1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "code_generator.h"
18
19 #ifdef ART_ENABLE_CODEGEN_arm
20 #include "code_generator_arm_vixl.h"
21 #endif
22
23 #ifdef ART_ENABLE_CODEGEN_arm64
24 #include "code_generator_arm64.h"
25 #endif
26
27 #ifdef ART_ENABLE_CODEGEN_x86
28 #include "code_generator_x86.h"
29 #endif
30
31 #ifdef ART_ENABLE_CODEGEN_x86_64
32 #include "code_generator_x86_64.h"
33 #endif
34
35 #ifdef ART_ENABLE_CODEGEN_mips
36 #include "code_generator_mips.h"
37 #endif
38
39 #ifdef ART_ENABLE_CODEGEN_mips64
40 #include "code_generator_mips64.h"
41 #endif
42
43 #include "base/bit_utils.h"
44 #include "base/bit_utils_iterator.h"
45 #include "base/casts.h"
46 #include "base/leb128.h"
47 #include "class_linker.h"
48 #include "compiled_method.h"
49 #include "dex/bytecode_utils.h"
50 #include "dex/code_item_accessors-inl.h"
51 #include "dex/verified_method.h"
52 #include "driver/compiler_driver.h"
53 #include "graph_visualizer.h"
54 #include "intern_table.h"
55 #include "intrinsics.h"
56 #include "mirror/array-inl.h"
57 #include "mirror/object_array-inl.h"
58 #include "mirror/object_reference.h"
59 #include "mirror/reference.h"
60 #include "mirror/string.h"
61 #include "parallel_move_resolver.h"
62 #include "scoped_thread_state_change-inl.h"
63 #include "ssa_liveness_analysis.h"
64 #include "stack_map_stream.h"
65 #include "thread-current-inl.h"
66 #include "utils/assembler.h"
67
68 namespace art {
69
70 // If true, we record the static and direct invokes in the invoke infos.
71 static constexpr bool kEnableDexLayoutOptimizations = false;
72
73 // Return whether a location is consistent with a type.
CheckType(DataType::Type type,Location location)74 static bool CheckType(DataType::Type type, Location location) {
75 if (location.IsFpuRegister()
76 || (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresFpuRegister))) {
77 return (type == DataType::Type::kFloat32) || (type == DataType::Type::kFloat64);
78 } else if (location.IsRegister() ||
79 (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresRegister))) {
80 return DataType::IsIntegralType(type) || (type == DataType::Type::kReference);
81 } else if (location.IsRegisterPair()) {
82 return type == DataType::Type::kInt64;
83 } else if (location.IsFpuRegisterPair()) {
84 return type == DataType::Type::kFloat64;
85 } else if (location.IsStackSlot()) {
86 return (DataType::IsIntegralType(type) && type != DataType::Type::kInt64)
87 || (type == DataType::Type::kFloat32)
88 || (type == DataType::Type::kReference);
89 } else if (location.IsDoubleStackSlot()) {
90 return (type == DataType::Type::kInt64) || (type == DataType::Type::kFloat64);
91 } else if (location.IsConstant()) {
92 if (location.GetConstant()->IsIntConstant()) {
93 return DataType::IsIntegralType(type) && (type != DataType::Type::kInt64);
94 } else if (location.GetConstant()->IsNullConstant()) {
95 return type == DataType::Type::kReference;
96 } else if (location.GetConstant()->IsLongConstant()) {
97 return type == DataType::Type::kInt64;
98 } else if (location.GetConstant()->IsFloatConstant()) {
99 return type == DataType::Type::kFloat32;
100 } else {
101 return location.GetConstant()->IsDoubleConstant()
102 && (type == DataType::Type::kFloat64);
103 }
104 } else {
105 return location.IsInvalid() || (location.GetPolicy() == Location::kAny);
106 }
107 }
108
109 // Check that a location summary is consistent with an instruction.
CheckTypeConsistency(HInstruction * instruction)110 static bool CheckTypeConsistency(HInstruction* instruction) {
111 LocationSummary* locations = instruction->GetLocations();
112 if (locations == nullptr) {
113 return true;
114 }
115
116 if (locations->Out().IsUnallocated()
117 && (locations->Out().GetPolicy() == Location::kSameAsFirstInput)) {
118 DCHECK(CheckType(instruction->GetType(), locations->InAt(0)))
119 << instruction->GetType()
120 << " " << locations->InAt(0);
121 } else {
122 DCHECK(CheckType(instruction->GetType(), locations->Out()))
123 << instruction->GetType()
124 << " " << locations->Out();
125 }
126
127 HConstInputsRef inputs = instruction->GetInputs();
128 for (size_t i = 0; i < inputs.size(); ++i) {
129 DCHECK(CheckType(inputs[i]->GetType(), locations->InAt(i)))
130 << inputs[i]->GetType() << " " << locations->InAt(i);
131 }
132
133 HEnvironment* environment = instruction->GetEnvironment();
134 for (size_t i = 0; i < instruction->EnvironmentSize(); ++i) {
135 if (environment->GetInstructionAt(i) != nullptr) {
136 DataType::Type type = environment->GetInstructionAt(i)->GetType();
137 DCHECK(CheckType(type, environment->GetLocationAt(i)))
138 << type << " " << environment->GetLocationAt(i);
139 } else {
140 DCHECK(environment->GetLocationAt(i).IsInvalid())
141 << environment->GetLocationAt(i);
142 }
143 }
144 return true;
145 }
146
147 class CodeGenerator::CodeGenerationData : public DeletableArenaObject<kArenaAllocCodeGenerator> {
148 public:
Create(ArenaStack * arena_stack,InstructionSet instruction_set)149 static std::unique_ptr<CodeGenerationData> Create(ArenaStack* arena_stack,
150 InstructionSet instruction_set) {
151 ScopedArenaAllocator allocator(arena_stack);
152 void* memory = allocator.Alloc<CodeGenerationData>(kArenaAllocCodeGenerator);
153 return std::unique_ptr<CodeGenerationData>(
154 ::new (memory) CodeGenerationData(std::move(allocator), instruction_set));
155 }
156
GetScopedAllocator()157 ScopedArenaAllocator* GetScopedAllocator() {
158 return &allocator_;
159 }
160
AddSlowPath(SlowPathCode * slow_path)161 void AddSlowPath(SlowPathCode* slow_path) {
162 slow_paths_.emplace_back(std::unique_ptr<SlowPathCode>(slow_path));
163 }
164
GetSlowPaths() const165 ArrayRef<const std::unique_ptr<SlowPathCode>> GetSlowPaths() const {
166 return ArrayRef<const std::unique_ptr<SlowPathCode>>(slow_paths_);
167 }
168
GetStackMapStream()169 StackMapStream* GetStackMapStream() { return &stack_map_stream_; }
170
ReserveJitStringRoot(StringReference string_reference,Handle<mirror::String> string)171 void ReserveJitStringRoot(StringReference string_reference, Handle<mirror::String> string) {
172 jit_string_roots_.Overwrite(string_reference,
173 reinterpret_cast64<uint64_t>(string.GetReference()));
174 }
175
GetJitStringRootIndex(StringReference string_reference) const176 uint64_t GetJitStringRootIndex(StringReference string_reference) const {
177 return jit_string_roots_.Get(string_reference);
178 }
179
GetNumberOfJitStringRoots() const180 size_t GetNumberOfJitStringRoots() const {
181 return jit_string_roots_.size();
182 }
183
ReserveJitClassRoot(TypeReference type_reference,Handle<mirror::Class> klass)184 void ReserveJitClassRoot(TypeReference type_reference, Handle<mirror::Class> klass) {
185 jit_class_roots_.Overwrite(type_reference, reinterpret_cast64<uint64_t>(klass.GetReference()));
186 }
187
GetJitClassRootIndex(TypeReference type_reference) const188 uint64_t GetJitClassRootIndex(TypeReference type_reference) const {
189 return jit_class_roots_.Get(type_reference);
190 }
191
GetNumberOfJitClassRoots() const192 size_t GetNumberOfJitClassRoots() const {
193 return jit_class_roots_.size();
194 }
195
GetNumberOfJitRoots() const196 size_t GetNumberOfJitRoots() const {
197 return GetNumberOfJitStringRoots() + GetNumberOfJitClassRoots();
198 }
199
200 void EmitJitRoots(Handle<mirror::ObjectArray<mirror::Object>> roots)
201 REQUIRES_SHARED(Locks::mutator_lock_);
202
203 private:
CodeGenerationData(ScopedArenaAllocator && allocator,InstructionSet instruction_set)204 CodeGenerationData(ScopedArenaAllocator&& allocator, InstructionSet instruction_set)
205 : allocator_(std::move(allocator)),
206 stack_map_stream_(&allocator_, instruction_set),
207 slow_paths_(allocator_.Adapter(kArenaAllocCodeGenerator)),
208 jit_string_roots_(StringReferenceValueComparator(),
209 allocator_.Adapter(kArenaAllocCodeGenerator)),
210 jit_class_roots_(TypeReferenceValueComparator(),
211 allocator_.Adapter(kArenaAllocCodeGenerator)) {
212 slow_paths_.reserve(kDefaultSlowPathsCapacity);
213 }
214
215 static constexpr size_t kDefaultSlowPathsCapacity = 8;
216
217 ScopedArenaAllocator allocator_;
218 StackMapStream stack_map_stream_;
219 ScopedArenaVector<std::unique_ptr<SlowPathCode>> slow_paths_;
220
221 // Maps a StringReference (dex_file, string_index) to the index in the literal table.
222 // Entries are intially added with a pointer in the handle zone, and `EmitJitRoots`
223 // will compute all the indices.
224 ScopedArenaSafeMap<StringReference, uint64_t, StringReferenceValueComparator> jit_string_roots_;
225
226 // Maps a ClassReference (dex_file, type_index) to the index in the literal table.
227 // Entries are intially added with a pointer in the handle zone, and `EmitJitRoots`
228 // will compute all the indices.
229 ScopedArenaSafeMap<TypeReference, uint64_t, TypeReferenceValueComparator> jit_class_roots_;
230 };
231
EmitJitRoots(Handle<mirror::ObjectArray<mirror::Object>> roots)232 void CodeGenerator::CodeGenerationData::EmitJitRoots(
233 Handle<mirror::ObjectArray<mirror::Object>> roots) {
234 DCHECK_EQ(static_cast<size_t>(roots->GetLength()), GetNumberOfJitRoots());
235 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
236 size_t index = 0;
237 for (auto& entry : jit_string_roots_) {
238 // Update the `roots` with the string, and replace the address temporarily
239 // stored to the index in the table.
240 uint64_t address = entry.second;
241 roots->Set(index, reinterpret_cast<StackReference<mirror::String>*>(address)->AsMirrorPtr());
242 DCHECK(roots->Get(index) != nullptr);
243 entry.second = index;
244 // Ensure the string is strongly interned. This is a requirement on how the JIT
245 // handles strings. b/32995596
246 class_linker->GetInternTable()->InternStrong(
247 reinterpret_cast<mirror::String*>(roots->Get(index)));
248 ++index;
249 }
250 for (auto& entry : jit_class_roots_) {
251 // Update the `roots` with the class, and replace the address temporarily
252 // stored to the index in the table.
253 uint64_t address = entry.second;
254 roots->Set(index, reinterpret_cast<StackReference<mirror::Class>*>(address)->AsMirrorPtr());
255 DCHECK(roots->Get(index) != nullptr);
256 entry.second = index;
257 ++index;
258 }
259 }
260
GetScopedAllocator()261 ScopedArenaAllocator* CodeGenerator::GetScopedAllocator() {
262 DCHECK(code_generation_data_ != nullptr);
263 return code_generation_data_->GetScopedAllocator();
264 }
265
GetStackMapStream()266 StackMapStream* CodeGenerator::GetStackMapStream() {
267 DCHECK(code_generation_data_ != nullptr);
268 return code_generation_data_->GetStackMapStream();
269 }
270
ReserveJitStringRoot(StringReference string_reference,Handle<mirror::String> string)271 void CodeGenerator::ReserveJitStringRoot(StringReference string_reference,
272 Handle<mirror::String> string) {
273 DCHECK(code_generation_data_ != nullptr);
274 code_generation_data_->ReserveJitStringRoot(string_reference, string);
275 }
276
GetJitStringRootIndex(StringReference string_reference)277 uint64_t CodeGenerator::GetJitStringRootIndex(StringReference string_reference) {
278 DCHECK(code_generation_data_ != nullptr);
279 return code_generation_data_->GetJitStringRootIndex(string_reference);
280 }
281
ReserveJitClassRoot(TypeReference type_reference,Handle<mirror::Class> klass)282 void CodeGenerator::ReserveJitClassRoot(TypeReference type_reference, Handle<mirror::Class> klass) {
283 DCHECK(code_generation_data_ != nullptr);
284 code_generation_data_->ReserveJitClassRoot(type_reference, klass);
285 }
286
GetJitClassRootIndex(TypeReference type_reference)287 uint64_t CodeGenerator::GetJitClassRootIndex(TypeReference type_reference) {
288 DCHECK(code_generation_data_ != nullptr);
289 return code_generation_data_->GetJitClassRootIndex(type_reference);
290 }
291
EmitJitRootPatches(uint8_t * code ATTRIBUTE_UNUSED,const uint8_t * roots_data ATTRIBUTE_UNUSED)292 void CodeGenerator::EmitJitRootPatches(uint8_t* code ATTRIBUTE_UNUSED,
293 const uint8_t* roots_data ATTRIBUTE_UNUSED) {
294 DCHECK(code_generation_data_ != nullptr);
295 DCHECK_EQ(code_generation_data_->GetNumberOfJitStringRoots(), 0u);
296 DCHECK_EQ(code_generation_data_->GetNumberOfJitClassRoots(), 0u);
297 }
298
GetArrayLengthOffset(HArrayLength * array_length)299 uint32_t CodeGenerator::GetArrayLengthOffset(HArrayLength* array_length) {
300 return array_length->IsStringLength()
301 ? mirror::String::CountOffset().Uint32Value()
302 : mirror::Array::LengthOffset().Uint32Value();
303 }
304
GetArrayDataOffset(HArrayGet * array_get)305 uint32_t CodeGenerator::GetArrayDataOffset(HArrayGet* array_get) {
306 DCHECK(array_get->GetType() == DataType::Type::kUint16 || !array_get->IsStringCharAt());
307 return array_get->IsStringCharAt()
308 ? mirror::String::ValueOffset().Uint32Value()
309 : mirror::Array::DataOffset(DataType::Size(array_get->GetType())).Uint32Value();
310 }
311
GoesToNextBlock(HBasicBlock * current,HBasicBlock * next) const312 bool CodeGenerator::GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const {
313 DCHECK_EQ((*block_order_)[current_block_index_], current);
314 return GetNextBlockToEmit() == FirstNonEmptyBlock(next);
315 }
316
GetNextBlockToEmit() const317 HBasicBlock* CodeGenerator::GetNextBlockToEmit() const {
318 for (size_t i = current_block_index_ + 1; i < block_order_->size(); ++i) {
319 HBasicBlock* block = (*block_order_)[i];
320 if (!block->IsSingleJump()) {
321 return block;
322 }
323 }
324 return nullptr;
325 }
326
FirstNonEmptyBlock(HBasicBlock * block) const327 HBasicBlock* CodeGenerator::FirstNonEmptyBlock(HBasicBlock* block) const {
328 while (block->IsSingleJump()) {
329 block = block->GetSuccessors()[0];
330 }
331 return block;
332 }
333
334 class DisassemblyScope {
335 public:
DisassemblyScope(HInstruction * instruction,const CodeGenerator & codegen)336 DisassemblyScope(HInstruction* instruction, const CodeGenerator& codegen)
337 : codegen_(codegen), instruction_(instruction), start_offset_(static_cast<size_t>(-1)) {
338 if (codegen_.GetDisassemblyInformation() != nullptr) {
339 start_offset_ = codegen_.GetAssembler().CodeSize();
340 }
341 }
342
~DisassemblyScope()343 ~DisassemblyScope() {
344 // We avoid building this data when we know it will not be used.
345 if (codegen_.GetDisassemblyInformation() != nullptr) {
346 codegen_.GetDisassemblyInformation()->AddInstructionInterval(
347 instruction_, start_offset_, codegen_.GetAssembler().CodeSize());
348 }
349 }
350
351 private:
352 const CodeGenerator& codegen_;
353 HInstruction* instruction_;
354 size_t start_offset_;
355 };
356
357
GenerateSlowPaths()358 void CodeGenerator::GenerateSlowPaths() {
359 DCHECK(code_generation_data_ != nullptr);
360 size_t code_start = 0;
361 for (const std::unique_ptr<SlowPathCode>& slow_path_ptr : code_generation_data_->GetSlowPaths()) {
362 SlowPathCode* slow_path = slow_path_ptr.get();
363 current_slow_path_ = slow_path;
364 if (disasm_info_ != nullptr) {
365 code_start = GetAssembler()->CodeSize();
366 }
367 // Record the dex pc at start of slow path (required for java line number mapping).
368 MaybeRecordNativeDebugInfo(slow_path->GetInstruction(), slow_path->GetDexPc(), slow_path);
369 slow_path->EmitNativeCode(this);
370 if (disasm_info_ != nullptr) {
371 disasm_info_->AddSlowPathInterval(slow_path, code_start, GetAssembler()->CodeSize());
372 }
373 }
374 current_slow_path_ = nullptr;
375 }
376
InitializeCodeGenerationData()377 void CodeGenerator::InitializeCodeGenerationData() {
378 DCHECK(code_generation_data_ == nullptr);
379 code_generation_data_ = CodeGenerationData::Create(graph_->GetArenaStack(), GetInstructionSet());
380 }
381
Compile(CodeAllocator * allocator)382 void CodeGenerator::Compile(CodeAllocator* allocator) {
383 InitializeCodeGenerationData();
384
385 // The register allocator already called `InitializeCodeGeneration`,
386 // where the frame size has been computed.
387 DCHECK(block_order_ != nullptr);
388 Initialize();
389
390 HGraphVisitor* instruction_visitor = GetInstructionVisitor();
391 DCHECK_EQ(current_block_index_, 0u);
392
393 size_t frame_start = GetAssembler()->CodeSize();
394 GenerateFrameEntry();
395 DCHECK_EQ(GetAssembler()->cfi().GetCurrentCFAOffset(), static_cast<int>(frame_size_));
396 if (disasm_info_ != nullptr) {
397 disasm_info_->SetFrameEntryInterval(frame_start, GetAssembler()->CodeSize());
398 }
399
400 for (size_t e = block_order_->size(); current_block_index_ < e; ++current_block_index_) {
401 HBasicBlock* block = (*block_order_)[current_block_index_];
402 // Don't generate code for an empty block. Its predecessors will branch to its successor
403 // directly. Also, the label of that block will not be emitted, so this helps catch
404 // errors where we reference that label.
405 if (block->IsSingleJump()) continue;
406 Bind(block);
407 // This ensures that we have correct native line mapping for all native instructions.
408 // It is necessary to make stepping over a statement work. Otherwise, any initial
409 // instructions (e.g. moves) would be assumed to be the start of next statement.
410 MaybeRecordNativeDebugInfo(nullptr /* instruction */, block->GetDexPc());
411 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
412 HInstruction* current = it.Current();
413 if (current->HasEnvironment()) {
414 // Create stackmap for HNativeDebugInfo or any instruction which calls native code.
415 // Note that we need correct mapping for the native PC of the call instruction,
416 // so the runtime's stackmap is not sufficient since it is at PC after the call.
417 MaybeRecordNativeDebugInfo(current, block->GetDexPc());
418 }
419 DisassemblyScope disassembly_scope(current, *this);
420 DCHECK(CheckTypeConsistency(current));
421 current->Accept(instruction_visitor);
422 }
423 }
424
425 GenerateSlowPaths();
426
427 // Emit catch stack maps at the end of the stack map stream as expected by the
428 // runtime exception handler.
429 if (graph_->HasTryCatch()) {
430 RecordCatchBlockInfo();
431 }
432
433 // Finalize instructions in assember;
434 Finalize(allocator);
435 }
436
Finalize(CodeAllocator * allocator)437 void CodeGenerator::Finalize(CodeAllocator* allocator) {
438 size_t code_size = GetAssembler()->CodeSize();
439 uint8_t* buffer = allocator->Allocate(code_size);
440
441 MemoryRegion code(buffer, code_size);
442 GetAssembler()->FinalizeInstructions(code);
443 }
444
EmitLinkerPatches(ArenaVector<linker::LinkerPatch> * linker_patches ATTRIBUTE_UNUSED)445 void CodeGenerator::EmitLinkerPatches(
446 ArenaVector<linker::LinkerPatch>* linker_patches ATTRIBUTE_UNUSED) {
447 // No linker patches by default.
448 }
449
InitializeCodeGeneration(size_t number_of_spill_slots,size_t maximum_safepoint_spill_size,size_t number_of_out_slots,const ArenaVector<HBasicBlock * > & block_order)450 void CodeGenerator::InitializeCodeGeneration(size_t number_of_spill_slots,
451 size_t maximum_safepoint_spill_size,
452 size_t number_of_out_slots,
453 const ArenaVector<HBasicBlock*>& block_order) {
454 block_order_ = &block_order;
455 DCHECK(!block_order.empty());
456 DCHECK(block_order[0] == GetGraph()->GetEntryBlock());
457 ComputeSpillMask();
458 first_register_slot_in_slow_path_ = RoundUp(
459 (number_of_out_slots + number_of_spill_slots) * kVRegSize, GetPreferredSlotsAlignment());
460
461 if (number_of_spill_slots == 0
462 && !HasAllocatedCalleeSaveRegisters()
463 && IsLeafMethod()
464 && !RequiresCurrentMethod()) {
465 DCHECK_EQ(maximum_safepoint_spill_size, 0u);
466 SetFrameSize(CallPushesPC() ? GetWordSize() : 0);
467 } else {
468 SetFrameSize(RoundUp(
469 first_register_slot_in_slow_path_
470 + maximum_safepoint_spill_size
471 + (GetGraph()->HasShouldDeoptimizeFlag() ? kShouldDeoptimizeFlagSize : 0)
472 + FrameEntrySpillSize(),
473 kStackAlignment));
474 }
475 }
476
CreateCommonInvokeLocationSummary(HInvoke * invoke,InvokeDexCallingConventionVisitor * visitor)477 void CodeGenerator::CreateCommonInvokeLocationSummary(
478 HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor) {
479 ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator();
480 LocationSummary* locations = new (allocator) LocationSummary(invoke,
481 LocationSummary::kCallOnMainOnly);
482
483 for (size_t i = 0; i < invoke->GetNumberOfArguments(); i++) {
484 HInstruction* input = invoke->InputAt(i);
485 locations->SetInAt(i, visitor->GetNextLocation(input->GetType()));
486 }
487
488 locations->SetOut(visitor->GetReturnLocation(invoke->GetType()));
489
490 if (invoke->IsInvokeStaticOrDirect()) {
491 HInvokeStaticOrDirect* call = invoke->AsInvokeStaticOrDirect();
492 switch (call->GetMethodLoadKind()) {
493 case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
494 locations->SetInAt(call->GetSpecialInputIndex(), visitor->GetMethodLocation());
495 break;
496 case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall:
497 locations->AddTemp(visitor->GetMethodLocation());
498 locations->SetInAt(call->GetSpecialInputIndex(), Location::RequiresRegister());
499 break;
500 default:
501 locations->AddTemp(visitor->GetMethodLocation());
502 break;
503 }
504 } else {
505 locations->AddTemp(visitor->GetMethodLocation());
506 }
507 }
508
GenerateInvokeStaticOrDirectRuntimeCall(HInvokeStaticOrDirect * invoke,Location temp,SlowPathCode * slow_path)509 void CodeGenerator::GenerateInvokeStaticOrDirectRuntimeCall(
510 HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
511 MoveConstant(temp, invoke->GetDexMethodIndex());
512
513 // The access check is unnecessary but we do not want to introduce
514 // extra entrypoints for the codegens that do not support some
515 // invoke type and fall back to the runtime call.
516
517 // Initialize to anything to silent compiler warnings.
518 QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
519 switch (invoke->GetInvokeType()) {
520 case kStatic:
521 entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
522 break;
523 case kDirect:
524 entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck;
525 break;
526 case kSuper:
527 entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck;
528 break;
529 case kVirtual:
530 case kInterface:
531 case kPolymorphic:
532 LOG(FATAL) << "Unexpected invoke type: " << invoke->GetInvokeType();
533 UNREACHABLE();
534 }
535
536 InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), slow_path);
537 }
GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved * invoke)538 void CodeGenerator::GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved* invoke) {
539 MoveConstant(invoke->GetLocations()->GetTemp(0), invoke->GetDexMethodIndex());
540
541 // Initialize to anything to silent compiler warnings.
542 QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
543 switch (invoke->GetInvokeType()) {
544 case kStatic:
545 entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
546 break;
547 case kDirect:
548 entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck;
549 break;
550 case kVirtual:
551 entrypoint = kQuickInvokeVirtualTrampolineWithAccessCheck;
552 break;
553 case kSuper:
554 entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck;
555 break;
556 case kInterface:
557 entrypoint = kQuickInvokeInterfaceTrampolineWithAccessCheck;
558 break;
559 case kPolymorphic:
560 LOG(FATAL) << "Unexpected invoke type: " << invoke->GetInvokeType();
561 UNREACHABLE();
562 }
563 InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr);
564 }
565
GenerateInvokePolymorphicCall(HInvokePolymorphic * invoke)566 void CodeGenerator::GenerateInvokePolymorphicCall(HInvokePolymorphic* invoke) {
567 MoveConstant(invoke->GetLocations()->GetTemp(0), static_cast<int32_t>(invoke->GetType()));
568 QuickEntrypointEnum entrypoint = kQuickInvokePolymorphic;
569 InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr);
570 }
571
CreateUnresolvedFieldLocationSummary(HInstruction * field_access,DataType::Type field_type,const FieldAccessCallingConvention & calling_convention)572 void CodeGenerator::CreateUnresolvedFieldLocationSummary(
573 HInstruction* field_access,
574 DataType::Type field_type,
575 const FieldAccessCallingConvention& calling_convention) {
576 bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
577 || field_access->IsUnresolvedInstanceFieldSet();
578 bool is_get = field_access->IsUnresolvedInstanceFieldGet()
579 || field_access->IsUnresolvedStaticFieldGet();
580
581 ArenaAllocator* allocator = field_access->GetBlock()->GetGraph()->GetAllocator();
582 LocationSummary* locations =
583 new (allocator) LocationSummary(field_access, LocationSummary::kCallOnMainOnly);
584
585 locations->AddTemp(calling_convention.GetFieldIndexLocation());
586
587 if (is_instance) {
588 // Add the `this` object for instance field accesses.
589 locations->SetInAt(0, calling_convention.GetObjectLocation());
590 }
591
592 // Note that pSetXXStatic/pGetXXStatic always takes/returns an int or int64
593 // regardless of the the type. Because of that we forced to special case
594 // the access to floating point values.
595 if (is_get) {
596 if (DataType::IsFloatingPointType(field_type)) {
597 // The return value will be stored in regular registers while register
598 // allocator expects it in a floating point register.
599 // Note We don't need to request additional temps because the return
600 // register(s) are already blocked due the call and they may overlap with
601 // the input or field index.
602 // The transfer between the two will be done at codegen level.
603 locations->SetOut(calling_convention.GetFpuLocation(field_type));
604 } else {
605 locations->SetOut(calling_convention.GetReturnLocation(field_type));
606 }
607 } else {
608 size_t set_index = is_instance ? 1 : 0;
609 if (DataType::IsFloatingPointType(field_type)) {
610 // The set value comes from a float location while the calling convention
611 // expects it in a regular register location. Allocate a temp for it and
612 // make the transfer at codegen.
613 AddLocationAsTemp(calling_convention.GetSetValueLocation(field_type, is_instance), locations);
614 locations->SetInAt(set_index, calling_convention.GetFpuLocation(field_type));
615 } else {
616 locations->SetInAt(set_index,
617 calling_convention.GetSetValueLocation(field_type, is_instance));
618 }
619 }
620 }
621
GenerateUnresolvedFieldAccess(HInstruction * field_access,DataType::Type field_type,uint32_t field_index,uint32_t dex_pc,const FieldAccessCallingConvention & calling_convention)622 void CodeGenerator::GenerateUnresolvedFieldAccess(
623 HInstruction* field_access,
624 DataType::Type field_type,
625 uint32_t field_index,
626 uint32_t dex_pc,
627 const FieldAccessCallingConvention& calling_convention) {
628 LocationSummary* locations = field_access->GetLocations();
629
630 MoveConstant(locations->GetTemp(0), field_index);
631
632 bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
633 || field_access->IsUnresolvedInstanceFieldSet();
634 bool is_get = field_access->IsUnresolvedInstanceFieldGet()
635 || field_access->IsUnresolvedStaticFieldGet();
636
637 if (!is_get && DataType::IsFloatingPointType(field_type)) {
638 // Copy the float value to be set into the calling convention register.
639 // Note that using directly the temp location is problematic as we don't
640 // support temp register pairs. To avoid boilerplate conversion code, use
641 // the location from the calling convention.
642 MoveLocation(calling_convention.GetSetValueLocation(field_type, is_instance),
643 locations->InAt(is_instance ? 1 : 0),
644 (DataType::Is64BitType(field_type) ? DataType::Type::kInt64
645 : DataType::Type::kInt32));
646 }
647
648 QuickEntrypointEnum entrypoint = kQuickSet8Static; // Initialize to anything to avoid warnings.
649 switch (field_type) {
650 case DataType::Type::kBool:
651 entrypoint = is_instance
652 ? (is_get ? kQuickGetBooleanInstance : kQuickSet8Instance)
653 : (is_get ? kQuickGetBooleanStatic : kQuickSet8Static);
654 break;
655 case DataType::Type::kInt8:
656 entrypoint = is_instance
657 ? (is_get ? kQuickGetByteInstance : kQuickSet8Instance)
658 : (is_get ? kQuickGetByteStatic : kQuickSet8Static);
659 break;
660 case DataType::Type::kInt16:
661 entrypoint = is_instance
662 ? (is_get ? kQuickGetShortInstance : kQuickSet16Instance)
663 : (is_get ? kQuickGetShortStatic : kQuickSet16Static);
664 break;
665 case DataType::Type::kUint16:
666 entrypoint = is_instance
667 ? (is_get ? kQuickGetCharInstance : kQuickSet16Instance)
668 : (is_get ? kQuickGetCharStatic : kQuickSet16Static);
669 break;
670 case DataType::Type::kInt32:
671 case DataType::Type::kFloat32:
672 entrypoint = is_instance
673 ? (is_get ? kQuickGet32Instance : kQuickSet32Instance)
674 : (is_get ? kQuickGet32Static : kQuickSet32Static);
675 break;
676 case DataType::Type::kReference:
677 entrypoint = is_instance
678 ? (is_get ? kQuickGetObjInstance : kQuickSetObjInstance)
679 : (is_get ? kQuickGetObjStatic : kQuickSetObjStatic);
680 break;
681 case DataType::Type::kInt64:
682 case DataType::Type::kFloat64:
683 entrypoint = is_instance
684 ? (is_get ? kQuickGet64Instance : kQuickSet64Instance)
685 : (is_get ? kQuickGet64Static : kQuickSet64Static);
686 break;
687 default:
688 LOG(FATAL) << "Invalid type " << field_type;
689 }
690 InvokeRuntime(entrypoint, field_access, dex_pc, nullptr);
691
692 if (is_get && DataType::IsFloatingPointType(field_type)) {
693 MoveLocation(locations->Out(), calling_convention.GetReturnLocation(field_type), field_type);
694 }
695 }
696
CreateLoadClassRuntimeCallLocationSummary(HLoadClass * cls,Location runtime_type_index_location,Location runtime_return_location)697 void CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(HLoadClass* cls,
698 Location runtime_type_index_location,
699 Location runtime_return_location) {
700 DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall);
701 DCHECK_EQ(cls->InputCount(), 1u);
702 LocationSummary* locations = new (cls->GetBlock()->GetGraph()->GetAllocator()) LocationSummary(
703 cls, LocationSummary::kCallOnMainOnly);
704 locations->SetInAt(0, Location::NoLocation());
705 locations->AddTemp(runtime_type_index_location);
706 locations->SetOut(runtime_return_location);
707 }
708
GenerateLoadClassRuntimeCall(HLoadClass * cls)709 void CodeGenerator::GenerateLoadClassRuntimeCall(HLoadClass* cls) {
710 DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall);
711 LocationSummary* locations = cls->GetLocations();
712 MoveConstant(locations->GetTemp(0), cls->GetTypeIndex().index_);
713 if (cls->NeedsAccessCheck()) {
714 CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>();
715 InvokeRuntime(kQuickInitializeTypeAndVerifyAccess, cls, cls->GetDexPc());
716 } else if (cls->MustGenerateClinitCheck()) {
717 CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
718 InvokeRuntime(kQuickInitializeStaticStorage, cls, cls->GetDexPc());
719 } else {
720 CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
721 InvokeRuntime(kQuickInitializeType, cls, cls->GetDexPc());
722 }
723 }
724
BlockIfInRegister(Location location,bool is_out) const725 void CodeGenerator::BlockIfInRegister(Location location, bool is_out) const {
726 // The DCHECKS below check that a register is not specified twice in
727 // the summary. The out location can overlap with an input, so we need
728 // to special case it.
729 if (location.IsRegister()) {
730 DCHECK(is_out || !blocked_core_registers_[location.reg()]);
731 blocked_core_registers_[location.reg()] = true;
732 } else if (location.IsFpuRegister()) {
733 DCHECK(is_out || !blocked_fpu_registers_[location.reg()]);
734 blocked_fpu_registers_[location.reg()] = true;
735 } else if (location.IsFpuRegisterPair()) {
736 DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()]);
737 blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()] = true;
738 DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()]);
739 blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()] = true;
740 } else if (location.IsRegisterPair()) {
741 DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairLow<int>()]);
742 blocked_core_registers_[location.AsRegisterPairLow<int>()] = true;
743 DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairHigh<int>()]);
744 blocked_core_registers_[location.AsRegisterPairHigh<int>()] = true;
745 }
746 }
747
AllocateLocations(HInstruction * instruction)748 void CodeGenerator::AllocateLocations(HInstruction* instruction) {
749 for (HEnvironment* env = instruction->GetEnvironment(); env != nullptr; env = env->GetParent()) {
750 env->AllocateLocations();
751 }
752 instruction->Accept(GetLocationBuilder());
753 DCHECK(CheckTypeConsistency(instruction));
754 LocationSummary* locations = instruction->GetLocations();
755 if (!instruction->IsSuspendCheckEntry()) {
756 if (locations != nullptr) {
757 if (locations->CanCall()) {
758 MarkNotLeaf();
759 } else if (locations->Intrinsified() &&
760 instruction->IsInvokeStaticOrDirect() &&
761 !instruction->AsInvokeStaticOrDirect()->HasCurrentMethodInput()) {
762 // A static method call that has been fully intrinsified, and cannot call on the slow
763 // path or refer to the current method directly, no longer needs current method.
764 return;
765 }
766 }
767 if (instruction->NeedsCurrentMethod()) {
768 SetRequiresCurrentMethod();
769 }
770 }
771 }
772
Create(HGraph * graph,InstructionSet instruction_set,const InstructionSetFeatures & isa_features,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)773 std::unique_ptr<CodeGenerator> CodeGenerator::Create(HGraph* graph,
774 InstructionSet instruction_set,
775 const InstructionSetFeatures& isa_features,
776 const CompilerOptions& compiler_options,
777 OptimizingCompilerStats* stats) {
778 ArenaAllocator* allocator = graph->GetAllocator();
779 switch (instruction_set) {
780 #ifdef ART_ENABLE_CODEGEN_arm
781 case InstructionSet::kArm:
782 case InstructionSet::kThumb2: {
783 return std::unique_ptr<CodeGenerator>(
784 new (allocator) arm::CodeGeneratorARMVIXL(
785 graph, *isa_features.AsArmInstructionSetFeatures(), compiler_options, stats));
786 }
787 #endif
788 #ifdef ART_ENABLE_CODEGEN_arm64
789 case InstructionSet::kArm64: {
790 return std::unique_ptr<CodeGenerator>(
791 new (allocator) arm64::CodeGeneratorARM64(
792 graph, *isa_features.AsArm64InstructionSetFeatures(), compiler_options, stats));
793 }
794 #endif
795 #ifdef ART_ENABLE_CODEGEN_mips
796 case InstructionSet::kMips: {
797 return std::unique_ptr<CodeGenerator>(
798 new (allocator) mips::CodeGeneratorMIPS(
799 graph, *isa_features.AsMipsInstructionSetFeatures(), compiler_options, stats));
800 }
801 #endif
802 #ifdef ART_ENABLE_CODEGEN_mips64
803 case InstructionSet::kMips64: {
804 return std::unique_ptr<CodeGenerator>(
805 new (allocator) mips64::CodeGeneratorMIPS64(
806 graph, *isa_features.AsMips64InstructionSetFeatures(), compiler_options, stats));
807 }
808 #endif
809 #ifdef ART_ENABLE_CODEGEN_x86
810 case InstructionSet::kX86: {
811 return std::unique_ptr<CodeGenerator>(
812 new (allocator) x86::CodeGeneratorX86(
813 graph, *isa_features.AsX86InstructionSetFeatures(), compiler_options, stats));
814 }
815 #endif
816 #ifdef ART_ENABLE_CODEGEN_x86_64
817 case InstructionSet::kX86_64: {
818 return std::unique_ptr<CodeGenerator>(
819 new (allocator) x86_64::CodeGeneratorX86_64(
820 graph, *isa_features.AsX86_64InstructionSetFeatures(), compiler_options, stats));
821 }
822 #endif
823 default:
824 return nullptr;
825 }
826 }
827
CodeGenerator(HGraph * graph,size_t number_of_core_registers,size_t number_of_fpu_registers,size_t number_of_register_pairs,uint32_t core_callee_save_mask,uint32_t fpu_callee_save_mask,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)828 CodeGenerator::CodeGenerator(HGraph* graph,
829 size_t number_of_core_registers,
830 size_t number_of_fpu_registers,
831 size_t number_of_register_pairs,
832 uint32_t core_callee_save_mask,
833 uint32_t fpu_callee_save_mask,
834 const CompilerOptions& compiler_options,
835 OptimizingCompilerStats* stats)
836 : frame_size_(0),
837 core_spill_mask_(0),
838 fpu_spill_mask_(0),
839 first_register_slot_in_slow_path_(0),
840 allocated_registers_(RegisterSet::Empty()),
841 blocked_core_registers_(graph->GetAllocator()->AllocArray<bool>(number_of_core_registers,
842 kArenaAllocCodeGenerator)),
843 blocked_fpu_registers_(graph->GetAllocator()->AllocArray<bool>(number_of_fpu_registers,
844 kArenaAllocCodeGenerator)),
845 number_of_core_registers_(number_of_core_registers),
846 number_of_fpu_registers_(number_of_fpu_registers),
847 number_of_register_pairs_(number_of_register_pairs),
848 core_callee_save_mask_(core_callee_save_mask),
849 fpu_callee_save_mask_(fpu_callee_save_mask),
850 block_order_(nullptr),
851 disasm_info_(nullptr),
852 stats_(stats),
853 graph_(graph),
854 compiler_options_(compiler_options),
855 current_slow_path_(nullptr),
856 current_block_index_(0),
857 is_leaf_(true),
858 requires_current_method_(false),
859 code_generation_data_() {
860 }
861
~CodeGenerator()862 CodeGenerator::~CodeGenerator() {}
863
ComputeStackMapAndMethodInfoSize(size_t * stack_map_size,size_t * method_info_size)864 void CodeGenerator::ComputeStackMapAndMethodInfoSize(size_t* stack_map_size,
865 size_t* method_info_size) {
866 DCHECK(stack_map_size != nullptr);
867 DCHECK(method_info_size != nullptr);
868 StackMapStream* stack_map_stream = GetStackMapStream();
869 *stack_map_size = stack_map_stream->PrepareForFillIn();
870 *method_info_size = stack_map_stream->ComputeMethodInfoSize();
871 }
872
GetNumberOfJitRoots() const873 size_t CodeGenerator::GetNumberOfJitRoots() const {
874 DCHECK(code_generation_data_ != nullptr);
875 return code_generation_data_->GetNumberOfJitRoots();
876 }
877
CheckCovers(uint32_t dex_pc,const HGraph & graph,const CodeInfo & code_info,const ArenaVector<HSuspendCheck * > & loop_headers,ArenaVector<size_t> * covered)878 static void CheckCovers(uint32_t dex_pc,
879 const HGraph& graph,
880 const CodeInfo& code_info,
881 const ArenaVector<HSuspendCheck*>& loop_headers,
882 ArenaVector<size_t>* covered) {
883 CodeInfoEncoding encoding = code_info.ExtractEncoding();
884 for (size_t i = 0; i < loop_headers.size(); ++i) {
885 if (loop_headers[i]->GetDexPc() == dex_pc) {
886 if (graph.IsCompilingOsr()) {
887 DCHECK(code_info.GetOsrStackMapForDexPc(dex_pc, encoding).IsValid());
888 }
889 ++(*covered)[i];
890 }
891 }
892 }
893
894 // Debug helper to ensure loop entries in compiled code are matched by
895 // dex branch instructions.
CheckLoopEntriesCanBeUsedForOsr(const HGraph & graph,const CodeInfo & code_info,const DexFile::CodeItem & code_item)896 static void CheckLoopEntriesCanBeUsedForOsr(const HGraph& graph,
897 const CodeInfo& code_info,
898 const DexFile::CodeItem& code_item) {
899 if (graph.HasTryCatch()) {
900 // One can write loops through try/catch, which we do not support for OSR anyway.
901 return;
902 }
903 ArenaVector<HSuspendCheck*> loop_headers(graph.GetAllocator()->Adapter(kArenaAllocMisc));
904 for (HBasicBlock* block : graph.GetReversePostOrder()) {
905 if (block->IsLoopHeader()) {
906 HSuspendCheck* suspend_check = block->GetLoopInformation()->GetSuspendCheck();
907 if (!suspend_check->GetEnvironment()->IsFromInlinedInvoke()) {
908 loop_headers.push_back(suspend_check);
909 }
910 }
911 }
912 ArenaVector<size_t> covered(
913 loop_headers.size(), 0, graph.GetAllocator()->Adapter(kArenaAllocMisc));
914 for (const DexInstructionPcPair& pair : CodeItemInstructionAccessor(graph.GetDexFile(),
915 &code_item)) {
916 const uint32_t dex_pc = pair.DexPc();
917 const Instruction& instruction = pair.Inst();
918 if (instruction.IsBranch()) {
919 uint32_t target = dex_pc + instruction.GetTargetOffset();
920 CheckCovers(target, graph, code_info, loop_headers, &covered);
921 } else if (instruction.IsSwitch()) {
922 DexSwitchTable table(instruction, dex_pc);
923 uint16_t num_entries = table.GetNumEntries();
924 size_t offset = table.GetFirstValueIndex();
925
926 // Use a larger loop counter type to avoid overflow issues.
927 for (size_t i = 0; i < num_entries; ++i) {
928 // The target of the case.
929 uint32_t target = dex_pc + table.GetEntryAt(i + offset);
930 CheckCovers(target, graph, code_info, loop_headers, &covered);
931 }
932 }
933 }
934
935 for (size_t i = 0; i < covered.size(); ++i) {
936 DCHECK_NE(covered[i], 0u) << "Loop in compiled code has no dex branch equivalent";
937 }
938 }
939
BuildStackMaps(MemoryRegion stack_map_region,MemoryRegion method_info_region,const DexFile::CodeItem * code_item_for_osr_check)940 void CodeGenerator::BuildStackMaps(MemoryRegion stack_map_region,
941 MemoryRegion method_info_region,
942 const DexFile::CodeItem* code_item_for_osr_check) {
943 StackMapStream* stack_map_stream = GetStackMapStream();
944 stack_map_stream->FillInCodeInfo(stack_map_region);
945 stack_map_stream->FillInMethodInfo(method_info_region);
946 if (kIsDebugBuild && code_item_for_osr_check != nullptr) {
947 CheckLoopEntriesCanBeUsedForOsr(*graph_, CodeInfo(stack_map_region), *code_item_for_osr_check);
948 }
949 }
950
RecordPcInfo(HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)951 void CodeGenerator::RecordPcInfo(HInstruction* instruction,
952 uint32_t dex_pc,
953 SlowPathCode* slow_path) {
954 if (instruction != nullptr) {
955 // The code generated for some type conversions
956 // may call the runtime, thus normally requiring a subsequent
957 // call to this method. However, the method verifier does not
958 // produce PC information for certain instructions, which are
959 // considered "atomic" (they cannot join a GC).
960 // Therefore we do not currently record PC information for such
961 // instructions. As this may change later, we added this special
962 // case so that code generators may nevertheless call
963 // CodeGenerator::RecordPcInfo without triggering an error in
964 // CodeGenerator::BuildNativeGCMap ("Missing ref for dex pc 0x")
965 // thereafter.
966 if (instruction->IsTypeConversion()) {
967 return;
968 }
969 if (instruction->IsRem()) {
970 DataType::Type type = instruction->AsRem()->GetResultType();
971 if ((type == DataType::Type::kFloat32) || (type == DataType::Type::kFloat64)) {
972 return;
973 }
974 }
975 }
976
977 // Collect PC infos for the mapping table.
978 uint32_t native_pc = GetAssembler()->CodePosition();
979
980 StackMapStream* stack_map_stream = GetStackMapStream();
981 if (instruction == nullptr) {
982 // For stack overflow checks and native-debug-info entries without dex register
983 // mapping (i.e. start of basic block or start of slow path).
984 stack_map_stream->BeginStackMapEntry(dex_pc, native_pc, 0, 0, 0, 0);
985 stack_map_stream->EndStackMapEntry();
986 return;
987 }
988
989 LocationSummary* locations = instruction->GetLocations();
990 uint32_t register_mask = locations->GetRegisterMask();
991 DCHECK_EQ(register_mask & ~locations->GetLiveRegisters()->GetCoreRegisters(), 0u);
992 if (locations->OnlyCallsOnSlowPath()) {
993 // In case of slow path, we currently set the location of caller-save registers
994 // to register (instead of their stack location when pushed before the slow-path
995 // call). Therefore register_mask contains both callee-save and caller-save
996 // registers that hold objects. We must remove the spilled caller-save from the
997 // mask, since they will be overwritten by the callee.
998 uint32_t spills = GetSlowPathSpills(locations, /* core_registers */ true);
999 register_mask &= ~spills;
1000 } else {
1001 // The register mask must be a subset of callee-save registers.
1002 DCHECK_EQ(register_mask & core_callee_save_mask_, register_mask);
1003 }
1004
1005 uint32_t outer_dex_pc = dex_pc;
1006 uint32_t outer_environment_size = 0u;
1007 uint32_t inlining_depth = 0;
1008 HEnvironment* const environment = instruction->GetEnvironment();
1009 if (environment != nullptr) {
1010 HEnvironment* outer_environment = environment;
1011 while (outer_environment->GetParent() != nullptr) {
1012 outer_environment = outer_environment->GetParent();
1013 ++inlining_depth;
1014 }
1015 outer_dex_pc = outer_environment->GetDexPc();
1016 outer_environment_size = outer_environment->Size();
1017 }
1018 stack_map_stream->BeginStackMapEntry(outer_dex_pc,
1019 native_pc,
1020 register_mask,
1021 locations->GetStackMask(),
1022 outer_environment_size,
1023 inlining_depth);
1024 EmitEnvironment(environment, slow_path);
1025 // Record invoke info, the common case for the trampoline is super and static invokes. Only
1026 // record these to reduce oat file size.
1027 if (kEnableDexLayoutOptimizations) {
1028 if (instruction->IsInvokeStaticOrDirect()) {
1029 HInvoke* const invoke = instruction->AsInvokeStaticOrDirect();
1030 DCHECK(environment != nullptr);
1031 stack_map_stream->AddInvoke(invoke->GetInvokeType(), invoke->GetDexMethodIndex());
1032 }
1033 }
1034 stack_map_stream->EndStackMapEntry();
1035
1036 HLoopInformation* info = instruction->GetBlock()->GetLoopInformation();
1037 if (instruction->IsSuspendCheck() &&
1038 (info != nullptr) &&
1039 graph_->IsCompilingOsr() &&
1040 (inlining_depth == 0)) {
1041 DCHECK_EQ(info->GetSuspendCheck(), instruction);
1042 // We duplicate the stack map as a marker that this stack map can be an OSR entry.
1043 // Duplicating it avoids having the runtime recognize and skip an OSR stack map.
1044 DCHECK(info->IsIrreducible());
1045 stack_map_stream->BeginStackMapEntry(
1046 dex_pc, native_pc, register_mask, locations->GetStackMask(), outer_environment_size, 0);
1047 EmitEnvironment(instruction->GetEnvironment(), slow_path);
1048 stack_map_stream->EndStackMapEntry();
1049 if (kIsDebugBuild) {
1050 for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
1051 HInstruction* in_environment = environment->GetInstructionAt(i);
1052 if (in_environment != nullptr) {
1053 DCHECK(in_environment->IsPhi() || in_environment->IsConstant());
1054 Location location = environment->GetLocationAt(i);
1055 DCHECK(location.IsStackSlot() ||
1056 location.IsDoubleStackSlot() ||
1057 location.IsConstant() ||
1058 location.IsInvalid());
1059 if (location.IsStackSlot() || location.IsDoubleStackSlot()) {
1060 DCHECK_LT(location.GetStackIndex(), static_cast<int32_t>(GetFrameSize()));
1061 }
1062 }
1063 }
1064 }
1065 } else if (kIsDebugBuild) {
1066 // Ensure stack maps are unique, by checking that the native pc in the stack map
1067 // last emitted is different than the native pc of the stack map just emitted.
1068 size_t number_of_stack_maps = stack_map_stream->GetNumberOfStackMaps();
1069 if (number_of_stack_maps > 1) {
1070 DCHECK_NE(stack_map_stream->GetStackMap(number_of_stack_maps - 1).native_pc_code_offset,
1071 stack_map_stream->GetStackMap(number_of_stack_maps - 2).native_pc_code_offset);
1072 }
1073 }
1074 }
1075
HasStackMapAtCurrentPc()1076 bool CodeGenerator::HasStackMapAtCurrentPc() {
1077 uint32_t pc = GetAssembler()->CodeSize();
1078 StackMapStream* stack_map_stream = GetStackMapStream();
1079 size_t count = stack_map_stream->GetNumberOfStackMaps();
1080 if (count == 0) {
1081 return false;
1082 }
1083 CodeOffset native_pc_offset = stack_map_stream->GetStackMap(count - 1).native_pc_code_offset;
1084 return (native_pc_offset.Uint32Value(GetInstructionSet()) == pc);
1085 }
1086
MaybeRecordNativeDebugInfo(HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)1087 void CodeGenerator::MaybeRecordNativeDebugInfo(HInstruction* instruction,
1088 uint32_t dex_pc,
1089 SlowPathCode* slow_path) {
1090 if (GetCompilerOptions().GetNativeDebuggable() && dex_pc != kNoDexPc) {
1091 if (HasStackMapAtCurrentPc()) {
1092 // Ensure that we do not collide with the stack map of the previous instruction.
1093 GenerateNop();
1094 }
1095 RecordPcInfo(instruction, dex_pc, slow_path);
1096 }
1097 }
1098
RecordCatchBlockInfo()1099 void CodeGenerator::RecordCatchBlockInfo() {
1100 ArenaAllocator* allocator = graph_->GetAllocator();
1101 StackMapStream* stack_map_stream = GetStackMapStream();
1102
1103 for (HBasicBlock* block : *block_order_) {
1104 if (!block->IsCatchBlock()) {
1105 continue;
1106 }
1107
1108 uint32_t dex_pc = block->GetDexPc();
1109 uint32_t num_vregs = graph_->GetNumberOfVRegs();
1110 uint32_t inlining_depth = 0; // Inlining of catch blocks is not supported at the moment.
1111 uint32_t native_pc = GetAddressOf(block);
1112 uint32_t register_mask = 0; // Not used.
1113
1114 // The stack mask is not used, so we leave it empty.
1115 ArenaBitVector* stack_mask =
1116 ArenaBitVector::Create(allocator, 0, /* expandable */ true, kArenaAllocCodeGenerator);
1117
1118 stack_map_stream->BeginStackMapEntry(dex_pc,
1119 native_pc,
1120 register_mask,
1121 stack_mask,
1122 num_vregs,
1123 inlining_depth);
1124
1125 HInstruction* current_phi = block->GetFirstPhi();
1126 for (size_t vreg = 0; vreg < num_vregs; ++vreg) {
1127 while (current_phi != nullptr && current_phi->AsPhi()->GetRegNumber() < vreg) {
1128 HInstruction* next_phi = current_phi->GetNext();
1129 DCHECK(next_phi == nullptr ||
1130 current_phi->AsPhi()->GetRegNumber() <= next_phi->AsPhi()->GetRegNumber())
1131 << "Phis need to be sorted by vreg number to keep this a linear-time loop.";
1132 current_phi = next_phi;
1133 }
1134
1135 if (current_phi == nullptr || current_phi->AsPhi()->GetRegNumber() != vreg) {
1136 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
1137 } else {
1138 Location location = current_phi->GetLocations()->Out();
1139 switch (location.GetKind()) {
1140 case Location::kStackSlot: {
1141 stack_map_stream->AddDexRegisterEntry(
1142 DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
1143 break;
1144 }
1145 case Location::kDoubleStackSlot: {
1146 stack_map_stream->AddDexRegisterEntry(
1147 DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
1148 stack_map_stream->AddDexRegisterEntry(
1149 DexRegisterLocation::Kind::kInStack, location.GetHighStackIndex(kVRegSize));
1150 ++vreg;
1151 DCHECK_LT(vreg, num_vregs);
1152 break;
1153 }
1154 default: {
1155 // All catch phis must be allocated to a stack slot.
1156 LOG(FATAL) << "Unexpected kind " << location.GetKind();
1157 UNREACHABLE();
1158 }
1159 }
1160 }
1161 }
1162
1163 stack_map_stream->EndStackMapEntry();
1164 }
1165 }
1166
AddSlowPath(SlowPathCode * slow_path)1167 void CodeGenerator::AddSlowPath(SlowPathCode* slow_path) {
1168 DCHECK(code_generation_data_ != nullptr);
1169 code_generation_data_->AddSlowPath(slow_path);
1170 }
1171
EmitEnvironment(HEnvironment * environment,SlowPathCode * slow_path)1172 void CodeGenerator::EmitEnvironment(HEnvironment* environment, SlowPathCode* slow_path) {
1173 if (environment == nullptr) return;
1174
1175 StackMapStream* stack_map_stream = GetStackMapStream();
1176 if (environment->GetParent() != nullptr) {
1177 // We emit the parent environment first.
1178 EmitEnvironment(environment->GetParent(), slow_path);
1179 stack_map_stream->BeginInlineInfoEntry(environment->GetMethod(),
1180 environment->GetDexPc(),
1181 environment->Size(),
1182 &graph_->GetDexFile());
1183 }
1184
1185 // Walk over the environment, and record the location of dex registers.
1186 for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
1187 HInstruction* current = environment->GetInstructionAt(i);
1188 if (current == nullptr) {
1189 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
1190 continue;
1191 }
1192
1193 Location location = environment->GetLocationAt(i);
1194 switch (location.GetKind()) {
1195 case Location::kConstant: {
1196 DCHECK_EQ(current, location.GetConstant());
1197 if (current->IsLongConstant()) {
1198 int64_t value = current->AsLongConstant()->GetValue();
1199 stack_map_stream->AddDexRegisterEntry(
1200 DexRegisterLocation::Kind::kConstant, Low32Bits(value));
1201 stack_map_stream->AddDexRegisterEntry(
1202 DexRegisterLocation::Kind::kConstant, High32Bits(value));
1203 ++i;
1204 DCHECK_LT(i, environment_size);
1205 } else if (current->IsDoubleConstant()) {
1206 int64_t value = bit_cast<int64_t, double>(current->AsDoubleConstant()->GetValue());
1207 stack_map_stream->AddDexRegisterEntry(
1208 DexRegisterLocation::Kind::kConstant, Low32Bits(value));
1209 stack_map_stream->AddDexRegisterEntry(
1210 DexRegisterLocation::Kind::kConstant, High32Bits(value));
1211 ++i;
1212 DCHECK_LT(i, environment_size);
1213 } else if (current->IsIntConstant()) {
1214 int32_t value = current->AsIntConstant()->GetValue();
1215 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, value);
1216 } else if (current->IsNullConstant()) {
1217 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, 0);
1218 } else {
1219 DCHECK(current->IsFloatConstant()) << current->DebugName();
1220 int32_t value = bit_cast<int32_t, float>(current->AsFloatConstant()->GetValue());
1221 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, value);
1222 }
1223 break;
1224 }
1225
1226 case Location::kStackSlot: {
1227 stack_map_stream->AddDexRegisterEntry(
1228 DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
1229 break;
1230 }
1231
1232 case Location::kDoubleStackSlot: {
1233 stack_map_stream->AddDexRegisterEntry(
1234 DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
1235 stack_map_stream->AddDexRegisterEntry(
1236 DexRegisterLocation::Kind::kInStack, location.GetHighStackIndex(kVRegSize));
1237 ++i;
1238 DCHECK_LT(i, environment_size);
1239 break;
1240 }
1241
1242 case Location::kRegister : {
1243 int id = location.reg();
1244 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(id)) {
1245 uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(id);
1246 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
1247 if (current->GetType() == DataType::Type::kInt64) {
1248 stack_map_stream->AddDexRegisterEntry(
1249 DexRegisterLocation::Kind::kInStack, offset + kVRegSize);
1250 ++i;
1251 DCHECK_LT(i, environment_size);
1252 }
1253 } else {
1254 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, id);
1255 if (current->GetType() == DataType::Type::kInt64) {
1256 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegisterHigh, id);
1257 ++i;
1258 DCHECK_LT(i, environment_size);
1259 }
1260 }
1261 break;
1262 }
1263
1264 case Location::kFpuRegister : {
1265 int id = location.reg();
1266 if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(id)) {
1267 uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(id);
1268 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
1269 if (current->GetType() == DataType::Type::kFloat64) {
1270 stack_map_stream->AddDexRegisterEntry(
1271 DexRegisterLocation::Kind::kInStack, offset + kVRegSize);
1272 ++i;
1273 DCHECK_LT(i, environment_size);
1274 }
1275 } else {
1276 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, id);
1277 if (current->GetType() == DataType::Type::kFloat64) {
1278 stack_map_stream->AddDexRegisterEntry(
1279 DexRegisterLocation::Kind::kInFpuRegisterHigh, id);
1280 ++i;
1281 DCHECK_LT(i, environment_size);
1282 }
1283 }
1284 break;
1285 }
1286
1287 case Location::kFpuRegisterPair : {
1288 int low = location.low();
1289 int high = location.high();
1290 if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(low)) {
1291 uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(low);
1292 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
1293 } else {
1294 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, low);
1295 }
1296 if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(high)) {
1297 uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(high);
1298 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
1299 ++i;
1300 } else {
1301 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, high);
1302 ++i;
1303 }
1304 DCHECK_LT(i, environment_size);
1305 break;
1306 }
1307
1308 case Location::kRegisterPair : {
1309 int low = location.low();
1310 int high = location.high();
1311 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(low)) {
1312 uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(low);
1313 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
1314 } else {
1315 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, low);
1316 }
1317 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(high)) {
1318 uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(high);
1319 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
1320 } else {
1321 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, high);
1322 }
1323 ++i;
1324 DCHECK_LT(i, environment_size);
1325 break;
1326 }
1327
1328 case Location::kInvalid: {
1329 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
1330 break;
1331 }
1332
1333 default:
1334 LOG(FATAL) << "Unexpected kind " << location.GetKind();
1335 }
1336 }
1337
1338 if (environment->GetParent() != nullptr) {
1339 stack_map_stream->EndInlineInfoEntry();
1340 }
1341 }
1342
CanMoveNullCheckToUser(HNullCheck * null_check)1343 bool CodeGenerator::CanMoveNullCheckToUser(HNullCheck* null_check) {
1344 HInstruction* first_next_not_move = null_check->GetNextDisregardingMoves();
1345
1346 return (first_next_not_move != nullptr)
1347 && first_next_not_move->CanDoImplicitNullCheckOn(null_check->InputAt(0));
1348 }
1349
MaybeRecordImplicitNullCheck(HInstruction * instr)1350 void CodeGenerator::MaybeRecordImplicitNullCheck(HInstruction* instr) {
1351 if (!compiler_options_.GetImplicitNullChecks()) {
1352 return;
1353 }
1354
1355 // If we are from a static path don't record the pc as we can't throw NPE.
1356 // NB: having the checks here makes the code much less verbose in the arch
1357 // specific code generators.
1358 if (instr->IsStaticFieldSet() || instr->IsStaticFieldGet()) {
1359 return;
1360 }
1361
1362 if (!instr->CanDoImplicitNullCheckOn(instr->InputAt(0))) {
1363 return;
1364 }
1365
1366 // Find the first previous instruction which is not a move.
1367 HInstruction* first_prev_not_move = instr->GetPreviousDisregardingMoves();
1368
1369 // If the instruction is a null check it means that `instr` is the first user
1370 // and needs to record the pc.
1371 if (first_prev_not_move != nullptr && first_prev_not_move->IsNullCheck()) {
1372 HNullCheck* null_check = first_prev_not_move->AsNullCheck();
1373 // TODO: The parallel moves modify the environment. Their changes need to be
1374 // reverted otherwise the stack maps at the throw point will not be correct.
1375 RecordPcInfo(null_check, null_check->GetDexPc());
1376 }
1377 }
1378
CreateThrowingSlowPathLocations(HInstruction * instruction,RegisterSet caller_saves)1379 LocationSummary* CodeGenerator::CreateThrowingSlowPathLocations(HInstruction* instruction,
1380 RegisterSet caller_saves) {
1381 // Note: Using kNoCall allows the method to be treated as leaf (and eliminate the
1382 // HSuspendCheck from entry block). However, it will still get a valid stack frame
1383 // because the HNullCheck needs an environment.
1384 LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
1385 // When throwing from a try block, we may need to retrieve dalvik registers from
1386 // physical registers and we also need to set up stack mask for GC. This is
1387 // implicitly achieved by passing kCallOnSlowPath to the LocationSummary.
1388 bool can_throw_into_catch_block = instruction->CanThrowIntoCatchBlock();
1389 if (can_throw_into_catch_block) {
1390 call_kind = LocationSummary::kCallOnSlowPath;
1391 }
1392 LocationSummary* locations =
1393 new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
1394 if (can_throw_into_catch_block && compiler_options_.GetImplicitNullChecks()) {
1395 locations->SetCustomSlowPathCallerSaves(caller_saves); // Default: no caller-save registers.
1396 }
1397 DCHECK(!instruction->HasUses());
1398 return locations;
1399 }
1400
GenerateNullCheck(HNullCheck * instruction)1401 void CodeGenerator::GenerateNullCheck(HNullCheck* instruction) {
1402 if (compiler_options_.GetImplicitNullChecks()) {
1403 MaybeRecordStat(stats_, MethodCompilationStat::kImplicitNullCheckGenerated);
1404 GenerateImplicitNullCheck(instruction);
1405 } else {
1406 MaybeRecordStat(stats_, MethodCompilationStat::kExplicitNullCheckGenerated);
1407 GenerateExplicitNullCheck(instruction);
1408 }
1409 }
1410
ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck * suspend_check,HParallelMove * spills) const1411 void CodeGenerator::ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check,
1412 HParallelMove* spills) const {
1413 LocationSummary* locations = suspend_check->GetLocations();
1414 HBasicBlock* block = suspend_check->GetBlock();
1415 DCHECK(block->GetLoopInformation()->GetSuspendCheck() == suspend_check);
1416 DCHECK(block->IsLoopHeader());
1417 DCHECK(block->GetFirstInstruction() == spills);
1418
1419 for (size_t i = 0, num_moves = spills->NumMoves(); i != num_moves; ++i) {
1420 Location dest = spills->MoveOperandsAt(i)->GetDestination();
1421 // All parallel moves in loop headers are spills.
1422 DCHECK(dest.IsStackSlot() || dest.IsDoubleStackSlot() || dest.IsSIMDStackSlot()) << dest;
1423 // Clear the stack bit marking a reference. Do not bother to check if the spill is
1424 // actually a reference spill, clearing bits that are already zero is harmless.
1425 locations->ClearStackBit(dest.GetStackIndex() / kVRegSize);
1426 }
1427 }
1428
EmitParallelMoves(Location from1,Location to1,DataType::Type type1,Location from2,Location to2,DataType::Type type2)1429 void CodeGenerator::EmitParallelMoves(Location from1,
1430 Location to1,
1431 DataType::Type type1,
1432 Location from2,
1433 Location to2,
1434 DataType::Type type2) {
1435 HParallelMove parallel_move(GetGraph()->GetAllocator());
1436 parallel_move.AddMove(from1, to1, type1, nullptr);
1437 parallel_move.AddMove(from2, to2, type2, nullptr);
1438 GetMoveResolver()->EmitNativeCode(¶llel_move);
1439 }
1440
ValidateInvokeRuntime(QuickEntrypointEnum entrypoint,HInstruction * instruction,SlowPathCode * slow_path)1441 void CodeGenerator::ValidateInvokeRuntime(QuickEntrypointEnum entrypoint,
1442 HInstruction* instruction,
1443 SlowPathCode* slow_path) {
1444 // Ensure that the call kind indication given to the register allocator is
1445 // coherent with the runtime call generated.
1446 if (slow_path == nullptr) {
1447 DCHECK(instruction->GetLocations()->WillCall())
1448 << "instruction->DebugName()=" << instruction->DebugName();
1449 } else {
1450 DCHECK(instruction->GetLocations()->CallsOnSlowPath() || slow_path->IsFatal())
1451 << "instruction->DebugName()=" << instruction->DebugName()
1452 << " slow_path->GetDescription()=" << slow_path->GetDescription();
1453 }
1454
1455 // Check that the GC side effect is set when required.
1456 // TODO: Reverse EntrypointCanTriggerGC
1457 if (EntrypointCanTriggerGC(entrypoint)) {
1458 if (slow_path == nullptr) {
1459 DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()))
1460 << "instruction->DebugName()=" << instruction->DebugName()
1461 << " instruction->GetSideEffects().ToString()="
1462 << instruction->GetSideEffects().ToString();
1463 } else {
1464 DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()) ||
1465 // When (non-Baker) read barriers are enabled, some instructions
1466 // use a slow path to emit a read barrier, which does not trigger
1467 // GC.
1468 (kEmitCompilerReadBarrier &&
1469 !kUseBakerReadBarrier &&
1470 (instruction->IsInstanceFieldGet() ||
1471 instruction->IsStaticFieldGet() ||
1472 instruction->IsArrayGet() ||
1473 instruction->IsLoadClass() ||
1474 instruction->IsLoadString() ||
1475 instruction->IsInstanceOf() ||
1476 instruction->IsCheckCast() ||
1477 (instruction->IsInvokeVirtual() && instruction->GetLocations()->Intrinsified()))))
1478 << "instruction->DebugName()=" << instruction->DebugName()
1479 << " instruction->GetSideEffects().ToString()="
1480 << instruction->GetSideEffects().ToString()
1481 << " slow_path->GetDescription()=" << slow_path->GetDescription();
1482 }
1483 } else {
1484 // The GC side effect is not required for the instruction. But the instruction might still have
1485 // it, for example if it calls other entrypoints requiring it.
1486 }
1487
1488 // Check the coherency of leaf information.
1489 DCHECK(instruction->IsSuspendCheck()
1490 || ((slow_path != nullptr) && slow_path->IsFatal())
1491 || instruction->GetLocations()->CanCall()
1492 || !IsLeafMethod())
1493 << instruction->DebugName() << ((slow_path != nullptr) ? slow_path->GetDescription() : "");
1494 }
1495
ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction * instruction,SlowPathCode * slow_path)1496 void CodeGenerator::ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction* instruction,
1497 SlowPathCode* slow_path) {
1498 DCHECK(instruction->GetLocations()->OnlyCallsOnSlowPath())
1499 << "instruction->DebugName()=" << instruction->DebugName()
1500 << " slow_path->GetDescription()=" << slow_path->GetDescription();
1501 // Only the Baker read barrier marking slow path used by certains
1502 // instructions is expected to invoke the runtime without recording
1503 // PC-related information.
1504 DCHECK(kUseBakerReadBarrier);
1505 DCHECK(instruction->IsInstanceFieldGet() ||
1506 instruction->IsStaticFieldGet() ||
1507 instruction->IsArrayGet() ||
1508 instruction->IsArraySet() ||
1509 instruction->IsLoadClass() ||
1510 instruction->IsLoadString() ||
1511 instruction->IsInstanceOf() ||
1512 instruction->IsCheckCast() ||
1513 (instruction->IsInvokeVirtual() && instruction->GetLocations()->Intrinsified()) ||
1514 (instruction->IsInvokeStaticOrDirect() && instruction->GetLocations()->Intrinsified()))
1515 << "instruction->DebugName()=" << instruction->DebugName()
1516 << " slow_path->GetDescription()=" << slow_path->GetDescription();
1517 }
1518
SaveLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)1519 void SlowPathCode::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
1520 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
1521
1522 const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true);
1523 for (uint32_t i : LowToHighBits(core_spills)) {
1524 // If the register holds an object, update the stack mask.
1525 if (locations->RegisterContainsObject(i)) {
1526 locations->SetStackBit(stack_offset / kVRegSize);
1527 }
1528 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1529 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1530 saved_core_stack_offsets_[i] = stack_offset;
1531 stack_offset += codegen->SaveCoreRegister(stack_offset, i);
1532 }
1533
1534 const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false);
1535 for (uint32_t i : LowToHighBits(fp_spills)) {
1536 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1537 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1538 saved_fpu_stack_offsets_[i] = stack_offset;
1539 stack_offset += codegen->SaveFloatingPointRegister(stack_offset, i);
1540 }
1541 }
1542
RestoreLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)1543 void SlowPathCode::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
1544 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
1545
1546 const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true);
1547 for (uint32_t i : LowToHighBits(core_spills)) {
1548 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1549 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1550 stack_offset += codegen->RestoreCoreRegister(stack_offset, i);
1551 }
1552
1553 const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false);
1554 for (uint32_t i : LowToHighBits(fp_spills)) {
1555 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1556 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1557 stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, i);
1558 }
1559 }
1560
CreateSystemArrayCopyLocationSummary(HInvoke * invoke)1561 void CodeGenerator::CreateSystemArrayCopyLocationSummary(HInvoke* invoke) {
1562 // Check to see if we have known failures that will cause us to have to bail out
1563 // to the runtime, and just generate the runtime call directly.
1564 HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
1565 HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
1566
1567 // The positions must be non-negative.
1568 if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
1569 (dest_pos != nullptr && dest_pos->GetValue() < 0)) {
1570 // We will have to fail anyways.
1571 return;
1572 }
1573
1574 // The length must be >= 0.
1575 HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
1576 if (length != nullptr) {
1577 int32_t len = length->GetValue();
1578 if (len < 0) {
1579 // Just call as normal.
1580 return;
1581 }
1582 }
1583
1584 SystemArrayCopyOptimizations optimizations(invoke);
1585
1586 if (optimizations.GetDestinationIsSource()) {
1587 if (src_pos != nullptr && dest_pos != nullptr && src_pos->GetValue() < dest_pos->GetValue()) {
1588 // We only support backward copying if source and destination are the same.
1589 return;
1590 }
1591 }
1592
1593 if (optimizations.GetDestinationIsPrimitiveArray() || optimizations.GetSourceIsPrimitiveArray()) {
1594 // We currently don't intrinsify primitive copying.
1595 return;
1596 }
1597
1598 ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator();
1599 LocationSummary* locations = new (allocator) LocationSummary(invoke,
1600 LocationSummary::kCallOnSlowPath,
1601 kIntrinsified);
1602 // arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length).
1603 locations->SetInAt(0, Location::RequiresRegister());
1604 locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
1605 locations->SetInAt(2, Location::RequiresRegister());
1606 locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3)));
1607 locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4)));
1608
1609 locations->AddTemp(Location::RequiresRegister());
1610 locations->AddTemp(Location::RequiresRegister());
1611 locations->AddTemp(Location::RequiresRegister());
1612 }
1613
EmitJitRoots(uint8_t * code,Handle<mirror::ObjectArray<mirror::Object>> roots,const uint8_t * roots_data)1614 void CodeGenerator::EmitJitRoots(uint8_t* code,
1615 Handle<mirror::ObjectArray<mirror::Object>> roots,
1616 const uint8_t* roots_data) {
1617 code_generation_data_->EmitJitRoots(roots);
1618 EmitJitRootPatches(code, roots_data);
1619 }
1620
GetArrayAllocationEntrypoint(Handle<mirror::Class> array_klass)1621 QuickEntrypointEnum CodeGenerator::GetArrayAllocationEntrypoint(Handle<mirror::Class> array_klass) {
1622 ScopedObjectAccess soa(Thread::Current());
1623 if (array_klass == nullptr) {
1624 // This can only happen for non-primitive arrays, as primitive arrays can always
1625 // be resolved.
1626 return kQuickAllocArrayResolved32;
1627 }
1628
1629 switch (array_klass->GetComponentSize()) {
1630 case 1: return kQuickAllocArrayResolved8;
1631 case 2: return kQuickAllocArrayResolved16;
1632 case 4: return kQuickAllocArrayResolved32;
1633 case 8: return kQuickAllocArrayResolved64;
1634 }
1635 LOG(FATAL) << "Unreachable";
1636 return kQuickAllocArrayResolved;
1637 }
1638
1639 } // namespace art
1640