1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include <binder/ActivityManager.h>
17 #include <binder/AppOpsManager.h>
18 #include <binder/BinderService.h>
19 #include <binder/IServiceManager.h>
20 #include <binder/PermissionCache.h>
21 #include <binder/PermissionController.h>
22 #include <cutils/ashmem.h>
23 #include <cutils/misc.h>
24 #include <cutils/properties.h>
25 #include <hardware/sensors.h>
26 #include <hardware_legacy/power.h>
27 #include <log/log.h>
28 #include <openssl/digest.h>
29 #include <openssl/hmac.h>
30 #include <openssl/rand.h>
31 #include <sensor/SensorEventQueue.h>
32 #include <utils/SystemClock.h>
33 
34 #include "BatteryService.h"
35 #include "CorrectedGyroSensor.h"
36 #include "GravitySensor.h"
37 #include "LinearAccelerationSensor.h"
38 #include "OrientationSensor.h"
39 #include "RotationVectorSensor.h"
40 #include "SensorFusion.h"
41 #include "SensorInterface.h"
42 
43 #include "SensorService.h"
44 #include "SensorDirectConnection.h"
45 #include "SensorEventAckReceiver.h"
46 #include "SensorEventConnection.h"
47 #include "SensorRecord.h"
48 #include "SensorRegistrationInfo.h"
49 
50 #include <inttypes.h>
51 #include <math.h>
52 #include <sched.h>
53 #include <stdint.h>
54 #include <sys/socket.h>
55 #include <sys/stat.h>
56 #include <sys/types.h>
57 #include <unistd.h>
58 
59 #include <private/android_filesystem_config.h>
60 
61 namespace android {
62 // ---------------------------------------------------------------------------
63 
64 /*
65  * Notes:
66  *
67  * - what about a gyro-corrected magnetic-field sensor?
68  * - run mag sensor from time to time to force calibration
69  * - gravity sensor length is wrong (=> drift in linear-acc sensor)
70  *
71  */
72 
73 const char* SensorService::WAKE_LOCK_NAME = "SensorService_wakelock";
74 uint8_t SensorService::sHmacGlobalKey[128] = {};
75 bool SensorService::sHmacGlobalKeyIsValid = false;
76 
77 #define SENSOR_SERVICE_DIR "/data/system/sensor_service"
78 #define SENSOR_SERVICE_HMAC_KEY_FILE  SENSOR_SERVICE_DIR "/hmac_key"
79 #define SENSOR_SERVICE_SCHED_FIFO_PRIORITY 10
80 
81 // Permissions.
82 static const String16 sDumpPermission("android.permission.DUMP");
83 static const String16 sLocationHardwarePermission("android.permission.LOCATION_HARDWARE");
84 static const String16 sManageSensorsPermission("android.permission.MANAGE_SENSORS");
85 
SensorService()86 SensorService::SensorService()
87     : mInitCheck(NO_INIT), mSocketBufferSize(SOCKET_BUFFER_SIZE_NON_BATCHED),
88       mWakeLockAcquired(false) {
89     mUidPolicy = new UidPolicy(this);
90 }
91 
initializeHmacKey()92 bool SensorService::initializeHmacKey() {
93     int fd = open(SENSOR_SERVICE_HMAC_KEY_FILE, O_RDONLY|O_CLOEXEC);
94     if (fd != -1) {
95         int result = read(fd, sHmacGlobalKey, sizeof(sHmacGlobalKey));
96         close(fd);
97         if (result == sizeof(sHmacGlobalKey)) {
98             return true;
99         }
100         ALOGW("Unable to read HMAC key; generating new one.");
101     }
102 
103     if (RAND_bytes(sHmacGlobalKey, sizeof(sHmacGlobalKey)) == -1) {
104         ALOGW("Can't generate HMAC key; dynamic sensor getId() will be wrong.");
105         return false;
106     }
107 
108     // We need to make sure this is only readable to us.
109     bool wroteKey = false;
110     mkdir(SENSOR_SERVICE_DIR, S_IRWXU);
111     fd = open(SENSOR_SERVICE_HMAC_KEY_FILE, O_WRONLY|O_CREAT|O_EXCL|O_CLOEXEC,
112               S_IRUSR|S_IWUSR);
113     if (fd != -1) {
114         int result = write(fd, sHmacGlobalKey, sizeof(sHmacGlobalKey));
115         close(fd);
116         wroteKey = (result == sizeof(sHmacGlobalKey));
117     }
118     if (wroteKey) {
119         ALOGI("Generated new HMAC key.");
120     } else {
121         ALOGW("Unable to write HMAC key; dynamic sensor getId() will change "
122               "after reboot.");
123     }
124     // Even if we failed to write the key we return true, because we did
125     // initialize the HMAC key.
126     return true;
127 }
128 
129 // Set main thread to SCHED_FIFO to lower sensor event latency when system is under load
enableSchedFifoMode()130 void SensorService::enableSchedFifoMode() {
131     struct sched_param param = {0};
132     param.sched_priority = SENSOR_SERVICE_SCHED_FIFO_PRIORITY;
133     if (sched_setscheduler(getTid(), SCHED_FIFO | SCHED_RESET_ON_FORK, &param) != 0) {
134         ALOGE("Couldn't set SCHED_FIFO for SensorService thread");
135     }
136 }
137 
onFirstRef()138 void SensorService::onFirstRef() {
139     ALOGD("nuSensorService starting...");
140     SensorDevice& dev(SensorDevice::getInstance());
141 
142     sHmacGlobalKeyIsValid = initializeHmacKey();
143 
144     if (dev.initCheck() == NO_ERROR) {
145         sensor_t const* list;
146         ssize_t count = dev.getSensorList(&list);
147         if (count > 0) {
148             ssize_t orientationIndex = -1;
149             bool hasGyro = false, hasAccel = false, hasMag = false;
150             uint32_t virtualSensorsNeeds =
151                     (1<<SENSOR_TYPE_GRAVITY) |
152                     (1<<SENSOR_TYPE_LINEAR_ACCELERATION) |
153                     (1<<SENSOR_TYPE_ROTATION_VECTOR) |
154                     (1<<SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR) |
155                     (1<<SENSOR_TYPE_GAME_ROTATION_VECTOR);
156 
157             for (ssize_t i=0 ; i<count ; i++) {
158                 bool useThisSensor=true;
159 
160                 switch (list[i].type) {
161                     case SENSOR_TYPE_ACCELEROMETER:
162                         hasAccel = true;
163                         break;
164                     case SENSOR_TYPE_MAGNETIC_FIELD:
165                         hasMag = true;
166                         break;
167                     case SENSOR_TYPE_ORIENTATION:
168                         orientationIndex = i;
169                         break;
170                     case SENSOR_TYPE_GYROSCOPE:
171                     case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
172                         hasGyro = true;
173                         break;
174                     case SENSOR_TYPE_GRAVITY:
175                     case SENSOR_TYPE_LINEAR_ACCELERATION:
176                     case SENSOR_TYPE_ROTATION_VECTOR:
177                     case SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR:
178                     case SENSOR_TYPE_GAME_ROTATION_VECTOR:
179                         if (IGNORE_HARDWARE_FUSION) {
180                             useThisSensor = false;
181                         } else {
182                             virtualSensorsNeeds &= ~(1<<list[i].type);
183                         }
184                         break;
185                 }
186                 if (useThisSensor) {
187                     registerSensor( new HardwareSensor(list[i]) );
188                 }
189             }
190 
191             // it's safe to instantiate the SensorFusion object here
192             // (it wants to be instantiated after h/w sensors have been
193             // registered)
194             SensorFusion::getInstance();
195 
196             if (hasGyro && hasAccel && hasMag) {
197                 // Add Android virtual sensors if they're not already
198                 // available in the HAL
199                 bool needRotationVector =
200                         (virtualSensorsNeeds & (1<<SENSOR_TYPE_ROTATION_VECTOR)) != 0;
201 
202                 registerSensor(new RotationVectorSensor(), !needRotationVector, true);
203                 registerSensor(new OrientationSensor(), !needRotationVector, true);
204 
205                 bool needLinearAcceleration =
206                         (virtualSensorsNeeds & (1<<SENSOR_TYPE_LINEAR_ACCELERATION)) != 0;
207 
208                 registerSensor(new LinearAccelerationSensor(list, count),
209                                !needLinearAcceleration, true);
210 
211                 // virtual debugging sensors are not for user
212                 registerSensor( new CorrectedGyroSensor(list, count), true, true);
213                 registerSensor( new GyroDriftSensor(), true, true);
214             }
215 
216             if (hasAccel && hasGyro) {
217                 bool needGravitySensor = (virtualSensorsNeeds & (1<<SENSOR_TYPE_GRAVITY)) != 0;
218                 registerSensor(new GravitySensor(list, count), !needGravitySensor, true);
219 
220                 bool needGameRotationVector =
221                         (virtualSensorsNeeds & (1<<SENSOR_TYPE_GAME_ROTATION_VECTOR)) != 0;
222                 registerSensor(new GameRotationVectorSensor(), !needGameRotationVector, true);
223             }
224 
225             if (hasAccel && hasMag) {
226                 bool needGeoMagRotationVector =
227                         (virtualSensorsNeeds & (1<<SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR)) != 0;
228                 registerSensor(new GeoMagRotationVectorSensor(), !needGeoMagRotationVector, true);
229             }
230 
231             // Check if the device really supports batching by looking at the FIFO event
232             // counts for each sensor.
233             bool batchingSupported = false;
234             mSensors.forEachSensor(
235                     [&batchingSupported] (const Sensor& s) -> bool {
236                         if (s.getFifoMaxEventCount() > 0) {
237                             batchingSupported = true;
238                         }
239                         return !batchingSupported;
240                     });
241 
242             if (batchingSupported) {
243                 // Increase socket buffer size to a max of 100 KB for batching capabilities.
244                 mSocketBufferSize = MAX_SOCKET_BUFFER_SIZE_BATCHED;
245             } else {
246                 mSocketBufferSize = SOCKET_BUFFER_SIZE_NON_BATCHED;
247             }
248 
249             // Compare the socketBufferSize value against the system limits and limit
250             // it to maxSystemSocketBufferSize if necessary.
251             FILE *fp = fopen("/proc/sys/net/core/wmem_max", "r");
252             char line[128];
253             if (fp != NULL && fgets(line, sizeof(line), fp) != NULL) {
254                 line[sizeof(line) - 1] = '\0';
255                 size_t maxSystemSocketBufferSize;
256                 sscanf(line, "%zu", &maxSystemSocketBufferSize);
257                 if (mSocketBufferSize > maxSystemSocketBufferSize) {
258                     mSocketBufferSize = maxSystemSocketBufferSize;
259                 }
260             }
261             if (fp) {
262                 fclose(fp);
263             }
264 
265             mWakeLockAcquired = false;
266             mLooper = new Looper(false);
267             const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
268             mSensorEventBuffer = new sensors_event_t[minBufferSize];
269             mSensorEventScratch = new sensors_event_t[minBufferSize];
270             mMapFlushEventsToConnections = new wp<const SensorEventConnection> [minBufferSize];
271             mCurrentOperatingMode = NORMAL;
272 
273             mNextSensorRegIndex = 0;
274             for (int i = 0; i < SENSOR_REGISTRATIONS_BUF_SIZE; ++i) {
275                 mLastNSensorRegistrations.push();
276             }
277 
278             mInitCheck = NO_ERROR;
279             mAckReceiver = new SensorEventAckReceiver(this);
280             mAckReceiver->run("SensorEventAckReceiver", PRIORITY_URGENT_DISPLAY);
281             run("SensorService", PRIORITY_URGENT_DISPLAY);
282 
283             // priority can only be changed after run
284             enableSchedFifoMode();
285 
286             // Start watching UID changes to apply policy.
287             mUidPolicy->registerSelf();
288         }
289     }
290 }
291 
setSensorAccess(uid_t uid,bool hasAccess)292 void SensorService::setSensorAccess(uid_t uid, bool hasAccess) {
293     SortedVector< sp<SensorEventConnection> > activeConnections;
294     populateActiveConnections(&activeConnections);
295     {
296         Mutex::Autolock _l(mLock);
297         for (size_t i = 0 ; i < activeConnections.size(); i++) {
298             if (activeConnections[i] != 0 && activeConnections[i]->getUid() == uid) {
299                 activeConnections[i]->setSensorAccess(hasAccess);
300             }
301         }
302     }
303 }
304 
registerSensor(SensorInterface * s,bool isDebug,bool isVirtual)305 const Sensor& SensorService::registerSensor(SensorInterface* s, bool isDebug, bool isVirtual) {
306     int handle = s->getSensor().getHandle();
307     int type = s->getSensor().getType();
308     if (mSensors.add(handle, s, isDebug, isVirtual)){
309         mRecentEvent.emplace(handle, new RecentEventLogger(type));
310         return s->getSensor();
311     } else {
312         return mSensors.getNonSensor();
313     }
314 }
315 
registerDynamicSensorLocked(SensorInterface * s,bool isDebug)316 const Sensor& SensorService::registerDynamicSensorLocked(SensorInterface* s, bool isDebug) {
317     return registerSensor(s, isDebug);
318 }
319 
unregisterDynamicSensorLocked(int handle)320 bool SensorService::unregisterDynamicSensorLocked(int handle) {
321     bool ret = mSensors.remove(handle);
322 
323     const auto i = mRecentEvent.find(handle);
324     if (i != mRecentEvent.end()) {
325         delete i->second;
326         mRecentEvent.erase(i);
327     }
328     return ret;
329 }
330 
registerVirtualSensor(SensorInterface * s,bool isDebug)331 const Sensor& SensorService::registerVirtualSensor(SensorInterface* s, bool isDebug) {
332     return registerSensor(s, isDebug, true);
333 }
334 
~SensorService()335 SensorService::~SensorService() {
336     for (auto && entry : mRecentEvent) {
337         delete entry.second;
338     }
339     mUidPolicy->unregisterSelf();
340 }
341 
dump(int fd,const Vector<String16> & args)342 status_t SensorService::dump(int fd, const Vector<String16>& args) {
343     String8 result;
344     if (!PermissionCache::checkCallingPermission(sDumpPermission)) {
345         result.appendFormat("Permission Denial: can't dump SensorService from pid=%d, uid=%d\n",
346                 IPCThreadState::self()->getCallingPid(),
347                 IPCThreadState::self()->getCallingUid());
348     } else {
349         bool privileged = IPCThreadState::self()->getCallingUid() == 0;
350         if (args.size() > 2) {
351            return INVALID_OPERATION;
352         }
353         Mutex::Autolock _l(mLock);
354         SensorDevice& dev(SensorDevice::getInstance());
355         if (args.size() == 2 && args[0] == String16("restrict")) {
356             // If already in restricted mode. Ignore.
357             if (mCurrentOperatingMode == RESTRICTED) {
358                 return status_t(NO_ERROR);
359             }
360             // If in any mode other than normal, ignore.
361             if (mCurrentOperatingMode != NORMAL) {
362                 return INVALID_OPERATION;
363             }
364 
365             mCurrentOperatingMode = RESTRICTED;
366             // temporarily stop all sensor direct report
367             for (auto &i : mDirectConnections) {
368                 sp<SensorDirectConnection> connection(i.promote());
369                 if (connection != nullptr) {
370                     connection->stopAll(true /* backupRecord */);
371                 }
372             }
373 
374             dev.disableAllSensors();
375             // Clear all pending flush connections for all active sensors. If one of the active
376             // connections has called flush() and the underlying sensor has been disabled before a
377             // flush complete event is returned, we need to remove the connection from this queue.
378             for (size_t i=0 ; i< mActiveSensors.size(); ++i) {
379                 mActiveSensors.valueAt(i)->clearAllPendingFlushConnections();
380             }
381             mWhiteListedPackage.setTo(String8(args[1]));
382             return status_t(NO_ERROR);
383         } else if (args.size() == 1 && args[0] == String16("enable")) {
384             // If currently in restricted mode, reset back to NORMAL mode else ignore.
385             if (mCurrentOperatingMode == RESTRICTED) {
386                 mCurrentOperatingMode = NORMAL;
387                 dev.enableAllSensors();
388                 // recover all sensor direct report
389                 for (auto &i : mDirectConnections) {
390                     sp<SensorDirectConnection> connection(i.promote());
391                     if (connection != nullptr) {
392                         connection->recoverAll();
393                     }
394                 }
395             }
396             if (mCurrentOperatingMode == DATA_INJECTION) {
397                resetToNormalModeLocked();
398             }
399             mWhiteListedPackage.clear();
400             return status_t(NO_ERROR);
401         } else if (args.size() == 2 && args[0] == String16("data_injection")) {
402             if (mCurrentOperatingMode == NORMAL) {
403                 dev.disableAllSensors();
404                 status_t err = dev.setMode(DATA_INJECTION);
405                 if (err == NO_ERROR) {
406                     mCurrentOperatingMode = DATA_INJECTION;
407                 } else {
408                     // Re-enable sensors.
409                     dev.enableAllSensors();
410                 }
411                 mWhiteListedPackage.setTo(String8(args[1]));
412                 return NO_ERROR;
413             } else if (mCurrentOperatingMode == DATA_INJECTION) {
414                 // Already in DATA_INJECTION mode. Treat this as a no_op.
415                 return NO_ERROR;
416             } else {
417                 // Transition to data injection mode supported only from NORMAL mode.
418                 return INVALID_OPERATION;
419             }
420         } else if (!mSensors.hasAnySensor()) {
421             result.append("No Sensors on the device\n");
422             result.appendFormat("devInitCheck : %d\n", SensorDevice::getInstance().initCheck());
423         } else {
424             // Default dump the sensor list and debugging information.
425             //
426             result.append("Sensor Device:\n");
427             result.append(SensorDevice::getInstance().dump().c_str());
428 
429             result.append("Sensor List:\n");
430             result.append(mSensors.dump().c_str());
431 
432             result.append("Fusion States:\n");
433             SensorFusion::getInstance().dump(result);
434 
435             result.append("Recent Sensor events:\n");
436             for (auto&& i : mRecentEvent) {
437                 sp<SensorInterface> s = mSensors.getInterface(i.first);
438                 if (!i.second->isEmpty()) {
439                     if (privileged || s->getSensor().getRequiredPermission().isEmpty()) {
440                         i.second->setFormat("normal");
441                     } else {
442                         i.second->setFormat("mask_data");
443                     }
444                     // if there is events and sensor does not need special permission.
445                     result.appendFormat("%s: ", s->getSensor().getName().string());
446                     result.append(i.second->dump().c_str());
447                 }
448             }
449 
450             result.append("Active sensors:\n");
451             for (size_t i=0 ; i<mActiveSensors.size() ; i++) {
452                 int handle = mActiveSensors.keyAt(i);
453                 result.appendFormat("%s (handle=0x%08x, connections=%zu)\n",
454                         getSensorName(handle).string(),
455                         handle,
456                         mActiveSensors.valueAt(i)->getNumConnections());
457             }
458 
459             result.appendFormat("Socket Buffer size = %zd events\n",
460                                 mSocketBufferSize/sizeof(sensors_event_t));
461             result.appendFormat("WakeLock Status: %s \n", mWakeLockAcquired ? "acquired" :
462                     "not held");
463             result.appendFormat("Mode :");
464             switch(mCurrentOperatingMode) {
465                case NORMAL:
466                    result.appendFormat(" NORMAL\n");
467                    break;
468                case RESTRICTED:
469                    result.appendFormat(" RESTRICTED : %s\n", mWhiteListedPackage.string());
470                    break;
471                case DATA_INJECTION:
472                    result.appendFormat(" DATA_INJECTION : %s\n", mWhiteListedPackage.string());
473             }
474 
475             result.appendFormat("%zd active connections\n", mActiveConnections.size());
476             for (size_t i=0 ; i < mActiveConnections.size() ; i++) {
477                 sp<SensorEventConnection> connection(mActiveConnections[i].promote());
478                 if (connection != 0) {
479                     result.appendFormat("Connection Number: %zu \n", i);
480                     connection->dump(result);
481                 }
482             }
483 
484             result.appendFormat("%zd direct connections\n", mDirectConnections.size());
485             for (size_t i = 0 ; i < mDirectConnections.size() ; i++) {
486                 sp<SensorDirectConnection> connection(mDirectConnections[i].promote());
487                 if (connection != nullptr) {
488                     result.appendFormat("Direct connection %zu:\n", i);
489                     connection->dump(result);
490                 }
491             }
492 
493             result.appendFormat("Previous Registrations:\n");
494             // Log in the reverse chronological order.
495             int currentIndex = (mNextSensorRegIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
496                 SENSOR_REGISTRATIONS_BUF_SIZE;
497             const int startIndex = currentIndex;
498             do {
499                 const SensorRegistrationInfo& reg_info = mLastNSensorRegistrations[currentIndex];
500                 if (SensorRegistrationInfo::isSentinel(reg_info)) {
501                     // Ignore sentinel, proceed to next item.
502                     currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
503                         SENSOR_REGISTRATIONS_BUF_SIZE;
504                     continue;
505                 }
506                 result.appendFormat("%s\n", reg_info.dump().c_str());
507                 currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
508                         SENSOR_REGISTRATIONS_BUF_SIZE;
509             } while(startIndex != currentIndex);
510         }
511     }
512     write(fd, result.string(), result.size());
513     return NO_ERROR;
514 }
515 
516 // NOTE: This is a remote API - make sure all args are validated
shellCommand(int in,int out,int err,Vector<String16> & args)517 status_t SensorService::shellCommand(int in, int out, int err, Vector<String16>& args) {
518     if (!checkCallingPermission(sManageSensorsPermission, nullptr, nullptr)) {
519         return PERMISSION_DENIED;
520     }
521     if (in == BAD_TYPE || out == BAD_TYPE || err == BAD_TYPE) {
522         return BAD_VALUE;
523     }
524     if (args.size() == 3 && args[0] == String16("set-uid-state")) {
525         return handleSetUidState(args, err);
526     } else if (args.size() == 2 && args[0] == String16("reset-uid-state")) {
527         return handleResetUidState(args, err);
528     } else if (args.size() == 2 && args[0] == String16("get-uid-state")) {
529         return handleGetUidState(args, out, err);
530     } else if (args.size() == 1 && args[0] == String16("help")) {
531         printHelp(out);
532         return NO_ERROR;
533     }
534     printHelp(err);
535     return BAD_VALUE;
536 }
537 
handleSetUidState(Vector<String16> & args,int err)538 status_t SensorService::handleSetUidState(Vector<String16>& args, int err) {
539     PermissionController pc;
540     int uid = pc.getPackageUid(args[1], 0);
541     if (uid <= 0) {
542         ALOGE("Unknown package: '%s'", String8(args[1]).string());
543         dprintf(err, "Unknown package: '%s'\n", String8(args[1]).string());
544         return BAD_VALUE;
545     }
546     bool active = false;
547     if (args[2] == String16("active")) {
548         active = true;
549     } else if ((args[2] != String16("idle"))) {
550         ALOGE("Expected active or idle but got: '%s'", String8(args[2]).string());
551         return BAD_VALUE;
552     }
553     mUidPolicy->addOverrideUid(uid, active);
554     return NO_ERROR;
555 }
556 
handleResetUidState(Vector<String16> & args,int err)557 status_t SensorService::handleResetUidState(Vector<String16>& args, int err) {
558     PermissionController pc;
559     int uid = pc.getPackageUid(args[1], 0);
560     if (uid < 0) {
561         ALOGE("Unknown package: '%s'", String8(args[1]).string());
562         dprintf(err, "Unknown package: '%s'\n", String8(args[1]).string());
563         return BAD_VALUE;
564     }
565     mUidPolicy->removeOverrideUid(uid);
566     return NO_ERROR;
567 }
568 
handleGetUidState(Vector<String16> & args,int out,int err)569 status_t SensorService::handleGetUidState(Vector<String16>& args, int out, int err) {
570     PermissionController pc;
571     int uid = pc.getPackageUid(args[1], 0);
572     if (uid < 0) {
573         ALOGE("Unknown package: '%s'", String8(args[1]).string());
574         dprintf(err, "Unknown package: '%s'\n", String8(args[1]).string());
575         return BAD_VALUE;
576     }
577     if (mUidPolicy->isUidActive(uid)) {
578         return dprintf(out, "active\n");
579     } else {
580         return dprintf(out, "idle\n");
581     }
582 }
583 
printHelp(int out)584 status_t SensorService::printHelp(int out) {
585     return dprintf(out, "Sensor service commands:\n"
586         "  get-uid-state <PACKAGE> gets the uid state\n"
587         "  set-uid-state <PACKAGE> <active|idle> overrides the uid state\n"
588         "  reset-uid-state <PACKAGE> clears the uid state override\n"
589         "  help print this message\n");
590 }
591 
592 //TODO: move to SensorEventConnection later
cleanupAutoDisabledSensorLocked(const sp<SensorEventConnection> & connection,sensors_event_t const * buffer,const int count)593 void SensorService::cleanupAutoDisabledSensorLocked(const sp<SensorEventConnection>& connection,
594         sensors_event_t const* buffer, const int count) {
595     for (int i=0 ; i<count ; i++) {
596         int handle = buffer[i].sensor;
597         if (buffer[i].type == SENSOR_TYPE_META_DATA) {
598             handle = buffer[i].meta_data.sensor;
599         }
600         if (connection->hasSensor(handle)) {
601             sp<SensorInterface> si = getSensorInterfaceFromHandle(handle);
602             // If this buffer has an event from a one_shot sensor and this connection is registered
603             // for this particular one_shot sensor, try cleaning up the connection.
604             if (si != nullptr &&
605                 si->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) {
606                 si->autoDisable(connection.get(), handle);
607                 cleanupWithoutDisableLocked(connection, handle);
608             }
609 
610         }
611    }
612 }
613 
threadLoop()614 bool SensorService::threadLoop() {
615     ALOGD("nuSensorService thread starting...");
616 
617     // each virtual sensor could generate an event per "real" event, that's why we need to size
618     // numEventMax much smaller than MAX_RECEIVE_BUFFER_EVENT_COUNT.  in practice, this is too
619     // aggressive, but guaranteed to be enough.
620     const size_t vcount = mSensors.getVirtualSensors().size();
621     const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
622     const size_t numEventMax = minBufferSize / (1 + vcount);
623 
624     SensorDevice& device(SensorDevice::getInstance());
625 
626     const int halVersion = device.getHalDeviceVersion();
627     do {
628         ssize_t count = device.poll(mSensorEventBuffer, numEventMax);
629         if (count < 0) {
630             ALOGE("sensor poll failed (%s)", strerror(-count));
631             break;
632         }
633 
634         // Reset sensors_event_t.flags to zero for all events in the buffer.
635         for (int i = 0; i < count; i++) {
636              mSensorEventBuffer[i].flags = 0;
637         }
638 
639         // Make a copy of the connection vector as some connections may be removed during the course
640         // of this loop (especially when one-shot sensor events are present in the sensor_event
641         // buffer). Promote all connections to StrongPointers before the lock is acquired. If the
642         // destructor of the sp gets called when the lock is acquired, it may result in a deadlock
643         // as ~SensorEventConnection() needs to acquire mLock again for cleanup. So copy all the
644         // strongPointers to a vector before the lock is acquired.
645         SortedVector< sp<SensorEventConnection> > activeConnections;
646         populateActiveConnections(&activeConnections);
647 
648         Mutex::Autolock _l(mLock);
649         // Poll has returned. Hold a wakelock if one of the events is from a wake up sensor. The
650         // rest of this loop is under a critical section protected by mLock. Acquiring a wakeLock,
651         // sending events to clients (incrementing SensorEventConnection::mWakeLockRefCount) should
652         // not be interleaved with decrementing SensorEventConnection::mWakeLockRefCount and
653         // releasing the wakelock.
654         bool bufferHasWakeUpEvent = false;
655         for (int i = 0; i < count; i++) {
656             if (isWakeUpSensorEvent(mSensorEventBuffer[i])) {
657                 bufferHasWakeUpEvent = true;
658                 break;
659             }
660         }
661 
662         if (bufferHasWakeUpEvent && !mWakeLockAcquired) {
663             setWakeLockAcquiredLocked(true);
664         }
665         recordLastValueLocked(mSensorEventBuffer, count);
666 
667         // handle virtual sensors
668         if (count && vcount) {
669             sensors_event_t const * const event = mSensorEventBuffer;
670             if (!mActiveVirtualSensors.empty()) {
671                 size_t k = 0;
672                 SensorFusion& fusion(SensorFusion::getInstance());
673                 if (fusion.isEnabled()) {
674                     for (size_t i=0 ; i<size_t(count) ; i++) {
675                         fusion.process(event[i]);
676                     }
677                 }
678                 for (size_t i=0 ; i<size_t(count) && k<minBufferSize ; i++) {
679                     for (int handle : mActiveVirtualSensors) {
680                         if (count + k >= minBufferSize) {
681                             ALOGE("buffer too small to hold all events: "
682                                     "count=%zd, k=%zu, size=%zu",
683                                     count, k, minBufferSize);
684                             break;
685                         }
686                         sensors_event_t out;
687                         sp<SensorInterface> si = mSensors.getInterface(handle);
688                         if (si == nullptr) {
689                             ALOGE("handle %d is not an valid virtual sensor", handle);
690                             continue;
691                         }
692 
693                         if (si->process(&out, event[i])) {
694                             mSensorEventBuffer[count + k] = out;
695                             k++;
696                         }
697                     }
698                 }
699                 if (k) {
700                     // record the last synthesized values
701                     recordLastValueLocked(&mSensorEventBuffer[count], k);
702                     count += k;
703                     // sort the buffer by time-stamps
704                     sortEventBuffer(mSensorEventBuffer, count);
705                 }
706             }
707         }
708 
709         // handle backward compatibility for RotationVector sensor
710         if (halVersion < SENSORS_DEVICE_API_VERSION_1_0) {
711             for (int i = 0; i < count; i++) {
712                 if (mSensorEventBuffer[i].type == SENSOR_TYPE_ROTATION_VECTOR) {
713                     // All the 4 components of the quaternion should be available
714                     // No heading accuracy. Set it to -1
715                     mSensorEventBuffer[i].data[4] = -1;
716                 }
717             }
718         }
719 
720         for (int i = 0; i < count; ++i) {
721             // Map flush_complete_events in the buffer to SensorEventConnections which called flush
722             // on the hardware sensor. mapFlushEventsToConnections[i] will be the
723             // SensorEventConnection mapped to the corresponding flush_complete_event in
724             // mSensorEventBuffer[i] if such a mapping exists (NULL otherwise).
725             mMapFlushEventsToConnections[i] = NULL;
726             if (mSensorEventBuffer[i].type == SENSOR_TYPE_META_DATA) {
727                 const int sensor_handle = mSensorEventBuffer[i].meta_data.sensor;
728                 SensorRecord* rec = mActiveSensors.valueFor(sensor_handle);
729                 if (rec != NULL) {
730                     mMapFlushEventsToConnections[i] = rec->getFirstPendingFlushConnection();
731                     rec->removeFirstPendingFlushConnection();
732                 }
733             }
734 
735             // handle dynamic sensor meta events, process registration and unregistration of dynamic
736             // sensor based on content of event.
737             if (mSensorEventBuffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META) {
738                 if (mSensorEventBuffer[i].dynamic_sensor_meta.connected) {
739                     int handle = mSensorEventBuffer[i].dynamic_sensor_meta.handle;
740                     const sensor_t& dynamicSensor =
741                             *(mSensorEventBuffer[i].dynamic_sensor_meta.sensor);
742                     ALOGI("Dynamic sensor handle 0x%x connected, type %d, name %s",
743                           handle, dynamicSensor.type, dynamicSensor.name);
744 
745                     if (mSensors.isNewHandle(handle)) {
746                         const auto& uuid = mSensorEventBuffer[i].dynamic_sensor_meta.uuid;
747                         sensor_t s = dynamicSensor;
748                         // make sure the dynamic sensor flag is set
749                         s.flags |= DYNAMIC_SENSOR_MASK;
750                         // force the handle to be consistent
751                         s.handle = handle;
752 
753                         SensorInterface *si = new HardwareSensor(s, uuid);
754 
755                         // This will release hold on dynamic sensor meta, so it should be called
756                         // after Sensor object is created.
757                         device.handleDynamicSensorConnection(handle, true /*connected*/);
758                         registerDynamicSensorLocked(si);
759                     } else {
760                         ALOGE("Handle %d has been used, cannot use again before reboot.", handle);
761                     }
762                 } else {
763                     int handle = mSensorEventBuffer[i].dynamic_sensor_meta.handle;
764                     ALOGI("Dynamic sensor handle 0x%x disconnected", handle);
765 
766                     device.handleDynamicSensorConnection(handle, false /*connected*/);
767                     if (!unregisterDynamicSensorLocked(handle)) {
768                         ALOGE("Dynamic sensor release error.");
769                     }
770 
771                     size_t numConnections = activeConnections.size();
772                     for (size_t i=0 ; i < numConnections; ++i) {
773                         if (activeConnections[i] != NULL) {
774                             activeConnections[i]->removeSensor(handle);
775                         }
776                     }
777                 }
778             }
779         }
780 
781         // Send our events to clients. Check the state of wake lock for each client and release the
782         // lock if none of the clients need it.
783         bool needsWakeLock = false;
784         size_t numConnections = activeConnections.size();
785         for (size_t i=0 ; i < numConnections; ++i) {
786             if (activeConnections[i] != 0) {
787                 activeConnections[i]->sendEvents(mSensorEventBuffer, count, mSensorEventScratch,
788                         mMapFlushEventsToConnections);
789                 needsWakeLock |= activeConnections[i]->needsWakeLock();
790                 // If the connection has one-shot sensors, it may be cleaned up after first trigger.
791                 // Early check for one-shot sensors.
792                 if (activeConnections[i]->hasOneShotSensors()) {
793                     cleanupAutoDisabledSensorLocked(activeConnections[i], mSensorEventBuffer,
794                             count);
795                 }
796             }
797         }
798 
799         if (mWakeLockAcquired && !needsWakeLock) {
800             setWakeLockAcquiredLocked(false);
801         }
802     } while (!Thread::exitPending());
803 
804     ALOGW("Exiting SensorService::threadLoop => aborting...");
805     abort();
806     return false;
807 }
808 
getLooper() const809 sp<Looper> SensorService::getLooper() const {
810     return mLooper;
811 }
812 
resetAllWakeLockRefCounts()813 void SensorService::resetAllWakeLockRefCounts() {
814     SortedVector< sp<SensorEventConnection> > activeConnections;
815     populateActiveConnections(&activeConnections);
816     {
817         Mutex::Autolock _l(mLock);
818         for (size_t i=0 ; i < activeConnections.size(); ++i) {
819             if (activeConnections[i] != 0) {
820                 activeConnections[i]->resetWakeLockRefCount();
821             }
822         }
823         setWakeLockAcquiredLocked(false);
824     }
825 }
826 
setWakeLockAcquiredLocked(bool acquire)827 void SensorService::setWakeLockAcquiredLocked(bool acquire) {
828     if (acquire) {
829         if (!mWakeLockAcquired) {
830             acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_NAME);
831             mWakeLockAcquired = true;
832         }
833         mLooper->wake();
834     } else {
835         if (mWakeLockAcquired) {
836             release_wake_lock(WAKE_LOCK_NAME);
837             mWakeLockAcquired = false;
838         }
839     }
840 }
841 
isWakeLockAcquired()842 bool SensorService::isWakeLockAcquired() {
843     Mutex::Autolock _l(mLock);
844     return mWakeLockAcquired;
845 }
846 
threadLoop()847 bool SensorService::SensorEventAckReceiver::threadLoop() {
848     ALOGD("new thread SensorEventAckReceiver");
849     sp<Looper> looper = mService->getLooper();
850     do {
851         bool wakeLockAcquired = mService->isWakeLockAcquired();
852         int timeout = -1;
853         if (wakeLockAcquired) timeout = 5000;
854         int ret = looper->pollOnce(timeout);
855         if (ret == ALOOPER_POLL_TIMEOUT) {
856            mService->resetAllWakeLockRefCounts();
857         }
858     } while(!Thread::exitPending());
859     return false;
860 }
861 
recordLastValueLocked(const sensors_event_t * buffer,size_t count)862 void SensorService::recordLastValueLocked(
863         const sensors_event_t* buffer, size_t count) {
864     for (size_t i = 0; i < count; i++) {
865         if (buffer[i].type == SENSOR_TYPE_META_DATA ||
866             buffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META ||
867             buffer[i].type == SENSOR_TYPE_ADDITIONAL_INFO) {
868             continue;
869         }
870 
871         auto logger = mRecentEvent.find(buffer[i].sensor);
872         if (logger != mRecentEvent.end()) {
873             logger->second->addEvent(buffer[i]);
874         }
875     }
876 }
877 
sortEventBuffer(sensors_event_t * buffer,size_t count)878 void SensorService::sortEventBuffer(sensors_event_t* buffer, size_t count) {
879     struct compar {
880         static int cmp(void const* lhs, void const* rhs) {
881             sensors_event_t const* l = static_cast<sensors_event_t const*>(lhs);
882             sensors_event_t const* r = static_cast<sensors_event_t const*>(rhs);
883             return l->timestamp - r->timestamp;
884         }
885     };
886     qsort(buffer, count, sizeof(sensors_event_t), compar::cmp);
887 }
888 
getSensorName(int handle) const889 String8 SensorService::getSensorName(int handle) const {
890     return mSensors.getName(handle);
891 }
892 
isVirtualSensor(int handle) const893 bool SensorService::isVirtualSensor(int handle) const {
894     sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
895     return sensor != nullptr && sensor->isVirtual();
896 }
897 
isWakeUpSensorEvent(const sensors_event_t & event) const898 bool SensorService::isWakeUpSensorEvent(const sensors_event_t& event) const {
899     int handle = event.sensor;
900     if (event.type == SENSOR_TYPE_META_DATA) {
901         handle = event.meta_data.sensor;
902     }
903     sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
904     return sensor != nullptr && sensor->getSensor().isWakeUpSensor();
905 }
906 
getIdFromUuid(const Sensor::uuid_t & uuid) const907 int32_t SensorService::getIdFromUuid(const Sensor::uuid_t &uuid) const {
908     if ((uuid.i64[0] == 0) && (uuid.i64[1] == 0)) {
909         // UUID is not supported for this device.
910         return 0;
911     }
912     if ((uuid.i64[0] == INT64_C(~0)) && (uuid.i64[1] == INT64_C(~0))) {
913         // This sensor can be uniquely identified in the system by
914         // the combination of its type and name.
915         return -1;
916     }
917 
918     // We have a dynamic sensor.
919 
920     if (!sHmacGlobalKeyIsValid) {
921         // Rather than risk exposing UUIDs, we cripple dynamic sensors.
922         ALOGW("HMAC key failure; dynamic sensor getId() will be wrong.");
923         return 0;
924     }
925 
926     // We want each app author/publisher to get a different ID, so that the
927     // same dynamic sensor cannot be tracked across apps by multiple
928     // authors/publishers.  So we use both our UUID and our User ID.
929     // Note potential confusion:
930     //     UUID => Universally Unique Identifier.
931     //     UID  => User Identifier.
932     // We refrain from using "uid" except as needed by API to try to
933     // keep this distinction clear.
934 
935     auto appUserId = IPCThreadState::self()->getCallingUid();
936     uint8_t uuidAndApp[sizeof(uuid) + sizeof(appUserId)];
937     memcpy(uuidAndApp, &uuid, sizeof(uuid));
938     memcpy(uuidAndApp + sizeof(uuid), &appUserId, sizeof(appUserId));
939 
940     // Now we use our key on our UUID/app combo to get the hash.
941     uint8_t hash[EVP_MAX_MD_SIZE];
942     unsigned int hashLen;
943     if (HMAC(EVP_sha256(),
944              sHmacGlobalKey, sizeof(sHmacGlobalKey),
945              uuidAndApp, sizeof(uuidAndApp),
946              hash, &hashLen) == nullptr) {
947         // Rather than risk exposing UUIDs, we cripple dynamic sensors.
948         ALOGW("HMAC failure; dynamic sensor getId() will be wrong.");
949         return 0;
950     }
951 
952     int32_t id = 0;
953     if (hashLen < sizeof(id)) {
954         // We never expect this case, but out of paranoia, we handle it.
955         // Our 'id' length is already quite small, we don't want the
956         // effective length of it to be even smaller.
957         // Rather than risk exposing UUIDs, we cripple dynamic sensors.
958         ALOGW("HMAC insufficient; dynamic sensor getId() will be wrong.");
959         return 0;
960     }
961 
962     // This is almost certainly less than all of 'hash', but it's as secure
963     // as we can be with our current 'id' length.
964     memcpy(&id, hash, sizeof(id));
965 
966     // Note at the beginning of the function that we return the values of
967     // 0 and -1 to represent special cases.  As a result, we can't return
968     // those as dynamic sensor IDs.  If we happened to hash to one of those
969     // values, we change 'id' so we report as a dynamic sensor, and not as
970     // one of those special cases.
971     if (id == -1) {
972         id = -2;
973     } else if (id == 0) {
974         id = 1;
975     }
976     return id;
977 }
978 
makeUuidsIntoIdsForSensorList(Vector<Sensor> & sensorList) const979 void SensorService::makeUuidsIntoIdsForSensorList(Vector<Sensor> &sensorList) const {
980     for (auto &sensor : sensorList) {
981         int32_t id = getIdFromUuid(sensor.getUuid());
982         sensor.setId(id);
983     }
984 }
985 
getSensorList(const String16 &)986 Vector<Sensor> SensorService::getSensorList(const String16& /* opPackageName */) {
987     char value[PROPERTY_VALUE_MAX];
988     property_get("debug.sensors", value, "0");
989     const Vector<Sensor>& initialSensorList = (atoi(value)) ?
990             mSensors.getUserDebugSensors() : mSensors.getUserSensors();
991     Vector<Sensor> accessibleSensorList;
992     for (size_t i = 0; i < initialSensorList.size(); i++) {
993         Sensor sensor = initialSensorList[i];
994         accessibleSensorList.add(sensor);
995     }
996     makeUuidsIntoIdsForSensorList(accessibleSensorList);
997     return accessibleSensorList;
998 }
999 
getDynamicSensorList(const String16 & opPackageName)1000 Vector<Sensor> SensorService::getDynamicSensorList(const String16& opPackageName) {
1001     Vector<Sensor> accessibleSensorList;
1002     mSensors.forEachSensor(
1003             [&opPackageName, &accessibleSensorList] (const Sensor& sensor) -> bool {
1004                 if (sensor.isDynamicSensor()) {
1005                     if (canAccessSensor(sensor, "getDynamicSensorList", opPackageName)) {
1006                         accessibleSensorList.add(sensor);
1007                     } else {
1008                         ALOGI("Skipped sensor %s because it requires permission %s and app op %" PRId32,
1009                               sensor.getName().string(),
1010                               sensor.getRequiredPermission().string(),
1011                               sensor.getRequiredAppOp());
1012                     }
1013                 }
1014                 return true;
1015             });
1016     makeUuidsIntoIdsForSensorList(accessibleSensorList);
1017     return accessibleSensorList;
1018 }
1019 
createSensorEventConnection(const String8 & packageName,int requestedMode,const String16 & opPackageName)1020 sp<ISensorEventConnection> SensorService::createSensorEventConnection(const String8& packageName,
1021         int requestedMode, const String16& opPackageName) {
1022     // Only 2 modes supported for a SensorEventConnection ... NORMAL and DATA_INJECTION.
1023     if (requestedMode != NORMAL && requestedMode != DATA_INJECTION) {
1024         return NULL;
1025     }
1026 
1027     Mutex::Autolock _l(mLock);
1028     // To create a client in DATA_INJECTION mode to inject data, SensorService should already be
1029     // operating in DI mode.
1030     if (requestedMode == DATA_INJECTION) {
1031         if (mCurrentOperatingMode != DATA_INJECTION) return NULL;
1032         if (!isWhiteListedPackage(packageName)) return NULL;
1033     }
1034 
1035     uid_t uid = IPCThreadState::self()->getCallingUid();
1036     pid_t pid = IPCThreadState::self()->getCallingPid();
1037 
1038     String8 connPackageName =
1039             (packageName == "") ? String8::format("unknown_package_pid_%d", pid) : packageName;
1040     String16 connOpPackageName =
1041             (opPackageName == String16("")) ? String16(connPackageName) : opPackageName;
1042     bool hasSensorAccess = mUidPolicy->isUidActive(uid);
1043     sp<SensorEventConnection> result(new SensorEventConnection(this, uid, connPackageName,
1044             requestedMode == DATA_INJECTION, connOpPackageName, hasSensorAccess));
1045     if (requestedMode == DATA_INJECTION) {
1046         if (mActiveConnections.indexOf(result) < 0) {
1047             mActiveConnections.add(result);
1048         }
1049         // Add the associated file descriptor to the Looper for polling whenever there is data to
1050         // be injected.
1051         result->updateLooperRegistration(mLooper);
1052     }
1053     return result;
1054 }
1055 
isDataInjectionEnabled()1056 int SensorService::isDataInjectionEnabled() {
1057     Mutex::Autolock _l(mLock);
1058     return (mCurrentOperatingMode == DATA_INJECTION);
1059 }
1060 
createSensorDirectConnection(const String16 & opPackageName,uint32_t size,int32_t type,int32_t format,const native_handle * resource)1061 sp<ISensorEventConnection> SensorService::createSensorDirectConnection(
1062         const String16& opPackageName, uint32_t size, int32_t type, int32_t format,
1063         const native_handle *resource) {
1064     Mutex::Autolock _l(mLock);
1065 
1066     struct sensors_direct_mem_t mem = {
1067         .type = type,
1068         .format = format,
1069         .size = size,
1070         .handle = resource,
1071     };
1072     uid_t uid = IPCThreadState::self()->getCallingUid();
1073 
1074     if (mem.handle == nullptr) {
1075         ALOGE("Failed to clone resource handle");
1076         return nullptr;
1077     }
1078 
1079     // check format
1080     if (format != SENSOR_DIRECT_FMT_SENSORS_EVENT) {
1081         ALOGE("Direct channel format %d is unsupported!", format);
1082         return nullptr;
1083     }
1084 
1085     // check for duplication
1086     for (auto &i : mDirectConnections) {
1087         sp<SensorDirectConnection> connection(i.promote());
1088         if (connection != nullptr && connection->isEquivalent(&mem)) {
1089             ALOGE("Duplicate create channel request for the same share memory");
1090             return nullptr;
1091         }
1092     }
1093 
1094     // check specific to memory type
1095     switch(type) {
1096         case SENSOR_DIRECT_MEM_TYPE_ASHMEM: { // channel backed by ashmem
1097             if (resource->numFds < 1) {
1098                 ALOGE("Ashmem direct channel requires a memory region to be supplied");
1099                 android_errorWriteLog(0x534e4554, "70986337");  // SafetyNet
1100                 return nullptr;
1101             }
1102             int fd = resource->data[0];
1103             int size2 = ashmem_get_size_region(fd);
1104             // check size consistency
1105             if (size2 < static_cast<int64_t>(size)) {
1106                 ALOGE("Ashmem direct channel size %" PRIu32 " greater than shared memory size %d",
1107                       size, size2);
1108                 return nullptr;
1109             }
1110             break;
1111         }
1112         case SENSOR_DIRECT_MEM_TYPE_GRALLOC:
1113             // no specific checks for gralloc
1114             break;
1115         default:
1116             ALOGE("Unknown direct connection memory type %d", type);
1117             return nullptr;
1118     }
1119 
1120     native_handle_t *clone = native_handle_clone(resource);
1121     if (!clone) {
1122         return nullptr;
1123     }
1124 
1125     SensorDirectConnection* conn = nullptr;
1126     SensorDevice& dev(SensorDevice::getInstance());
1127     int channelHandle = dev.registerDirectChannel(&mem);
1128 
1129     if (channelHandle <= 0) {
1130         ALOGE("SensorDevice::registerDirectChannel returns %d", channelHandle);
1131     } else {
1132         mem.handle = clone;
1133         conn = new SensorDirectConnection(this, uid, &mem, channelHandle, opPackageName);
1134     }
1135 
1136     if (conn == nullptr) {
1137         native_handle_close(clone);
1138         native_handle_delete(clone);
1139     } else {
1140         // add to list of direct connections
1141         // sensor service should never hold pointer or sp of SensorDirectConnection object.
1142         mDirectConnections.add(wp<SensorDirectConnection>(conn));
1143     }
1144     return conn;
1145 }
1146 
setOperationParameter(int32_t handle,int32_t type,const Vector<float> & floats,const Vector<int32_t> & ints)1147 int SensorService::setOperationParameter(
1148             int32_t handle, int32_t type,
1149             const Vector<float> &floats, const Vector<int32_t> &ints) {
1150     Mutex::Autolock _l(mLock);
1151 
1152     if (!checkCallingPermission(sLocationHardwarePermission, nullptr, nullptr)) {
1153         return PERMISSION_DENIED;
1154     }
1155 
1156     bool isFloat = true;
1157     bool isCustom = false;
1158     size_t expectSize = INT32_MAX;
1159     switch (type) {
1160         case AINFO_LOCAL_GEOMAGNETIC_FIELD:
1161             isFloat = true;
1162             expectSize = 3;
1163             break;
1164         case AINFO_LOCAL_GRAVITY:
1165             isFloat = true;
1166             expectSize = 1;
1167             break;
1168         case AINFO_DOCK_STATE:
1169         case AINFO_HIGH_PERFORMANCE_MODE:
1170         case AINFO_MAGNETIC_FIELD_CALIBRATION:
1171             isFloat = false;
1172             expectSize = 1;
1173             break;
1174         default:
1175             // CUSTOM events must only contain float data; it may have variable size
1176             if (type < AINFO_CUSTOM_START || type >= AINFO_DEBUGGING_START ||
1177                     ints.size() ||
1178                     sizeof(additional_info_event_t::data_float)/sizeof(float) < floats.size() ||
1179                     handle < 0) {
1180                 return BAD_VALUE;
1181             }
1182             isFloat = true;
1183             isCustom = true;
1184             expectSize = floats.size();
1185             break;
1186     }
1187 
1188     if (!isCustom && handle != -1) {
1189         return BAD_VALUE;
1190     }
1191 
1192     // three events: first one is begin tag, last one is end tag, the one in the middle
1193     // is the payload.
1194     sensors_event_t event[3];
1195     int64_t timestamp = elapsedRealtimeNano();
1196     for (sensors_event_t* i = event; i < event + 3; i++) {
1197         *i = (sensors_event_t) {
1198             .version = sizeof(sensors_event_t),
1199             .sensor = handle,
1200             .type = SENSOR_TYPE_ADDITIONAL_INFO,
1201             .timestamp = timestamp++,
1202             .additional_info = (additional_info_event_t) {
1203                 .serial = 0
1204             }
1205         };
1206     }
1207 
1208     event[0].additional_info.type = AINFO_BEGIN;
1209     event[1].additional_info.type = type;
1210     event[2].additional_info.type = AINFO_END;
1211 
1212     if (isFloat) {
1213         if (floats.size() != expectSize) {
1214             return BAD_VALUE;
1215         }
1216         for (size_t i = 0; i < expectSize; ++i) {
1217             event[1].additional_info.data_float[i] = floats[i];
1218         }
1219     } else {
1220         if (ints.size() != expectSize) {
1221             return BAD_VALUE;
1222         }
1223         for (size_t i = 0; i < expectSize; ++i) {
1224             event[1].additional_info.data_int32[i] = ints[i];
1225         }
1226     }
1227 
1228     SensorDevice& dev(SensorDevice::getInstance());
1229     for (sensors_event_t* i = event; i < event + 3; i++) {
1230         int ret = dev.injectSensorData(i);
1231         if (ret != NO_ERROR) {
1232             return ret;
1233         }
1234     }
1235     return NO_ERROR;
1236 }
1237 
resetToNormalMode()1238 status_t SensorService::resetToNormalMode() {
1239     Mutex::Autolock _l(mLock);
1240     return resetToNormalModeLocked();
1241 }
1242 
resetToNormalModeLocked()1243 status_t SensorService::resetToNormalModeLocked() {
1244     SensorDevice& dev(SensorDevice::getInstance());
1245     status_t err = dev.setMode(NORMAL);
1246     if (err == NO_ERROR) {
1247         mCurrentOperatingMode = NORMAL;
1248         dev.enableAllSensors();
1249     }
1250     return err;
1251 }
1252 
cleanupConnection(SensorEventConnection * c)1253 void SensorService::cleanupConnection(SensorEventConnection* c) {
1254     Mutex::Autolock _l(mLock);
1255     const wp<SensorEventConnection> connection(c);
1256     size_t size = mActiveSensors.size();
1257     ALOGD_IF(DEBUG_CONNECTIONS, "%zu active sensors", size);
1258     for (size_t i=0 ; i<size ; ) {
1259         int handle = mActiveSensors.keyAt(i);
1260         if (c->hasSensor(handle)) {
1261             ALOGD_IF(DEBUG_CONNECTIONS, "%zu: disabling handle=0x%08x", i, handle);
1262             sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
1263             if (sensor != nullptr) {
1264                 sensor->activate(c, false);
1265             } else {
1266                 ALOGE("sensor interface of handle=0x%08x is null!", handle);
1267             }
1268             c->removeSensor(handle);
1269         }
1270         SensorRecord* rec = mActiveSensors.valueAt(i);
1271         ALOGE_IF(!rec, "mActiveSensors[%zu] is null (handle=0x%08x)!", i, handle);
1272         ALOGD_IF(DEBUG_CONNECTIONS,
1273                 "removing connection %p for sensor[%zu].handle=0x%08x",
1274                 c, i, handle);
1275 
1276         if (rec && rec->removeConnection(connection)) {
1277             ALOGD_IF(DEBUG_CONNECTIONS, "... and it was the last connection");
1278             mActiveSensors.removeItemsAt(i, 1);
1279             mActiveVirtualSensors.erase(handle);
1280             delete rec;
1281             size--;
1282         } else {
1283             i++;
1284         }
1285     }
1286     c->updateLooperRegistration(mLooper);
1287     mActiveConnections.remove(connection);
1288     BatteryService::cleanup(c->getUid());
1289     if (c->needsWakeLock()) {
1290         checkWakeLockStateLocked();
1291     }
1292 
1293     SensorDevice& dev(SensorDevice::getInstance());
1294     dev.notifyConnectionDestroyed(c);
1295 }
1296 
cleanupConnection(SensorDirectConnection * c)1297 void SensorService::cleanupConnection(SensorDirectConnection* c) {
1298     Mutex::Autolock _l(mLock);
1299 
1300     SensorDevice& dev(SensorDevice::getInstance());
1301     dev.unregisterDirectChannel(c->getHalChannelHandle());
1302     mDirectConnections.remove(c);
1303 }
1304 
getSensorInterfaceFromHandle(int handle) const1305 sp<SensorInterface> SensorService::getSensorInterfaceFromHandle(int handle) const {
1306     return mSensors.getInterface(handle);
1307 }
1308 
enable(const sp<SensorEventConnection> & connection,int handle,nsecs_t samplingPeriodNs,nsecs_t maxBatchReportLatencyNs,int reservedFlags,const String16 & opPackageName)1309 status_t SensorService::enable(const sp<SensorEventConnection>& connection,
1310         int handle, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs, int reservedFlags,
1311         const String16& opPackageName) {
1312     if (mInitCheck != NO_ERROR)
1313         return mInitCheck;
1314 
1315     sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
1316     if (sensor == nullptr ||
1317         !canAccessSensor(sensor->getSensor(), "Tried enabling", opPackageName)) {
1318         return BAD_VALUE;
1319     }
1320 
1321     Mutex::Autolock _l(mLock);
1322     if (mCurrentOperatingMode != NORMAL
1323            && !isWhiteListedPackage(connection->getPackageName())) {
1324         return INVALID_OPERATION;
1325     }
1326 
1327     SensorRecord* rec = mActiveSensors.valueFor(handle);
1328     if (rec == 0) {
1329         rec = new SensorRecord(connection);
1330         mActiveSensors.add(handle, rec);
1331         if (sensor->isVirtual()) {
1332             mActiveVirtualSensors.emplace(handle);
1333         }
1334     } else {
1335         if (rec->addConnection(connection)) {
1336             // this sensor is already activated, but we are adding a connection that uses it.
1337             // Immediately send down the last known value of the requested sensor if it's not a
1338             // "continuous" sensor.
1339             if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ON_CHANGE) {
1340                 // NOTE: The wake_up flag of this event may get set to
1341                 // WAKE_UP_SENSOR_EVENT_NEEDS_ACK if this is a wake_up event.
1342 
1343                 auto logger = mRecentEvent.find(handle);
1344                 if (logger != mRecentEvent.end()) {
1345                     sensors_event_t event;
1346                     // It is unlikely that this buffer is empty as the sensor is already active.
1347                     // One possible corner case may be two applications activating an on-change
1348                     // sensor at the same time.
1349                     if(logger->second->populateLastEvent(&event)) {
1350                         event.sensor = handle;
1351                         if (event.version == sizeof(sensors_event_t)) {
1352                             if (isWakeUpSensorEvent(event) && !mWakeLockAcquired) {
1353                                 setWakeLockAcquiredLocked(true);
1354                             }
1355                             connection->sendEvents(&event, 1, NULL);
1356                             if (!connection->needsWakeLock() && mWakeLockAcquired) {
1357                                 checkWakeLockStateLocked();
1358                             }
1359                         }
1360                     }
1361                 }
1362             }
1363         }
1364     }
1365 
1366     if (connection->addSensor(handle)) {
1367         BatteryService::enableSensor(connection->getUid(), handle);
1368         // the sensor was added (which means it wasn't already there)
1369         // so, see if this connection becomes active
1370         if (mActiveConnections.indexOf(connection) < 0) {
1371             mActiveConnections.add(connection);
1372         }
1373     } else {
1374         ALOGW("sensor %08x already enabled in connection %p (ignoring)",
1375             handle, connection.get());
1376     }
1377 
1378     // Check maximum delay for the sensor.
1379     nsecs_t maxDelayNs = sensor->getSensor().getMaxDelay() * 1000LL;
1380     if (maxDelayNs > 0 && (samplingPeriodNs > maxDelayNs)) {
1381         samplingPeriodNs = maxDelayNs;
1382     }
1383 
1384     nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs();
1385     if (samplingPeriodNs < minDelayNs) {
1386         samplingPeriodNs = minDelayNs;
1387     }
1388 
1389     ALOGD_IF(DEBUG_CONNECTIONS, "Calling batch handle==%d flags=%d"
1390                                 "rate=%" PRId64 " timeout== %" PRId64"",
1391              handle, reservedFlags, samplingPeriodNs, maxBatchReportLatencyNs);
1392 
1393     status_t err = sensor->batch(connection.get(), handle, 0, samplingPeriodNs,
1394                                  maxBatchReportLatencyNs);
1395 
1396     // Call flush() before calling activate() on the sensor. Wait for a first
1397     // flush complete event before sending events on this connection. Ignore
1398     // one-shot sensors which don't support flush(). Ignore on-change sensors
1399     // to maintain the on-change logic (any on-change events except the initial
1400     // one should be trigger by a change in value). Also if this sensor isn't
1401     // already active, don't call flush().
1402     if (err == NO_ERROR &&
1403             sensor->getSensor().getReportingMode() == AREPORTING_MODE_CONTINUOUS &&
1404             rec->getNumConnections() > 1) {
1405         connection->setFirstFlushPending(handle, true);
1406         status_t err_flush = sensor->flush(connection.get(), handle);
1407         // Flush may return error if the underlying h/w sensor uses an older HAL.
1408         if (err_flush == NO_ERROR) {
1409             rec->addPendingFlushConnection(connection.get());
1410         } else {
1411             connection->setFirstFlushPending(handle, false);
1412         }
1413     }
1414 
1415     if (err == NO_ERROR) {
1416         ALOGD_IF(DEBUG_CONNECTIONS, "Calling activate on %d", handle);
1417         err = sensor->activate(connection.get(), true);
1418     }
1419 
1420     if (err == NO_ERROR) {
1421         connection->updateLooperRegistration(mLooper);
1422 
1423         mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex) =
1424                 SensorRegistrationInfo(handle, connection->getPackageName(),
1425                                        samplingPeriodNs, maxBatchReportLatencyNs, true);
1426         mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE;
1427     }
1428 
1429     if (err != NO_ERROR) {
1430         // batch/activate has failed, reset our state.
1431         cleanupWithoutDisableLocked(connection, handle);
1432     }
1433     return err;
1434 }
1435 
disable(const sp<SensorEventConnection> & connection,int handle)1436 status_t SensorService::disable(const sp<SensorEventConnection>& connection, int handle) {
1437     if (mInitCheck != NO_ERROR)
1438         return mInitCheck;
1439 
1440     Mutex::Autolock _l(mLock);
1441     status_t err = cleanupWithoutDisableLocked(connection, handle);
1442     if (err == NO_ERROR) {
1443         sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
1444         err = sensor != nullptr ? sensor->activate(connection.get(), false) : status_t(BAD_VALUE);
1445 
1446     }
1447     if (err == NO_ERROR) {
1448         mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex) =
1449                 SensorRegistrationInfo(handle, connection->getPackageName(), 0, 0, false);
1450         mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE;
1451     }
1452     return err;
1453 }
1454 
cleanupWithoutDisable(const sp<SensorEventConnection> & connection,int handle)1455 status_t SensorService::cleanupWithoutDisable(
1456         const sp<SensorEventConnection>& connection, int handle) {
1457     Mutex::Autolock _l(mLock);
1458     return cleanupWithoutDisableLocked(connection, handle);
1459 }
1460 
cleanupWithoutDisableLocked(const sp<SensorEventConnection> & connection,int handle)1461 status_t SensorService::cleanupWithoutDisableLocked(
1462         const sp<SensorEventConnection>& connection, int handle) {
1463     SensorRecord* rec = mActiveSensors.valueFor(handle);
1464     if (rec) {
1465         // see if this connection becomes inactive
1466         if (connection->removeSensor(handle)) {
1467             BatteryService::disableSensor(connection->getUid(), handle);
1468         }
1469         if (connection->hasAnySensor() == false) {
1470             connection->updateLooperRegistration(mLooper);
1471             mActiveConnections.remove(connection);
1472         }
1473         // see if this sensor becomes inactive
1474         if (rec->removeConnection(connection)) {
1475             mActiveSensors.removeItem(handle);
1476             mActiveVirtualSensors.erase(handle);
1477             delete rec;
1478         }
1479         return NO_ERROR;
1480     }
1481     return BAD_VALUE;
1482 }
1483 
setEventRate(const sp<SensorEventConnection> & connection,int handle,nsecs_t ns,const String16 & opPackageName)1484 status_t SensorService::setEventRate(const sp<SensorEventConnection>& connection,
1485         int handle, nsecs_t ns, const String16& opPackageName) {
1486     if (mInitCheck != NO_ERROR)
1487         return mInitCheck;
1488 
1489     sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
1490     if (sensor == nullptr ||
1491         !canAccessSensor(sensor->getSensor(), "Tried configuring", opPackageName)) {
1492         return BAD_VALUE;
1493     }
1494 
1495     if (ns < 0)
1496         return BAD_VALUE;
1497 
1498     nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs();
1499     if (ns < minDelayNs) {
1500         ns = minDelayNs;
1501     }
1502 
1503     return sensor->setDelay(connection.get(), handle, ns);
1504 }
1505 
flushSensor(const sp<SensorEventConnection> & connection,const String16 & opPackageName)1506 status_t SensorService::flushSensor(const sp<SensorEventConnection>& connection,
1507         const String16& opPackageName) {
1508     if (mInitCheck != NO_ERROR) return mInitCheck;
1509     SensorDevice& dev(SensorDevice::getInstance());
1510     const int halVersion = dev.getHalDeviceVersion();
1511     status_t err(NO_ERROR);
1512     Mutex::Autolock _l(mLock);
1513     // Loop through all sensors for this connection and call flush on each of them.
1514     for (size_t i = 0; i < connection->mSensorInfo.size(); ++i) {
1515         const int handle = connection->mSensorInfo.keyAt(i);
1516         sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
1517         if (sensor == nullptr) {
1518             continue;
1519         }
1520         if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) {
1521             ALOGE("flush called on a one-shot sensor");
1522             err = INVALID_OPERATION;
1523             continue;
1524         }
1525         if (halVersion <= SENSORS_DEVICE_API_VERSION_1_0 || isVirtualSensor(handle)) {
1526             // For older devices just increment pending flush count which will send a trivial
1527             // flush complete event.
1528             connection->incrementPendingFlushCount(handle);
1529         } else {
1530             if (!canAccessSensor(sensor->getSensor(), "Tried flushing", opPackageName)) {
1531                 err = INVALID_OPERATION;
1532                 continue;
1533             }
1534             status_t err_flush = sensor->flush(connection.get(), handle);
1535             if (err_flush == NO_ERROR) {
1536                 SensorRecord* rec = mActiveSensors.valueFor(handle);
1537                 if (rec != NULL) rec->addPendingFlushConnection(connection);
1538             }
1539             err = (err_flush != NO_ERROR) ? err_flush : err;
1540         }
1541     }
1542     return err;
1543 }
1544 
canAccessSensor(const Sensor & sensor,const char * operation,const String16 & opPackageName)1545 bool SensorService::canAccessSensor(const Sensor& sensor, const char* operation,
1546         const String16& opPackageName) {
1547     const String8& requiredPermission = sensor.getRequiredPermission();
1548 
1549     if (requiredPermission.length() <= 0) {
1550         return true;
1551     }
1552 
1553     bool hasPermission = false;
1554 
1555     // Runtime permissions can't use the cache as they may change.
1556     if (sensor.isRequiredPermissionRuntime()) {
1557         hasPermission = checkPermission(String16(requiredPermission),
1558                 IPCThreadState::self()->getCallingPid(), IPCThreadState::self()->getCallingUid());
1559     } else {
1560         hasPermission = PermissionCache::checkCallingPermission(String16(requiredPermission));
1561     }
1562 
1563     if (!hasPermission) {
1564         ALOGE("%s a sensor (%s) without holding its required permission: %s",
1565                 operation, sensor.getName().string(), sensor.getRequiredPermission().string());
1566         return false;
1567     }
1568 
1569     const int32_t opCode = sensor.getRequiredAppOp();
1570     if (opCode >= 0) {
1571         AppOpsManager appOps;
1572         if (appOps.noteOp(opCode, IPCThreadState::self()->getCallingUid(), opPackageName)
1573                         != AppOpsManager::MODE_ALLOWED) {
1574             ALOGE("%s a sensor (%s) without enabled required app op: %d",
1575                     operation, sensor.getName().string(), opCode);
1576             return false;
1577         }
1578     }
1579 
1580     return true;
1581 }
1582 
checkWakeLockState()1583 void SensorService::checkWakeLockState() {
1584     Mutex::Autolock _l(mLock);
1585     checkWakeLockStateLocked();
1586 }
1587 
checkWakeLockStateLocked()1588 void SensorService::checkWakeLockStateLocked() {
1589     if (!mWakeLockAcquired) {
1590         return;
1591     }
1592     bool releaseLock = true;
1593     for (size_t i=0 ; i<mActiveConnections.size() ; i++) {
1594         sp<SensorEventConnection> connection(mActiveConnections[i].promote());
1595         if (connection != 0) {
1596             if (connection->needsWakeLock()) {
1597                 releaseLock = false;
1598                 break;
1599             }
1600         }
1601     }
1602     if (releaseLock) {
1603         setWakeLockAcquiredLocked(false);
1604     }
1605 }
1606 
sendEventsFromCache(const sp<SensorEventConnection> & connection)1607 void SensorService::sendEventsFromCache(const sp<SensorEventConnection>& connection) {
1608     Mutex::Autolock _l(mLock);
1609     connection->writeToSocketFromCache();
1610     if (connection->needsWakeLock()) {
1611         setWakeLockAcquiredLocked(true);
1612     }
1613 }
1614 
populateActiveConnections(SortedVector<sp<SensorEventConnection>> * activeConnections)1615 void SensorService::populateActiveConnections(
1616         SortedVector< sp<SensorEventConnection> >* activeConnections) {
1617     Mutex::Autolock _l(mLock);
1618     for (size_t i=0 ; i < mActiveConnections.size(); ++i) {
1619         sp<SensorEventConnection> connection(mActiveConnections[i].promote());
1620         if (connection != 0) {
1621             activeConnections->add(connection);
1622         }
1623     }
1624 }
1625 
isWhiteListedPackage(const String8 & packageName)1626 bool SensorService::isWhiteListedPackage(const String8& packageName) {
1627     return (packageName.contains(mWhiteListedPackage.string()));
1628 }
1629 
isOperationRestricted(const String16 & opPackageName)1630 bool SensorService::isOperationRestricted(const String16& opPackageName) {
1631     Mutex::Autolock _l(mLock);
1632     if (mCurrentOperatingMode != RESTRICTED) {
1633         String8 package(opPackageName);
1634         return !isWhiteListedPackage(package);
1635     }
1636     return false;
1637 }
1638 
registerSelf()1639 void SensorService::UidPolicy::registerSelf() {
1640     ActivityManager am;
1641     am.registerUidObserver(this, ActivityManager::UID_OBSERVER_GONE
1642             | ActivityManager::UID_OBSERVER_IDLE
1643             | ActivityManager::UID_OBSERVER_ACTIVE,
1644             ActivityManager::PROCESS_STATE_UNKNOWN,
1645             String16("android"));
1646 }
1647 
unregisterSelf()1648 void SensorService::UidPolicy::unregisterSelf() {
1649     ActivityManager am;
1650     am.unregisterUidObserver(this);
1651 }
1652 
onUidGone(__unused uid_t uid,__unused bool disabled)1653 void SensorService::UidPolicy::onUidGone(__unused uid_t uid, __unused bool disabled) {
1654     onUidIdle(uid, disabled);
1655 }
1656 
onUidActive(uid_t uid)1657 void SensorService::UidPolicy::onUidActive(uid_t uid) {
1658     {
1659         Mutex::Autolock _l(mUidLock);
1660         mActiveUids.insert(uid);
1661     }
1662     sp<SensorService> service = mService.promote();
1663     if (service != nullptr) {
1664         service->setSensorAccess(uid, true);
1665     }
1666 }
1667 
onUidIdle(uid_t uid,__unused bool disabled)1668 void SensorService::UidPolicy::onUidIdle(uid_t uid, __unused bool disabled) {
1669     bool deleted = false;
1670     {
1671         Mutex::Autolock _l(mUidLock);
1672         if (mActiveUids.erase(uid) > 0) {
1673             deleted = true;
1674         }
1675     }
1676     if (deleted) {
1677         sp<SensorService> service = mService.promote();
1678         if (service != nullptr) {
1679             service->setSensorAccess(uid, false);
1680         }
1681     }
1682 }
1683 
addOverrideUid(uid_t uid,bool active)1684 void SensorService::UidPolicy::addOverrideUid(uid_t uid, bool active) {
1685     updateOverrideUid(uid, active, true);
1686 }
1687 
removeOverrideUid(uid_t uid)1688 void SensorService::UidPolicy::removeOverrideUid(uid_t uid) {
1689     updateOverrideUid(uid, false, false);
1690 }
1691 
updateOverrideUid(uid_t uid,bool active,bool insert)1692 void SensorService::UidPolicy::updateOverrideUid(uid_t uid, bool active, bool insert) {
1693     bool wasActive = false;
1694     bool isActive = false;
1695     {
1696         Mutex::Autolock _l(mUidLock);
1697         wasActive = isUidActiveLocked(uid);
1698         mOverrideUids.erase(uid);
1699         if (insert) {
1700             mOverrideUids.insert(std::pair<uid_t, bool>(uid, active));
1701         }
1702         isActive = isUidActiveLocked(uid);
1703     }
1704     if (wasActive != isActive) {
1705         sp<SensorService> service = mService.promote();
1706         if (service != nullptr) {
1707             service->setSensorAccess(uid, isActive);
1708         }
1709     }
1710 }
1711 
isUidActive(uid_t uid)1712 bool SensorService::UidPolicy::isUidActive(uid_t uid) {
1713     // Non-app UIDs are considered always active
1714     if (uid < FIRST_APPLICATION_UID) {
1715         return true;
1716     }
1717     Mutex::Autolock _l(mUidLock);
1718     return isUidActiveLocked(uid);
1719 }
1720 
isUidActiveLocked(uid_t uid)1721 bool SensorService::UidPolicy::isUidActiveLocked(uid_t uid) {
1722     // Non-app UIDs are considered always active
1723     if (uid < FIRST_APPLICATION_UID) {
1724         return true;
1725     }
1726     auto it = mOverrideUids.find(uid);
1727     if (it != mOverrideUids.end()) {
1728         return it->second;
1729     }
1730     return mActiveUids.find(uid) != mActiveUids.end();
1731 }
1732 
1733 }; // namespace android
1734