1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "convert.h"
18
19 #include <android-base/logging.h>
20
21 namespace android {
22 namespace hardware {
23 namespace sensors {
24 namespace V1_0 {
25 namespace implementation {
26
convertFromSensor(const sensor_t & src,SensorInfo * dst)27 void convertFromSensor(const sensor_t &src, SensorInfo *dst) {
28 dst->name = src.name;
29 dst->vendor = src.vendor;
30 dst->version = src.version;
31 dst->sensorHandle = src.handle;
32 dst->type = (SensorType)src.type;
33 dst->maxRange = src.maxRange;
34 dst->resolution = src.resolution;
35 dst->power = src.power;
36 dst->minDelay = src.minDelay;
37 dst->fifoReservedEventCount = src.fifoReservedEventCount;
38 dst->fifoMaxEventCount = src.fifoMaxEventCount;
39 dst->typeAsString = src.stringType;
40 dst->requiredPermission = src.requiredPermission;
41 dst->maxDelay = src.maxDelay;
42 dst->flags = src.flags;
43 }
44
convertToSensor(const::android::hardware::sensors::V1_0::SensorInfo & src,sensor_t * dst)45 void convertToSensor(
46 const ::android::hardware::sensors::V1_0::SensorInfo &src,
47 sensor_t *dst) {
48 dst->name = strdup(src.name.c_str());
49 dst->vendor = strdup(src.vendor.c_str());
50 dst->version = src.version;
51 dst->handle = src.sensorHandle;
52 dst->type = (int)src.type;
53 dst->maxRange = src.maxRange;
54 dst->resolution = src.resolution;
55 dst->power = src.power;
56 dst->minDelay = src.minDelay;
57 dst->fifoReservedEventCount = src.fifoReservedEventCount;
58 dst->fifoMaxEventCount = src.fifoMaxEventCount;
59 dst->stringType = strdup(src.typeAsString.c_str());
60 dst->requiredPermission = strdup(src.requiredPermission.c_str());
61 dst->maxDelay = src.maxDelay;
62 dst->flags = src.flags;
63 dst->reserved[0] = dst->reserved[1] = 0;
64 }
65
convertFromSensorEvent(const sensors_event_t & src,Event * dst)66 void convertFromSensorEvent(const sensors_event_t &src, Event *dst) {
67 typedef ::android::hardware::sensors::V1_0::SensorType SensorType;
68 typedef ::android::hardware::sensors::V1_0::MetaDataEventType MetaDataEventType;
69
70 *dst = {
71 .sensorHandle = src.sensor,
72 .sensorType = (SensorType)src.type,
73 .timestamp = src.timestamp
74 };
75
76 switch (dst->sensorType) {
77 case SensorType::META_DATA:
78 {
79 dst->u.meta.what = (MetaDataEventType)src.meta_data.what;
80 // Legacy HALs contain the handle reference in the meta data field.
81 // Copy that over to the handle of the event. In legacy HALs this
82 // field was expected to be 0.
83 dst->sensorHandle = src.meta_data.sensor;
84 break;
85 }
86
87 case SensorType::ACCELEROMETER:
88 case SensorType::MAGNETIC_FIELD:
89 case SensorType::ORIENTATION:
90 case SensorType::GYROSCOPE:
91 case SensorType::GRAVITY:
92 case SensorType::LINEAR_ACCELERATION:
93 {
94 dst->u.vec3.x = src.acceleration.x;
95 dst->u.vec3.y = src.acceleration.y;
96 dst->u.vec3.z = src.acceleration.z;
97 dst->u.vec3.status = (SensorStatus)src.acceleration.status;
98 break;
99 }
100
101 case SensorType::ROTATION_VECTOR:
102 case SensorType::GAME_ROTATION_VECTOR:
103 case SensorType::GEOMAGNETIC_ROTATION_VECTOR:
104 {
105 dst->u.vec4.x = src.data[0];
106 dst->u.vec4.y = src.data[1];
107 dst->u.vec4.z = src.data[2];
108 dst->u.vec4.w = src.data[3];
109 break;
110 }
111
112 case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
113 case SensorType::GYROSCOPE_UNCALIBRATED:
114 case SensorType::ACCELEROMETER_UNCALIBRATED:
115 {
116 dst->u.uncal.x = src.uncalibrated_gyro.x_uncalib;
117 dst->u.uncal.y = src.uncalibrated_gyro.y_uncalib;
118 dst->u.uncal.z = src.uncalibrated_gyro.z_uncalib;
119 dst->u.uncal.x_bias = src.uncalibrated_gyro.x_bias;
120 dst->u.uncal.y_bias = src.uncalibrated_gyro.y_bias;
121 dst->u.uncal.z_bias = src.uncalibrated_gyro.z_bias;
122 break;
123 }
124
125 case SensorType::DEVICE_ORIENTATION:
126 case SensorType::LIGHT:
127 case SensorType::PRESSURE:
128 case SensorType::TEMPERATURE:
129 case SensorType::PROXIMITY:
130 case SensorType::RELATIVE_HUMIDITY:
131 case SensorType::AMBIENT_TEMPERATURE:
132 case SensorType::SIGNIFICANT_MOTION:
133 case SensorType::STEP_DETECTOR:
134 case SensorType::TILT_DETECTOR:
135 case SensorType::WAKE_GESTURE:
136 case SensorType::GLANCE_GESTURE:
137 case SensorType::PICK_UP_GESTURE:
138 case SensorType::WRIST_TILT_GESTURE:
139 case SensorType::STATIONARY_DETECT:
140 case SensorType::MOTION_DETECT:
141 case SensorType::HEART_BEAT:
142 case SensorType::LOW_LATENCY_OFFBODY_DETECT:
143 {
144 dst->u.scalar = src.data[0];
145 break;
146 }
147
148 case SensorType::STEP_COUNTER:
149 {
150 dst->u.stepCount = src.u64.step_counter;
151 break;
152 }
153
154 case SensorType::HEART_RATE:
155 {
156 dst->u.heartRate.bpm = src.heart_rate.bpm;
157 dst->u.heartRate.status = (SensorStatus)src.heart_rate.status;
158 break;
159 }
160
161 case SensorType::POSE_6DOF: // 15 floats
162 {
163 for (size_t i = 0; i < 15; ++i) {
164 dst->u.pose6DOF[i] = src.data[i];
165 }
166 break;
167 }
168
169 case SensorType::DYNAMIC_SENSOR_META:
170 {
171 dst->u.dynamic.connected = src.dynamic_sensor_meta.connected;
172 dst->u.dynamic.sensorHandle = src.dynamic_sensor_meta.handle;
173
174 memcpy(dst->u.dynamic.uuid.data(),
175 src.dynamic_sensor_meta.uuid,
176 16);
177
178 break;
179 }
180
181 case SensorType::ADDITIONAL_INFO:
182 {
183 ::android::hardware::sensors::V1_0::AdditionalInfo *dstInfo =
184 &dst->u.additional;
185
186 const additional_info_event_t &srcInfo = src.additional_info;
187
188 dstInfo->type =
189 (::android::hardware::sensors::V1_0::AdditionalInfoType)
190 srcInfo.type;
191
192 dstInfo->serial = srcInfo.serial;
193
194 CHECK_EQ(sizeof(dstInfo->u), sizeof(srcInfo.data_int32));
195 memcpy(&dstInfo->u, srcInfo.data_int32, sizeof(srcInfo.data_int32));
196 break;
197 }
198
199 default:
200 {
201 CHECK_GE((int32_t)dst->sensorType,
202 (int32_t)SensorType::DEVICE_PRIVATE_BASE);
203
204 memcpy(dst->u.data.data(), src.data, 16 * sizeof(float));
205 break;
206 }
207 }
208 }
209
convertToSensorEvent(const Event & src,sensors_event_t * dst)210 void convertToSensorEvent(const Event &src, sensors_event_t *dst) {
211 *dst = {
212 .version = sizeof(sensors_event_t),
213 .sensor = src.sensorHandle,
214 .type = (int32_t)src.sensorType,
215 .reserved0 = 0,
216 .timestamp = src.timestamp
217 };
218
219 switch (src.sensorType) {
220 case SensorType::META_DATA:
221 {
222 // Legacy HALs expect the handle reference in the meta data field.
223 // Copy it over from the handle of the event.
224 dst->meta_data.what = (int32_t)src.u.meta.what;
225 dst->meta_data.sensor = src.sensorHandle;
226 // Set the sensor handle to 0 to maintain compatibility.
227 dst->sensor = 0;
228 break;
229 }
230
231 case SensorType::ACCELEROMETER:
232 case SensorType::MAGNETIC_FIELD:
233 case SensorType::ORIENTATION:
234 case SensorType::GYROSCOPE:
235 case SensorType::GRAVITY:
236 case SensorType::LINEAR_ACCELERATION:
237 {
238 dst->acceleration.x = src.u.vec3.x;
239 dst->acceleration.y = src.u.vec3.y;
240 dst->acceleration.z = src.u.vec3.z;
241 dst->acceleration.status = (int8_t)src.u.vec3.status;
242 break;
243 }
244
245 case SensorType::ROTATION_VECTOR:
246 case SensorType::GAME_ROTATION_VECTOR:
247 case SensorType::GEOMAGNETIC_ROTATION_VECTOR:
248 {
249 dst->data[0] = src.u.vec4.x;
250 dst->data[1] = src.u.vec4.y;
251 dst->data[2] = src.u.vec4.z;
252 dst->data[3] = src.u.vec4.w;
253 break;
254 }
255
256 case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
257 case SensorType::GYROSCOPE_UNCALIBRATED:
258 case SensorType::ACCELEROMETER_UNCALIBRATED:
259 {
260 dst->uncalibrated_gyro.x_uncalib = src.u.uncal.x;
261 dst->uncalibrated_gyro.y_uncalib = src.u.uncal.y;
262 dst->uncalibrated_gyro.z_uncalib = src.u.uncal.z;
263 dst->uncalibrated_gyro.x_bias = src.u.uncal.x_bias;
264 dst->uncalibrated_gyro.y_bias = src.u.uncal.y_bias;
265 dst->uncalibrated_gyro.z_bias = src.u.uncal.z_bias;
266 break;
267 }
268
269 case SensorType::DEVICE_ORIENTATION:
270 case SensorType::LIGHT:
271 case SensorType::PRESSURE:
272 case SensorType::TEMPERATURE:
273 case SensorType::PROXIMITY:
274 case SensorType::RELATIVE_HUMIDITY:
275 case SensorType::AMBIENT_TEMPERATURE:
276 case SensorType::SIGNIFICANT_MOTION:
277 case SensorType::STEP_DETECTOR:
278 case SensorType::TILT_DETECTOR:
279 case SensorType::WAKE_GESTURE:
280 case SensorType::GLANCE_GESTURE:
281 case SensorType::PICK_UP_GESTURE:
282 case SensorType::WRIST_TILT_GESTURE:
283 case SensorType::STATIONARY_DETECT:
284 case SensorType::MOTION_DETECT:
285 case SensorType::HEART_BEAT:
286 case SensorType::LOW_LATENCY_OFFBODY_DETECT:
287 {
288 dst->data[0] = src.u.scalar;
289 break;
290 }
291
292 case SensorType::STEP_COUNTER:
293 {
294 dst->u64.step_counter = src.u.stepCount;
295 break;
296 }
297
298 case SensorType::HEART_RATE:
299 {
300 dst->heart_rate.bpm = src.u.heartRate.bpm;
301 dst->heart_rate.status = (int8_t)src.u.heartRate.status;
302 break;
303 }
304
305 case SensorType::POSE_6DOF: // 15 floats
306 {
307 for (size_t i = 0; i < 15; ++i) {
308 dst->data[i] = src.u.pose6DOF[i];
309 }
310 break;
311 }
312
313 case SensorType::DYNAMIC_SENSOR_META:
314 {
315 dst->dynamic_sensor_meta.connected = src.u.dynamic.connected;
316 dst->dynamic_sensor_meta.handle = src.u.dynamic.sensorHandle;
317 dst->dynamic_sensor_meta.sensor = NULL; // to be filled in later
318
319 memcpy(dst->dynamic_sensor_meta.uuid,
320 src.u.dynamic.uuid.data(),
321 16);
322
323 break;
324 }
325
326 case SensorType::ADDITIONAL_INFO:
327 {
328 const ::android::hardware::sensors::V1_0::AdditionalInfo &srcInfo =
329 src.u.additional;
330
331 additional_info_event_t *dstInfo = &dst->additional_info;
332 dstInfo->type = (int32_t)srcInfo.type;
333 dstInfo->serial = srcInfo.serial;
334
335 CHECK_EQ(sizeof(srcInfo.u), sizeof(dstInfo->data_int32));
336
337 memcpy(dstInfo->data_int32,
338 &srcInfo.u,
339 sizeof(dstInfo->data_int32));
340
341 break;
342 }
343
344 default:
345 {
346 CHECK_GE((int32_t)src.sensorType,
347 (int32_t)SensorType::DEVICE_PRIVATE_BASE);
348
349 memcpy(dst->data, src.u.data.data(), 16 * sizeof(float));
350 break;
351 }
352 }
353 }
354
convertFromSharedMemInfo(const SharedMemInfo & memIn,sensors_direct_mem_t * memOut)355 bool convertFromSharedMemInfo(const SharedMemInfo& memIn, sensors_direct_mem_t *memOut) {
356 if (memOut == nullptr) {
357 return false;
358 }
359
360 switch(memIn.type) {
361 case SharedMemType::ASHMEM:
362 memOut->type = SENSOR_DIRECT_MEM_TYPE_ASHMEM;
363 break;
364 case SharedMemType::GRALLOC:
365 memOut->type = SENSOR_DIRECT_MEM_TYPE_GRALLOC;
366 break;
367 default:
368 return false;
369 }
370
371 switch(memIn.format) {
372 case SharedMemFormat::SENSORS_EVENT:
373 memOut->format = SENSOR_DIRECT_FMT_SENSORS_EVENT;
374 break;
375 default:
376 return false;
377 }
378
379 if (memIn.memoryHandle == nullptr) {
380 return false;
381 }
382
383 memOut->size = memIn.size;
384 memOut->handle = memIn.memoryHandle;
385 return true;
386 }
387
convertFromRateLevel(RateLevel rate)388 int convertFromRateLevel(RateLevel rate) {
389 switch(rate) {
390 case RateLevel::STOP:
391 return SENSOR_DIRECT_RATE_STOP;
392 case RateLevel::NORMAL:
393 return SENSOR_DIRECT_RATE_NORMAL;
394 case RateLevel::FAST:
395 return SENSOR_DIRECT_RATE_FAST;
396 case RateLevel::VERY_FAST:
397 return SENSOR_DIRECT_RATE_VERY_FAST;
398 default:
399 return -1;
400 }
401 }
402
403 } // namespace implementation
404 } // namespace V1_0
405 } // namespace sensors
406 } // namespace hardware
407 } // namespace android
408
409