1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "bounds_check_elimination.h"
18 
19 #include <limits>
20 
21 #include "base/scoped_arena_allocator.h"
22 #include "base/scoped_arena_containers.h"
23 #include "induction_var_range.h"
24 #include "nodes.h"
25 #include "side_effects_analysis.h"
26 
27 namespace art {
28 
29 class MonotonicValueRange;
30 
31 /**
32  * A value bound is represented as a pair of value and constant,
33  * e.g. array.length - 1.
34  */
35 class ValueBound : public ValueObject {
36  public:
ValueBound(HInstruction * instruction,int32_t constant)37   ValueBound(HInstruction* instruction, int32_t constant) {
38     if (instruction != nullptr && instruction->IsIntConstant()) {
39       // Normalize ValueBound with constant instruction.
40       int32_t instr_const = instruction->AsIntConstant()->GetValue();
41       if (!WouldAddOverflowOrUnderflow(instr_const, constant)) {
42         instruction_ = nullptr;
43         constant_ = instr_const + constant;
44         return;
45       }
46     }
47     instruction_ = instruction;
48     constant_ = constant;
49   }
50 
51   // Return whether (left + right) overflows or underflows.
WouldAddOverflowOrUnderflow(int32_t left,int32_t right)52   static bool WouldAddOverflowOrUnderflow(int32_t left, int32_t right) {
53     if (right == 0) {
54       return false;
55     }
56     if ((right > 0) && (left <= (std::numeric_limits<int32_t>::max() - right))) {
57       // No overflow.
58       return false;
59     }
60     if ((right < 0) && (left >= (std::numeric_limits<int32_t>::min() - right))) {
61       // No underflow.
62       return false;
63     }
64     return true;
65   }
66 
67   // Return true if instruction can be expressed as "left_instruction + right_constant".
IsAddOrSubAConstant(HInstruction * instruction,HInstruction ** left_instruction,int32_t * right_constant)68   static bool IsAddOrSubAConstant(HInstruction* instruction,
69                                   /* out */ HInstruction** left_instruction,
70                                   /* out */ int32_t* right_constant) {
71     HInstruction* left_so_far = nullptr;
72     int32_t right_so_far = 0;
73     while (instruction->IsAdd() || instruction->IsSub()) {
74       HBinaryOperation* bin_op = instruction->AsBinaryOperation();
75       HInstruction* left = bin_op->GetLeft();
76       HInstruction* right = bin_op->GetRight();
77       if (right->IsIntConstant()) {
78         int32_t v = right->AsIntConstant()->GetValue();
79         int32_t c = instruction->IsAdd() ? v : -v;
80         if (!WouldAddOverflowOrUnderflow(right_so_far, c)) {
81           instruction = left;
82           left_so_far = left;
83           right_so_far += c;
84           continue;
85         }
86       }
87       break;
88     }
89     // Return result: either false and "null+0" or true and "instr+constant".
90     *left_instruction = left_so_far;
91     *right_constant = right_so_far;
92     return left_so_far != nullptr;
93   }
94 
95   // Expresses any instruction as a value bound.
AsValueBound(HInstruction * instruction)96   static ValueBound AsValueBound(HInstruction* instruction) {
97     if (instruction->IsIntConstant()) {
98       return ValueBound(nullptr, instruction->AsIntConstant()->GetValue());
99     }
100     HInstruction *left;
101     int32_t right;
102     if (IsAddOrSubAConstant(instruction, &left, &right)) {
103       return ValueBound(left, right);
104     }
105     return ValueBound(instruction, 0);
106   }
107 
108   // Try to detect useful value bound format from an instruction, e.g.
109   // a constant or array length related value.
DetectValueBoundFromValue(HInstruction * instruction,bool * found)110   static ValueBound DetectValueBoundFromValue(HInstruction* instruction, /* out */ bool* found) {
111     DCHECK(instruction != nullptr);
112     if (instruction->IsIntConstant()) {
113       *found = true;
114       return ValueBound(nullptr, instruction->AsIntConstant()->GetValue());
115     }
116 
117     if (instruction->IsArrayLength()) {
118       *found = true;
119       return ValueBound(instruction, 0);
120     }
121     // Try to detect (array.length + c) format.
122     HInstruction *left;
123     int32_t right;
124     if (IsAddOrSubAConstant(instruction, &left, &right)) {
125       if (left->IsArrayLength()) {
126         *found = true;
127         return ValueBound(left, right);
128       }
129     }
130 
131     // No useful bound detected.
132     *found = false;
133     return ValueBound::Max();
134   }
135 
GetInstruction() const136   HInstruction* GetInstruction() const { return instruction_; }
GetConstant() const137   int32_t GetConstant() const { return constant_; }
138 
IsRelatedToArrayLength() const139   bool IsRelatedToArrayLength() const {
140     // Some bounds are created with HNewArray* as the instruction instead
141     // of HArrayLength*. They are treated the same.
142     return (instruction_ != nullptr) &&
143            (instruction_->IsArrayLength() || instruction_->IsNewArray());
144   }
145 
IsConstant() const146   bool IsConstant() const {
147     return instruction_ == nullptr;
148   }
149 
Min()150   static ValueBound Min() { return ValueBound(nullptr, std::numeric_limits<int32_t>::min()); }
Max()151   static ValueBound Max() { return ValueBound(nullptr, std::numeric_limits<int32_t>::max()); }
152 
Equals(ValueBound bound) const153   bool Equals(ValueBound bound) const {
154     return instruction_ == bound.instruction_ && constant_ == bound.constant_;
155   }
156 
Equal(HInstruction * instruction1,HInstruction * instruction2)157   static bool Equal(HInstruction* instruction1, HInstruction* instruction2) {
158     if (instruction1 == instruction2) {
159       return true;
160     }
161     if (instruction1 == nullptr || instruction2 == nullptr) {
162       return false;
163     }
164     instruction1 = HuntForDeclaration(instruction1);
165     instruction2 = HuntForDeclaration(instruction2);
166     return instruction1 == instruction2;
167   }
168 
169   // Returns if it's certain this->bound >= `bound`.
GreaterThanOrEqualTo(ValueBound bound) const170   bool GreaterThanOrEqualTo(ValueBound bound) const {
171     if (Equal(instruction_, bound.instruction_)) {
172       return constant_ >= bound.constant_;
173     }
174     // Not comparable. Just return false.
175     return false;
176   }
177 
178   // Returns if it's certain this->bound <= `bound`.
LessThanOrEqualTo(ValueBound bound) const179   bool LessThanOrEqualTo(ValueBound bound) const {
180     if (Equal(instruction_, bound.instruction_)) {
181       return constant_ <= bound.constant_;
182     }
183     // Not comparable. Just return false.
184     return false;
185   }
186 
187   // Returns if it's certain this->bound > `bound`.
GreaterThan(ValueBound bound) const188   bool GreaterThan(ValueBound bound) const {
189     if (Equal(instruction_, bound.instruction_)) {
190       return constant_ > bound.constant_;
191     }
192     // Not comparable. Just return false.
193     return false;
194   }
195 
196   // Returns if it's certain this->bound < `bound`.
LessThan(ValueBound bound) const197   bool LessThan(ValueBound bound) const {
198     if (Equal(instruction_, bound.instruction_)) {
199       return constant_ < bound.constant_;
200     }
201     // Not comparable. Just return false.
202     return false;
203   }
204 
205   // Try to narrow lower bound. Returns the greatest of the two if possible.
206   // Pick one if they are not comparable.
NarrowLowerBound(ValueBound bound1,ValueBound bound2)207   static ValueBound NarrowLowerBound(ValueBound bound1, ValueBound bound2) {
208     if (bound1.GreaterThanOrEqualTo(bound2)) {
209       return bound1;
210     }
211     if (bound2.GreaterThanOrEqualTo(bound1)) {
212       return bound2;
213     }
214 
215     // Not comparable. Just pick one. We may lose some info, but that's ok.
216     // Favor constant as lower bound.
217     return bound1.IsConstant() ? bound1 : bound2;
218   }
219 
220   // Try to narrow upper bound. Returns the lowest of the two if possible.
221   // Pick one if they are not comparable.
NarrowUpperBound(ValueBound bound1,ValueBound bound2)222   static ValueBound NarrowUpperBound(ValueBound bound1, ValueBound bound2) {
223     if (bound1.LessThanOrEqualTo(bound2)) {
224       return bound1;
225     }
226     if (bound2.LessThanOrEqualTo(bound1)) {
227       return bound2;
228     }
229 
230     // Not comparable. Just pick one. We may lose some info, but that's ok.
231     // Favor array length as upper bound.
232     return bound1.IsRelatedToArrayLength() ? bound1 : bound2;
233   }
234 
235   // Add a constant to a ValueBound.
236   // `overflow` or `underflow` will return whether the resulting bound may
237   // overflow or underflow an int.
Add(int32_t c,bool * overflow,bool * underflow) const238   ValueBound Add(int32_t c, /* out */ bool* overflow, /* out */ bool* underflow) const {
239     *overflow = *underflow = false;
240     if (c == 0) {
241       return *this;
242     }
243 
244     int32_t new_constant;
245     if (c > 0) {
246       if (constant_ > (std::numeric_limits<int32_t>::max() - c)) {
247         *overflow = true;
248         return Max();
249       }
250 
251       new_constant = constant_ + c;
252       // (array.length + non-positive-constant) won't overflow an int.
253       if (IsConstant() || (IsRelatedToArrayLength() && new_constant <= 0)) {
254         return ValueBound(instruction_, new_constant);
255       }
256       // Be conservative.
257       *overflow = true;
258       return Max();
259     } else {
260       if (constant_ < (std::numeric_limits<int32_t>::min() - c)) {
261         *underflow = true;
262         return Min();
263       }
264 
265       new_constant = constant_ + c;
266       // Regardless of the value new_constant, (array.length+new_constant) will
267       // never underflow since array.length is no less than 0.
268       if (IsConstant() || IsRelatedToArrayLength()) {
269         return ValueBound(instruction_, new_constant);
270       }
271       // Be conservative.
272       *underflow = true;
273       return Min();
274     }
275   }
276 
277  private:
278   HInstruction* instruction_;
279   int32_t constant_;
280 };
281 
282 /**
283  * Represent a range of lower bound and upper bound, both being inclusive.
284  * Currently a ValueRange may be generated as a result of the following:
285  * comparisons related to array bounds, array bounds check, add/sub on top
286  * of an existing value range, NewArray or a loop phi corresponding to an
287  * incrementing/decrementing array index (MonotonicValueRange).
288  */
289 class ValueRange : public ArenaObject<kArenaAllocBoundsCheckElimination> {
290  public:
ValueRange(ScopedArenaAllocator * allocator,ValueBound lower,ValueBound upper)291   ValueRange(ScopedArenaAllocator* allocator, ValueBound lower, ValueBound upper)
292       : allocator_(allocator), lower_(lower), upper_(upper) {}
293 
~ValueRange()294   virtual ~ValueRange() {}
295 
AsMonotonicValueRange()296   virtual MonotonicValueRange* AsMonotonicValueRange() { return nullptr; }
IsMonotonicValueRange()297   bool IsMonotonicValueRange() {
298     return AsMonotonicValueRange() != nullptr;
299   }
300 
GetAllocator() const301   ScopedArenaAllocator* GetAllocator() const { return allocator_; }
GetLower() const302   ValueBound GetLower() const { return lower_; }
GetUpper() const303   ValueBound GetUpper() const { return upper_; }
304 
IsConstantValueRange() const305   bool IsConstantValueRange() const { return lower_.IsConstant() && upper_.IsConstant(); }
306 
307   // If it's certain that this value range fits in other_range.
FitsIn(ValueRange * other_range) const308   virtual bool FitsIn(ValueRange* other_range) const {
309     if (other_range == nullptr) {
310       return true;
311     }
312     DCHECK(!other_range->IsMonotonicValueRange());
313     return lower_.GreaterThanOrEqualTo(other_range->lower_) &&
314            upper_.LessThanOrEqualTo(other_range->upper_);
315   }
316 
317   // Returns the intersection of this and range.
318   // If it's not possible to do intersection because some
319   // bounds are not comparable, it's ok to pick either bound.
Narrow(ValueRange * range)320   virtual ValueRange* Narrow(ValueRange* range) {
321     if (range == nullptr) {
322       return this;
323     }
324 
325     if (range->IsMonotonicValueRange()) {
326       return this;
327     }
328 
329     return new (allocator_) ValueRange(
330         allocator_,
331         ValueBound::NarrowLowerBound(lower_, range->lower_),
332         ValueBound::NarrowUpperBound(upper_, range->upper_));
333   }
334 
335   // Shift a range by a constant.
Add(int32_t constant) const336   ValueRange* Add(int32_t constant) const {
337     bool overflow, underflow;
338     ValueBound lower = lower_.Add(constant, &overflow, &underflow);
339     if (underflow) {
340       // Lower bound underflow will wrap around to positive values
341       // and invalidate the upper bound.
342       return nullptr;
343     }
344     ValueBound upper = upper_.Add(constant, &overflow, &underflow);
345     if (overflow) {
346       // Upper bound overflow will wrap around to negative values
347       // and invalidate the lower bound.
348       return nullptr;
349     }
350     return new (allocator_) ValueRange(allocator_, lower, upper);
351   }
352 
353  private:
354   ScopedArenaAllocator* const allocator_;
355   const ValueBound lower_;  // inclusive
356   const ValueBound upper_;  // inclusive
357 
358   DISALLOW_COPY_AND_ASSIGN(ValueRange);
359 };
360 
361 /**
362  * A monotonically incrementing/decrementing value range, e.g.
363  * the variable i in "for (int i=0; i<array.length; i++)".
364  * Special care needs to be taken to account for overflow/underflow
365  * of such value ranges.
366  */
367 class MonotonicValueRange : public ValueRange {
368  public:
MonotonicValueRange(ScopedArenaAllocator * allocator,HPhi * induction_variable,HInstruction * initial,int32_t increment,ValueBound bound)369   MonotonicValueRange(ScopedArenaAllocator* allocator,
370                       HPhi* induction_variable,
371                       HInstruction* initial,
372                       int32_t increment,
373                       ValueBound bound)
374       // To be conservative, give it full range [Min(), Max()] in case it's
375       // used as a regular value range, due to possible overflow/underflow.
376       : ValueRange(allocator, ValueBound::Min(), ValueBound::Max()),
377         induction_variable_(induction_variable),
378         initial_(initial),
379         increment_(increment),
380         bound_(bound) {}
381 
~MonotonicValueRange()382   virtual ~MonotonicValueRange() {}
383 
GetIncrement() const384   int32_t GetIncrement() const { return increment_; }
GetBound() const385   ValueBound GetBound() const { return bound_; }
GetLoopHeader() const386   HBasicBlock* GetLoopHeader() const {
387     DCHECK(induction_variable_->GetBlock()->IsLoopHeader());
388     return induction_variable_->GetBlock();
389   }
390 
AsMonotonicValueRange()391   MonotonicValueRange* AsMonotonicValueRange() OVERRIDE { return this; }
392 
393   // If it's certain that this value range fits in other_range.
FitsIn(ValueRange * other_range) const394   bool FitsIn(ValueRange* other_range) const OVERRIDE {
395     if (other_range == nullptr) {
396       return true;
397     }
398     DCHECK(!other_range->IsMonotonicValueRange());
399     return false;
400   }
401 
402   // Try to narrow this MonotonicValueRange given another range.
403   // Ideally it will return a normal ValueRange. But due to
404   // possible overflow/underflow, that may not be possible.
Narrow(ValueRange * range)405   ValueRange* Narrow(ValueRange* range) OVERRIDE {
406     if (range == nullptr) {
407       return this;
408     }
409     DCHECK(!range->IsMonotonicValueRange());
410 
411     if (increment_ > 0) {
412       // Monotonically increasing.
413       ValueBound lower = ValueBound::NarrowLowerBound(bound_, range->GetLower());
414       if (!lower.IsConstant() || lower.GetConstant() == std::numeric_limits<int32_t>::min()) {
415         // Lower bound isn't useful. Leave it to deoptimization.
416         return this;
417       }
418 
419       // We currently conservatively assume max array length is Max().
420       // If we can make assumptions about the max array length, e.g. due to the max heap size,
421       // divided by the element size (such as 4 bytes for each integer array), we can
422       // lower this number and rule out some possible overflows.
423       int32_t max_array_len = std::numeric_limits<int32_t>::max();
424 
425       // max possible integer value of range's upper value.
426       int32_t upper = std::numeric_limits<int32_t>::max();
427       // Try to lower upper.
428       ValueBound upper_bound = range->GetUpper();
429       if (upper_bound.IsConstant()) {
430         upper = upper_bound.GetConstant();
431       } else if (upper_bound.IsRelatedToArrayLength() && upper_bound.GetConstant() <= 0) {
432         // Normal case. e.g. <= array.length - 1.
433         upper = max_array_len + upper_bound.GetConstant();
434       }
435 
436       // If we can prove for the last number in sequence of initial_,
437       // initial_ + increment_, initial_ + 2 x increment_, ...
438       // that's <= upper, (last_num_in_sequence + increment_) doesn't trigger overflow,
439       // then this MonoticValueRange is narrowed to a normal value range.
440 
441       // Be conservative first, assume last number in the sequence hits upper.
442       int32_t last_num_in_sequence = upper;
443       if (initial_->IsIntConstant()) {
444         int32_t initial_constant = initial_->AsIntConstant()->GetValue();
445         if (upper <= initial_constant) {
446           last_num_in_sequence = upper;
447         } else {
448           // Cast to int64_t for the substraction part to avoid int32_t overflow.
449           last_num_in_sequence = initial_constant +
450               ((int64_t)upper - (int64_t)initial_constant) / increment_ * increment_;
451         }
452       }
453       if (last_num_in_sequence <= (std::numeric_limits<int32_t>::max() - increment_)) {
454         // No overflow. The sequence will be stopped by the upper bound test as expected.
455         return new (GetAllocator()) ValueRange(GetAllocator(), lower, range->GetUpper());
456       }
457 
458       // There might be overflow. Give up narrowing.
459       return this;
460     } else {
461       DCHECK_NE(increment_, 0);
462       // Monotonically decreasing.
463       ValueBound upper = ValueBound::NarrowUpperBound(bound_, range->GetUpper());
464       if ((!upper.IsConstant() || upper.GetConstant() == std::numeric_limits<int32_t>::max()) &&
465           !upper.IsRelatedToArrayLength()) {
466         // Upper bound isn't useful. Leave it to deoptimization.
467         return this;
468       }
469 
470       // Need to take care of underflow. Try to prove underflow won't happen
471       // for common cases.
472       if (range->GetLower().IsConstant()) {
473         int32_t constant = range->GetLower().GetConstant();
474         if (constant >= (std::numeric_limits<int32_t>::min() - increment_)) {
475           return new (GetAllocator()) ValueRange(GetAllocator(), range->GetLower(), upper);
476         }
477       }
478 
479       // For non-constant lower bound, just assume might be underflow. Give up narrowing.
480       return this;
481     }
482   }
483 
484  private:
485   HPhi* const induction_variable_;  // Induction variable for this monotonic value range.
486   HInstruction* const initial_;     // Initial value.
487   const int32_t increment_;         // Increment for each loop iteration.
488   const ValueBound bound_;          // Additional value bound info for initial_.
489 
490   DISALLOW_COPY_AND_ASSIGN(MonotonicValueRange);
491 };
492 
493 class BCEVisitor : public HGraphVisitor {
494  public:
495   // The least number of bounds checks that should be eliminated by triggering
496   // the deoptimization technique.
497   static constexpr size_t kThresholdForAddingDeoptimize = 2;
498 
499   // Very large lengths are considered an anomaly. This is a threshold beyond which we don't
500   // bother to apply the deoptimization technique since it's likely, or sometimes certain,
501   // an AIOOBE will be thrown.
502   static constexpr uint32_t kMaxLengthForAddingDeoptimize =
503       std::numeric_limits<int32_t>::max() - 1024 * 1024;
504 
505   // Added blocks for loop body entry test.
IsAddedBlock(HBasicBlock * block) const506   bool IsAddedBlock(HBasicBlock* block) const {
507     return block->GetBlockId() >= initial_block_size_;
508   }
509 
BCEVisitor(HGraph * graph,const SideEffectsAnalysis & side_effects,HInductionVarAnalysis * induction_analysis)510   BCEVisitor(HGraph* graph,
511              const SideEffectsAnalysis& side_effects,
512              HInductionVarAnalysis* induction_analysis)
513       : HGraphVisitor(graph),
514         allocator_(graph->GetArenaStack()),
515         maps_(graph->GetBlocks().size(),
516               ScopedArenaSafeMap<int, ValueRange*>(
517                   std::less<int>(),
518                   allocator_.Adapter(kArenaAllocBoundsCheckElimination)),
519               allocator_.Adapter(kArenaAllocBoundsCheckElimination)),
520         first_index_bounds_check_map_(std::less<int>(),
521                                       allocator_.Adapter(kArenaAllocBoundsCheckElimination)),
522         early_exit_loop_(std::less<uint32_t>(),
523                          allocator_.Adapter(kArenaAllocBoundsCheckElimination)),
524         taken_test_loop_(std::less<uint32_t>(),
525                          allocator_.Adapter(kArenaAllocBoundsCheckElimination)),
526         finite_loop_(allocator_.Adapter(kArenaAllocBoundsCheckElimination)),
527         has_dom_based_dynamic_bce_(false),
528         initial_block_size_(graph->GetBlocks().size()),
529         side_effects_(side_effects),
530         induction_range_(induction_analysis),
531         next_(nullptr) {}
532 
VisitBasicBlock(HBasicBlock * block)533   void VisitBasicBlock(HBasicBlock* block) OVERRIDE {
534     DCHECK(!IsAddedBlock(block));
535     first_index_bounds_check_map_.clear();
536     // Visit phis and instructions using a safe iterator. The iteration protects
537     // against deleting the current instruction during iteration. However, it
538     // must advance next_ if that instruction is deleted during iteration.
539     for (HInstruction* instruction = block->GetFirstPhi(); instruction != nullptr;) {
540       DCHECK(instruction->IsInBlock());
541       next_ = instruction->GetNext();
542       instruction->Accept(this);
543       instruction = next_;
544     }
545     for (HInstruction* instruction = block->GetFirstInstruction(); instruction != nullptr;) {
546       DCHECK(instruction->IsInBlock());
547       next_ = instruction->GetNext();
548       instruction->Accept(this);
549       instruction = next_;
550     }
551     // We should never deoptimize from an osr method, otherwise we might wrongly optimize
552     // code dominated by the deoptimization.
553     if (!GetGraph()->IsCompilingOsr()) {
554       AddComparesWithDeoptimization(block);
555     }
556   }
557 
Finish()558   void Finish() {
559     // Preserve SSA structure which may have been broken by adding one or more
560     // new taken-test structures (see TransformLoopForDeoptimizationIfNeeded()).
561     InsertPhiNodes();
562 
563     // Clear the loop data structures.
564     early_exit_loop_.clear();
565     taken_test_loop_.clear();
566     finite_loop_.clear();
567   }
568 
569  private:
570   // Return the map of proven value ranges at the beginning of a basic block.
GetValueRangeMap(HBasicBlock * basic_block)571   ScopedArenaSafeMap<int, ValueRange*>* GetValueRangeMap(HBasicBlock* basic_block) {
572     if (IsAddedBlock(basic_block)) {
573       // Added blocks don't keep value ranges.
574       return nullptr;
575     }
576     return &maps_[basic_block->GetBlockId()];
577   }
578 
579   // Traverse up the dominator tree to look for value range info.
LookupValueRange(HInstruction * instruction,HBasicBlock * basic_block)580   ValueRange* LookupValueRange(HInstruction* instruction, HBasicBlock* basic_block) {
581     while (basic_block != nullptr) {
582       ScopedArenaSafeMap<int, ValueRange*>* map = GetValueRangeMap(basic_block);
583       if (map != nullptr) {
584         if (map->find(instruction->GetId()) != map->end()) {
585           return map->Get(instruction->GetId());
586         }
587       } else {
588         DCHECK(IsAddedBlock(basic_block));
589       }
590       basic_block = basic_block->GetDominator();
591     }
592     // Didn't find any.
593     return nullptr;
594   }
595 
596   // Helper method to assign a new range to an instruction in given basic block.
AssignRange(HBasicBlock * basic_block,HInstruction * instruction,ValueRange * range)597   void AssignRange(HBasicBlock* basic_block, HInstruction* instruction, ValueRange* range) {
598     DCHECK(!range->IsMonotonicValueRange() || instruction->IsLoopHeaderPhi());
599     GetValueRangeMap(basic_block)->Overwrite(instruction->GetId(), range);
600   }
601 
602   // Narrow the value range of `instruction` at the end of `basic_block` with `range`,
603   // and push the narrowed value range to `successor`.
ApplyRangeFromComparison(HInstruction * instruction,HBasicBlock * basic_block,HBasicBlock * successor,ValueRange * range)604   void ApplyRangeFromComparison(HInstruction* instruction, HBasicBlock* basic_block,
605                                 HBasicBlock* successor, ValueRange* range) {
606     ValueRange* existing_range = LookupValueRange(instruction, basic_block);
607     if (existing_range == nullptr) {
608       if (range != nullptr) {
609         AssignRange(successor, instruction, range);
610       }
611       return;
612     }
613     if (existing_range->IsMonotonicValueRange()) {
614       DCHECK(instruction->IsLoopHeaderPhi());
615       // Make sure the comparison is in the loop header so each increment is
616       // checked with a comparison.
617       if (instruction->GetBlock() != basic_block) {
618         return;
619       }
620     }
621     AssignRange(successor, instruction, existing_range->Narrow(range));
622   }
623 
624   // Special case that we may simultaneously narrow two MonotonicValueRange's to
625   // regular value ranges.
HandleIfBetweenTwoMonotonicValueRanges(HIf * instruction,HInstruction * left,HInstruction * right,IfCondition cond,MonotonicValueRange * left_range,MonotonicValueRange * right_range)626   void HandleIfBetweenTwoMonotonicValueRanges(HIf* instruction,
627                                               HInstruction* left,
628                                               HInstruction* right,
629                                               IfCondition cond,
630                                               MonotonicValueRange* left_range,
631                                               MonotonicValueRange* right_range) {
632     DCHECK(left->IsLoopHeaderPhi());
633     DCHECK(right->IsLoopHeaderPhi());
634     if (instruction->GetBlock() != left->GetBlock()) {
635       // Comparison needs to be in loop header to make sure it's done after each
636       // increment/decrement.
637       return;
638     }
639 
640     // Handle common cases which also don't have overflow/underflow concerns.
641     if (left_range->GetIncrement() == 1 &&
642         left_range->GetBound().IsConstant() &&
643         right_range->GetIncrement() == -1 &&
644         right_range->GetBound().IsRelatedToArrayLength() &&
645         right_range->GetBound().GetConstant() < 0) {
646       HBasicBlock* successor = nullptr;
647       int32_t left_compensation = 0;
648       int32_t right_compensation = 0;
649       if (cond == kCondLT) {
650         left_compensation = -1;
651         right_compensation = 1;
652         successor = instruction->IfTrueSuccessor();
653       } else if (cond == kCondLE) {
654         successor = instruction->IfTrueSuccessor();
655       } else if (cond == kCondGT) {
656         successor = instruction->IfFalseSuccessor();
657       } else if (cond == kCondGE) {
658         left_compensation = -1;
659         right_compensation = 1;
660         successor = instruction->IfFalseSuccessor();
661       } else {
662         // We don't handle '=='/'!=' test in case left and right can cross and
663         // miss each other.
664         return;
665       }
666 
667       if (successor != nullptr) {
668         bool overflow;
669         bool underflow;
670         ValueRange* new_left_range = new (&allocator_) ValueRange(
671             &allocator_,
672             left_range->GetBound(),
673             right_range->GetBound().Add(left_compensation, &overflow, &underflow));
674         if (!overflow && !underflow) {
675           ApplyRangeFromComparison(left, instruction->GetBlock(), successor,
676                                    new_left_range);
677         }
678 
679         ValueRange* new_right_range = new (&allocator_) ValueRange(
680             &allocator_,
681             left_range->GetBound().Add(right_compensation, &overflow, &underflow),
682             right_range->GetBound());
683         if (!overflow && !underflow) {
684           ApplyRangeFromComparison(right, instruction->GetBlock(), successor,
685                                    new_right_range);
686         }
687       }
688     }
689   }
690 
691   // Handle "if (left cmp_cond right)".
HandleIf(HIf * instruction,HInstruction * left,HInstruction * right,IfCondition cond)692   void HandleIf(HIf* instruction, HInstruction* left, HInstruction* right, IfCondition cond) {
693     HBasicBlock* block = instruction->GetBlock();
694 
695     HBasicBlock* true_successor = instruction->IfTrueSuccessor();
696     // There should be no critical edge at this point.
697     DCHECK_EQ(true_successor->GetPredecessors().size(), 1u);
698 
699     HBasicBlock* false_successor = instruction->IfFalseSuccessor();
700     // There should be no critical edge at this point.
701     DCHECK_EQ(false_successor->GetPredecessors().size(), 1u);
702 
703     ValueRange* left_range = LookupValueRange(left, block);
704     MonotonicValueRange* left_monotonic_range = nullptr;
705     if (left_range != nullptr) {
706       left_monotonic_range = left_range->AsMonotonicValueRange();
707       if (left_monotonic_range != nullptr) {
708         HBasicBlock* loop_head = left_monotonic_range->GetLoopHeader();
709         if (instruction->GetBlock() != loop_head) {
710           // For monotonic value range, don't handle `instruction`
711           // if it's not defined in the loop header.
712           return;
713         }
714       }
715     }
716 
717     bool found;
718     ValueBound bound = ValueBound::DetectValueBoundFromValue(right, &found);
719     // Each comparison can establish a lower bound and an upper bound
720     // for the left hand side.
721     ValueBound lower = bound;
722     ValueBound upper = bound;
723     if (!found) {
724       // No constant or array.length+c format bound found.
725       // For i<j, we can still use j's upper bound as i's upper bound. Same for lower.
726       ValueRange* right_range = LookupValueRange(right, block);
727       if (right_range != nullptr) {
728         if (right_range->IsMonotonicValueRange()) {
729           if (left_range != nullptr && left_range->IsMonotonicValueRange()) {
730             HandleIfBetweenTwoMonotonicValueRanges(instruction, left, right, cond,
731                                                    left_range->AsMonotonicValueRange(),
732                                                    right_range->AsMonotonicValueRange());
733             return;
734           }
735         }
736         lower = right_range->GetLower();
737         upper = right_range->GetUpper();
738       } else {
739         lower = ValueBound::Min();
740         upper = ValueBound::Max();
741       }
742     }
743 
744     bool overflow, underflow;
745     if (cond == kCondLT || cond == kCondLE) {
746       if (!upper.Equals(ValueBound::Max())) {
747         int32_t compensation = (cond == kCondLT) ? -1 : 0;  // upper bound is inclusive
748         ValueBound new_upper = upper.Add(compensation, &overflow, &underflow);
749         if (overflow || underflow) {
750           return;
751         }
752         ValueRange* new_range = new (&allocator_) ValueRange(
753             &allocator_, ValueBound::Min(), new_upper);
754         ApplyRangeFromComparison(left, block, true_successor, new_range);
755       }
756 
757       // array.length as a lower bound isn't considered useful.
758       if (!lower.Equals(ValueBound::Min()) && !lower.IsRelatedToArrayLength()) {
759         int32_t compensation = (cond == kCondLE) ? 1 : 0;  // lower bound is inclusive
760         ValueBound new_lower = lower.Add(compensation, &overflow, &underflow);
761         if (overflow || underflow) {
762           return;
763         }
764         ValueRange* new_range = new (&allocator_) ValueRange(
765             &allocator_, new_lower, ValueBound::Max());
766         ApplyRangeFromComparison(left, block, false_successor, new_range);
767       }
768     } else if (cond == kCondGT || cond == kCondGE) {
769       // array.length as a lower bound isn't considered useful.
770       if (!lower.Equals(ValueBound::Min()) && !lower.IsRelatedToArrayLength()) {
771         int32_t compensation = (cond == kCondGT) ? 1 : 0;  // lower bound is inclusive
772         ValueBound new_lower = lower.Add(compensation, &overflow, &underflow);
773         if (overflow || underflow) {
774           return;
775         }
776         ValueRange* new_range = new (&allocator_) ValueRange(
777             &allocator_, new_lower, ValueBound::Max());
778         ApplyRangeFromComparison(left, block, true_successor, new_range);
779       }
780 
781       if (!upper.Equals(ValueBound::Max())) {
782         int32_t compensation = (cond == kCondGE) ? -1 : 0;  // upper bound is inclusive
783         ValueBound new_upper = upper.Add(compensation, &overflow, &underflow);
784         if (overflow || underflow) {
785           return;
786         }
787         ValueRange* new_range = new (&allocator_) ValueRange(
788             &allocator_, ValueBound::Min(), new_upper);
789         ApplyRangeFromComparison(left, block, false_successor, new_range);
790       }
791     } else if (cond == kCondNE || cond == kCondEQ) {
792       if (left->IsArrayLength()) {
793         if (lower.IsConstant() && upper.IsConstant()) {
794           // Special case:
795           //   length == [c,d] yields [c, d] along true
796           //   length != [c,d] yields [c, d] along false
797           if (!lower.Equals(ValueBound::Min()) || !upper.Equals(ValueBound::Max())) {
798             ValueRange* new_range = new (&allocator_) ValueRange(&allocator_, lower, upper);
799             ApplyRangeFromComparison(
800                 left, block, cond == kCondEQ ? true_successor : false_successor, new_range);
801           }
802           // In addition:
803           //   length == 0 yields [1, max] along false
804           //   length != 0 yields [1, max] along true
805           if (lower.GetConstant() == 0 && upper.GetConstant() == 0) {
806             ValueRange* new_range = new (&allocator_) ValueRange(
807                 &allocator_, ValueBound(nullptr, 1), ValueBound::Max());
808             ApplyRangeFromComparison(
809                 left, block, cond == kCondEQ ? false_successor : true_successor, new_range);
810           }
811         }
812       } else if (lower.IsRelatedToArrayLength() && lower.Equals(upper)) {
813         // Special aliasing case, with x not array length itself:
814         //   x == [length,length] yields x == length along true
815         //   x != [length,length] yields x == length along false
816         ValueRange* new_range = new (&allocator_) ValueRange(&allocator_, lower, upper);
817         ApplyRangeFromComparison(
818             left, block, cond == kCondEQ ? true_successor : false_successor, new_range);
819       }
820     }
821   }
822 
VisitBoundsCheck(HBoundsCheck * bounds_check)823   void VisitBoundsCheck(HBoundsCheck* bounds_check) OVERRIDE {
824     HBasicBlock* block = bounds_check->GetBlock();
825     HInstruction* index = bounds_check->InputAt(0);
826     HInstruction* array_length = bounds_check->InputAt(1);
827     DCHECK(array_length->IsIntConstant() ||
828            array_length->IsArrayLength() ||
829            array_length->IsPhi());
830     bool try_dynamic_bce = true;
831     // Analyze index range.
832     if (!index->IsIntConstant()) {
833       // Non-constant index.
834       ValueBound lower = ValueBound(nullptr, 0);        // constant 0
835       ValueBound upper = ValueBound(array_length, -1);  // array_length - 1
836       ValueRange array_range(&allocator_, lower, upper);
837       // Try index range obtained by dominator-based analysis.
838       ValueRange* index_range = LookupValueRange(index, block);
839       if (index_range != nullptr) {
840         if (index_range->FitsIn(&array_range)) {
841           ReplaceInstruction(bounds_check, index);
842           return;
843         } else if (index_range->IsConstantValueRange()) {
844           // If the non-constant index turns out to have a constant range,
845           // make one more attempt to get a constant in the array range.
846           ValueRange* existing_range = LookupValueRange(array_length, block);
847           if (existing_range != nullptr &&
848               existing_range->IsConstantValueRange()) {
849             ValueRange constant_array_range(&allocator_, lower, existing_range->GetLower());
850             if (index_range->FitsIn(&constant_array_range)) {
851               ReplaceInstruction(bounds_check, index);
852               return;
853             }
854           }
855         }
856       }
857       // Try index range obtained by induction variable analysis.
858       // Disables dynamic bce if OOB is certain.
859       if (InductionRangeFitsIn(&array_range, bounds_check, &try_dynamic_bce)) {
860         ReplaceInstruction(bounds_check, index);
861         return;
862       }
863     } else {
864       // Constant index.
865       int32_t constant = index->AsIntConstant()->GetValue();
866       if (constant < 0) {
867         // Will always throw exception.
868         return;
869       } else if (array_length->IsIntConstant()) {
870         if (constant < array_length->AsIntConstant()->GetValue()) {
871           ReplaceInstruction(bounds_check, index);
872         }
873         return;
874       }
875       // Analyze array length range.
876       DCHECK(array_length->IsArrayLength());
877       ValueRange* existing_range = LookupValueRange(array_length, block);
878       if (existing_range != nullptr) {
879         ValueBound lower = existing_range->GetLower();
880         DCHECK(lower.IsConstant());
881         if (constant < lower.GetConstant()) {
882           ReplaceInstruction(bounds_check, index);
883           return;
884         } else {
885           // Existing range isn't strong enough to eliminate the bounds check.
886           // Fall through to update the array_length range with info from this
887           // bounds check.
888         }
889       }
890       // Once we have an array access like 'array[5] = 1', we record array.length >= 6.
891       // We currently don't do it for non-constant index since a valid array[i] can't prove
892       // a valid array[i-1] yet due to the lower bound side.
893       if (constant == std::numeric_limits<int32_t>::max()) {
894         // Max() as an index will definitely throw AIOOBE.
895         return;
896       } else {
897         ValueBound lower = ValueBound(nullptr, constant + 1);
898         ValueBound upper = ValueBound::Max();
899         ValueRange* range = new (&allocator_) ValueRange(&allocator_, lower, upper);
900         AssignRange(block, array_length, range);
901       }
902     }
903 
904     // If static analysis fails, and OOB is not certain, try dynamic elimination.
905     if (try_dynamic_bce) {
906       // Try loop-based dynamic elimination.
907       HLoopInformation* loop = bounds_check->GetBlock()->GetLoopInformation();
908       bool needs_finite_test = false;
909       bool needs_taken_test = false;
910       if (DynamicBCESeemsProfitable(loop, bounds_check->GetBlock()) &&
911           induction_range_.CanGenerateRange(
912               bounds_check, index, &needs_finite_test, &needs_taken_test) &&
913           CanHandleInfiniteLoop(loop, index, needs_finite_test) &&
914           // Do this test last, since it may generate code.
915           CanHandleLength(loop, array_length, needs_taken_test)) {
916         TransformLoopForDeoptimizationIfNeeded(loop, needs_taken_test);
917         TransformLoopForDynamicBCE(loop, bounds_check);
918         return;
919       }
920       // Otherwise, prepare dominator-based dynamic elimination.
921       if (first_index_bounds_check_map_.find(array_length->GetId()) ==
922           first_index_bounds_check_map_.end()) {
923         // Remember the first bounds check against each array_length. That bounds check
924         // instruction has an associated HEnvironment where we may add an HDeoptimize
925         // to eliminate subsequent bounds checks against the same array_length.
926         first_index_bounds_check_map_.Put(array_length->GetId(), bounds_check);
927       }
928     }
929   }
930 
HasSameInputAtBackEdges(HPhi * phi)931   static bool HasSameInputAtBackEdges(HPhi* phi) {
932     DCHECK(phi->IsLoopHeaderPhi());
933     HConstInputsRef inputs = phi->GetInputs();
934     // Start with input 1. Input 0 is from the incoming block.
935     const HInstruction* input1 = inputs[1];
936     DCHECK(phi->GetBlock()->GetLoopInformation()->IsBackEdge(
937         *phi->GetBlock()->GetPredecessors()[1]));
938     for (size_t i = 2; i < inputs.size(); ++i) {
939       DCHECK(phi->GetBlock()->GetLoopInformation()->IsBackEdge(
940           *phi->GetBlock()->GetPredecessors()[i]));
941       if (input1 != inputs[i]) {
942         return false;
943       }
944     }
945     return true;
946   }
947 
VisitPhi(HPhi * phi)948   void VisitPhi(HPhi* phi) OVERRIDE {
949     if (phi->IsLoopHeaderPhi()
950         && (phi->GetType() == DataType::Type::kInt32)
951         && HasSameInputAtBackEdges(phi)) {
952       HInstruction* instruction = phi->InputAt(1);
953       HInstruction *left;
954       int32_t increment;
955       if (ValueBound::IsAddOrSubAConstant(instruction, &left, &increment)) {
956         if (left == phi) {
957           HInstruction* initial_value = phi->InputAt(0);
958           ValueRange* range = nullptr;
959           if (increment == 0) {
960             // Add constant 0. It's really a fixed value.
961             range = new (&allocator_) ValueRange(
962                 &allocator_,
963                 ValueBound(initial_value, 0),
964                 ValueBound(initial_value, 0));
965           } else {
966             // Monotonically increasing/decreasing.
967             bool found;
968             ValueBound bound = ValueBound::DetectValueBoundFromValue(
969                 initial_value, &found);
970             if (!found) {
971               // No constant or array.length+c bound found.
972               // For i=j, we can still use j's upper bound as i's upper bound.
973               // Same for lower.
974               ValueRange* initial_range = LookupValueRange(initial_value, phi->GetBlock());
975               if (initial_range != nullptr) {
976                 bound = increment > 0 ? initial_range->GetLower() :
977                                         initial_range->GetUpper();
978               } else {
979                 bound = increment > 0 ? ValueBound::Min() : ValueBound::Max();
980               }
981             }
982             range = new (&allocator_) MonotonicValueRange(
983                 &allocator_,
984                 phi,
985                 initial_value,
986                 increment,
987                 bound);
988           }
989           AssignRange(phi->GetBlock(), phi, range);
990         }
991       }
992     }
993   }
994 
VisitIf(HIf * instruction)995   void VisitIf(HIf* instruction) OVERRIDE {
996     if (instruction->InputAt(0)->IsCondition()) {
997       HCondition* cond = instruction->InputAt(0)->AsCondition();
998       HandleIf(instruction, cond->GetLeft(), cond->GetRight(), cond->GetCondition());
999     }
1000   }
1001 
VisitAdd(HAdd * add)1002   void VisitAdd(HAdd* add) OVERRIDE {
1003     HInstruction* right = add->GetRight();
1004     if (right->IsIntConstant()) {
1005       ValueRange* left_range = LookupValueRange(add->GetLeft(), add->GetBlock());
1006       if (left_range == nullptr) {
1007         return;
1008       }
1009       ValueRange* range = left_range->Add(right->AsIntConstant()->GetValue());
1010       if (range != nullptr) {
1011         AssignRange(add->GetBlock(), add, range);
1012       }
1013     }
1014   }
1015 
VisitSub(HSub * sub)1016   void VisitSub(HSub* sub) OVERRIDE {
1017     HInstruction* left = sub->GetLeft();
1018     HInstruction* right = sub->GetRight();
1019     if (right->IsIntConstant()) {
1020       ValueRange* left_range = LookupValueRange(left, sub->GetBlock());
1021       if (left_range == nullptr) {
1022         return;
1023       }
1024       ValueRange* range = left_range->Add(-right->AsIntConstant()->GetValue());
1025       if (range != nullptr) {
1026         AssignRange(sub->GetBlock(), sub, range);
1027         return;
1028       }
1029     }
1030 
1031     // Here we are interested in the typical triangular case of nested loops,
1032     // such as the inner loop 'for (int j=0; j<array.length-i; j++)' where i
1033     // is the index for outer loop. In this case, we know j is bounded by array.length-1.
1034 
1035     // Try to handle (array.length - i) or (array.length + c - i) format.
1036     HInstruction* left_of_left;  // left input of left.
1037     int32_t right_const = 0;
1038     if (ValueBound::IsAddOrSubAConstant(left, &left_of_left, &right_const)) {
1039       left = left_of_left;
1040     }
1041     // The value of left input of the sub equals (left + right_const).
1042 
1043     if (left->IsArrayLength()) {
1044       HInstruction* array_length = left->AsArrayLength();
1045       ValueRange* right_range = LookupValueRange(right, sub->GetBlock());
1046       if (right_range != nullptr) {
1047         ValueBound lower = right_range->GetLower();
1048         ValueBound upper = right_range->GetUpper();
1049         if (lower.IsConstant() && upper.IsRelatedToArrayLength()) {
1050           HInstruction* upper_inst = upper.GetInstruction();
1051           // Make sure it's the same array.
1052           if (ValueBound::Equal(array_length, upper_inst)) {
1053             int32_t c0 = right_const;
1054             int32_t c1 = lower.GetConstant();
1055             int32_t c2 = upper.GetConstant();
1056             // (array.length + c0 - v) where v is in [c1, array.length + c2]
1057             // gets [c0 - c2, array.length + c0 - c1] as its value range.
1058             if (!ValueBound::WouldAddOverflowOrUnderflow(c0, -c2) &&
1059                 !ValueBound::WouldAddOverflowOrUnderflow(c0, -c1)) {
1060               if ((c0 - c1) <= 0) {
1061                 // array.length + (c0 - c1) won't overflow/underflow.
1062                 ValueRange* range = new (&allocator_) ValueRange(
1063                     &allocator_,
1064                     ValueBound(nullptr, right_const - upper.GetConstant()),
1065                     ValueBound(array_length, right_const - lower.GetConstant()));
1066                 AssignRange(sub->GetBlock(), sub, range);
1067               }
1068             }
1069           }
1070         }
1071       }
1072     }
1073   }
1074 
FindAndHandlePartialArrayLength(HBinaryOperation * instruction)1075   void FindAndHandlePartialArrayLength(HBinaryOperation* instruction) {
1076     DCHECK(instruction->IsDiv() || instruction->IsShr() || instruction->IsUShr());
1077     HInstruction* right = instruction->GetRight();
1078     int32_t right_const;
1079     if (right->IsIntConstant()) {
1080       right_const = right->AsIntConstant()->GetValue();
1081       // Detect division by two or more.
1082       if ((instruction->IsDiv() && right_const <= 1) ||
1083           (instruction->IsShr() && right_const < 1) ||
1084           (instruction->IsUShr() && right_const < 1)) {
1085         return;
1086       }
1087     } else {
1088       return;
1089     }
1090 
1091     // Try to handle array.length/2 or (array.length-1)/2 format.
1092     HInstruction* left = instruction->GetLeft();
1093     HInstruction* left_of_left;  // left input of left.
1094     int32_t c = 0;
1095     if (ValueBound::IsAddOrSubAConstant(left, &left_of_left, &c)) {
1096       left = left_of_left;
1097     }
1098     // The value of left input of instruction equals (left + c).
1099 
1100     // (array_length + 1) or smaller divided by two or more
1101     // always generate a value in [Min(), array_length].
1102     // This is true even if array_length is Max().
1103     if (left->IsArrayLength() && c <= 1) {
1104       if (instruction->IsUShr() && c < 0) {
1105         // Make sure for unsigned shift, left side is not negative.
1106         // e.g. if array_length is 2, ((array_length - 3) >>> 2) is way bigger
1107         // than array_length.
1108         return;
1109       }
1110       ValueRange* range = new (&allocator_) ValueRange(
1111           &allocator_,
1112           ValueBound(nullptr, std::numeric_limits<int32_t>::min()),
1113           ValueBound(left, 0));
1114       AssignRange(instruction->GetBlock(), instruction, range);
1115     }
1116   }
1117 
VisitDiv(HDiv * div)1118   void VisitDiv(HDiv* div) OVERRIDE {
1119     FindAndHandlePartialArrayLength(div);
1120   }
1121 
VisitShr(HShr * shr)1122   void VisitShr(HShr* shr) OVERRIDE {
1123     FindAndHandlePartialArrayLength(shr);
1124   }
1125 
VisitUShr(HUShr * ushr)1126   void VisitUShr(HUShr* ushr) OVERRIDE {
1127     FindAndHandlePartialArrayLength(ushr);
1128   }
1129 
VisitAnd(HAnd * instruction)1130   void VisitAnd(HAnd* instruction) OVERRIDE {
1131     if (instruction->GetRight()->IsIntConstant()) {
1132       int32_t constant = instruction->GetRight()->AsIntConstant()->GetValue();
1133       if (constant > 0) {
1134         // constant serves as a mask so any number masked with it
1135         // gets a [0, constant] value range.
1136         ValueRange* range = new (&allocator_) ValueRange(
1137             &allocator_,
1138             ValueBound(nullptr, 0),
1139             ValueBound(nullptr, constant));
1140         AssignRange(instruction->GetBlock(), instruction, range);
1141       }
1142     }
1143   }
1144 
VisitRem(HRem * instruction)1145   void VisitRem(HRem* instruction) OVERRIDE {
1146     HInstruction* left = instruction->GetLeft();
1147     HInstruction* right = instruction->GetRight();
1148 
1149     // Handle 'i % CONST' format expression in array index, e.g:
1150     //   array[i % 20];
1151     if (right->IsIntConstant()) {
1152       int32_t right_const = std::abs(right->AsIntConstant()->GetValue());
1153       if (right_const == 0) {
1154         return;
1155       }
1156       // The sign of divisor CONST doesn't affect the sign final value range.
1157       // For example:
1158       // if (i > 0) {
1159       //   array[i % 10];  // index value range [0, 9]
1160       //   array[i % -10]; // index value range [0, 9]
1161       // }
1162       ValueRange* right_range = new (&allocator_) ValueRange(
1163           &allocator_,
1164           ValueBound(nullptr, 1 - right_const),
1165           ValueBound(nullptr, right_const - 1));
1166 
1167       ValueRange* left_range = LookupValueRange(left, instruction->GetBlock());
1168       if (left_range != nullptr) {
1169         right_range = right_range->Narrow(left_range);
1170       }
1171       AssignRange(instruction->GetBlock(), instruction, right_range);
1172       return;
1173     }
1174 
1175     // Handle following pattern:
1176     // i0 NullCheck
1177     // i1 ArrayLength[i0]
1178     // i2 DivByZeroCheck [i1]  <-- right
1179     // i3 Rem [i5, i2]         <-- we are here.
1180     // i4 BoundsCheck [i3,i1]
1181     if (right->IsDivZeroCheck()) {
1182       // if array_length can pass div-by-zero check,
1183       // array_length must be > 0.
1184       right = right->AsDivZeroCheck()->InputAt(0);
1185     }
1186 
1187     // Handle 'i % array.length' format expression in array index, e.g:
1188     //   array[(i+7) % array.length];
1189     if (right->IsArrayLength()) {
1190       ValueBound lower = ValueBound::Min();  // ideally, lower should be '1-array_length'.
1191       ValueBound upper = ValueBound(right, -1);  // array_length - 1
1192       ValueRange* right_range = new (&allocator_) ValueRange(
1193           &allocator_,
1194           lower,
1195           upper);
1196       ValueRange* left_range = LookupValueRange(left, instruction->GetBlock());
1197       if (left_range != nullptr) {
1198         right_range = right_range->Narrow(left_range);
1199       }
1200       AssignRange(instruction->GetBlock(), instruction, right_range);
1201       return;
1202     }
1203   }
1204 
VisitNewArray(HNewArray * new_array)1205   void VisitNewArray(HNewArray* new_array) OVERRIDE {
1206     HInstruction* len = new_array->GetLength();
1207     if (!len->IsIntConstant()) {
1208       HInstruction *left;
1209       int32_t right_const;
1210       if (ValueBound::IsAddOrSubAConstant(len, &left, &right_const)) {
1211         // (left + right_const) is used as size to new the array.
1212         // We record "-right_const <= left <= new_array - right_const";
1213         ValueBound lower = ValueBound(nullptr, -right_const);
1214         // We use new_array for the bound instead of new_array.length,
1215         // which isn't available as an instruction yet. new_array will
1216         // be treated the same as new_array.length when it's used in a ValueBound.
1217         ValueBound upper = ValueBound(new_array, -right_const);
1218         ValueRange* range = new (&allocator_) ValueRange(&allocator_, lower, upper);
1219         ValueRange* existing_range = LookupValueRange(left, new_array->GetBlock());
1220         if (existing_range != nullptr) {
1221           range = existing_range->Narrow(range);
1222         }
1223         AssignRange(new_array->GetBlock(), left, range);
1224       }
1225     }
1226   }
1227 
1228   /**
1229     * After null/bounds checks are eliminated, some invariant array references
1230     * may be exposed underneath which can be hoisted out of the loop to the
1231     * preheader or, in combination with dynamic bce, the deoptimization block.
1232     *
1233     * for (int i = 0; i < n; i++) {
1234     *                                <-------+
1235     *   for (int j = 0; j < n; j++)          |
1236     *     a[i][j] = 0;               --a[i]--+
1237     * }
1238     *
1239     * Note: this optimization is no longer applied after dominator-based dynamic deoptimization
1240     * has occurred (see AddCompareWithDeoptimization()), since in those cases it would be
1241     * unsafe to hoist array references across their deoptimization instruction inside a loop.
1242     */
VisitArrayGet(HArrayGet * array_get)1243   void VisitArrayGet(HArrayGet* array_get) OVERRIDE {
1244     if (!has_dom_based_dynamic_bce_ && array_get->IsInLoop()) {
1245       HLoopInformation* loop = array_get->GetBlock()->GetLoopInformation();
1246       if (loop->IsDefinedOutOfTheLoop(array_get->InputAt(0)) &&
1247           loop->IsDefinedOutOfTheLoop(array_get->InputAt(1))) {
1248         SideEffects loop_effects = side_effects_.GetLoopEffects(loop->GetHeader());
1249         if (!array_get->GetSideEffects().MayDependOn(loop_effects)) {
1250           // We can hoist ArrayGet only if its execution is guaranteed on every iteration.
1251           // In other words only if array_get_bb dominates all back branches.
1252           if (loop->DominatesAllBackEdges(array_get->GetBlock())) {
1253             HoistToPreHeaderOrDeoptBlock(loop, array_get);
1254           }
1255         }
1256       }
1257     }
1258   }
1259 
1260   /** Performs dominator-based dynamic elimination on suitable set of bounds checks. */
AddCompareWithDeoptimization(HBasicBlock * block,HInstruction * array_length,HInstruction * base,int32_t min_c,int32_t max_c)1261   void AddCompareWithDeoptimization(HBasicBlock* block,
1262                                     HInstruction* array_length,
1263                                     HInstruction* base,
1264                                     int32_t min_c, int32_t max_c) {
1265     HBoundsCheck* bounds_check =
1266         first_index_bounds_check_map_.Get(array_length->GetId())->AsBoundsCheck();
1267     // Construct deoptimization on single or double bounds on range [base-min_c,base+max_c],
1268     // for example either for a[0]..a[3] just 3 or for a[base-1]..a[base+3] both base-1
1269     // and base+3, since we made the assumption any in between value may occur too.
1270     // In code, using unsigned comparisons:
1271     // (1) constants only
1272     //       if (max_c >= a.length) deoptimize;
1273     // (2) general case
1274     //       if (base-min_c >  base+max_c) deoptimize;
1275     //       if (base+max_c >= a.length  ) deoptimize;
1276     static_assert(kMaxLengthForAddingDeoptimize < std::numeric_limits<int32_t>::max(),
1277                   "Incorrect max length may be subject to arithmetic wrap-around");
1278     HInstruction* upper = GetGraph()->GetIntConstant(max_c);
1279     if (base == nullptr) {
1280       DCHECK_GE(min_c, 0);
1281     } else {
1282       HInstruction* lower = new (GetGraph()->GetAllocator())
1283           HAdd(DataType::Type::kInt32, base, GetGraph()->GetIntConstant(min_c));
1284       upper = new (GetGraph()->GetAllocator()) HAdd(DataType::Type::kInt32, base, upper);
1285       block->InsertInstructionBefore(lower, bounds_check);
1286       block->InsertInstructionBefore(upper, bounds_check);
1287       InsertDeoptInBlock(bounds_check, new (GetGraph()->GetAllocator()) HAbove(lower, upper));
1288     }
1289     InsertDeoptInBlock(
1290         bounds_check, new (GetGraph()->GetAllocator()) HAboveOrEqual(upper, array_length));
1291     // Flag that this kind of deoptimization has occurred.
1292     has_dom_based_dynamic_bce_ = true;
1293   }
1294 
1295   /** Attempts dominator-based dynamic elimination on remaining candidates. */
AddComparesWithDeoptimization(HBasicBlock * block)1296   void AddComparesWithDeoptimization(HBasicBlock* block) {
1297     for (const auto& entry : first_index_bounds_check_map_) {
1298       HBoundsCheck* bounds_check = entry.second;
1299       HInstruction* index = bounds_check->InputAt(0);
1300       HInstruction* array_length = bounds_check->InputAt(1);
1301       if (!array_length->IsArrayLength()) {
1302         continue;  // disregard phis and constants
1303       }
1304       // Collect all bounds checks that are still there and that are related as "a[base + constant]"
1305       // for a base instruction (possibly absent) and various constants. Note that no attempt
1306       // is made to partition the set into matching subsets (viz. a[0], a[1] and a[base+1] and
1307       // a[base+2] are considered as one set).
1308       // TODO: would such a partitioning be worthwhile?
1309       ValueBound value = ValueBound::AsValueBound(index);
1310       HInstruction* base = value.GetInstruction();
1311       int32_t min_c = base == nullptr ? 0 : value.GetConstant();
1312       int32_t max_c = value.GetConstant();
1313       ScopedArenaVector<HBoundsCheck*> candidates(
1314           allocator_.Adapter(kArenaAllocBoundsCheckElimination));
1315       ScopedArenaVector<HBoundsCheck*> standby(
1316           allocator_.Adapter(kArenaAllocBoundsCheckElimination));
1317       for (const HUseListNode<HInstruction*>& use : array_length->GetUses()) {
1318         // Another bounds check in same or dominated block?
1319         HInstruction* user = use.GetUser();
1320         HBasicBlock* other_block = user->GetBlock();
1321         if (user->IsBoundsCheck() && block->Dominates(other_block)) {
1322           HBoundsCheck* other_bounds_check = user->AsBoundsCheck();
1323           HInstruction* other_index = other_bounds_check->InputAt(0);
1324           HInstruction* other_array_length = other_bounds_check->InputAt(1);
1325           ValueBound other_value = ValueBound::AsValueBound(other_index);
1326           if (array_length == other_array_length && base == other_value.GetInstruction()) {
1327             // Reject certain OOB if BoundsCheck(l, l) occurs on considered subset.
1328             if (array_length == other_index) {
1329               candidates.clear();
1330               standby.clear();
1331               break;
1332             }
1333             // Since a subsequent dominated block could be under a conditional, only accept
1334             // the other bounds check if it is in same block or both blocks dominate the exit.
1335             // TODO: we could improve this by testing proper post-dominance, or even if this
1336             //       constant is seen along *all* conditional paths that follow.
1337             HBasicBlock* exit = GetGraph()->GetExitBlock();
1338             if (block == user->GetBlock() ||
1339                 (block->Dominates(exit) && other_block->Dominates(exit))) {
1340               int32_t other_c = other_value.GetConstant();
1341               min_c = std::min(min_c, other_c);
1342               max_c = std::max(max_c, other_c);
1343               candidates.push_back(other_bounds_check);
1344             } else {
1345               // Add this candidate later only if it falls into the range.
1346               standby.push_back(other_bounds_check);
1347             }
1348           }
1349         }
1350       }
1351       // Add standby candidates that fall in selected range.
1352       for (HBoundsCheck* other_bounds_check : standby) {
1353         HInstruction* other_index = other_bounds_check->InputAt(0);
1354         int32_t other_c = ValueBound::AsValueBound(other_index).GetConstant();
1355         if (min_c <= other_c && other_c <= max_c) {
1356           candidates.push_back(other_bounds_check);
1357         }
1358       }
1359       // Perform dominator-based deoptimization if it seems profitable, where we eliminate
1360       // bounds checks and replace these with deopt checks that guard against any possible
1361       // OOB. Note that we reject cases where the distance min_c:max_c range gets close to
1362       // the maximum possible array length, since those cases are likely to always deopt
1363       // (such situations do not necessarily go OOB, though, since the array could be really
1364       // large, or the programmer could rely on arithmetic wrap-around from max to min).
1365       size_t threshold = kThresholdForAddingDeoptimize + (base == nullptr ? 0 : 1);  // extra test?
1366       uint32_t distance = static_cast<uint32_t>(max_c) - static_cast<uint32_t>(min_c);
1367       if (candidates.size() >= threshold &&
1368           (base != nullptr || min_c >= 0) &&  // reject certain OOB
1369            distance <= kMaxLengthForAddingDeoptimize) {  // reject likely/certain deopt
1370         AddCompareWithDeoptimization(block, array_length, base, min_c, max_c);
1371         for (HBoundsCheck* other_bounds_check : candidates) {
1372           // Only replace if still in the graph. This avoids visiting the same
1373           // bounds check twice if it occurred multiple times in the use list.
1374           if (other_bounds_check->IsInBlock()) {
1375             ReplaceInstruction(other_bounds_check, other_bounds_check->InputAt(0));
1376           }
1377         }
1378       }
1379     }
1380   }
1381 
1382   /**
1383    * Returns true if static range analysis based on induction variables can determine the bounds
1384    * check on the given array range is always satisfied with the computed index range. The output
1385    * parameter try_dynamic_bce is set to false if OOB is certain.
1386    */
InductionRangeFitsIn(ValueRange * array_range,HBoundsCheck * context,bool * try_dynamic_bce)1387   bool InductionRangeFitsIn(ValueRange* array_range,
1388                             HBoundsCheck* context,
1389                             bool* try_dynamic_bce) {
1390     InductionVarRange::Value v1;
1391     InductionVarRange::Value v2;
1392     bool needs_finite_test = false;
1393     HInstruction* index = context->InputAt(0);
1394     HInstruction* hint = HuntForDeclaration(context->InputAt(1));
1395     if (induction_range_.GetInductionRange(context, index, hint, &v1, &v2, &needs_finite_test)) {
1396       if (v1.is_known && (v1.a_constant == 0 || v1.a_constant == 1) &&
1397           v2.is_known && (v2.a_constant == 0 || v2.a_constant == 1)) {
1398         DCHECK(v1.a_constant == 1 || v1.instruction == nullptr);
1399         DCHECK(v2.a_constant == 1 || v2.instruction == nullptr);
1400         ValueRange index_range(&allocator_,
1401                                ValueBound(v1.instruction, v1.b_constant),
1402                                ValueBound(v2.instruction, v2.b_constant));
1403         // If analysis reveals a certain OOB, disable dynamic BCE. Otherwise,
1404         // use analysis for static bce only if loop is finite.
1405         if (index_range.GetLower().LessThan(array_range->GetLower()) ||
1406             index_range.GetUpper().GreaterThan(array_range->GetUpper())) {
1407           *try_dynamic_bce = false;
1408         } else if (!needs_finite_test && index_range.FitsIn(array_range)) {
1409           return true;
1410         }
1411       }
1412     }
1413     return false;
1414   }
1415 
1416   /**
1417    * Performs loop-based dynamic elimination on a bounds check. In order to minimize the
1418    * number of eventually generated tests, related bounds checks with tests that can be
1419    * combined with tests for the given bounds check are collected first.
1420    */
TransformLoopForDynamicBCE(HLoopInformation * loop,HBoundsCheck * bounds_check)1421   void TransformLoopForDynamicBCE(HLoopInformation* loop, HBoundsCheck* bounds_check) {
1422     HInstruction* index = bounds_check->InputAt(0);
1423     HInstruction* array_length = bounds_check->InputAt(1);
1424     DCHECK(loop->IsDefinedOutOfTheLoop(array_length));  // pre-checked
1425     DCHECK(loop->DominatesAllBackEdges(bounds_check->GetBlock()));
1426     // Collect all bounds checks in the same loop that are related as "a[base + constant]"
1427     // for a base instruction (possibly absent) and various constants.
1428     ValueBound value = ValueBound::AsValueBound(index);
1429     HInstruction* base = value.GetInstruction();
1430     int32_t min_c = base == nullptr ? 0 : value.GetConstant();
1431     int32_t max_c = value.GetConstant();
1432     ScopedArenaVector<HBoundsCheck*> candidates(
1433         allocator_.Adapter(kArenaAllocBoundsCheckElimination));
1434     ScopedArenaVector<HBoundsCheck*> standby(
1435         allocator_.Adapter(kArenaAllocBoundsCheckElimination));
1436     for (const HUseListNode<HInstruction*>& use : array_length->GetUses()) {
1437       HInstruction* user = use.GetUser();
1438       if (user->IsBoundsCheck() && loop == user->GetBlock()->GetLoopInformation()) {
1439         HBoundsCheck* other_bounds_check = user->AsBoundsCheck();
1440         HInstruction* other_index = other_bounds_check->InputAt(0);
1441         HInstruction* other_array_length = other_bounds_check->InputAt(1);
1442         ValueBound other_value = ValueBound::AsValueBound(other_index);
1443         int32_t other_c = other_value.GetConstant();
1444         if (array_length == other_array_length && base == other_value.GetInstruction()) {
1445           // Ensure every candidate could be picked for code generation.
1446           bool b1 = false, b2 = false;
1447           if (!induction_range_.CanGenerateRange(other_bounds_check, other_index, &b1, &b2)) {
1448             continue;
1449           }
1450           // Does the current basic block dominate all back edges? If not,
1451           // add this candidate later only if it falls into the range.
1452           if (!loop->DominatesAllBackEdges(user->GetBlock())) {
1453             standby.push_back(other_bounds_check);
1454             continue;
1455           }
1456           min_c = std::min(min_c, other_c);
1457           max_c = std::max(max_c, other_c);
1458           candidates.push_back(other_bounds_check);
1459         }
1460       }
1461     }
1462     // Add standby candidates that fall in selected range.
1463     for (HBoundsCheck* other_bounds_check : standby) {
1464       HInstruction* other_index = other_bounds_check->InputAt(0);
1465       int32_t other_c = ValueBound::AsValueBound(other_index).GetConstant();
1466       if (min_c <= other_c && other_c <= max_c) {
1467         candidates.push_back(other_bounds_check);
1468       }
1469     }
1470     // Perform loop-based deoptimization if it seems profitable, where we eliminate bounds
1471     // checks and replace these with deopt checks that guard against any possible OOB.
1472     DCHECK_LT(0u, candidates.size());
1473     uint32_t distance = static_cast<uint32_t>(max_c) - static_cast<uint32_t>(min_c);
1474     if ((base != nullptr || min_c >= 0) &&  // reject certain OOB
1475         distance <= kMaxLengthForAddingDeoptimize) {  // reject likely/certain deopt
1476       HBasicBlock* block = GetPreHeader(loop, bounds_check);
1477       HInstruction* min_lower = nullptr;
1478       HInstruction* min_upper = nullptr;
1479       HInstruction* max_lower = nullptr;
1480       HInstruction* max_upper = nullptr;
1481       // Iterate over all bounds checks.
1482       for (HBoundsCheck* other_bounds_check : candidates) {
1483         // Only handle if still in the graph. This avoids visiting the same
1484         // bounds check twice if it occurred multiple times in the use list.
1485         if (other_bounds_check->IsInBlock()) {
1486           HInstruction* other_index = other_bounds_check->InputAt(0);
1487           int32_t other_c = ValueBound::AsValueBound(other_index).GetConstant();
1488           // Generate code for either the maximum or minimum. Range analysis already was queried
1489           // whether code generation on the original and, thus, related bounds check was possible.
1490           // It handles either loop invariants (lower is not set) or unit strides.
1491           if (other_c == max_c) {
1492             induction_range_.GenerateRange(
1493                 other_bounds_check, other_index, GetGraph(), block, &max_lower, &max_upper);
1494           } else if (other_c == min_c && base != nullptr) {
1495             induction_range_.GenerateRange(
1496                 other_bounds_check, other_index, GetGraph(), block, &min_lower, &min_upper);
1497           }
1498           ReplaceInstruction(other_bounds_check, other_index);
1499         }
1500       }
1501       // In code, using unsigned comparisons:
1502       // (1) constants only
1503       //       if (max_upper >= a.length ) deoptimize;
1504       // (2) two symbolic invariants
1505       //       if (min_upper >  max_upper) deoptimize;   unless min_c == max_c
1506       //       if (max_upper >= a.length ) deoptimize;
1507       // (3) general case, unit strides (where lower would exceed upper for arithmetic wrap-around)
1508       //       if (min_lower >  max_lower) deoptimize;   unless min_c == max_c
1509       //       if (max_lower >  max_upper) deoptimize;
1510       //       if (max_upper >= a.length ) deoptimize;
1511       if (base == nullptr) {
1512         // Constants only.
1513         DCHECK_GE(min_c, 0);
1514         DCHECK(min_lower == nullptr && min_upper == nullptr &&
1515                max_lower == nullptr && max_upper != nullptr);
1516       } else if (max_lower == nullptr) {
1517         // Two symbolic invariants.
1518         if (min_c != max_c) {
1519           DCHECK(min_lower == nullptr && min_upper != nullptr &&
1520                  max_lower == nullptr && max_upper != nullptr);
1521           InsertDeoptInLoop(
1522               loop, block, new (GetGraph()->GetAllocator()) HAbove(min_upper, max_upper));
1523         } else {
1524           DCHECK(min_lower == nullptr && min_upper == nullptr &&
1525                  max_lower == nullptr && max_upper != nullptr);
1526         }
1527       } else {
1528         // General case, unit strides.
1529         if (min_c != max_c) {
1530           DCHECK(min_lower != nullptr && min_upper != nullptr &&
1531                  max_lower != nullptr && max_upper != nullptr);
1532           InsertDeoptInLoop(
1533               loop, block, new (GetGraph()->GetAllocator()) HAbove(min_lower, max_lower));
1534         } else {
1535           DCHECK(min_lower == nullptr && min_upper == nullptr &&
1536                  max_lower != nullptr && max_upper != nullptr);
1537         }
1538         InsertDeoptInLoop(
1539             loop, block, new (GetGraph()->GetAllocator()) HAbove(max_lower, max_upper));
1540       }
1541       InsertDeoptInLoop(
1542           loop, block, new (GetGraph()->GetAllocator()) HAboveOrEqual(max_upper, array_length));
1543     } else {
1544       // TODO: if rejected, avoid doing this again for subsequent instructions in this set?
1545     }
1546   }
1547 
1548   /**
1549    * Returns true if heuristics indicate that dynamic bce may be profitable.
1550    */
DynamicBCESeemsProfitable(HLoopInformation * loop,HBasicBlock * block)1551   bool DynamicBCESeemsProfitable(HLoopInformation* loop, HBasicBlock* block) {
1552     if (loop != nullptr) {
1553       // The loop preheader of an irreducible loop does not dominate all the blocks in
1554       // the loop. We would need to find the common dominator of all blocks in the loop.
1555       if (loop->IsIrreducible()) {
1556         return false;
1557       }
1558       // We should never deoptimize from an osr method, otherwise we might wrongly optimize
1559       // code dominated by the deoptimization.
1560       if (GetGraph()->IsCompilingOsr()) {
1561         return false;
1562       }
1563       // A try boundary preheader is hard to handle.
1564       // TODO: remove this restriction.
1565       if (loop->GetPreHeader()->GetLastInstruction()->IsTryBoundary()) {
1566         return false;
1567       }
1568       // Does loop have early-exits? If so, the full range may not be covered by the loop
1569       // at runtime and testing the range may apply deoptimization unnecessarily.
1570       if (IsEarlyExitLoop(loop)) {
1571         return false;
1572       }
1573       // Does the current basic block dominate all back edges? If not,
1574       // don't apply dynamic bce to something that may not be executed.
1575       return loop->DominatesAllBackEdges(block);
1576     }
1577     return false;
1578   }
1579 
1580   /**
1581    * Returns true if the loop has early exits, which implies it may not cover
1582    * the full range computed by range analysis based on induction variables.
1583    */
IsEarlyExitLoop(HLoopInformation * loop)1584   bool IsEarlyExitLoop(HLoopInformation* loop) {
1585     const uint32_t loop_id = loop->GetHeader()->GetBlockId();
1586     // If loop has been analyzed earlier for early-exit, don't repeat the analysis.
1587     auto it = early_exit_loop_.find(loop_id);
1588     if (it != early_exit_loop_.end()) {
1589       return it->second;
1590     }
1591     // First time early-exit analysis for this loop. Since analysis requires scanning
1592     // the full loop-body, results of the analysis is stored for subsequent queries.
1593     HBlocksInLoopReversePostOrderIterator it_loop(*loop);
1594     for (it_loop.Advance(); !it_loop.Done(); it_loop.Advance()) {
1595       for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) {
1596         if (!loop->Contains(*successor)) {
1597           early_exit_loop_.Put(loop_id, true);
1598           return true;
1599         }
1600       }
1601     }
1602     early_exit_loop_.Put(loop_id, false);
1603     return false;
1604   }
1605 
1606   /**
1607    * Returns true if the array length is already loop invariant, or can be made so
1608    * by handling the null check under the hood of the array length operation.
1609    */
CanHandleLength(HLoopInformation * loop,HInstruction * length,bool needs_taken_test)1610   bool CanHandleLength(HLoopInformation* loop, HInstruction* length, bool needs_taken_test) {
1611     if (loop->IsDefinedOutOfTheLoop(length)) {
1612       return true;
1613     } else if (length->IsArrayLength() && length->GetBlock()->GetLoopInformation() == loop) {
1614       if (CanHandleNullCheck(loop, length->InputAt(0), needs_taken_test)) {
1615         HoistToPreHeaderOrDeoptBlock(loop, length);
1616         return true;
1617       }
1618     }
1619     return false;
1620   }
1621 
1622   /**
1623    * Returns true if the null check is already loop invariant, or can be made so
1624    * by generating a deoptimization test.
1625    */
CanHandleNullCheck(HLoopInformation * loop,HInstruction * check,bool needs_taken_test)1626   bool CanHandleNullCheck(HLoopInformation* loop, HInstruction* check, bool needs_taken_test) {
1627     if (loop->IsDefinedOutOfTheLoop(check)) {
1628       return true;
1629     } else if (check->IsNullCheck() && check->GetBlock()->GetLoopInformation() == loop) {
1630       HInstruction* array = check->InputAt(0);
1631       if (loop->IsDefinedOutOfTheLoop(array)) {
1632         // Generate: if (array == null) deoptimize;
1633         TransformLoopForDeoptimizationIfNeeded(loop, needs_taken_test);
1634         HBasicBlock* block = GetPreHeader(loop, check);
1635         HInstruction* cond =
1636             new (GetGraph()->GetAllocator()) HEqual(array, GetGraph()->GetNullConstant());
1637         InsertDeoptInLoop(loop, block, cond, /* is_null_check */ true);
1638         ReplaceInstruction(check, array);
1639         return true;
1640       }
1641     }
1642     return false;
1643   }
1644 
1645   /**
1646    * Returns true if compiler can apply dynamic bce to loops that may be infinite
1647    * (e.g. for (int i = 0; i <= U; i++) with U = MAX_INT), which would invalidate
1648    * the range analysis evaluation code by "overshooting" the computed range.
1649    * Since deoptimization would be a bad choice, and there is no other version
1650    * of the loop to use, dynamic bce in such cases is only allowed if other tests
1651    * ensure the loop is finite.
1652    */
CanHandleInfiniteLoop(HLoopInformation * loop,HInstruction * index,bool needs_infinite_test)1653   bool CanHandleInfiniteLoop(HLoopInformation* loop, HInstruction* index, bool needs_infinite_test) {
1654     if (needs_infinite_test) {
1655       // If we already forced the loop to be finite, allow directly.
1656       const uint32_t loop_id = loop->GetHeader()->GetBlockId();
1657       if (finite_loop_.find(loop_id) != finite_loop_.end()) {
1658         return true;
1659       }
1660       // Otherwise, allow dynamic bce if the index (which is necessarily an induction at
1661       // this point) is the direct loop index (viz. a[i]), since then the runtime tests
1662       // ensure upper bound cannot cause an infinite loop.
1663       HInstruction* control = loop->GetHeader()->GetLastInstruction();
1664       if (control->IsIf()) {
1665         HInstruction* if_expr = control->AsIf()->InputAt(0);
1666         if (if_expr->IsCondition()) {
1667           HCondition* condition = if_expr->AsCondition();
1668           if (index == condition->InputAt(0) ||
1669               index == condition->InputAt(1)) {
1670             finite_loop_.insert(loop_id);
1671             return true;
1672           }
1673         }
1674       }
1675       return false;
1676     }
1677     return true;
1678   }
1679 
1680   /**
1681    * Returns appropriate preheader for the loop, depending on whether the
1682    * instruction appears in the loop header or proper loop-body.
1683    */
GetPreHeader(HLoopInformation * loop,HInstruction * instruction)1684   HBasicBlock* GetPreHeader(HLoopInformation* loop, HInstruction* instruction) {
1685     // Use preheader unless there is an earlier generated deoptimization block since
1686     // hoisted expressions may depend on and/or used by the deoptimization tests.
1687     HBasicBlock* header = loop->GetHeader();
1688     const uint32_t loop_id = header->GetBlockId();
1689     auto it = taken_test_loop_.find(loop_id);
1690     if (it != taken_test_loop_.end()) {
1691       HBasicBlock* block = it->second;
1692       // If always taken, keep it that way by returning the original preheader,
1693       // which can be found by following the predecessor of the true-block twice.
1694       if (instruction->GetBlock() == header) {
1695         return block->GetSinglePredecessor()->GetSinglePredecessor();
1696       }
1697       return block;
1698     }
1699     return loop->GetPreHeader();
1700   }
1701 
1702   /** Inserts a deoptimization test in a loop preheader. */
InsertDeoptInLoop(HLoopInformation * loop,HBasicBlock * block,HInstruction * condition,bool is_null_check=false)1703   void InsertDeoptInLoop(HLoopInformation* loop,
1704                          HBasicBlock* block,
1705                          HInstruction* condition,
1706                          bool is_null_check = false) {
1707     HInstruction* suspend = loop->GetSuspendCheck();
1708     block->InsertInstructionBefore(condition, block->GetLastInstruction());
1709     DeoptimizationKind kind =
1710         is_null_check ? DeoptimizationKind::kLoopNullBCE : DeoptimizationKind::kLoopBoundsBCE;
1711     HDeoptimize* deoptimize = new (GetGraph()->GetAllocator()) HDeoptimize(
1712         GetGraph()->GetAllocator(), condition, kind, suspend->GetDexPc());
1713     block->InsertInstructionBefore(deoptimize, block->GetLastInstruction());
1714     if (suspend->HasEnvironment()) {
1715       deoptimize->CopyEnvironmentFromWithLoopPhiAdjustment(
1716           suspend->GetEnvironment(), loop->GetHeader());
1717     }
1718   }
1719 
1720   /** Inserts a deoptimization test right before a bounds check. */
InsertDeoptInBlock(HBoundsCheck * bounds_check,HInstruction * condition)1721   void InsertDeoptInBlock(HBoundsCheck* bounds_check, HInstruction* condition) {
1722     HBasicBlock* block = bounds_check->GetBlock();
1723     block->InsertInstructionBefore(condition, bounds_check);
1724     HDeoptimize* deoptimize = new (GetGraph()->GetAllocator()) HDeoptimize(
1725         GetGraph()->GetAllocator(),
1726         condition,
1727         DeoptimizationKind::kBlockBCE,
1728         bounds_check->GetDexPc());
1729     block->InsertInstructionBefore(deoptimize, bounds_check);
1730     deoptimize->CopyEnvironmentFrom(bounds_check->GetEnvironment());
1731   }
1732 
1733   /** Hoists instruction out of the loop to preheader or deoptimization block. */
HoistToPreHeaderOrDeoptBlock(HLoopInformation * loop,HInstruction * instruction)1734   void HoistToPreHeaderOrDeoptBlock(HLoopInformation* loop, HInstruction* instruction) {
1735     HBasicBlock* block = GetPreHeader(loop, instruction);
1736     DCHECK(!instruction->HasEnvironment());
1737     instruction->MoveBefore(block->GetLastInstruction());
1738   }
1739 
1740   /**
1741    * Adds a new taken-test structure to a loop if needed and not already done.
1742    * The taken-test protects range analysis evaluation code to avoid any
1743    * deoptimization caused by incorrect trip-count evaluation in non-taken loops.
1744    *
1745    *          old_preheader
1746    *               |
1747    *            if_block          <- taken-test protects deoptimization block
1748    *            /      \
1749    *     true_block  false_block  <- deoptimizations/invariants are placed in true_block
1750    *            \       /
1751    *          new_preheader       <- may require phi nodes to preserve SSA structure
1752    *                |
1753    *             header
1754    *
1755    * For example, this loop:
1756    *
1757    *   for (int i = lower; i < upper; i++) {
1758    *     array[i] = 0;
1759    *   }
1760    *
1761    * will be transformed to:
1762    *
1763    *   if (lower < upper) {
1764    *     if (array == null) deoptimize;
1765    *     array_length = array.length;
1766    *     if (lower > upper)         deoptimize;  // unsigned
1767    *     if (upper >= array_length) deoptimize;  // unsigned
1768    *   } else {
1769    *     array_length = 0;
1770    *   }
1771    *   for (int i = lower; i < upper; i++) {
1772    *     // Loop without null check and bounds check, and any array.length replaced with array_length.
1773    *     array[i] = 0;
1774    *   }
1775    */
TransformLoopForDeoptimizationIfNeeded(HLoopInformation * loop,bool needs_taken_test)1776   void TransformLoopForDeoptimizationIfNeeded(HLoopInformation* loop, bool needs_taken_test) {
1777     // Not needed (can use preheader) or already done (can reuse)?
1778     const uint32_t loop_id = loop->GetHeader()->GetBlockId();
1779     if (!needs_taken_test || taken_test_loop_.find(loop_id) != taken_test_loop_.end()) {
1780       return;
1781     }
1782 
1783     // Generate top test structure.
1784     HBasicBlock* header = loop->GetHeader();
1785     GetGraph()->TransformLoopHeaderForBCE(header);
1786     HBasicBlock* new_preheader = loop->GetPreHeader();
1787     HBasicBlock* if_block = new_preheader->GetDominator();
1788     HBasicBlock* true_block = if_block->GetSuccessors()[0];  // True successor.
1789     HBasicBlock* false_block = if_block->GetSuccessors()[1];  // False successor.
1790 
1791     // Goto instructions.
1792     true_block->AddInstruction(new (GetGraph()->GetAllocator()) HGoto());
1793     false_block->AddInstruction(new (GetGraph()->GetAllocator()) HGoto());
1794     new_preheader->AddInstruction(new (GetGraph()->GetAllocator()) HGoto());
1795 
1796     // Insert the taken-test to see if the loop body is entered. If the
1797     // loop isn't entered at all, it jumps around the deoptimization block.
1798     if_block->AddInstruction(new (GetGraph()->GetAllocator()) HGoto());  // placeholder
1799     HInstruction* condition = induction_range_.GenerateTakenTest(
1800         header->GetLastInstruction(), GetGraph(), if_block);
1801     DCHECK(condition != nullptr);
1802     if_block->RemoveInstruction(if_block->GetLastInstruction());
1803     if_block->AddInstruction(new (GetGraph()->GetAllocator()) HIf(condition));
1804 
1805     taken_test_loop_.Put(loop_id, true_block);
1806   }
1807 
1808   /**
1809    * Inserts phi nodes that preserve SSA structure in generated top test structures.
1810    * All uses of instructions in the deoptimization block that reach the loop need
1811    * a phi node in the new loop preheader to fix the dominance relation.
1812    *
1813    * Example:
1814    *           if_block
1815    *            /      \
1816    *         x_0 = ..  false_block
1817    *            \       /
1818    *           x_1 = phi(x_0, null)   <- synthetic phi
1819    *               |
1820    *          new_preheader
1821    */
InsertPhiNodes()1822   void InsertPhiNodes() {
1823     // Scan all new deoptimization blocks.
1824     for (const auto& entry : taken_test_loop_) {
1825       HBasicBlock* true_block = entry.second;
1826       HBasicBlock* new_preheader = true_block->GetSingleSuccessor();
1827       // Scan all instructions in a new deoptimization block.
1828       for (HInstructionIterator it(true_block->GetInstructions()); !it.Done(); it.Advance()) {
1829         HInstruction* instruction = it.Current();
1830         DataType::Type type = instruction->GetType();
1831         HPhi* phi = nullptr;
1832         // Scan all uses of an instruction and replace each later use with a phi node.
1833         const HUseList<HInstruction*>& uses = instruction->GetUses();
1834         for (auto it2 = uses.begin(), end2 = uses.end(); it2 != end2; /* ++it2 below */) {
1835           HInstruction* user = it2->GetUser();
1836           size_t index = it2->GetIndex();
1837           // Increment `it2` now because `*it2` may disappear thanks to user->ReplaceInput().
1838           ++it2;
1839           if (user->GetBlock() != true_block) {
1840             if (phi == nullptr) {
1841               phi = NewPhi(new_preheader, instruction, type);
1842             }
1843             user->ReplaceInput(phi, index);  // Removes the use node from the list.
1844             induction_range_.Replace(user, instruction, phi);  // update induction
1845           }
1846         }
1847         // Scan all environment uses of an instruction and replace each later use with a phi node.
1848         const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses();
1849         for (auto it2 = env_uses.begin(), end2 = env_uses.end(); it2 != end2; /* ++it2 below */) {
1850           HEnvironment* user = it2->GetUser();
1851           size_t index = it2->GetIndex();
1852           // Increment `it2` now because `*it2` may disappear thanks to user->RemoveAsUserOfInput().
1853           ++it2;
1854           if (user->GetHolder()->GetBlock() != true_block) {
1855             if (phi == nullptr) {
1856               phi = NewPhi(new_preheader, instruction, type);
1857             }
1858             user->RemoveAsUserOfInput(index);
1859             user->SetRawEnvAt(index, phi);
1860             phi->AddEnvUseAt(user, index);
1861           }
1862         }
1863       }
1864     }
1865   }
1866 
1867   /**
1868    * Construct a phi(instruction, 0) in the new preheader to fix the dominance relation.
1869    * These are synthetic phi nodes without a virtual register.
1870    */
NewPhi(HBasicBlock * new_preheader,HInstruction * instruction,DataType::Type type)1871   HPhi* NewPhi(HBasicBlock* new_preheader,
1872                HInstruction* instruction,
1873                DataType::Type type) {
1874     HGraph* graph = GetGraph();
1875     HInstruction* zero;
1876     switch (type) {
1877       case DataType::Type::kReference: zero = graph->GetNullConstant(); break;
1878       case DataType::Type::kFloat32: zero = graph->GetFloatConstant(0); break;
1879       case DataType::Type::kFloat64: zero = graph->GetDoubleConstant(0); break;
1880       default: zero = graph->GetConstant(type, 0); break;
1881     }
1882     HPhi* phi = new (graph->GetAllocator())
1883         HPhi(graph->GetAllocator(), kNoRegNumber, /*number_of_inputs*/ 2, HPhi::ToPhiType(type));
1884     phi->SetRawInputAt(0, instruction);
1885     phi->SetRawInputAt(1, zero);
1886     if (type == DataType::Type::kReference) {
1887       phi->SetReferenceTypeInfo(instruction->GetReferenceTypeInfo());
1888     }
1889     new_preheader->AddPhi(phi);
1890     return phi;
1891   }
1892 
1893   /** Helper method to replace an instruction with another instruction. */
ReplaceInstruction(HInstruction * instruction,HInstruction * replacement)1894   void ReplaceInstruction(HInstruction* instruction, HInstruction* replacement) {
1895     // Safe iteration.
1896     if (instruction == next_) {
1897       next_ = next_->GetNext();
1898     }
1899     // Replace and remove.
1900     instruction->ReplaceWith(replacement);
1901     instruction->GetBlock()->RemoveInstruction(instruction);
1902   }
1903 
1904   // Use local allocator for allocating memory.
1905   ScopedArenaAllocator allocator_;
1906 
1907   // A set of maps, one per basic block, from instruction to range.
1908   ScopedArenaVector<ScopedArenaSafeMap<int, ValueRange*>> maps_;
1909 
1910   // Map an HArrayLength instruction's id to the first HBoundsCheck instruction
1911   // in a block that checks an index against that HArrayLength.
1912   ScopedArenaSafeMap<int, HBoundsCheck*> first_index_bounds_check_map_;
1913 
1914   // Early-exit loop bookkeeping.
1915   ScopedArenaSafeMap<uint32_t, bool> early_exit_loop_;
1916 
1917   // Taken-test loop bookkeeping.
1918   ScopedArenaSafeMap<uint32_t, HBasicBlock*> taken_test_loop_;
1919 
1920   // Finite loop bookkeeping.
1921   ScopedArenaSet<uint32_t> finite_loop_;
1922 
1923   // Flag that denotes whether dominator-based dynamic elimination has occurred.
1924   bool has_dom_based_dynamic_bce_;
1925 
1926   // Initial number of blocks.
1927   uint32_t initial_block_size_;
1928 
1929   // Side effects.
1930   const SideEffectsAnalysis& side_effects_;
1931 
1932   // Range analysis based on induction variables.
1933   InductionVarRange induction_range_;
1934 
1935   // Safe iteration.
1936   HInstruction* next_;
1937 
1938   DISALLOW_COPY_AND_ASSIGN(BCEVisitor);
1939 };
1940 
Run()1941 void BoundsCheckElimination::Run() {
1942   if (!graph_->HasBoundsChecks()) {
1943     return;
1944   }
1945 
1946   // Reverse post order guarantees a node's dominators are visited first.
1947   // We want to visit in the dominator-based order since if a value is known to
1948   // be bounded by a range at one instruction, it must be true that all uses of
1949   // that value dominated by that instruction fits in that range. Range of that
1950   // value can be narrowed further down in the dominator tree.
1951   BCEVisitor visitor(graph_, side_effects_, induction_analysis_);
1952   for (size_t i = 0, size = graph_->GetReversePostOrder().size(); i != size; ++i) {
1953     HBasicBlock* current = graph_->GetReversePostOrder()[i];
1954     if (visitor.IsAddedBlock(current)) {
1955       // Skip added blocks. Their effects are already taken care of.
1956       continue;
1957     }
1958     visitor.VisitBasicBlock(current);
1959     // Skip forward to the current block in case new basic blocks were inserted
1960     // (which always appear earlier in reverse post order) to avoid visiting the
1961     // same basic block twice.
1962     size_t new_size = graph_->GetReversePostOrder().size();
1963     DCHECK_GE(new_size, size);
1964     i += new_size - size;
1965     DCHECK_EQ(current, graph_->GetReversePostOrder()[i]);
1966     size = new_size;
1967   }
1968 
1969   // Perform cleanup.
1970   visitor.Finish();
1971 }
1972 
1973 }  // namespace art
1974