set_needs_symtab_index();
6132 	      }
6133 	  }
6134 	else
6135 	  gold_unreachable();
6136       }
6137       break;
6138 
6139     case elfcpp::R_POWERPC_GOT_DTPREL16:
6140     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6141     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6142     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6143       {
6144 	Output_data_got_powerpc<size, big_endian>* got
6145 	  = target->got_section(symtab, layout);
6146 	unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6147 	got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
6148       }
6149       break;
6150 
6151     case elfcpp::R_POWERPC_GOT_TPREL16:
6152     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6153     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6154     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6155       {
6156 	const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
6157 	if (tls_type == tls::TLSOPT_NONE)
6158 	  {
6159 	    unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6160 	    if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
6161 	      {
6162 		Output_data_got_powerpc<size, big_endian>* got
6163 		  = target->got_section(symtab, layout);
6164 		unsigned int off = got->add_constant(0);
6165 		object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
6166 
6167 		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6168 		rela_dyn->add_symbolless_local_addend(object, r_sym,
6169 						      elfcpp::R_POWERPC_TPREL,
6170 						      got, off, 0);
6171 	      }
6172 	  }
6173 	else if (tls_type == tls::TLSOPT_TO_LE)
6174 	  {
6175 	    // no GOT relocs needed for Local Exec.
6176 	  }
6177 	else
6178 	  gold_unreachable();
6179       }
6180       break;
6181 
6182     default:
6183       unsupported_reloc_local(object, r_type);
6184       break;
6185     }
6186 
6187   if (size == 64
6188       && parameters->options().toc_optimize())
6189     {
6190       if (data_shndx == ppc_object->toc_shndx())
6191 	{
6192 	  bool ok = true;
6193 	  if (r_type != elfcpp::R_PPC64_ADDR64
6194 	      || (is_ifunc && target->abiversion() < 2))
6195 	    ok = false;
6196 	  else if (parameters->options().output_is_position_independent())
6197 	    {
6198 	      if (is_ifunc)
6199 		ok = false;
6200 	      else
6201 		{
6202 		  unsigned int shndx = lsym.get_st_shndx();
6203 		  if (shndx >= elfcpp::SHN_LORESERVE
6204 		      && shndx != elfcpp::SHN_XINDEX)
6205 		    ok = false;
6206 		}
6207 	    }
6208 	  if (!ok)
6209 	    ppc_object->set_no_toc_opt(reloc.get_r_offset());
6210 	}
6211 
6212       enum {no_check, check_lo, check_ha} insn_check;
6213       switch (r_type)
6214 	{
6215 	default:
6216 	  insn_check = no_check;
6217 	  break;
6218 
6219 	case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6220 	case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6221 	case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6222 	case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6223 	case elfcpp::R_POWERPC_GOT16_HA:
6224 	case elfcpp::R_PPC64_TOC16_HA:
6225 	  insn_check = check_ha;
6226 	  break;
6227 
6228 	case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6229 	case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6230 	case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6231 	case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6232 	case elfcpp::R_POWERPC_GOT16_LO:
6233 	case elfcpp::R_PPC64_GOT16_LO_DS:
6234 	case elfcpp::R_PPC64_TOC16_LO:
6235 	case elfcpp::R_PPC64_TOC16_LO_DS:
6236 	  insn_check = check_lo;
6237 	  break;
6238 	}
6239 
6240       section_size_type slen;
6241       const unsigned char* view = NULL;
6242       if (insn_check != no_check)
6243 	{
6244 	  view = ppc_object->section_contents(data_shndx, &slen, false);
6245 	  section_size_type off =
6246 	    convert_to_section_size_type(reloc.get_r_offset()) & -4;
6247 	  if (off < slen)
6248 	    {
6249 	      uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
6250 	      if (insn_check == check_lo
6251 		  ? !ok_lo_toc_insn(insn, r_type)
6252 		  : ((insn & ((0x3f << 26) | 0x1f << 16))
6253 		     != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
6254 		{
6255 		  ppc_object->set_no_toc_opt();
6256 		  gold_warning(_("%s: toc optimization is not supported "
6257 				 "for %#08x instruction"),
6258 			       ppc_object->name().c_str(), insn);
6259 		}
6260 	    }
6261 	}
6262 
6263       switch (r_type)
6264 	{
6265 	default:
6266 	  break;
6267 	case elfcpp::R_PPC64_TOC16:
6268 	case elfcpp::R_PPC64_TOC16_LO:
6269 	case elfcpp::R_PPC64_TOC16_HI:
6270 	case elfcpp::R_PPC64_TOC16_HA:
6271 	case elfcpp::R_PPC64_TOC16_DS:
6272 	case elfcpp::R_PPC64_TOC16_LO_DS:
6273 	  unsigned int shndx = lsym.get_st_shndx();
6274 	  unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6275 	  bool is_ordinary;
6276 	  shndx = ppc_object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
6277 	  if (is_ordinary && shndx == ppc_object->toc_shndx())
6278 	    {
6279 	      Address dst_off = lsym.get_st_value() + reloc.get_r_offset();
6280 	      if (dst_off < ppc_object->section_size(shndx))
6281 		{
6282 		  bool ok = false;
6283 		  if (r_type == elfcpp::R_PPC64_TOC16_HA)
6284 		    ok = true;
6285 		  else if (r_type == elfcpp::R_PPC64_TOC16_LO_DS)
6286 		    {
6287 		      // Need to check that the insn is a ld
6288 		      if (!view)
6289 			view = ppc_object->section_contents(data_shndx,
6290 							    &slen,
6291 							    false);
6292 		      section_size_type off =
6293 			(convert_to_section_size_type(reloc.get_r_offset())
6294 			 + (big_endian ? -2 : 3));
6295 		      if (off < slen
6296 			  && (view[off] & (0x3f << 2)) == 58u << 2)
6297 			ok = true;
6298 		    }
6299 		  if (!ok)
6300 		    ppc_object->set_no_toc_opt(dst_off);
6301 		}
6302 	    }
6303 	  break;
6304 	}
6305     }
6306 
6307   if (size == 32)
6308     {
6309       switch (r_type)
6310 	{
6311 	case elfcpp::R_POWERPC_REL32:
6312 	  if (ppc_object->got2_shndx() != 0
6313 	      && parameters->options().output_is_position_independent())
6314 	    {
6315 	      unsigned int shndx = lsym.get_st_shndx();
6316 	      unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6317 	      bool is_ordinary;
6318 	      shndx = ppc_object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
6319 	      if (is_ordinary && shndx == ppc_object->got2_shndx()
6320 		  && (ppc_object->section_flags(data_shndx)
6321 		      & elfcpp::SHF_EXECINSTR) != 0)
6322 		gold_error(_("%s: unsupported -mbss-plt code"),
6323 			   ppc_object->name().c_str());
6324 	    }
6325 	  break;
6326 	default:
6327 	  break;
6328 	}
6329     }
6330 
6331   switch (r_type)
6332     {
6333     case elfcpp::R_POWERPC_GOT_TLSLD16:
6334     case elfcpp::R_POWERPC_GOT_TLSGD16:
6335     case elfcpp::R_POWERPC_GOT_TPREL16:
6336     case elfcpp::R_POWERPC_GOT_DTPREL16:
6337     case elfcpp::R_POWERPC_GOT16:
6338     case elfcpp::R_PPC64_GOT16_DS:
6339     case elfcpp::R_PPC64_TOC16:
6340     case elfcpp::R_PPC64_TOC16_DS:
6341       ppc_object->set_has_small_toc_reloc();
6342     default:
6343       break;
6344     }
6345 }
6346 
6347 // Report an unsupported relocation against a global symbol.
6348 
6349 template<int size, bool big_endian>
6350 void
unsupported_reloc_global(Sized_relobj_file<size,big_endian> * object,unsigned int r_type,Symbol * gsym)6351 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
6352     Sized_relobj_file<size, big_endian>* object,
6353     unsigned int r_type,
6354     Symbol* gsym)
6355 {
6356   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
6357 	     object->name().c_str(), r_type, gsym->demangled_name().c_str());
6358 }
6359 
6360 // Scan a relocation for a global symbol.
6361 
6362 template<int size, bool big_endian>
6363 inline void
global(Symbol_table * symtab,Layout * layout,Target_powerpc<size,big_endian> * target,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,Output_section * output_section,const elfcpp::Rela<size,big_endian> & reloc,unsigned int r_type,Symbol * gsym)6364 Target_powerpc<size, big_endian>::Scan::global(
6365     Symbol_table* symtab,
6366     Layout* layout,
6367     Target_powerpc<size, big_endian>* target,
6368     Sized_relobj_file<size, big_endian>* object,
6369     unsigned int data_shndx,
6370     Output_section* output_section,
6371     const elfcpp::Rela<size, big_endian>& reloc,
6372     unsigned int r_type,
6373     Symbol* gsym)
6374 {
6375   if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
6376     return;
6377 
6378   if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6379       || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6380     {
6381       this->expect_tls_get_addr_call();
6382       const bool final = gsym->final_value_is_known();
6383       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6384       if (tls_type != tls::TLSOPT_NONE)
6385 	this->skip_next_tls_get_addr_call();
6386     }
6387   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6388 	   || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6389     {
6390       this->expect_tls_get_addr_call();
6391       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6392       if (tls_type != tls::TLSOPT_NONE)
6393 	this->skip_next_tls_get_addr_call();
6394     }
6395 
6396   Powerpc_relobj<size, big_endian>* ppc_object
6397     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6398 
6399   // A STT_GNU_IFUNC symbol may require a PLT entry.
6400   bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
6401   bool pushed_ifunc = false;
6402   if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
6403     {
6404       unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6405       target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6406 			  r_type, r_sym, reloc.get_r_addend());
6407       target->make_plt_entry(symtab, layout, gsym);
6408       pushed_ifunc = true;
6409     }
6410 
6411   switch (r_type)
6412     {
6413     case elfcpp::R_POWERPC_NONE:
6414     case elfcpp::R_POWERPC_GNU_VTINHERIT:
6415     case elfcpp::R_POWERPC_GNU_VTENTRY:
6416     case elfcpp::R_PPC_LOCAL24PC:
6417     case elfcpp::R_POWERPC_TLS:
6418     case elfcpp::R_PPC64_ENTRY:
6419       break;
6420 
6421     case elfcpp::R_PPC64_TOC:
6422       {
6423 	Output_data_got_powerpc<size, big_endian>* got
6424 	  = target->got_section(symtab, layout);
6425 	if (parameters->options().output_is_position_independent())
6426 	  {
6427 	    Address off = reloc.get_r_offset();
6428 	    if (size == 64
6429 		&& data_shndx == ppc_object->opd_shndx()
6430 		&& ppc_object->get_opd_discard(off - 8))
6431 	      break;
6432 
6433 	    Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6434 	    Powerpc_relobj<size, big_endian>* symobj = ppc_object;
6435 	    if (data_shndx != ppc_object->opd_shndx())
6436 	      symobj = static_cast
6437 		<Powerpc_relobj<size, big_endian>*>(gsym->object());
6438 	    rela_dyn->add_output_section_relative(got->output_section(),
6439 						  elfcpp::R_POWERPC_RELATIVE,
6440 						  output_section,
6441 						  object, data_shndx, off,
6442 						  symobj->toc_base_offset());
6443 	  }
6444       }
6445       break;
6446 
6447     case elfcpp::R_PPC64_ADDR64:
6448       if (size == 64
6449 	  && target->abiversion() < 2
6450 	  && data_shndx == ppc_object->opd_shndx()
6451 	  && (gsym->is_defined_in_discarded_section()
6452 	      || gsym->object() != object))
6453 	{
6454 	  ppc_object->set_opd_discard(reloc.get_r_offset());
6455 	  break;
6456 	}
6457       // Fall thru
6458     case elfcpp::R_PPC64_UADDR64:
6459     case elfcpp::R_POWERPC_ADDR32:
6460     case elfcpp::R_POWERPC_UADDR32:
6461     case elfcpp::R_POWERPC_ADDR24:
6462     case elfcpp::R_POWERPC_ADDR16:
6463     case elfcpp::R_POWERPC_ADDR16_LO:
6464     case elfcpp::R_POWERPC_ADDR16_HI:
6465     case elfcpp::R_POWERPC_ADDR16_HA:
6466     case elfcpp::R_POWERPC_UADDR16:
6467     case elfcpp::R_PPC64_ADDR16_HIGH:
6468     case elfcpp::R_PPC64_ADDR16_HIGHA:
6469     case elfcpp::R_PPC64_ADDR16_HIGHER:
6470     case elfcpp::R_PPC64_ADDR16_HIGHERA:
6471     case elfcpp::R_PPC64_ADDR16_HIGHEST:
6472     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6473     case elfcpp::R_PPC64_ADDR16_DS:
6474     case elfcpp::R_PPC64_ADDR16_LO_DS:
6475     case elfcpp::R_POWERPC_ADDR14:
6476     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6477     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6478       {
6479 	// Make a PLT entry if necessary.
6480 	if (gsym->needs_plt_entry())
6481 	  {
6482 	    // Since this is not a PC-relative relocation, we may be
6483 	    // taking the address of a function. In that case we need to
6484 	    // set the entry in the dynamic symbol table to the address of
6485 	    // the PLT call stub.
6486 	    bool need_ifunc_plt = false;
6487 	    if ((size == 32 || target->abiversion() >= 2)
6488 		&& gsym->is_from_dynobj()
6489 		&& !parameters->options().output_is_position_independent())
6490 	      {
6491 		gsym->set_needs_dynsym_value();
6492 		need_ifunc_plt = true;
6493 	      }
6494 	    if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
6495 	      {
6496 		unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6497 		target->push_branch(ppc_object, data_shndx,
6498 				    reloc.get_r_offset(), r_type, r_sym,
6499 				    reloc.get_r_addend());
6500 		target->make_plt_entry(symtab, layout, gsym);
6501 	      }
6502 	  }
6503 	// Make a dynamic relocation if necessary.
6504 	if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
6505 	    || (size == 64 && is_ifunc && target->abiversion() < 2))
6506 	  {
6507 	    if (!parameters->options().output_is_position_independent()
6508 		&& gsym->may_need_copy_reloc())
6509 	      {
6510 		target->copy_reloc(symtab, layout, object,
6511 				   data_shndx, output_section, gsym, reloc);
6512 	      }
6513 	    else if ((((size == 32
6514 			&& r_type == elfcpp::R_POWERPC_ADDR32)
6515 		       || (size == 64
6516 			   && r_type == elfcpp::R_PPC64_ADDR64
6517 			   && target->abiversion() >= 2))
6518 		      && gsym->can_use_relative_reloc(false)
6519 		      && !(gsym->visibility() == elfcpp::STV_PROTECTED
6520 			   && parameters->options().shared()))
6521 		     || (size == 64
6522 			 && r_type == elfcpp::R_PPC64_ADDR64
6523 			 && target->abiversion() < 2
6524 			 && (gsym->can_use_relative_reloc(false)
6525 			     || data_shndx == ppc_object->opd_shndx())))
6526 	      {
6527 		Reloc_section* rela_dyn
6528 		  = target->rela_dyn_section(symtab, layout, is_ifunc);
6529 		unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6530 				       : elfcpp::R_POWERPC_RELATIVE);
6531 		rela_dyn->add_symbolless_global_addend(
6532 		    gsym, dynrel, output_section, object, data_shndx,
6533 		    reloc.get_r_offset(), reloc.get_r_addend());
6534 	      }
6535 	    else
6536 	      {
6537 		Reloc_section* rela_dyn
6538 		  = target->rela_dyn_section(symtab, layout, is_ifunc);
6539 		check_non_pic(object, r_type);
6540 		rela_dyn->add_global(gsym, r_type, output_section,
6541 				     object, data_shndx,
6542 				     reloc.get_r_offset(),
6543 				     reloc.get_r_addend());
6544 
6545 		if (size == 64
6546 		    && parameters->options().toc_optimize()
6547 		    && data_shndx == ppc_object->toc_shndx())
6548 		  ppc_object->set_no_toc_opt(reloc.get_r_offset());
6549 	      }
6550 	  }
6551       }
6552       break;
6553 
6554     case elfcpp::R_PPC_PLTREL24:
6555     case elfcpp::R_POWERPC_REL24:
6556       if (!is_ifunc)
6557 	{
6558 	  unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6559 	  target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6560 			      r_type, r_sym, reloc.get_r_addend());
6561 	  if (gsym->needs_plt_entry()
6562 	      || (!gsym->final_value_is_known()
6563 		  && (gsym->is_undefined()
6564 		      || gsym->is_from_dynobj()
6565 		      || gsym->is_preemptible())))
6566 	    target->make_plt_entry(symtab, layout, gsym);
6567 	}
6568       // Fall thru
6569 
6570     case elfcpp::R_PPC64_REL64:
6571     case elfcpp::R_POWERPC_REL32:
6572       // Make a dynamic relocation if necessary.
6573       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
6574 	{
6575 	  if (!parameters->options().output_is_position_independent()
6576 	      && gsym->may_need_copy_reloc())
6577 	    {
6578 	      target->copy_reloc(symtab, layout, object,
6579 				 data_shndx, output_section, gsym,
6580 				 reloc);
6581 	    }
6582 	  else
6583 	    {
6584 	      Reloc_section* rela_dyn
6585 		= target->rela_dyn_section(symtab, layout, is_ifunc);
6586 	      check_non_pic(object, r_type);
6587 	      rela_dyn->add_global(gsym, r_type, output_section, object,
6588 				   data_shndx, reloc.get_r_offset(),
6589 				   reloc.get_r_addend());
6590 	    }
6591 	}
6592       break;
6593 
6594     case elfcpp::R_POWERPC_REL14:
6595     case elfcpp::R_POWERPC_REL14_BRTAKEN:
6596     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6597       if (!is_ifunc)
6598 	{
6599 	  unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6600 	  target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6601 			      r_type, r_sym, reloc.get_r_addend());
6602 	}
6603       break;
6604 
6605     case elfcpp::R_POWERPC_REL16:
6606     case elfcpp::R_POWERPC_REL16_LO:
6607     case elfcpp::R_POWERPC_REL16_HI:
6608     case elfcpp::R_POWERPC_REL16_HA:
6609     case elfcpp::R_POWERPC_REL16DX_HA:
6610     case elfcpp::R_POWERPC_SECTOFF:
6611     case elfcpp::R_POWERPC_SECTOFF_LO:
6612     case elfcpp::R_POWERPC_SECTOFF_HI:
6613     case elfcpp::R_POWERPC_SECTOFF_HA:
6614     case elfcpp::R_PPC64_SECTOFF_DS:
6615     case elfcpp::R_PPC64_SECTOFF_LO_DS:
6616     case elfcpp::R_POWERPC_TPREL16:
6617     case elfcpp::R_POWERPC_TPREL16_LO:
6618     case elfcpp::R_POWERPC_TPREL16_HI:
6619     case elfcpp::R_POWERPC_TPREL16_HA:
6620     case elfcpp::R_PPC64_TPREL16_DS:
6621     case elfcpp::R_PPC64_TPREL16_LO_DS:
6622     case elfcpp::R_PPC64_TPREL16_HIGH:
6623     case elfcpp::R_PPC64_TPREL16_HIGHA:
6624     case elfcpp::R_PPC64_TPREL16_HIGHER:
6625     case elfcpp::R_PPC64_TPREL16_HIGHERA:
6626     case elfcpp::R_PPC64_TPREL16_HIGHEST:
6627     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6628     case elfcpp::R_POWERPC_DTPREL16:
6629     case elfcpp::R_POWERPC_DTPREL16_LO:
6630     case elfcpp::R_POWERPC_DTPREL16_HI:
6631     case elfcpp::R_POWERPC_DTPREL16_HA:
6632     case elfcpp::R_PPC64_DTPREL16_DS:
6633     case elfcpp::R_PPC64_DTPREL16_LO_DS:
6634     case elfcpp::R_PPC64_DTPREL16_HIGH:
6635     case elfcpp::R_PPC64_DTPREL16_HIGHA:
6636     case elfcpp::R_PPC64_DTPREL16_HIGHER:
6637     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6638     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6639     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6640     case elfcpp::R_PPC64_TLSGD:
6641     case elfcpp::R_PPC64_TLSLD:
6642     case elfcpp::R_PPC64_ADDR64_LOCAL:
6643       break;
6644 
6645     case elfcpp::R_POWERPC_GOT16:
6646     case elfcpp::R_POWERPC_GOT16_LO:
6647     case elfcpp::R_POWERPC_GOT16_HI:
6648     case elfcpp::R_POWERPC_GOT16_HA:
6649     case elfcpp::R_PPC64_GOT16_DS:
6650     case elfcpp::R_PPC64_GOT16_LO_DS:
6651       {
6652 	// The symbol requires a GOT entry.
6653 	Output_data_got_powerpc<size, big_endian>* got;
6654 
6655 	got = target->got_section(symtab, layout);
6656 	if (gsym->final_value_is_known())
6657 	  {
6658 	    if (is_ifunc
6659 		&& (size == 32 || target->abiversion() >= 2))
6660 	      got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6661 	    else
6662 	      got->add_global(gsym, GOT_TYPE_STANDARD);
6663 	  }
6664 	else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6665 	  {
6666 	    // If we are generating a shared object or a pie, this
6667 	    // symbol's GOT entry will be set by a dynamic relocation.
6668 	    unsigned int off = got->add_constant(0);
6669 	    gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6670 
6671 	    Reloc_section* rela_dyn
6672 	      = target->rela_dyn_section(symtab, layout, is_ifunc);
6673 
6674 	    if (gsym->can_use_relative_reloc(false)
6675 		&& !((size == 32
6676 		      || target->abiversion() >= 2)
6677 		     && gsym->visibility() == elfcpp::STV_PROTECTED
6678 		     && parameters->options().shared()))
6679 	      {
6680 		unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6681 				       : elfcpp::R_POWERPC_RELATIVE);
6682 		rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6683 	      }
6684 	    else
6685 	      {
6686 		unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6687 		rela_dyn->add_global(gsym, dynrel, got, off, 0);
6688 	      }
6689 	  }
6690       }
6691       break;
6692 
6693     case elfcpp::R_PPC64_TOC16:
6694     case elfcpp::R_PPC64_TOC16_LO:
6695     case elfcpp::R_PPC64_TOC16_HI:
6696     case elfcpp::R_PPC64_TOC16_HA:
6697     case elfcpp::R_PPC64_TOC16_DS:
6698     case elfcpp::R_PPC64_TOC16_LO_DS:
6699       // We need a GOT section.
6700       target->got_section(symtab, layout);
6701       break;
6702 
6703     case elfcpp::R_POWERPC_GOT_TLSGD16:
6704     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6705     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6706     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6707       {
6708 	const bool final = gsym->final_value_is_known();
6709 	const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6710 	if (tls_type == tls::TLSOPT_NONE)
6711 	  {
6712 	    Output_data_got_powerpc<size, big_endian>* got
6713 	      = target->got_section(symtab, layout);
6714 	    Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6715 	    got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6716 					  elfcpp::R_POWERPC_DTPMOD,
6717 					  elfcpp::R_POWERPC_DTPREL);
6718 	  }
6719 	else if (tls_type == tls::TLSOPT_TO_IE)
6720 	  {
6721 	    if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6722 	      {
6723 		Output_data_got_powerpc<size, big_endian>* got
6724 		  = target->got_section(symtab, layout);
6725 		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6726 		if (gsym->is_undefined()
6727 		    || gsym->is_from_dynobj())
6728 		  {
6729 		    got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6730 					     elfcpp::R_POWERPC_TPREL);
6731 		  }
6732 		else
6733 		  {
6734 		    unsigned int off = got->add_constant(0);
6735 		    gsym->set_got_offset(GOT_TYPE_TPREL, off);
6736 		    unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6737 		    rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6738 							   got, off, 0);
6739 		  }
6740 	      }
6741 	  }
6742 	else if (tls_type == tls::TLSOPT_TO_LE)
6743 	  {
6744 	    // no GOT relocs needed for Local Exec.
6745 	  }
6746 	else
6747 	  gold_unreachable();
6748       }
6749       break;
6750 
6751     case elfcpp::R_POWERPC_GOT_TLSLD16:
6752     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6753     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6754     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6755       {
6756 	const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6757 	if (tls_type == tls::TLSOPT_NONE)
6758 	  target->tlsld_got_offset(symtab, layout, object);
6759 	else if (tls_type == tls::TLSOPT_TO_LE)
6760 	  {
6761 	    // no GOT relocs needed for Local Exec.
6762 	    if (parameters->options().emit_relocs())
6763 	      {
6764 		Output_section* os = layout->tls_segment()->first_section();
6765 		gold_assert(os != NULL);
6766 		os->set_needs_symtab_index();
6767 	      }
6768 	  }
6769 	else
6770 	  gold_unreachable();
6771       }
6772       break;
6773 
6774     case elfcpp::R_POWERPC_GOT_DTPREL16:
6775     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6776     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6777     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6778       {
6779 	Output_data_got_powerpc<size, big_endian>* got
6780 	  = target->got_section(symtab, layout);
6781 	if (!gsym->final_value_is_known()
6782 	    && (gsym->is_from_dynobj()
6783 		|| gsym->is_undefined()
6784 		|| gsym->is_preemptible()))
6785 	  got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6786 				   target->rela_dyn_section(layout),
6787 				   elfcpp::R_POWERPC_DTPREL);
6788 	else
6789 	  got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6790       }
6791       break;
6792 
6793     case elfcpp::R_POWERPC_GOT_TPREL16:
6794     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6795     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6796     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6797       {
6798 	const bool final = gsym->final_value_is_known();
6799 	const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6800 	if (tls_type == tls::TLSOPT_NONE)
6801 	  {
6802 	    if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6803 	      {
6804 		Output_data_got_powerpc<size, big_endian>* got
6805 		  = target->got_section(symtab, layout);
6806 		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6807 		if (gsym->is_undefined()
6808 		    || gsym->is_from_dynobj())
6809 		  {
6810 		    got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6811 					     elfcpp::R_POWERPC_TPREL);
6812 		  }
6813 		else
6814 		  {
6815 		    unsigned int off = got->add_constant(0);
6816 		    gsym->set_got_offset(GOT_TYPE_TPREL, off);
6817 		    unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6818 		    rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6819 							   got, off, 0);
6820 		  }
6821 	      }
6822 	  }
6823 	else if (tls_type == tls::TLSOPT_TO_LE)
6824 	  {
6825 	    // no GOT relocs needed for Local Exec.
6826 	  }
6827 	else
6828 	  gold_unreachable();
6829       }
6830       break;
6831 
6832     default:
6833       unsupported_reloc_global(object, r_type, gsym);
6834       break;
6835     }
6836 
6837   if (size == 64
6838       && parameters->options().toc_optimize())
6839     {
6840       if (data_shndx == ppc_object->toc_shndx())
6841 	{
6842 	  bool ok = true;
6843 	  if (r_type != elfcpp::R_PPC64_ADDR64
6844 	      || (is_ifunc && target->abiversion() < 2))
6845 	    ok = false;
6846 	  else if (parameters->options().output_is_position_independent()
6847 		   && (is_ifunc || gsym->is_absolute() || gsym->is_undefined()))
6848 	    ok = false;
6849 	  if (!ok)
6850 	    ppc_object->set_no_toc_opt(reloc.get_r_offset());
6851 	}
6852 
6853       enum {no_check, check_lo, check_ha} insn_check;
6854       switch (r_type)
6855 	{
6856 	default:
6857 	  insn_check = no_check;
6858 	  break;
6859 
6860 	case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6861 	case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6862 	case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6863 	case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6864 	case elfcpp::R_POWERPC_GOT16_HA:
6865 	case elfcpp::R_PPC64_TOC16_HA:
6866 	  insn_check = check_ha;
6867 	  break;
6868 
6869 	case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6870 	case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6871 	case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6872 	case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6873 	case elfcpp::R_POWERPC_GOT16_LO:
6874 	case elfcpp::R_PPC64_GOT16_LO_DS:
6875 	case elfcpp::R_PPC64_TOC16_LO:
6876 	case elfcpp::R_PPC64_TOC16_LO_DS:
6877 	  insn_check = check_lo;
6878 	  break;
6879 	}
6880 
6881       section_size_type slen;
6882       const unsigned char* view = NULL;
6883       if (insn_check != no_check)
6884 	{
6885 	  view = ppc_object->section_contents(data_shndx, &slen, false);
6886 	  section_size_type off =
6887 	    convert_to_section_size_type(reloc.get_r_offset()) & -4;
6888 	  if (off < slen)
6889 	    {
6890 	      uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
6891 	      if (insn_check == check_lo
6892 		  ? !ok_lo_toc_insn(insn, r_type)
6893 		  : ((insn & ((0x3f << 26) | 0x1f << 16))
6894 		     != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
6895 		{
6896 		  ppc_object->set_no_toc_opt();
6897 		  gold_warning(_("%s: toc optimization is not supported "
6898 				 "for %#08x instruction"),
6899 			       ppc_object->name().c_str(), insn);
6900 		}
6901 	    }
6902 	}
6903 
6904       switch (r_type)
6905 	{
6906 	default:
6907 	  break;
6908 	case elfcpp::R_PPC64_TOC16:
6909 	case elfcpp::R_PPC64_TOC16_LO:
6910 	case elfcpp::R_PPC64_TOC16_HI:
6911 	case elfcpp::R_PPC64_TOC16_HA:
6912 	case elfcpp::R_PPC64_TOC16_DS:
6913 	case elfcpp::R_PPC64_TOC16_LO_DS:
6914 	  if (gsym->source() == Symbol::FROM_OBJECT
6915 	      && !gsym->object()->is_dynamic())
6916 	    {
6917 	      Powerpc_relobj<size, big_endian>* sym_object
6918 		= static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6919 	      bool is_ordinary;
6920 	      unsigned int shndx = gsym->shndx(&is_ordinary);
6921 	      if (shndx == sym_object->toc_shndx())
6922 		{
6923 		  Sized_symbol<size>* sym = symtab->get_sized_symbol<size>(gsym);
6924 		  Address dst_off = sym->value() + reloc.get_r_offset();
6925 		  if (dst_off < sym_object->section_size(shndx))
6926 		    {
6927 		      bool ok = false;
6928 		      if (r_type == elfcpp::R_PPC64_TOC16_HA)
6929 			ok = true;
6930 		      else if (r_type == elfcpp::R_PPC64_TOC16_LO_DS)
6931 			{
6932 			  // Need to check that the insn is a ld
6933 			  if (!view)
6934 			    view = ppc_object->section_contents(data_shndx,
6935 								&slen,
6936 								false);
6937 			  section_size_type off =
6938 			    (convert_to_section_size_type(reloc.get_r_offset())
6939 			     + (big_endian ? -2 : 3));
6940 			  if (off < slen
6941 			      && (view[off] & (0x3f << 2)) == (58u << 2))
6942 			    ok = true;
6943 			}
6944 		      if (!ok)
6945 			sym_object->set_no_toc_opt(dst_off);
6946 		    }
6947 		}
6948 	    }
6949 	  break;
6950 	}
6951     }
6952 
6953   if (size == 32)
6954     {
6955       switch (r_type)
6956 	{
6957 	case elfcpp::R_PPC_LOCAL24PC:
6958 	  if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
6959 	    gold_error(_("%s: unsupported -mbss-plt code"),
6960 		       ppc_object->name().c_str());
6961 	  break;
6962 	default:
6963 	  break;
6964 	}
6965     }
6966 
6967   switch (r_type)
6968     {
6969     case elfcpp::R_POWERPC_GOT_TLSLD16:
6970     case elfcpp::R_POWERPC_GOT_TLSGD16:
6971     case elfcpp::R_POWERPC_GOT_TPREL16:
6972     case elfcpp::R_POWERPC_GOT_DTPREL16:
6973     case elfcpp::R_POWERPC_GOT16:
6974     case elfcpp::R_PPC64_GOT16_DS:
6975     case elfcpp::R_PPC64_TOC16:
6976     case elfcpp::R_PPC64_TOC16_DS:
6977       ppc_object->set_has_small_toc_reloc();
6978     default:
6979       break;
6980     }
6981 }
6982 
6983 // Process relocations for gc.
6984 
6985 template<int size, bool big_endian>
6986 void
gc_process_relocs(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,unsigned int,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,size_t local_symbol_count,const unsigned char * plocal_symbols)6987 Target_powerpc<size, big_endian>::gc_process_relocs(
6988     Symbol_table* symtab,
6989     Layout* layout,
6990     Sized_relobj_file<size, big_endian>* object,
6991     unsigned int data_shndx,
6992     unsigned int,
6993     const unsigned char* prelocs,
6994     size_t reloc_count,
6995     Output_section* output_section,
6996     bool needs_special_offset_handling,
6997     size_t local_symbol_count,
6998     const unsigned char* plocal_symbols)
6999 {
7000   typedef Target_powerpc<size, big_endian> Powerpc;
7001   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
7002       Classify_reloc;
7003 
7004   Powerpc_relobj<size, big_endian>* ppc_object
7005     = static_cast<Powerpc_relobj<size, big_endian>*>(object);
7006   if (size == 64)
7007     ppc_object->set_opd_valid();
7008   if (size == 64 && data_shndx == ppc_object->opd_shndx())
7009     {
7010       typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
7011       for (p = ppc_object->access_from_map()->begin();
7012 	   p != ppc_object->access_from_map()->end();
7013 	   ++p)
7014 	{
7015 	  Address dst_off = p->first;
7016 	  unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
7017 	  typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
7018 	  for (s = p->second.begin(); s != p->second.end(); ++s)
7019 	    {
7020 	      Relobj* src_obj = s->first;
7021 	      unsigned int src_indx = s->second;
7022 	      symtab->gc()->add_reference(src_obj, src_indx,
7023 					  ppc_object, dst_indx);
7024 	    }
7025 	  p->second.clear();
7026 	}
7027       ppc_object->access_from_map()->clear();
7028       ppc_object->process_gc_mark(symtab);
7029       // Don't look at .opd relocs as .opd will reference everything.
7030       return;
7031     }
7032 
7033   gold::gc_process_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
7034     symtab,
7035     layout,
7036     this,
7037     object,
7038     data_shndx,
7039     prelocs,
7040     reloc_count,
7041     output_section,
7042     needs_special_offset_handling,
7043     local_symbol_count,
7044     plocal_symbols);
7045 }
7046 
7047 // Handle target specific gc actions when adding a gc reference from
7048 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
7049 // and DST_OFF.  For powerpc64, this adds a referenc to the code
7050 // section of a function descriptor.
7051 
7052 template<int size, bool big_endian>
7053 void
do_gc_add_reference(Symbol_table * symtab,Relobj * src_obj,unsigned int src_shndx,Relobj * dst_obj,unsigned int dst_shndx,Address dst_off) const7054 Target_powerpc<size, big_endian>::do_gc_add_reference(
7055     Symbol_table* symtab,
7056     Relobj* src_obj,
7057     unsigned int src_shndx,
7058     Relobj* dst_obj,
7059     unsigned int dst_shndx,
7060     Address dst_off) const
7061 {
7062   if (size != 64 || dst_obj->is_dynamic())
7063     return;
7064 
7065   Powerpc_relobj<size, big_endian>* ppc_object
7066     = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
7067   if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
7068     {
7069       if (ppc_object->opd_valid())
7070 	{
7071 	  dst_shndx = ppc_object->get_opd_ent(dst_off);
7072 	  symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
7073 	}
7074       else
7075 	{
7076 	  // If we haven't run scan_opd_relocs, we must delay
7077 	  // processing this function descriptor reference.
7078 	  ppc_object->add_reference(src_obj, src_shndx, dst_off);
7079 	}
7080     }
7081 }
7082 
7083 // Add any special sections for this symbol to the gc work list.
7084 // For powerpc64, this adds the code section of a function
7085 // descriptor.
7086 
7087 template<int size, bool big_endian>
7088 void
do_gc_mark_symbol(Symbol_table * symtab,Symbol * sym) const7089 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
7090     Symbol_table* symtab,
7091     Symbol* sym) const
7092 {
7093   if (size == 64)
7094     {
7095       Powerpc_relobj<size, big_endian>* ppc_object
7096 	= static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
7097       bool is_ordinary;
7098       unsigned int shndx = sym->shndx(&is_ordinary);
7099       if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
7100 	{
7101 	  Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
7102 	  Address dst_off = gsym->value();
7103 	  if (ppc_object->opd_valid())
7104 	    {
7105 	      unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
7106 	      symtab->gc()->worklist().push_back(Section_id(ppc_object,
7107                                                             dst_indx));
7108 	    }
7109 	  else
7110 	    ppc_object->add_gc_mark(dst_off);
7111 	}
7112     }
7113 }
7114 
7115 // For a symbol location in .opd, set LOC to the location of the
7116 // function entry.
7117 
7118 template<int size, bool big_endian>
7119 void
do_function_location(Symbol_location * loc) const7120 Target_powerpc<size, big_endian>::do_function_location(
7121     Symbol_location* loc) const
7122 {
7123   if (size == 64 && loc->shndx != 0)
7124     {
7125       if (loc->object->is_dynamic())
7126 	{
7127 	  Powerpc_dynobj<size, big_endian>* ppc_object
7128 	    = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
7129 	  if (loc->shndx == ppc_object->opd_shndx())
7130 	    {
7131 	      Address dest_off;
7132 	      Address off = loc->offset - ppc_object->opd_address();
7133 	      loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
7134 	      loc->offset = dest_off;
7135 	    }
7136 	}
7137       else
7138 	{
7139 	  const Powerpc_relobj<size, big_endian>* ppc_object
7140 	    = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
7141 	  if (loc->shndx == ppc_object->opd_shndx())
7142 	    {
7143 	      Address dest_off;
7144 	      loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
7145 	      loc->offset = dest_off;
7146 	    }
7147 	}
7148     }
7149 }
7150 
7151 // FNOFFSET in section SHNDX in OBJECT is the start of a function
7152 // compiled with -fsplit-stack.  The function calls non-split-stack
7153 // code.  Change the function to ensure it has enough stack space to
7154 // call some random function.
7155 
7156 template<int size, bool big_endian>
7157 void
do_calls_non_split(Relobj * object,unsigned int shndx,section_offset_type fnoffset,section_size_type fnsize,const unsigned char * prelocs,size_t reloc_count,unsigned char * view,section_size_type view_size,std::string * from,std::string * to) const7158 Target_powerpc<size, big_endian>::do_calls_non_split(
7159     Relobj* object,
7160     unsigned int shndx,
7161     section_offset_type fnoffset,
7162     section_size_type fnsize,
7163     const unsigned char* prelocs,
7164     size_t reloc_count,
7165     unsigned char* view,
7166     section_size_type view_size,
7167     std::string* from,
7168     std::string* to) const
7169 {
7170   // 32-bit not supported.
7171   if (size == 32)
7172     {
7173       // warn
7174       Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
7175 				 prelocs, reloc_count, view, view_size,
7176 				 from, to);
7177       return;
7178     }
7179 
7180   // The function always starts with
7181   //	ld %r0,-0x7000-64(%r13)  # tcbhead_t.__private_ss
7182   //	addis %r12,%r1,-allocate@ha
7183   //	addi %r12,%r12,-allocate@l
7184   //	cmpld %r12,%r0
7185   // but note that the addis or addi may be replaced with a nop
7186 
7187   unsigned char *entry = view + fnoffset;
7188   uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
7189 
7190   if ((insn & 0xffff0000) == addis_2_12)
7191     {
7192       /* Skip ELFv2 global entry code.  */
7193       entry += 8;
7194       insn = elfcpp::Swap<32, big_endian>::readval(entry);
7195     }
7196 
7197   unsigned char *pinsn = entry;
7198   bool ok = false;
7199   const uint32_t ld_private_ss = 0xe80d8fc0;
7200   if (insn == ld_private_ss)
7201     {
7202       int32_t allocate = 0;
7203       while (1)
7204 	{
7205 	  pinsn += 4;
7206 	  insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
7207 	  if ((insn & 0xffff0000) == addis_12_1)
7208 	    allocate += (insn & 0xffff) << 16;
7209 	  else if ((insn & 0xffff0000) == addi_12_1
7210 		   || (insn & 0xffff0000) == addi_12_12)
7211 	    allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
7212 	  else if (insn != nop)
7213 	    break;
7214 	}
7215       if (insn == cmpld_7_12_0 && pinsn == entry + 12)
7216 	{
7217 	  int extra = parameters->options().split_stack_adjust_size();
7218 	  allocate -= extra;
7219 	  if (allocate >= 0 || extra < 0)
7220 	    {
7221 	      object->error(_("split-stack stack size overflow at "
7222 			      "section %u offset %0zx"),
7223 			    shndx, static_cast<size_t>(fnoffset));
7224 	      return;
7225 	    }
7226 	  pinsn = entry + 4;
7227 	  insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
7228 	  if (insn != addis_12_1)
7229 	    {
7230 	      elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
7231 	      pinsn += 4;
7232 	      insn = addi_12_12 | (allocate & 0xffff);
7233 	      if (insn != addi_12_12)
7234 		{
7235 		  elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
7236 		  pinsn += 4;
7237 		}
7238 	    }
7239 	  else
7240 	    {
7241 	      insn = addi_12_1 | (allocate & 0xffff);
7242 	      elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
7243 	      pinsn += 4;
7244 	    }
7245 	  if (pinsn != entry + 12)
7246 	    elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
7247 
7248 	  ok = true;
7249 	}
7250     }
7251 
7252   if (!ok)
7253     {
7254       if (!object->has_no_split_stack())
7255 	object->error(_("failed to match split-stack sequence at "
7256 			"section %u offset %0zx"),
7257 		      shndx, static_cast<size_t>(fnoffset));
7258     }
7259 }
7260 
7261 // Scan relocations for a section.
7262 
7263 template<int size, bool big_endian>
7264 void
scan_relocs(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,size_t local_symbol_count,const unsigned char * plocal_symbols)7265 Target_powerpc<size, big_endian>::scan_relocs(
7266     Symbol_table* symtab,
7267     Layout* layout,
7268     Sized_relobj_file<size, big_endian>* object,
7269     unsigned int data_shndx,
7270     unsigned int sh_type,
7271     const unsigned char* prelocs,
7272     size_t reloc_count,
7273     Output_section* output_section,
7274     bool needs_special_offset_handling,
7275     size_t local_symbol_count,
7276     const unsigned char* plocal_symbols)
7277 {
7278   typedef Target_powerpc<size, big_endian> Powerpc;
7279   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
7280       Classify_reloc;
7281 
7282   if (sh_type == elfcpp::SHT_REL)
7283     {
7284       gold_error(_("%s: unsupported REL reloc section"),
7285 		 object->name().c_str());
7286       return;
7287     }
7288 
7289   gold::scan_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
7290     symtab,
7291     layout,
7292     this,
7293     object,
7294     data_shndx,
7295     prelocs,
7296     reloc_count,
7297     output_section,
7298     needs_special_offset_handling,
7299     local_symbol_count,
7300     plocal_symbols);
7301 }
7302 
7303 // Functor class for processing the global symbol table.
7304 // Removes symbols defined on discarded opd entries.
7305 
7306 template<bool big_endian>
7307 class Global_symbol_visitor_opd
7308 {
7309  public:
Global_symbol_visitor_opd()7310   Global_symbol_visitor_opd()
7311   { }
7312 
7313   void
operator ()(Sized_symbol<64> * sym)7314   operator()(Sized_symbol<64>* sym)
7315   {
7316     if (sym->has_symtab_index()
7317 	|| sym->source() != Symbol::FROM_OBJECT
7318 	|| !sym->in_real_elf())
7319       return;
7320 
7321     if (sym->object()->is_dynamic())
7322       return;
7323 
7324     Powerpc_relobj<64, big_endian>* symobj
7325       = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
7326     if (symobj->opd_shndx() == 0)
7327       return;
7328 
7329     bool is_ordinary;
7330     unsigned int shndx = sym->shndx(&is_ordinary);
7331     if (shndx == symobj->opd_shndx()
7332 	&& symobj->get_opd_discard(sym->value()))
7333       {
7334 	sym->set_undefined();
7335 	sym->set_visibility(elfcpp::STV_DEFAULT);
7336 	sym->set_is_defined_in_discarded_section();
7337 	sym->set_symtab_index(-1U);
7338       }
7339   }
7340 };
7341 
7342 template<int size, bool big_endian>
7343 void
define_save_restore_funcs(Layout * layout,Symbol_table * symtab)7344 Target_powerpc<size, big_endian>::define_save_restore_funcs(
7345     Layout* layout,
7346     Symbol_table* symtab)
7347 {
7348   if (size == 64)
7349     {
7350       Output_data_save_res<size, big_endian>* savres
7351 	= new Output_data_save_res<size, big_endian>(symtab);
7352       this->savres_section_ = savres;
7353       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
7354 				      elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
7355 				      savres, ORDER_TEXT, false);
7356     }
7357 }
7358 
7359 // Sort linker created .got section first (for the header), then input
7360 // sections belonging to files using small model code.
7361 
7362 template<bool big_endian>
7363 class Sort_toc_sections
7364 {
7365  public:
7366   bool
operator ()(const Output_section::Input_section & is1,const Output_section::Input_section & is2) const7367   operator()(const Output_section::Input_section& is1,
7368 	     const Output_section::Input_section& is2) const
7369   {
7370     if (!is1.is_input_section() && is2.is_input_section())
7371       return true;
7372     bool small1
7373       = (is1.is_input_section()
7374 	 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
7375 	     ->has_small_toc_reloc()));
7376     bool small2
7377       = (is2.is_input_section()
7378 	 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
7379 	     ->has_small_toc_reloc()));
7380     return small1 && !small2;
7381   }
7382 };
7383 
7384 // Finalize the sections.
7385 
7386 template<int size, bool big_endian>
7387 void
do_finalize_sections(Layout * layout,const Input_objects *,Symbol_table * symtab)7388 Target_powerpc<size, big_endian>::do_finalize_sections(
7389     Layout* layout,
7390     const Input_objects*,
7391     Symbol_table* symtab)
7392 {
7393   if (parameters->doing_static_link())
7394     {
7395       // At least some versions of glibc elf-init.o have a strong
7396       // reference to __rela_iplt marker syms.  A weak ref would be
7397       // better..
7398       if (this->iplt_ != NULL)
7399 	{
7400 	  Reloc_section* rel = this->iplt_->rel_plt();
7401 	  symtab->define_in_output_data("__rela_iplt_start", NULL,
7402 					Symbol_table::PREDEFINED, rel, 0, 0,
7403 					elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7404 					elfcpp::STV_HIDDEN, 0, false, true);
7405 	  symtab->define_in_output_data("__rela_iplt_end", NULL,
7406 					Symbol_table::PREDEFINED, rel, 0, 0,
7407 					elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7408 					elfcpp::STV_HIDDEN, 0, true, true);
7409 	}
7410       else
7411 	{
7412 	  symtab->define_as_constant("__rela_iplt_start", NULL,
7413 				     Symbol_table::PREDEFINED, 0, 0,
7414 				     elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7415 				     elfcpp::STV_HIDDEN, 0, true, false);
7416 	  symtab->define_as_constant("__rela_iplt_end", NULL,
7417 				     Symbol_table::PREDEFINED, 0, 0,
7418 				     elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7419 				     elfcpp::STV_HIDDEN, 0, true, false);
7420 	}
7421     }
7422 
7423   if (size == 64)
7424     {
7425       typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
7426       symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
7427 
7428       if (!parameters->options().relocatable())
7429 	{
7430 	  this->define_save_restore_funcs(layout, symtab);
7431 
7432 	  // Annoyingly, we need to make these sections now whether or
7433 	  // not we need them.  If we delay until do_relax then we
7434 	  // need to mess with the relaxation machinery checkpointing.
7435 	  this->got_section(symtab, layout);
7436 	  this->make_brlt_section(layout);
7437 
7438 	  if (parameters->options().toc_sort())
7439 	    {
7440 	      Output_section* os = this->got_->output_section();
7441 	      if (os != NULL && os->input_sections().size() > 1)
7442 		std::stable_sort(os->input_sections().begin(),
7443 				 os->input_sections().end(),
7444 				 Sort_toc_sections<big_endian>());
7445 	    }
7446 	}
7447     }
7448 
7449   // Fill in some more dynamic tags.
7450   Output_data_dynamic* odyn = layout->dynamic_data();
7451   if (odyn != NULL)
7452     {
7453       const Reloc_section* rel_plt = (this->plt_ == NULL
7454 				      ? NULL
7455 				      : this->plt_->rel_plt());
7456       layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
7457 				      this->rela_dyn_, true, size == 32);
7458 
7459       if (size == 32)
7460 	{
7461 	  if (this->got_ != NULL)
7462 	    {
7463 	      this->got_->finalize_data_size();
7464 	      odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
7465 					    this->got_, this->got_->g_o_t());
7466 	    }
7467 	}
7468       else
7469 	{
7470 	  if (this->glink_ != NULL)
7471 	    {
7472 	      this->glink_->finalize_data_size();
7473 	      odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
7474 					    this->glink_,
7475 					    (this->glink_->pltresolve_size
7476 					     - 32));
7477 	    }
7478 	}
7479     }
7480 
7481   // Emit any relocs we saved in an attempt to avoid generating COPY
7482   // relocs.
7483   if (this->copy_relocs_.any_saved_relocs())
7484     this->copy_relocs_.emit(this->rela_dyn_section(layout));
7485 }
7486 
7487 // Emit any saved relocs, and mark toc entries using any of these
7488 // relocs as not optimizable.
7489 
7490 template<int sh_type, int size, bool big_endian>
7491 void
emit(Output_data_reloc<sh_type,true,size,big_endian> * reloc_section)7492 Powerpc_copy_relocs<sh_type, size, big_endian>::emit(
7493     Output_data_reloc<sh_type, true, size, big_endian>* reloc_section)
7494 {
7495   if (size == 64
7496       && parameters->options().toc_optimize())
7497     {
7498       for (typename Copy_relocs<sh_type, size, big_endian>::
7499 	     Copy_reloc_entries::iterator p = this->entries_.begin();
7500 	   p != this->entries_.end();
7501 	   ++p)
7502 	{
7503 	  typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry&
7504 	    entry = *p;
7505 
7506 	  // If the symbol is no longer defined in a dynamic object,
7507 	  // then we emitted a COPY relocation.  If it is still
7508 	  // dynamic then we'll need dynamic relocations and thus
7509 	  // can't optimize toc entries.
7510 	  if (entry.sym_->is_from_dynobj())
7511 	    {
7512 	      Powerpc_relobj<size, big_endian>* ppc_object
7513 		= static_cast<Powerpc_relobj<size, big_endian>*>(entry.relobj_);
7514 	      if (entry.shndx_ == ppc_object->toc_shndx())
7515 		ppc_object->set_no_toc_opt(entry.address_);
7516 	    }
7517 	}
7518     }
7519 
7520   Copy_relocs<sh_type, size, big_endian>::emit(reloc_section);
7521 }
7522 
7523 // Return the value to use for a branch relocation.
7524 
7525 template<int size, bool big_endian>
7526 bool
symval_for_branch(const Symbol_table * symtab,const Sized_symbol<size> * gsym,Powerpc_relobj<size,big_endian> * object,Address * value,unsigned int * dest_shndx)7527 Target_powerpc<size, big_endian>::symval_for_branch(
7528     const Symbol_table* symtab,
7529     const Sized_symbol<size>* gsym,
7530     Powerpc_relobj<size, big_endian>* object,
7531     Address *value,
7532     unsigned int *dest_shndx)
7533 {
7534   if (size == 32 || this->abiversion() >= 2)
7535     gold_unreachable();
7536   *dest_shndx = 0;
7537 
7538   // If the symbol is defined in an opd section, ie. is a function
7539   // descriptor, use the function descriptor code entry address
7540   Powerpc_relobj<size, big_endian>* symobj = object;
7541   if (gsym != NULL
7542       && (gsym->source() != Symbol::FROM_OBJECT
7543 	  || gsym->object()->is_dynamic()))
7544     return true;
7545   if (gsym != NULL)
7546     symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
7547   unsigned int shndx = symobj->opd_shndx();
7548   if (shndx == 0)
7549     return true;
7550   Address opd_addr = symobj->get_output_section_offset(shndx);
7551   if (opd_addr == invalid_address)
7552     return true;
7553   opd_addr += symobj->output_section_address(shndx);
7554   if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
7555     {
7556       Address sec_off;
7557       *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
7558       if (symtab->is_section_folded(symobj, *dest_shndx))
7559 	{
7560 	  Section_id folded
7561 	    = symtab->icf()->get_folded_section(symobj, *dest_shndx);
7562 	  symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
7563 	  *dest_shndx = folded.second;
7564 	}
7565       Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
7566       if (sec_addr == invalid_address)
7567 	return false;
7568 
7569       sec_addr += symobj->output_section(*dest_shndx)->address();
7570       *value = sec_addr + sec_off;
7571     }
7572   return true;
7573 }
7574 
7575 // Perform a relocation.
7576 
7577 template<int size, bool big_endian>
7578 inline bool
relocate(const Relocate_info<size,big_endian> * relinfo,unsigned int,Target_powerpc * target,Output_section * os,size_t relnum,const unsigned char * preloc,const Sized_symbol<size> * gsym,const Symbol_value<size> * psymval,unsigned char * view,Address address,section_size_type view_size)7579 Target_powerpc<size, big_endian>::Relocate::relocate(
7580     const Relocate_info<size, big_endian>* relinfo,
7581     unsigned int,
7582     Target_powerpc* target,
7583     Output_section* os,
7584     size_t relnum,
7585     const unsigned char* preloc,
7586     const Sized_symbol<size>* gsym,
7587     const Symbol_value<size>* psymval,
7588     unsigned char* view,
7589     Address address,
7590     section_size_type view_size)
7591 {
7592   if (view == NULL)
7593     return true;
7594 
7595   const elfcpp::Rela<size, big_endian> rela(preloc);
7596   unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
7597   switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
7598     {
7599     case Track_tls::NOT_EXPECTED:
7600       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7601 			     _("__tls_get_addr call lacks marker reloc"));
7602       break;
7603     case Track_tls::EXPECTED:
7604       // We have already complained.
7605       break;
7606     case Track_tls::SKIP:
7607       return true;
7608     case Track_tls::NORMAL:
7609       break;
7610     }
7611 
7612   typedef Powerpc_relocate_functions<size, big_endian> Reloc;
7613   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
7614   typedef typename elfcpp::Rela<size, big_endian> Reltype;
7615   // Offset from start of insn to d-field reloc.
7616   const int d_offset = big_endian ? 2 : 0;
7617 
7618   Powerpc_relobj<size, big_endian>* const object
7619     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7620   Address value = 0;
7621   bool has_stub_value = false;
7622   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7623   if ((gsym != NULL
7624        ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
7625        : object->local_has_plt_offset(r_sym))
7626       && (!psymval->is_ifunc_symbol()
7627 	  || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
7628     {
7629       if (size == 64
7630 	  && gsym != NULL
7631 	  && target->abiversion() >= 2
7632 	  && !parameters->options().output_is_position_independent()
7633 	  && !is_branch_reloc(r_type))
7634 	{
7635 	  Address off = target->glink_section()->find_global_entry(gsym);
7636 	  if (off != invalid_address)
7637 	    {
7638 	      value = target->glink_section()->global_entry_address() + off;
7639 	      has_stub_value = true;
7640 	    }
7641 	}
7642       else
7643 	{
7644 	  Stub_table<size, big_endian>* stub_table
7645 	    = object->stub_table(relinfo->data_shndx);
7646 	  if (stub_table == NULL)
7647 	    {
7648 	      // This is a ref from a data section to an ifunc symbol.
7649 	      if (target->stub_tables().size() != 0)
7650 		stub_table = target->stub_tables()[0];
7651 	    }
7652 	  if (stub_table != NULL)
7653 	    {
7654 	      Address off;
7655 	      if (gsym != NULL)
7656 		off = stub_table->find_plt_call_entry(object, gsym, r_type,
7657 						      rela.get_r_addend());
7658 	      else
7659 		off = stub_table->find_plt_call_entry(object, r_sym, r_type,
7660 						      rela.get_r_addend());
7661 	      if (off != invalid_address)
7662 		{
7663 		  value = stub_table->stub_address() + off;
7664 		  has_stub_value = true;
7665 		}
7666 	    }
7667 	}
7668       // We don't care too much about bogus debug references to
7669       // non-local functions, but otherwise there had better be a plt
7670       // call stub or global entry stub as appropriate.
7671       gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
7672     }
7673 
7674   if (r_type == elfcpp::R_POWERPC_GOT16
7675       || r_type == elfcpp::R_POWERPC_GOT16_LO
7676       || r_type == elfcpp::R_POWERPC_GOT16_HI
7677       || r_type == elfcpp::R_POWERPC_GOT16_HA
7678       || r_type == elfcpp::R_PPC64_GOT16_DS
7679       || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
7680     {
7681       if (gsym != NULL)
7682 	{
7683 	  gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
7684 	  value = gsym->got_offset(GOT_TYPE_STANDARD);
7685 	}
7686       else
7687 	{
7688 	  gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
7689 	  value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
7690 	}
7691       value -= target->got_section()->got_base_offset(object);
7692     }
7693   else if (r_type == elfcpp::R_PPC64_TOC)
7694     {
7695       value = (target->got_section()->output_section()->address()
7696 	       + object->toc_base_offset());
7697     }
7698   else if (gsym != NULL
7699 	   && (r_type == elfcpp::R_POWERPC_REL24
7700 	       || r_type == elfcpp::R_PPC_PLTREL24)
7701 	   && has_stub_value)
7702     {
7703       if (size == 64)
7704 	{
7705 	  typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7706 	  Valtype* wv = reinterpret_cast<Valtype*>(view);
7707 	  bool can_plt_call = false;
7708 	  if (rela.get_r_offset() + 8 <= view_size)
7709 	    {
7710 	      Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
7711 	      Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
7712 	      if ((insn & 1) != 0
7713 		  && (insn2 == nop
7714 		      || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
7715 		{
7716 		  elfcpp::Swap<32, big_endian>::
7717 		    writeval(wv + 1, ld_2_1 + target->stk_toc());
7718 		  can_plt_call = true;
7719 		}
7720 	    }
7721 	  if (!can_plt_call)
7722 	    {
7723 	      // If we don't have a branch and link followed by a nop,
7724 	      // we can't go via the plt because there is no place to
7725 	      // put a toc restoring instruction.
7726 	      // Unless we know we won't be returning.
7727 	      if (strcmp(gsym->name(), "__libc_start_main") == 0)
7728 		can_plt_call = true;
7729 	    }
7730 	  if (!can_plt_call)
7731 	    {
7732 	      // g++ as of 20130507 emits self-calls without a
7733 	      // following nop.  This is arguably wrong since we have
7734 	      // conflicting information.  On the one hand a global
7735 	      // symbol and on the other a local call sequence, but
7736 	      // don't error for this special case.
7737 	      // It isn't possible to cheaply verify we have exactly
7738 	      // such a call.  Allow all calls to the same section.
7739 	      bool ok = false;
7740 	      Address code = value;
7741 	      if (gsym->source() == Symbol::FROM_OBJECT
7742 		  && gsym->object() == object)
7743 		{
7744 		  unsigned int dest_shndx = 0;
7745 		  if (target->abiversion() < 2)
7746 		    {
7747 		      Address addend = rela.get_r_addend();
7748 		      code = psymval->value(object, addend);
7749 		      target->symval_for_branch(relinfo->symtab, gsym, object,
7750 						&code, &dest_shndx);
7751 		    }
7752 		  bool is_ordinary;
7753 		  if (dest_shndx == 0)
7754 		    dest_shndx = gsym->shndx(&is_ordinary);
7755 		  ok = dest_shndx == relinfo->data_shndx;
7756 		}
7757 	      if (!ok)
7758 		{
7759 		  gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7760 					 _("call lacks nop, can't restore toc; "
7761 					   "recompile with -fPIC"));
7762 		  value = code;
7763 		}
7764 	    }
7765 	}
7766     }
7767   else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7768 	   || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7769 	   || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7770 	   || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7771     {
7772       // First instruction of a global dynamic sequence, arg setup insn.
7773       const bool final = gsym == NULL || gsym->final_value_is_known();
7774       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7775       enum Got_type got_type = GOT_TYPE_STANDARD;
7776       if (tls_type == tls::TLSOPT_NONE)
7777 	got_type = GOT_TYPE_TLSGD;
7778       else if (tls_type == tls::TLSOPT_TO_IE)
7779 	got_type = GOT_TYPE_TPREL;
7780       if (got_type != GOT_TYPE_STANDARD)
7781 	{
7782 	  if (gsym != NULL)
7783 	    {
7784 	      gold_assert(gsym->has_got_offset(got_type));
7785 	      value = gsym->got_offset(got_type);
7786 	    }
7787 	  else
7788 	    {
7789 	      gold_assert(object->local_has_got_offset(r_sym, got_type));
7790 	      value = object->local_got_offset(r_sym, got_type);
7791 	    }
7792 	  value -= target->got_section()->got_base_offset(object);
7793 	}
7794       if (tls_type == tls::TLSOPT_TO_IE)
7795 	{
7796 	  if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7797 	      || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7798 	    {
7799 	      Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7800 	      Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7801 	      insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
7802 	      if (size == 32)
7803 		insn |= 32 << 26; // lwz
7804 	      else
7805 		insn |= 58 << 26; // ld
7806 	      elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7807 	    }
7808 	  r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7809 		     - elfcpp::R_POWERPC_GOT_TLSGD16);
7810 	}
7811       else if (tls_type == tls::TLSOPT_TO_LE)
7812 	{
7813 	  if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7814 	      || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7815 	    {
7816 	      Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7817 	      Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7818 	      insn &= (1 << 26) - (1 << 21); // extract rt
7819 	      if (size == 32)
7820 		insn |= addis_0_2;
7821 	      else
7822 		insn |= addis_0_13;
7823 	      elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7824 	      r_type = elfcpp::R_POWERPC_TPREL16_HA;
7825 	      value = psymval->value(object, rela.get_r_addend());
7826 	    }
7827 	  else
7828 	    {
7829 	      Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7830 	      Insn insn = nop;
7831 	      elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7832 	      r_type = elfcpp::R_POWERPC_NONE;
7833 	    }
7834 	}
7835     }
7836   else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7837 	   || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7838 	   || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7839 	   || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7840     {
7841       // First instruction of a local dynamic sequence, arg setup insn.
7842       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7843       if (tls_type == tls::TLSOPT_NONE)
7844 	{
7845 	  value = target->tlsld_got_offset();
7846 	  value -= target->got_section()->got_base_offset(object);
7847 	}
7848       else
7849 	{
7850 	  gold_assert(tls_type == tls::TLSOPT_TO_LE);
7851 	  if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7852 	      || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7853 	    {
7854 	      Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7855 	      Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7856 	      insn &= (1 << 26) - (1 << 21); // extract rt
7857 	      if (size == 32)
7858 		insn |= addis_0_2;
7859 	      else
7860 		insn |= addis_0_13;
7861 	      elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7862 	      r_type = elfcpp::R_POWERPC_TPREL16_HA;
7863 	      value = dtp_offset;
7864 	    }
7865 	  else
7866 	    {
7867 	      Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7868 	      Insn insn = nop;
7869 	      elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7870 	      r_type = elfcpp::R_POWERPC_NONE;
7871 	    }
7872 	}
7873     }
7874   else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
7875 	   || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
7876 	   || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
7877 	   || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
7878     {
7879       // Accesses relative to a local dynamic sequence address,
7880       // no optimisation here.
7881       if (gsym != NULL)
7882 	{
7883 	  gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
7884 	  value = gsym->got_offset(GOT_TYPE_DTPREL);
7885 	}
7886       else
7887 	{
7888 	  gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
7889 	  value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
7890 	}
7891       value -= target->got_section()->got_base_offset(object);
7892     }
7893   else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7894 	   || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7895 	   || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7896 	   || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7897     {
7898       // First instruction of initial exec sequence.
7899       const bool final = gsym == NULL || gsym->final_value_is_known();
7900       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7901       if (tls_type == tls::TLSOPT_NONE)
7902 	{
7903 	  if (gsym != NULL)
7904 	    {
7905 	      gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
7906 	      value = gsym->got_offset(GOT_TYPE_TPREL);
7907 	    }
7908 	  else
7909 	    {
7910 	      gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
7911 	      value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
7912 	    }
7913 	  value -= target->got_section()->got_base_offset(object);
7914 	}
7915       else
7916 	{
7917 	  gold_assert(tls_type == tls::TLSOPT_TO_LE);
7918 	  if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7919 	      || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7920 	    {
7921 	      Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7922 	      Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7923 	      insn &= (1 << 26) - (1 << 21); // extract rt from ld
7924 	      if (size == 32)
7925 		insn |= addis_0_2;
7926 	      else
7927 		insn |= addis_0_13;
7928 	      elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7929 	      r_type = elfcpp::R_POWERPC_TPREL16_HA;
7930 	      value = psymval->value(object, rela.get_r_addend());
7931 	    }
7932 	  else
7933 	    {
7934 	      Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7935 	      Insn insn = nop;
7936 	      elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7937 	      r_type = elfcpp::R_POWERPC_NONE;
7938 	    }
7939 	}
7940     }
7941   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7942 	   || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7943     {
7944       // Second instruction of a global dynamic sequence,
7945       // the __tls_get_addr call
7946       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7947       const bool final = gsym == NULL || gsym->final_value_is_known();
7948       const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7949       if (tls_type != tls::TLSOPT_NONE)
7950 	{
7951 	  if (tls_type == tls::TLSOPT_TO_IE)
7952 	    {
7953 	      Insn* iview = reinterpret_cast<Insn*>(view);
7954 	      Insn insn = add_3_3_13;
7955 	      if (size == 32)
7956 		insn = add_3_3_2;
7957 	      elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7958 	      r_type = elfcpp::R_POWERPC_NONE;
7959 	    }
7960 	  else
7961 	    {
7962 	      Insn* iview = reinterpret_cast<Insn*>(view);
7963 	      Insn insn = addi_3_3;
7964 	      elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7965 	      r_type = elfcpp::R_POWERPC_TPREL16_LO;
7966 	      view += d_offset;
7967 	      value = psymval->value(object, rela.get_r_addend());
7968 	    }
7969 	  this->skip_next_tls_get_addr_call();
7970 	}
7971     }
7972   else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7973 	   || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7974     {
7975       // Second instruction of a local dynamic sequence,
7976       // the __tls_get_addr call
7977       this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7978       const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7979       if (tls_type == tls::TLSOPT_TO_LE)
7980 	{
7981 	  Insn* iview = reinterpret_cast<Insn*>(view);
7982 	  Insn insn = addi_3_3;
7983 	  elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7984 	  this->skip_next_tls_get_addr_call();
7985 	  r_type = elfcpp::R_POWERPC_TPREL16_LO;
7986 	  view += d_offset;
7987 	  value = dtp_offset;
7988 	}
7989     }
7990   else if (r_type == elfcpp::R_POWERPC_TLS)
7991     {
7992       // Second instruction of an initial exec sequence
7993       const bool final = gsym == NULL || gsym->final_value_is_known();
7994       const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7995       if (tls_type == tls::TLSOPT_TO_LE)
7996 	{
7997 	  Insn* iview = reinterpret_cast<Insn*>(view);
7998 	  Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7999 	  unsigned int reg = size == 32 ? 2 : 13;
8000 	  insn = at_tls_transform(insn, reg);
8001 	  gold_assert(insn != 0);
8002 	  elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8003 	  r_type = elfcpp::R_POWERPC_TPREL16_LO;
8004 	  view += d_offset;
8005 	  value = psymval->value(object, rela.get_r_addend());
8006 	}
8007     }
8008   else if (!has_stub_value)
8009     {
8010       Address addend = 0;
8011       if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
8012 	addend = rela.get_r_addend();
8013       value = psymval->value(object, addend);
8014       if (size == 64 && is_branch_reloc(r_type))
8015 	{
8016 	  if (target->abiversion() >= 2)
8017 	    {
8018 	      if (gsym != NULL)
8019 		value += object->ppc64_local_entry_offset(gsym);
8020 	      else
8021 		value += object->ppc64_local_entry_offset(r_sym);
8022 	    }
8023 	  else
8024 	    {
8025 	      unsigned int dest_shndx;
8026 	      target->symval_for_branch(relinfo->symtab, gsym, object,
8027 					&value, &dest_shndx);
8028 	    }
8029 	}
8030       Address max_branch_offset = max_branch_delta(r_type);
8031       if (max_branch_offset != 0
8032 	  && value - address + max_branch_offset >= 2 * max_branch_offset)
8033 	{
8034 	  Stub_table<size, big_endian>* stub_table
8035 	    = object->stub_table(relinfo->data_shndx);
8036 	  if (stub_table != NULL)
8037 	    {
8038 	      Address off = stub_table->find_long_branch_entry(object, value);
8039 	      if (off != invalid_address)
8040 		{
8041 		  value = (stub_table->stub_address() + stub_table->plt_size()
8042 			   + off);
8043 		  has_stub_value = true;
8044 		}
8045 	    }
8046 	}
8047     }
8048 
8049   switch (r_type)
8050     {
8051     case elfcpp::R_PPC64_REL64:
8052     case elfcpp::R_POWERPC_REL32:
8053     case elfcpp::R_POWERPC_REL24:
8054     case elfcpp::R_PPC_PLTREL24:
8055     case elfcpp::R_PPC_LOCAL24PC:
8056     case elfcpp::R_POWERPC_REL16:
8057     case elfcpp::R_POWERPC_REL16_LO:
8058     case elfcpp::R_POWERPC_REL16_HI:
8059     case elfcpp::R_POWERPC_REL16_HA:
8060     case elfcpp::R_POWERPC_REL16DX_HA:
8061     case elfcpp::R_POWERPC_REL14:
8062     case elfcpp::R_POWERPC_REL14_BRTAKEN:
8063     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8064       value -= address;
8065       break;
8066 
8067     case elfcpp::R_PPC64_TOC16:
8068     case elfcpp::R_PPC64_TOC16_LO:
8069     case elfcpp::R_PPC64_TOC16_HI:
8070     case elfcpp::R_PPC64_TOC16_HA:
8071     case elfcpp::R_PPC64_TOC16_DS:
8072     case elfcpp::R_PPC64_TOC16_LO_DS:
8073       // Subtract the TOC base address.
8074       value -= (target->got_section()->output_section()->address()
8075 		+ object->toc_base_offset());
8076       break;
8077 
8078     case elfcpp::R_POWERPC_SECTOFF:
8079     case elfcpp::R_POWERPC_SECTOFF_LO:
8080     case elfcpp::R_POWERPC_SECTOFF_HI:
8081     case elfcpp::R_POWERPC_SECTOFF_HA:
8082     case elfcpp::R_PPC64_SECTOFF_DS:
8083     case elfcpp::R_PPC64_SECTOFF_LO_DS:
8084       if (os != NULL)
8085 	value -= os->address();
8086       break;
8087 
8088     case elfcpp::R_PPC64_TPREL16_DS:
8089     case elfcpp::R_PPC64_TPREL16_LO_DS:
8090     case elfcpp::R_PPC64_TPREL16_HIGH:
8091     case elfcpp::R_PPC64_TPREL16_HIGHA:
8092       if (size != 64)
8093 	// R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
8094 	break;
8095     case elfcpp::R_POWERPC_TPREL16:
8096     case elfcpp::R_POWERPC_TPREL16_LO:
8097     case elfcpp::R_POWERPC_TPREL16_HI:
8098     case elfcpp::R_POWERPC_TPREL16_HA:
8099     case elfcpp::R_POWERPC_TPREL:
8100     case elfcpp::R_PPC64_TPREL16_HIGHER:
8101     case elfcpp::R_PPC64_TPREL16_HIGHERA:
8102     case elfcpp::R_PPC64_TPREL16_HIGHEST:
8103     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
8104       // tls symbol values are relative to tls_segment()->vaddr()
8105       value -= tp_offset;
8106       break;
8107 
8108     case elfcpp::R_PPC64_DTPREL16_DS:
8109     case elfcpp::R_PPC64_DTPREL16_LO_DS:
8110     case elfcpp::R_PPC64_DTPREL16_HIGHER:
8111     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
8112     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
8113     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
8114       if (size != 64)
8115 	// R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
8116 	// R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
8117 	break;
8118     case elfcpp::R_POWERPC_DTPREL16:
8119     case elfcpp::R_POWERPC_DTPREL16_LO:
8120     case elfcpp::R_POWERPC_DTPREL16_HI:
8121     case elfcpp::R_POWERPC_DTPREL16_HA:
8122     case elfcpp::R_POWERPC_DTPREL:
8123     case elfcpp::R_PPC64_DTPREL16_HIGH:
8124     case elfcpp::R_PPC64_DTPREL16_HIGHA:
8125       // tls symbol values are relative to tls_segment()->vaddr()
8126       value -= dtp_offset;
8127       break;
8128 
8129     case elfcpp::R_PPC64_ADDR64_LOCAL:
8130       if (gsym != NULL)
8131 	value += object->ppc64_local_entry_offset(gsym);
8132       else
8133 	value += object->ppc64_local_entry_offset(r_sym);
8134       break;
8135 
8136     default:
8137       break;
8138     }
8139 
8140   Insn branch_bit = 0;
8141   switch (r_type)
8142     {
8143     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8144     case elfcpp::R_POWERPC_REL14_BRTAKEN:
8145       branch_bit = 1 << 21;
8146     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8147     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8148       {
8149 	Insn* iview = reinterpret_cast<Insn*>(view);
8150 	Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8151 	insn &= ~(1 << 21);
8152 	insn |= branch_bit;
8153 	if (this->is_isa_v2)
8154 	  {
8155 	    // Set 'a' bit.  This is 0b00010 in BO field for branch
8156 	    // on CR(BI) insns (BO == 001at or 011at), and 0b01000
8157 	    // for branch on CTR insns (BO == 1a00t or 1a01t).
8158 	    if ((insn & (0x14 << 21)) == (0x04 << 21))
8159 	      insn |= 0x02 << 21;
8160 	    else if ((insn & (0x14 << 21)) == (0x10 << 21))
8161 	      insn |= 0x08 << 21;
8162 	    else
8163 	      break;
8164 	  }
8165 	else
8166 	  {
8167 	    // Invert 'y' bit if not the default.
8168 	    if (static_cast<Signed_address>(value) < 0)
8169 	      insn ^= 1 << 21;
8170 	  }
8171 	elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8172       }
8173       break;
8174 
8175     default:
8176       break;
8177     }
8178 
8179   if (size == 64)
8180     {
8181       switch (r_type)
8182 	{
8183 	default:
8184 	  break;
8185 
8186 	  // Multi-instruction sequences that access the GOT/TOC can
8187 	  // be optimized, eg.
8188 	  //     addis ra,r2,x@got@ha; ld rb,x@got@l(ra);
8189 	  // to  addis ra,r2,x@toc@ha; addi rb,ra,x@toc@l;
8190 	  // and
8191 	  //     addis ra,r2,0; addi rb,ra,x@toc@l;
8192 	  // to  nop;           addi rb,r2,x@toc;
8193 	  // FIXME: the @got sequence shown above is not yet
8194 	  // optimized.  Note that gcc as of 2017-01-07 doesn't use
8195 	  // the ELF @got relocs except for TLS, instead using the
8196 	  // PowerOpen variant of a compiler managed GOT (called TOC).
8197 	  // The PowerOpen TOC sequence equivalent to the first
8198 	  // example is optimized.
8199 	case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
8200 	case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
8201 	case elfcpp::R_POWERPC_GOT_TPREL16_HA:
8202 	case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
8203 	case elfcpp::R_POWERPC_GOT16_HA:
8204 	case elfcpp::R_PPC64_TOC16_HA:
8205 	  if (parameters->options().toc_optimize())
8206 	    {
8207 	      Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8208 	      Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8209 	      if (r_type == elfcpp::R_PPC64_TOC16_HA
8210 		  && object->make_toc_relative(target, &value))
8211 		{
8212 		  gold_assert((insn & ((0x3f << 26) | 0x1f << 16))
8213 			      == ((15u << 26) | (2 << 16)));
8214 		}
8215 	      if (((insn & ((0x3f << 26) | 0x1f << 16))
8216 		   == ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
8217 		  && value + 0x8000 < 0x10000)
8218 		{
8219 		  elfcpp::Swap<32, big_endian>::writeval(iview, nop);
8220 		  return true;
8221 		}
8222 	    }
8223 	  break;
8224 
8225 	case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
8226 	case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
8227 	case elfcpp::R_POWERPC_GOT_TPREL16_LO:
8228 	case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
8229 	case elfcpp::R_POWERPC_GOT16_LO:
8230 	case elfcpp::R_PPC64_GOT16_LO_DS:
8231 	case elfcpp::R_PPC64_TOC16_LO:
8232 	case elfcpp::R_PPC64_TOC16_LO_DS:
8233 	  if (parameters->options().toc_optimize())
8234 	    {
8235 	      Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8236 	      Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8237 	      bool changed = false;
8238 	      if (r_type == elfcpp::R_PPC64_TOC16_LO_DS
8239 		  && object->make_toc_relative(target, &value))
8240 		{
8241 		  gold_assert ((insn & (0x3f << 26)) == 58u << 26 /* ld */);
8242 		  insn ^= (14u << 26) ^ (58u << 26);
8243 		  r_type = elfcpp::R_PPC64_TOC16_LO;
8244 		  changed = true;
8245 		}
8246 	      if (ok_lo_toc_insn(insn, r_type)
8247 		  && value + 0x8000 < 0x10000)
8248 		{
8249 		  if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
8250 		    {
8251 		      // Transform addic to addi when we change reg.
8252 		      insn &= ~((0x3f << 26) | (0x1f << 16));
8253 		      insn |= (14u << 26) | (2 << 16);
8254 		    }
8255 		  else
8256 		    {
8257 		      insn &= ~(0x1f << 16);
8258 		      insn |= 2 << 16;
8259 		    }
8260 		  changed = true;
8261 		}
8262 	      if (changed)
8263 		elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8264 	    }
8265 	  break;
8266 
8267 	case elfcpp::R_PPC64_ENTRY:
8268 	  value = (target->got_section()->output_section()->address()
8269 		   + object->toc_base_offset());
8270 	  if (value + 0x80008000 <= 0xffffffff
8271 	      && !parameters->options().output_is_position_independent())
8272 	    {
8273 	      Insn* iview = reinterpret_cast<Insn*>(view);
8274 	      Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
8275 	      Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
8276 
8277 	      if ((insn1 & ~0xfffc) == ld_2_12
8278 		  && insn2 == add_2_2_12)
8279 		{
8280 		  insn1 = lis_2 + ha(value);
8281 		  elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
8282 		  insn2 = addi_2_2 + l(value);
8283 		  elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
8284 		  return true;
8285 		}
8286 	    }
8287 	  else
8288 	    {
8289 	      value -= address;
8290 	      if (value + 0x80008000 <= 0xffffffff)
8291 		{
8292 		  Insn* iview = reinterpret_cast<Insn*>(view);
8293 		  Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
8294 		  Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
8295 
8296 		  if ((insn1 & ~0xfffc) == ld_2_12
8297 		      && insn2 == add_2_2_12)
8298 		    {
8299 		      insn1 = addis_2_12 + ha(value);
8300 		      elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
8301 		      insn2 = addi_2_2 + l(value);
8302 		      elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
8303 		      return true;
8304 		    }
8305 		}
8306 	    }
8307 	  break;
8308 
8309 	case elfcpp::R_POWERPC_REL16_LO:
8310 	  // If we are generating a non-PIC executable, edit
8311 	  // 	0:	addis 2,12,.TOC.-0b@ha
8312 	  //		addi 2,2,.TOC.-0b@l
8313 	  // used by ELFv2 global entry points to set up r2, to
8314 	  //		lis 2,.TOC.@ha
8315 	  //		addi 2,2,.TOC.@l
8316 	  // if .TOC. is in range.  */
8317 	  if (value + address - 4 + 0x80008000 <= 0xffffffff
8318 	      && relnum != 0
8319 	      && preloc != NULL
8320 	      && target->abiversion() >= 2
8321 	      && !parameters->options().output_is_position_independent()
8322 	      && rela.get_r_addend() == d_offset + 4
8323 	      && gsym != NULL
8324 	      && strcmp(gsym->name(), ".TOC.") == 0)
8325 	    {
8326 	      const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
8327 	      Reltype prev_rela(preloc - reloc_size);
8328 	      if ((prev_rela.get_r_info()
8329 		   == elfcpp::elf_r_info<size>(r_sym,
8330 					       elfcpp::R_POWERPC_REL16_HA))
8331 		  && prev_rela.get_r_offset() + 4 == rela.get_r_offset()
8332 		  && prev_rela.get_r_addend() + 4 == rela.get_r_addend())
8333 		{
8334 		  Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8335 		  Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview - 1);
8336 		  Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview);
8337 
8338 		  if ((insn1 & 0xffff0000) == addis_2_12
8339 		      && (insn2 & 0xffff0000) == addi_2_2)
8340 		    {
8341 		      insn1 = lis_2 + ha(value + address - 4);
8342 		      elfcpp::Swap<32, big_endian>::writeval(iview - 1, insn1);
8343 		      insn2 = addi_2_2 + l(value + address - 4);
8344 		      elfcpp::Swap<32, big_endian>::writeval(iview, insn2);
8345 		      if (relinfo->rr)
8346 			{
8347 			  relinfo->rr->set_strategy(relnum - 1,
8348 						    Relocatable_relocs::RELOC_SPECIAL);
8349 			  relinfo->rr->set_strategy(relnum,
8350 						    Relocatable_relocs::RELOC_SPECIAL);
8351 			}
8352 		      return true;
8353 		    }
8354 		}
8355 	    }
8356 	  break;
8357 	}
8358     }
8359 
8360   typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
8361   elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
8362   switch (r_type)
8363     {
8364     case elfcpp::R_POWERPC_ADDR32:
8365     case elfcpp::R_POWERPC_UADDR32:
8366       if (size == 64)
8367 	overflow = Reloc::CHECK_BITFIELD;
8368       break;
8369 
8370     case elfcpp::R_POWERPC_REL32:
8371     case elfcpp::R_POWERPC_REL16DX_HA:
8372       if (size == 64)
8373 	overflow = Reloc::CHECK_SIGNED;
8374       break;
8375 
8376     case elfcpp::R_POWERPC_UADDR16:
8377       overflow = Reloc::CHECK_BITFIELD;
8378       break;
8379 
8380     case elfcpp::R_POWERPC_ADDR16:
8381       // We really should have three separate relocations,
8382       // one for 16-bit data, one for insns with 16-bit signed fields,
8383       // and one for insns with 16-bit unsigned fields.
8384       overflow = Reloc::CHECK_BITFIELD;
8385       if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
8386 	overflow = Reloc::CHECK_LOW_INSN;
8387       break;
8388 
8389     case elfcpp::R_POWERPC_ADDR16_HI:
8390     case elfcpp::R_POWERPC_ADDR16_HA:
8391     case elfcpp::R_POWERPC_GOT16_HI:
8392     case elfcpp::R_POWERPC_GOT16_HA:
8393     case elfcpp::R_POWERPC_PLT16_HI:
8394     case elfcpp::R_POWERPC_PLT16_HA:
8395     case elfcpp::R_POWERPC_SECTOFF_HI:
8396     case elfcpp::R_POWERPC_SECTOFF_HA:
8397     case elfcpp::R_PPC64_TOC16_HI:
8398     case elfcpp::R_PPC64_TOC16_HA:
8399     case elfcpp::R_PPC64_PLTGOT16_HI:
8400     case elfcpp::R_PPC64_PLTGOT16_HA:
8401     case elfcpp::R_POWERPC_TPREL16_HI:
8402     case elfcpp::R_POWERPC_TPREL16_HA:
8403     case elfcpp::R_POWERPC_DTPREL16_HI:
8404     case elfcpp::R_POWERPC_DTPREL16_HA:
8405     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
8406     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
8407     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
8408     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
8409     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
8410     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
8411     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
8412     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
8413     case elfcpp::R_POWERPC_REL16_HI:
8414     case elfcpp::R_POWERPC_REL16_HA:
8415       if (size != 32)
8416 	overflow = Reloc::CHECK_HIGH_INSN;
8417       break;
8418 
8419     case elfcpp::R_POWERPC_REL16:
8420     case elfcpp::R_PPC64_TOC16:
8421     case elfcpp::R_POWERPC_GOT16:
8422     case elfcpp::R_POWERPC_SECTOFF:
8423     case elfcpp::R_POWERPC_TPREL16:
8424     case elfcpp::R_POWERPC_DTPREL16:
8425     case elfcpp::R_POWERPC_GOT_TLSGD16:
8426     case elfcpp::R_POWERPC_GOT_TLSLD16:
8427     case elfcpp::R_POWERPC_GOT_TPREL16:
8428     case elfcpp::R_POWERPC_GOT_DTPREL16:
8429       overflow = Reloc::CHECK_LOW_INSN;
8430       break;
8431 
8432     case elfcpp::R_POWERPC_ADDR24:
8433     case elfcpp::R_POWERPC_ADDR14:
8434     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8435     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8436     case elfcpp::R_PPC64_ADDR16_DS:
8437     case elfcpp::R_POWERPC_REL24:
8438     case elfcpp::R_PPC_PLTREL24:
8439     case elfcpp::R_PPC_LOCAL24PC:
8440     case elfcpp::R_PPC64_TPREL16_DS:
8441     case elfcpp::R_PPC64_DTPREL16_DS:
8442     case elfcpp::R_PPC64_TOC16_DS:
8443     case elfcpp::R_PPC64_GOT16_DS:
8444     case elfcpp::R_PPC64_SECTOFF_DS:
8445     case elfcpp::R_POWERPC_REL14:
8446     case elfcpp::R_POWERPC_REL14_BRTAKEN:
8447     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8448       overflow = Reloc::CHECK_SIGNED;
8449       break;
8450     }
8451 
8452   Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8453   Insn insn = 0;
8454 
8455   if (overflow == Reloc::CHECK_LOW_INSN
8456       || overflow == Reloc::CHECK_HIGH_INSN)
8457     {
8458       insn = elfcpp::Swap<32, big_endian>::readval(iview);
8459 
8460       if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
8461 	overflow = Reloc::CHECK_BITFIELD;
8462       else if (overflow == Reloc::CHECK_LOW_INSN
8463 	       ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
8464 		  || (insn & (0x3f << 26)) == 24u << 26 /* ori */
8465 		  || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
8466 	       : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
8467 		  || (insn & (0x3f << 26)) == 25u << 26 /* oris */
8468 		  || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
8469 	overflow = Reloc::CHECK_UNSIGNED;
8470       else
8471 	overflow = Reloc::CHECK_SIGNED;
8472     }
8473 
8474   bool maybe_dq_reloc = false;
8475   typename Powerpc_relocate_functions<size, big_endian>::Status status
8476     = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
8477   switch (r_type)
8478     {
8479     case elfcpp::R_POWERPC_NONE:
8480     case elfcpp::R_POWERPC_TLS:
8481     case elfcpp::R_POWERPC_GNU_VTINHERIT:
8482     case elfcpp::R_POWERPC_GNU_VTENTRY:
8483       break;
8484 
8485     case elfcpp::R_PPC64_ADDR64:
8486     case elfcpp::R_PPC64_REL64:
8487     case elfcpp::R_PPC64_TOC:
8488     case elfcpp::R_PPC64_ADDR64_LOCAL:
8489       Reloc::addr64(view, value);
8490       break;
8491 
8492     case elfcpp::R_POWERPC_TPREL:
8493     case elfcpp::R_POWERPC_DTPREL:
8494       if (size == 64)
8495 	Reloc::addr64(view, value);
8496       else
8497 	status = Reloc::addr32(view, value, overflow);
8498       break;
8499 
8500     case elfcpp::R_PPC64_UADDR64:
8501       Reloc::addr64_u(view, value);
8502       break;
8503 
8504     case elfcpp::R_POWERPC_ADDR32:
8505       status = Reloc::addr32(view, value, overflow);
8506       break;
8507 
8508     case elfcpp::R_POWERPC_REL32:
8509     case elfcpp::R_POWERPC_UADDR32:
8510       status = Reloc::addr32_u(view, value, overflow);
8511       break;
8512 
8513     case elfcpp::R_POWERPC_ADDR24:
8514     case elfcpp::R_POWERPC_REL24:
8515     case elfcpp::R_PPC_PLTREL24:
8516     case elfcpp::R_PPC_LOCAL24PC:
8517       status = Reloc::addr24(view, value, overflow);
8518       break;
8519 
8520     case elfcpp::R_POWERPC_GOT_DTPREL16:
8521     case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
8522     case elfcpp::R_POWERPC_GOT_TPREL16:
8523     case elfcpp::R_POWERPC_GOT_TPREL16_LO:
8524       if (size == 64)
8525 	{
8526 	  // On ppc64 these are all ds form
8527 	  maybe_dq_reloc = true;
8528 	  break;
8529 	}
8530     case elfcpp::R_POWERPC_ADDR16:
8531     case elfcpp::R_POWERPC_REL16:
8532     case elfcpp::R_PPC64_TOC16:
8533     case elfcpp::R_POWERPC_GOT16:
8534     case elfcpp::R_POWERPC_SECTOFF:
8535     case elfcpp::R_POWERPC_TPREL16:
8536     case elfcpp::R_POWERPC_DTPREL16:
8537     case elfcpp::R_POWERPC_GOT_TLSGD16:
8538     case elfcpp::R_POWERPC_GOT_TLSLD16:
8539     case elfcpp::R_POWERPC_ADDR16_LO:
8540     case elfcpp::R_POWERPC_REL16_LO:
8541     case elfcpp::R_PPC64_TOC16_LO:
8542     case elfcpp::R_POWERPC_GOT16_LO:
8543     case elfcpp::R_POWERPC_SECTOFF_LO:
8544     case elfcpp::R_POWERPC_TPREL16_LO:
8545     case elfcpp::R_POWERPC_DTPREL16_LO:
8546     case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
8547     case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
8548       if (size == 64)
8549 	status = Reloc::addr16(view, value, overflow);
8550       else
8551 	maybe_dq_reloc = true;
8552       break;
8553 
8554     case elfcpp::R_POWERPC_UADDR16:
8555       status = Reloc::addr16_u(view, value, overflow);
8556       break;
8557 
8558     case elfcpp::R_PPC64_ADDR16_HIGH:
8559     case elfcpp::R_PPC64_TPREL16_HIGH:
8560     case elfcpp::R_PPC64_DTPREL16_HIGH:
8561       if (size == 32)
8562 	// R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
8563 	goto unsupp;
8564     case elfcpp::R_POWERPC_ADDR16_HI:
8565     case elfcpp::R_POWERPC_REL16_HI:
8566     case elfcpp::R_PPC64_TOC16_HI:
8567     case elfcpp::R_POWERPC_GOT16_HI:
8568     case elfcpp::R_POWERPC_SECTOFF_HI:
8569     case elfcpp::R_POWERPC_TPREL16_HI:
8570     case elfcpp::R_POWERPC_DTPREL16_HI:
8571     case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
8572     case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
8573     case elfcpp::R_POWERPC_GOT_TPREL16_HI:
8574     case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
8575       Reloc::addr16_hi(view, value);
8576       break;
8577 
8578     case elfcpp::R_PPC64_ADDR16_HIGHA:
8579     case elfcpp::R_PPC64_TPREL16_HIGHA:
8580     case elfcpp::R_PPC64_DTPREL16_HIGHA:
8581       if (size == 32)
8582 	// R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
8583 	goto unsupp;
8584     case elfcpp::R_POWERPC_ADDR16_HA:
8585     case elfcpp::R_POWERPC_REL16_HA:
8586     case elfcpp::R_PPC64_TOC16_HA:
8587     case elfcpp::R_POWERPC_GOT16_HA:
8588     case elfcpp::R_POWERPC_SECTOFF_HA:
8589     case elfcpp::R_POWERPC_TPREL16_HA:
8590     case elfcpp::R_POWERPC_DTPREL16_HA:
8591     case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
8592     case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
8593     case elfcpp::R_POWERPC_GOT_TPREL16_HA:
8594     case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
8595       Reloc::addr16_ha(view, value);
8596       break;
8597 
8598     case elfcpp::R_POWERPC_REL16DX_HA:
8599       status = Reloc::addr16dx_ha(view, value, overflow);
8600       break;
8601 
8602     case elfcpp::R_PPC64_DTPREL16_HIGHER:
8603       if (size == 32)
8604 	// R_PPC_EMB_NADDR16_LO
8605 	goto unsupp;
8606     case elfcpp::R_PPC64_ADDR16_HIGHER:
8607     case elfcpp::R_PPC64_TPREL16_HIGHER:
8608       Reloc::addr16_hi2(view, value);
8609       break;
8610 
8611     case elfcpp::R_PPC64_DTPREL16_HIGHERA:
8612       if (size == 32)
8613 	// R_PPC_EMB_NADDR16_HI
8614 	goto unsupp;
8615     case elfcpp::R_PPC64_ADDR16_HIGHERA:
8616     case elfcpp::R_PPC64_TPREL16_HIGHERA:
8617       Reloc::addr16_ha2(view, value);
8618       break;
8619 
8620     case elfcpp::R_PPC64_DTPREL16_HIGHEST:
8621       if (size == 32)
8622 	// R_PPC_EMB_NADDR16_HA
8623 	goto unsupp;
8624     case elfcpp::R_PPC64_ADDR16_HIGHEST:
8625     case elfcpp::R_PPC64_TPREL16_HIGHEST:
8626       Reloc::addr16_hi3(view, value);
8627       break;
8628 
8629     case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
8630       if (size == 32)
8631 	// R_PPC_EMB_SDAI16
8632 	goto unsupp;
8633     case elfcpp::R_PPC64_ADDR16_HIGHESTA:
8634     case elfcpp::R_PPC64_TPREL16_HIGHESTA:
8635       Reloc::addr16_ha3(view, value);
8636       break;
8637 
8638     case elfcpp::R_PPC64_DTPREL16_DS:
8639     case elfcpp::R_PPC64_DTPREL16_LO_DS:
8640       if (size == 32)
8641 	// R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
8642 	goto unsupp;
8643     case elfcpp::R_PPC64_TPREL16_DS:
8644     case elfcpp::R_PPC64_TPREL16_LO_DS:
8645       if (size == 32)
8646 	// R_PPC_TLSGD, R_PPC_TLSLD
8647 	break;
8648     case elfcpp::R_PPC64_ADDR16_DS:
8649     case elfcpp::R_PPC64_ADDR16_LO_DS:
8650     case elfcpp::R_PPC64_TOC16_DS:
8651     case elfcpp::R_PPC64_TOC16_LO_DS:
8652     case elfcpp::R_PPC64_GOT16_DS:
8653     case elfcpp::R_PPC64_GOT16_LO_DS:
8654     case elfcpp::R_PPC64_SECTOFF_DS:
8655     case elfcpp::R_PPC64_SECTOFF_LO_DS:
8656       maybe_dq_reloc = true;
8657       break;
8658 
8659     case elfcpp::R_POWERPC_ADDR14:
8660     case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8661     case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8662     case elfcpp::R_POWERPC_REL14:
8663     case elfcpp::R_POWERPC_REL14_BRTAKEN:
8664     case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8665       status = Reloc::addr14(view, value, overflow);
8666       break;
8667 
8668     case elfcpp::R_POWERPC_COPY:
8669     case elfcpp::R_POWERPC_GLOB_DAT:
8670     case elfcpp::R_POWERPC_JMP_SLOT:
8671     case elfcpp::R_POWERPC_RELATIVE:
8672     case elfcpp::R_POWERPC_DTPMOD:
8673     case elfcpp::R_PPC64_JMP_IREL:
8674     case elfcpp::R_POWERPC_IRELATIVE:
8675       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8676 			     _("unexpected reloc %u in object file"),
8677 			     r_type);
8678       break;
8679 
8680     case elfcpp::R_PPC_EMB_SDA21:
8681       if (size == 32)
8682 	goto unsupp;
8683       else
8684 	{
8685 	  // R_PPC64_TOCSAVE.  For the time being this can be ignored.
8686 	}
8687       break;
8688 
8689     case elfcpp::R_PPC_EMB_SDA2I16:
8690     case elfcpp::R_PPC_EMB_SDA2REL:
8691       if (size == 32)
8692 	goto unsupp;
8693       // R_PPC64_TLSGD, R_PPC64_TLSLD
8694       break;
8695 
8696     case elfcpp::R_POWERPC_PLT32:
8697     case elfcpp::R_POWERPC_PLTREL32:
8698     case elfcpp::R_POWERPC_PLT16_LO:
8699     case elfcpp::R_POWERPC_PLT16_HI:
8700     case elfcpp::R_POWERPC_PLT16_HA:
8701     case elfcpp::R_PPC_SDAREL16:
8702     case elfcpp::R_POWERPC_ADDR30:
8703     case elfcpp::R_PPC64_PLT64:
8704     case elfcpp::R_PPC64_PLTREL64:
8705     case elfcpp::R_PPC64_PLTGOT16:
8706     case elfcpp::R_PPC64_PLTGOT16_LO:
8707     case elfcpp::R_PPC64_PLTGOT16_HI:
8708     case elfcpp::R_PPC64_PLTGOT16_HA:
8709     case elfcpp::R_PPC64_PLT16_LO_DS:
8710     case elfcpp::R_PPC64_PLTGOT16_DS:
8711     case elfcpp::R_PPC64_PLTGOT16_LO_DS:
8712     case elfcpp::R_PPC_EMB_RELSDA:
8713     case elfcpp::R_PPC_TOC16:
8714     default:
8715     unsupp:
8716       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8717 			     _("unsupported reloc %u"),
8718 			     r_type);
8719       break;
8720     }
8721 
8722   if (maybe_dq_reloc)
8723     {
8724       if (insn == 0)
8725 	insn = elfcpp::Swap<32, big_endian>::readval(iview);
8726 
8727       if ((insn & (0x3f << 26)) == 56u << 26 /* lq */
8728 	  || ((insn & (0x3f << 26)) == (61u << 26) /* lxv, stxv */
8729 	      && (insn & 3) == 1))
8730 	status = Reloc::addr16_dq(view, value, overflow);
8731       else if (size == 64
8732 	       || (insn & (0x3f << 26)) == 58u << 26 /* ld,ldu,lwa */
8733 	       || (insn & (0x3f << 26)) == 62u << 26 /* std,stdu,stq */
8734 	       || (insn & (0x3f << 26)) == 57u << 26 /* lfdp */
8735 	       || (insn & (0x3f << 26)) == 61u << 26 /* stfdp */)
8736 	status = Reloc::addr16_ds(view, value, overflow);
8737       else
8738 	status = Reloc::addr16(view, value, overflow);
8739     }
8740 
8741   if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
8742       && (has_stub_value
8743 	  || !(gsym != NULL
8744 	       && gsym->is_undefined()
8745 	       && is_branch_reloc(r_type))))
8746     {
8747       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8748 			     _("relocation overflow"));
8749       if (has_stub_value)
8750 	gold_info(_("try relinking with a smaller --stub-group-size"));
8751     }
8752 
8753   return true;
8754 }
8755 
8756 // Relocate section data.
8757 
8758 template<int size, bool big_endian>
8759 void
relocate_section(const Relocate_info<size,big_endian> * relinfo,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,unsigned char * view,Address address,section_size_type view_size,const Reloc_symbol_changes * reloc_symbol_changes)8760 Target_powerpc<size, big_endian>::relocate_section(
8761     const Relocate_info<size, big_endian>* relinfo,
8762     unsigned int sh_type,
8763     const unsigned char* prelocs,
8764     size_t reloc_count,
8765     Output_section* output_section,
8766     bool needs_special_offset_handling,
8767     unsigned char* view,
8768     Address address,
8769     section_size_type view_size,
8770     const Reloc_symbol_changes* reloc_symbol_changes)
8771 {
8772   typedef Target_powerpc<size, big_endian> Powerpc;
8773   typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
8774   typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
8775     Powerpc_comdat_behavior;
8776   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8777       Classify_reloc;
8778 
8779   gold_assert(sh_type == elfcpp::SHT_RELA);
8780 
8781   gold::relocate_section<size, big_endian, Powerpc, Powerpc_relocate,
8782 			 Powerpc_comdat_behavior, Classify_reloc>(
8783     relinfo,
8784     this,
8785     prelocs,
8786     reloc_count,
8787     output_section,
8788     needs_special_offset_handling,
8789     view,
8790     address,
8791     view_size,
8792     reloc_symbol_changes);
8793 }
8794 
8795 template<int size, bool big_endian>
8796 class Powerpc_scan_relocatable_reloc
8797 {
8798 public:
8799   typedef typename elfcpp::Rela<size, big_endian> Reltype;
8800   static const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
8801   static const int sh_type = elfcpp::SHT_RELA;
8802 
8803   // Return the symbol referred to by the relocation.
8804   static inline unsigned int
get_r_sym(const Reltype * reloc)8805   get_r_sym(const Reltype* reloc)
8806   { return elfcpp::elf_r_sym<size>(reloc->get_r_info()); }
8807 
8808   // Return the type of the relocation.
8809   static inline unsigned int
get_r_type(const Reltype * reloc)8810   get_r_type(const Reltype* reloc)
8811   { return elfcpp::elf_r_type<size>(reloc->get_r_info()); }
8812 
8813   // Return the strategy to use for a local symbol which is not a
8814   // section symbol, given the relocation type.
8815   inline Relocatable_relocs::Reloc_strategy
local_non_section_strategy(unsigned int r_type,Relobj *,unsigned int r_sym)8816   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
8817   {
8818     if (r_type == 0 && r_sym == 0)
8819       return Relocatable_relocs::RELOC_DISCARD;
8820     return Relocatable_relocs::RELOC_COPY;
8821   }
8822 
8823   // Return the strategy to use for a local symbol which is a section
8824   // symbol, given the relocation type.
8825   inline Relocatable_relocs::Reloc_strategy
local_section_strategy(unsigned int,Relobj *)8826   local_section_strategy(unsigned int, Relobj*)
8827   {
8828     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
8829   }
8830 
8831   // Return the strategy to use for a global symbol, given the
8832   // relocation type, the object, and the symbol index.
8833   inline Relocatable_relocs::Reloc_strategy
global_strategy(unsigned int r_type,Relobj *,unsigned int)8834   global_strategy(unsigned int r_type, Relobj*, unsigned int)
8835   {
8836     if (r_type == elfcpp::R_PPC_PLTREL24)
8837       return Relocatable_relocs::RELOC_SPECIAL;
8838     return Relocatable_relocs::RELOC_COPY;
8839   }
8840 };
8841 
8842 // Scan the relocs during a relocatable link.
8843 
8844 template<int size, bool big_endian>
8845 void
scan_relocatable_relocs(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,size_t local_symbol_count,const unsigned char * plocal_symbols,Relocatable_relocs * rr)8846 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
8847     Symbol_table* symtab,
8848     Layout* layout,
8849     Sized_relobj_file<size, big_endian>* object,
8850     unsigned int data_shndx,
8851     unsigned int sh_type,
8852     const unsigned char* prelocs,
8853     size_t reloc_count,
8854     Output_section* output_section,
8855     bool needs_special_offset_handling,
8856     size_t local_symbol_count,
8857     const unsigned char* plocal_symbols,
8858     Relocatable_relocs* rr)
8859 {
8860   typedef Powerpc_scan_relocatable_reloc<size, big_endian> Scan_strategy;
8861 
8862   gold_assert(sh_type == elfcpp::SHT_RELA);
8863 
8864   gold::scan_relocatable_relocs<size, big_endian, Scan_strategy>(
8865     symtab,
8866     layout,
8867     object,
8868     data_shndx,
8869     prelocs,
8870     reloc_count,
8871     output_section,
8872     needs_special_offset_handling,
8873     local_symbol_count,
8874     plocal_symbols,
8875     rr);
8876 }
8877 
8878 // Scan the relocs for --emit-relocs.
8879 
8880 template<int size, bool big_endian>
8881 void
emit_relocs_scan(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,size_t local_symbol_count,const unsigned char * plocal_syms,Relocatable_relocs * rr)8882 Target_powerpc<size, big_endian>::emit_relocs_scan(
8883     Symbol_table* symtab,
8884     Layout* layout,
8885     Sized_relobj_file<size, big_endian>* object,
8886     unsigned int data_shndx,
8887     unsigned int sh_type,
8888     const unsigned char* prelocs,
8889     size_t reloc_count,
8890     Output_section* output_section,
8891     bool needs_special_offset_handling,
8892     size_t local_symbol_count,
8893     const unsigned char* plocal_syms,
8894     Relocatable_relocs* rr)
8895 {
8896   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8897       Classify_reloc;
8898   typedef gold::Default_emit_relocs_strategy<Classify_reloc>
8899       Emit_relocs_strategy;
8900 
8901   gold_assert(sh_type == elfcpp::SHT_RELA);
8902 
8903   gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
8904     symtab,
8905     layout,
8906     object,
8907     data_shndx,
8908     prelocs,
8909     reloc_count,
8910     output_section,
8911     needs_special_offset_handling,
8912     local_symbol_count,
8913     plocal_syms,
8914     rr);
8915 }
8916 
8917 // Emit relocations for a section.
8918 // This is a modified version of the function by the same name in
8919 // target-reloc.h.  Using relocate_special_relocatable for
8920 // R_PPC_PLTREL24 would require duplication of the entire body of the
8921 // loop, so we may as well duplicate the whole thing.
8922 
8923 template<int size, bool big_endian>
8924 void
relocate_relocs(const Relocate_info<size,big_endian> * relinfo,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,unsigned char *,Address view_address,section_size_type,unsigned char * reloc_view,section_size_type reloc_view_size)8925 Target_powerpc<size, big_endian>::relocate_relocs(
8926     const Relocate_info<size, big_endian>* relinfo,
8927     unsigned int sh_type,
8928     const unsigned char* prelocs,
8929     size_t reloc_count,
8930     Output_section* output_section,
8931     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8932     unsigned char*,
8933     Address view_address,
8934     section_size_type,
8935     unsigned char* reloc_view,
8936     section_size_type reloc_view_size)
8937 {
8938   gold_assert(sh_type == elfcpp::SHT_RELA);
8939 
8940   typedef typename elfcpp::Rela<size, big_endian> Reltype;
8941   typedef typename elfcpp::Rela_write<size, big_endian> Reltype_write;
8942   const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
8943   // Offset from start of insn to d-field reloc.
8944   const int d_offset = big_endian ? 2 : 0;
8945 
8946   Powerpc_relobj<size, big_endian>* const object
8947     = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
8948   const unsigned int local_count = object->local_symbol_count();
8949   unsigned int got2_shndx = object->got2_shndx();
8950   Address got2_addend = 0;
8951   if (got2_shndx != 0)
8952     {
8953       got2_addend = object->get_output_section_offset(got2_shndx);
8954       gold_assert(got2_addend != invalid_address);
8955     }
8956 
8957   unsigned char* pwrite = reloc_view;
8958   bool zap_next = false;
8959   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
8960     {
8961       Relocatable_relocs::Reloc_strategy strategy = relinfo->rr->strategy(i);
8962       if (strategy == Relocatable_relocs::RELOC_DISCARD)
8963 	continue;
8964 
8965       Reltype reloc(prelocs);
8966       Reltype_write reloc_write(pwrite);
8967 
8968       Address offset = reloc.get_r_offset();
8969       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
8970       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8971       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
8972       const unsigned int orig_r_sym = r_sym;
8973       typename elfcpp::Elf_types<size>::Elf_Swxword addend
8974 	= reloc.get_r_addend();
8975       const Symbol* gsym = NULL;
8976 
8977       if (zap_next)
8978 	{
8979 	  // We could arrange to discard these and other relocs for
8980 	  // tls optimised sequences in the strategy methods, but for
8981 	  // now do as BFD ld does.
8982 	  r_type = elfcpp::R_POWERPC_NONE;
8983 	  zap_next = false;
8984 	}
8985 
8986       // Get the new symbol index.
8987       Output_section* os = NULL;
8988       if (r_sym < local_count)
8989 	{
8990 	  switch (strategy)
8991 	    {
8992 	    case Relocatable_relocs::RELOC_COPY:
8993 	    case Relocatable_relocs::RELOC_SPECIAL:
8994 	      if (r_sym != 0)
8995 		{
8996 		  r_sym = object->symtab_index(r_sym);
8997 		  gold_assert(r_sym != -1U);
8998 		}
8999 	      break;
9000 
9001 	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
9002 	      {
9003 		// We are adjusting a section symbol.  We need to find
9004 		// the symbol table index of the section symbol for
9005 		// the output section corresponding to input section
9006 		// in which this symbol is defined.
9007 		gold_assert(r_sym < local_count);
9008 		bool is_ordinary;
9009 		unsigned int shndx =
9010 		  object->local_symbol_input_shndx(r_sym, &is_ordinary);
9011 		gold_assert(is_ordinary);
9012 		os = object->output_section(shndx);
9013 		gold_assert(os != NULL);
9014 		gold_assert(os->needs_symtab_index());
9015 		r_sym = os->symtab_index();
9016 	      }
9017 	      break;
9018 
9019 	    default:
9020 	      gold_unreachable();
9021 	    }
9022 	}
9023       else
9024 	{
9025 	  gsym = object->global_symbol(r_sym);
9026 	  gold_assert(gsym != NULL);
9027 	  if (gsym->is_forwarder())
9028 	    gsym = relinfo->symtab->resolve_forwards(gsym);
9029 
9030 	  gold_assert(gsym->has_symtab_index());
9031 	  r_sym = gsym->symtab_index();
9032 	}
9033 
9034       // Get the new offset--the location in the output section where
9035       // this relocation should be applied.
9036       if (static_cast<Address>(offset_in_output_section) != invalid_address)
9037 	offset += offset_in_output_section;
9038       else
9039 	{
9040 	  section_offset_type sot_offset =
9041 	    convert_types<section_offset_type, Address>(offset);
9042 	  section_offset_type new_sot_offset =
9043 	    output_section->output_offset(object, relinfo->data_shndx,
9044 					  sot_offset);
9045 	  gold_assert(new_sot_offset != -1);
9046 	  offset = new_sot_offset;
9047 	}
9048 
9049       // In an object file, r_offset is an offset within the section.
9050       // In an executable or dynamic object, generated by
9051       // --emit-relocs, r_offset is an absolute address.
9052       if (!parameters->options().relocatable())
9053 	{
9054 	  offset += view_address;
9055 	  if (static_cast<Address>(offset_in_output_section) != invalid_address)
9056 	    offset -= offset_in_output_section;
9057 	}
9058 
9059       // Handle the reloc addend based on the strategy.
9060       if (strategy == Relocatable_relocs::RELOC_COPY)
9061 	;
9062       else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
9063 	{
9064 	  const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
9065 	  gold_assert(os != NULL);
9066 	  addend = psymval->value(object, addend) - os->address();
9067 	}
9068       else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
9069 	{
9070 	  if (size == 32)
9071 	    {
9072 	      if (addend >= 32768)
9073 		addend += got2_addend;
9074 	    }
9075 	  else if (r_type == elfcpp::R_POWERPC_REL16_HA)
9076 	    {
9077 	      r_type = elfcpp::R_POWERPC_ADDR16_HA;
9078 	      addend -= d_offset;
9079 	    }
9080 	  else if (r_type == elfcpp::R_POWERPC_REL16_LO)
9081 	    {
9082 	      r_type = elfcpp::R_POWERPC_ADDR16_LO;
9083 	      addend -= d_offset + 4;
9084 	    }
9085 	}
9086       else
9087 	gold_unreachable();
9088 
9089       if (!parameters->options().relocatable())
9090 	{
9091 	  if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
9092 	      || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
9093 	      || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
9094 	      || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
9095 	    {
9096 	      // First instruction of a global dynamic sequence,
9097 	      // arg setup insn.
9098 	      const bool final = gsym == NULL || gsym->final_value_is_known();
9099 	      switch (this->optimize_tls_gd(final))
9100 		{
9101 		case tls::TLSOPT_TO_IE:
9102 		  r_type += (elfcpp::R_POWERPC_GOT_TPREL16
9103 			     - elfcpp::R_POWERPC_GOT_TLSGD16);
9104 		  break;
9105 		case tls::TLSOPT_TO_LE:
9106 		  if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
9107 		      || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
9108 		    r_type = elfcpp::R_POWERPC_TPREL16_HA;
9109 		  else
9110 		    {
9111 		      r_type = elfcpp::R_POWERPC_NONE;
9112 		      offset -= d_offset;
9113 		    }
9114 		  break;
9115 		default:
9116 		  break;
9117 		}
9118 	    }
9119 	  else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
9120 		   || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
9121 		   || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
9122 		   || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
9123 	    {
9124 	      // First instruction of a local dynamic sequence,
9125 	      // arg setup insn.
9126 	      if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
9127 		{
9128 		  if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
9129 		      || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
9130 		    {
9131 		      r_type = elfcpp::R_POWERPC_TPREL16_HA;
9132 		      const Output_section* os = relinfo->layout->tls_segment()
9133 			->first_section();
9134 		      gold_assert(os != NULL);
9135 		      gold_assert(os->needs_symtab_index());
9136 		      r_sym = os->symtab_index();
9137 		      addend = dtp_offset;
9138 		    }
9139 		  else
9140 		    {
9141 		      r_type = elfcpp::R_POWERPC_NONE;
9142 		      offset -= d_offset;
9143 		    }
9144 		}
9145 	    }
9146 	  else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
9147 		   || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
9148 		   || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
9149 		   || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
9150 	    {
9151 	      // First instruction of initial exec sequence.
9152 	      const bool final = gsym == NULL || gsym->final_value_is_known();
9153 	      if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
9154 		{
9155 		  if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
9156 		      || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
9157 		    r_type = elfcpp::R_POWERPC_TPREL16_HA;
9158 		  else
9159 		    {
9160 		      r_type = elfcpp::R_POWERPC_NONE;
9161 		      offset -= d_offset;
9162 		    }
9163 		}
9164 	    }
9165 	  else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
9166 		   || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
9167 	    {
9168 	      // Second instruction of a global dynamic sequence,
9169 	      // the __tls_get_addr call
9170 	      const bool final = gsym == NULL || gsym->final_value_is_known();
9171 	      switch (this->optimize_tls_gd(final))
9172 		{
9173 		case tls::TLSOPT_TO_IE:
9174 		  r_type = elfcpp::R_POWERPC_NONE;
9175 		  zap_next = true;
9176 		  break;
9177 		case tls::TLSOPT_TO_LE:
9178 		  r_type = elfcpp::R_POWERPC_TPREL16_LO;
9179 		  offset += d_offset;
9180 		  zap_next = true;
9181 		  break;
9182 		default:
9183 		  break;
9184 		}
9185 	    }
9186 	  else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
9187 		   || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
9188 	    {
9189 	      // Second instruction of a local dynamic sequence,
9190 	      // the __tls_get_addr call
9191 	      if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
9192 		{
9193 		  const Output_section* os = relinfo->layout->tls_segment()
9194 		    ->first_section();
9195 		  gold_assert(os != NULL);
9196 		  gold_assert(os->needs_symtab_index());
9197 		  r_sym = os->symtab_index();
9198 		  addend = dtp_offset;
9199 		  r_type = elfcpp::R_POWERPC_TPREL16_LO;
9200 		  offset += d_offset;
9201 		  zap_next = true;
9202 		}
9203 	    }
9204 	  else if (r_type == elfcpp::R_POWERPC_TLS)
9205 	    {
9206 	      // Second instruction of an initial exec sequence
9207 	      const bool final = gsym == NULL || gsym->final_value_is_known();
9208 	      if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
9209 		{
9210 		  r_type = elfcpp::R_POWERPC_TPREL16_LO;
9211 		  offset += d_offset;
9212 		}
9213 	    }
9214 	}
9215 
9216       reloc_write.put_r_offset(offset);
9217       reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
9218       reloc_write.put_r_addend(addend);
9219 
9220       pwrite += reloc_size;
9221     }
9222 
9223   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
9224 	      == reloc_view_size);
9225 }
9226 
9227 // Return the value to use for a dynamic symbol which requires special
9228 // treatment.  This is how we support equality comparisons of function
9229 // pointers across shared library boundaries, as described in the
9230 // processor specific ABI supplement.
9231 
9232 template<int size, bool big_endian>
9233 uint64_t
do_dynsym_value(const Symbol * gsym) const9234 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
9235 {
9236   if (size == 32)
9237     {
9238       gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9239       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
9240 	   p != this->stub_tables_.end();
9241 	   ++p)
9242 	{
9243 	  Address off = (*p)->find_plt_call_entry(gsym);
9244 	  if (off != invalid_address)
9245 	    return (*p)->stub_address() + off;
9246 	}
9247     }
9248   else if (this->abiversion() >= 2)
9249     {
9250       Address off = this->glink_section()->find_global_entry(gsym);
9251       if (off != invalid_address)
9252 	return this->glink_section()->global_entry_address() + off;
9253     }
9254   gold_unreachable();
9255 }
9256 
9257 // Return the PLT address to use for a local symbol.
9258 template<int size, bool big_endian>
9259 uint64_t
do_plt_address_for_local(const Relobj * object,unsigned int symndx) const9260 Target_powerpc<size, big_endian>::do_plt_address_for_local(
9261     const Relobj* object,
9262     unsigned int symndx) const
9263 {
9264   if (size == 32)
9265     {
9266       const Sized_relobj<size, big_endian>* relobj
9267 	= static_cast<const Sized_relobj<size, big_endian>*>(object);
9268       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
9269 	   p != this->stub_tables_.end();
9270 	   ++p)
9271 	{
9272 	  Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
9273 						  symndx);
9274 	  if (off != invalid_address)
9275 	    return (*p)->stub_address() + off;
9276 	}
9277     }
9278   gold_unreachable();
9279 }
9280 
9281 // Return the PLT address to use for a global symbol.
9282 template<int size, bool big_endian>
9283 uint64_t
do_plt_address_for_global(const Symbol * gsym) const9284 Target_powerpc<size, big_endian>::do_plt_address_for_global(
9285     const Symbol* gsym) const
9286 {
9287   if (size == 32)
9288     {
9289       for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
9290 	   p != this->stub_tables_.end();
9291 	   ++p)
9292 	{
9293 	  Address off = (*p)->find_plt_call_entry(gsym);
9294 	  if (off != invalid_address)
9295 	    return (*p)->stub_address() + off;
9296 	}
9297     }
9298   else if (this->abiversion() >= 2)
9299     {
9300       Address off = this->glink_section()->find_global_entry(gsym);
9301       if (off != invalid_address)
9302 	return this->glink_section()->global_entry_address() + off;
9303     }
9304   gold_unreachable();
9305 }
9306 
9307 // Return the offset to use for the GOT_INDX'th got entry which is
9308 // for a local tls symbol specified by OBJECT, SYMNDX.
9309 template<int size, bool big_endian>
9310 int64_t
do_tls_offset_for_local(const Relobj * object,unsigned int symndx,unsigned int got_indx) const9311 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
9312     const Relobj* object,
9313     unsigned int symndx,
9314     unsigned int got_indx) const
9315 {
9316   const Powerpc_relobj<size, big_endian>* ppc_object
9317     = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
9318   if (ppc_object->local_symbol(symndx)->is_tls_symbol())
9319     {
9320       for (Got_type got_type = GOT_TYPE_TLSGD;
9321 	   got_type <= GOT_TYPE_TPREL;
9322 	   got_type = Got_type(got_type + 1))
9323 	if (ppc_object->local_has_got_offset(symndx, got_type))
9324 	  {
9325 	    unsigned int off = ppc_object->local_got_offset(symndx, got_type);
9326 	    if (got_type == GOT_TYPE_TLSGD)
9327 	      off += size / 8;
9328 	    if (off == got_indx * (size / 8))
9329 	      {
9330 		if (got_type == GOT_TYPE_TPREL)
9331 		  return -tp_offset;
9332 		else
9333 		  return -dtp_offset;
9334 	      }
9335 	  }
9336     }
9337   gold_unreachable();
9338 }
9339 
9340 // Return the offset to use for the GOT_INDX'th got entry which is
9341 // for global tls symbol GSYM.
9342 template<int size, bool big_endian>
9343 int64_t
do_tls_offset_for_global(Symbol * gsym,unsigned int got_indx) const9344 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
9345     Symbol* gsym,
9346     unsigned int got_indx) const
9347 {
9348   if (gsym->type() == elfcpp::STT_TLS)
9349     {
9350       for (Got_type got_type = GOT_TYPE_TLSGD;
9351 	   got_type <= GOT_TYPE_TPREL;
9352 	   got_type = Got_type(got_type + 1))
9353 	if (gsym->has_got_offset(got_type))
9354 	  {
9355 	    unsigned int off = gsym->got_offset(got_type);
9356 	    if (got_type == GOT_TYPE_TLSGD)
9357 	      off += size / 8;
9358 	    if (off == got_indx * (size / 8))
9359 	      {
9360 		if (got_type == GOT_TYPE_TPREL)
9361 		  return -tp_offset;
9362 		else
9363 		  return -dtp_offset;
9364 	      }
9365 	  }
9366     }
9367   gold_unreachable();
9368 }
9369 
9370 // The selector for powerpc object files.
9371 
9372 template<int size, bool big_endian>
9373 class Target_selector_powerpc : public Target_selector
9374 {
9375 public:
Target_selector_powerpc()9376   Target_selector_powerpc()
9377     : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
9378 		      size, big_endian,
9379 		      (size == 64
9380 		       ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
9381 		       : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
9382 		      (size == 64
9383 		       ? (big_endian ? "elf64ppc" : "elf64lppc")
9384 		       : (big_endian ? "elf32ppc" : "elf32lppc")))
9385   { }
9386 
9387   virtual Target*
do_instantiate_target()9388   do_instantiate_target()
9389   { return new Target_powerpc<size, big_endian>(); }
9390 };
9391 
9392 Target_selector_powerpc<32, true> target_selector_ppc32;
9393 Target_selector_powerpc<32, false> target_selector_ppc32le;
9394 Target_selector_powerpc<64, true> target_selector_ppc64;
9395 Target_selector_powerpc<64, false> target_selector_ppc64le;
9396 
9397 // Instantiate these constants for -O0
9398 template<int size, bool big_endian>
9399 const int Output_data_glink<size, big_endian>::pltresolve_size;
9400 template<int size, bool big_endian>
9401 const typename Output_data_glink<size, big_endian>::Address
9402   Output_data_glink<size, big_endian>::invalid_address;
9403 template<int size, bool big_endian>
9404 const typename Stub_table<size, big_endian>::Address
9405   Stub_table<size, big_endian>::invalid_address;
9406 template<int size, bool big_endian>
9407 const typename Target_powerpc<size, big_endian>::Address
9408   Target_powerpc<size, big_endian>::invalid_address;
9409 
9410 } // End anonymous namespace.
9411