1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "IsochronousClockModel"
18 //#define LOG_NDEBUG 0
19 #include <log/log.h>
20
21 #include <stdint.h>
22
23 #include "utility/AudioClock.h"
24 #include "IsochronousClockModel.h"
25
26 #define MIN_LATENESS_NANOS (10 * AAUDIO_NANOS_PER_MICROSECOND)
27
28 using namespace aaudio;
29
IsochronousClockModel()30 IsochronousClockModel::IsochronousClockModel()
31 : mMarkerFramePosition(0)
32 , mMarkerNanoTime(0)
33 , mSampleRate(48000)
34 , mFramesPerBurst(64)
35 , mMaxLatenessInNanos(0)
36 , mState(STATE_STOPPED)
37 {
38 }
39
~IsochronousClockModel()40 IsochronousClockModel::~IsochronousClockModel() {
41 }
42
setPositionAndTime(int64_t framePosition,int64_t nanoTime)43 void IsochronousClockModel::setPositionAndTime(int64_t framePosition, int64_t nanoTime) {
44 ALOGV("setPositionAndTime(%lld, %lld)",
45 (long long) framePosition, (long long) nanoTime);
46 mMarkerFramePosition = framePosition;
47 mMarkerNanoTime = nanoTime;
48 }
49
start(int64_t nanoTime)50 void IsochronousClockModel::start(int64_t nanoTime) {
51 ALOGV("start(nanos = %lld)\n", (long long) nanoTime);
52 mMarkerNanoTime = nanoTime;
53 mState = STATE_STARTING;
54 }
55
stop(int64_t nanoTime)56 void IsochronousClockModel::stop(int64_t nanoTime) {
57 ALOGV("stop(nanos = %lld)\n", (long long) nanoTime);
58 setPositionAndTime(convertTimeToPosition(nanoTime), nanoTime);
59 // TODO should we set position?
60 mState = STATE_STOPPED;
61 }
62
isStarting()63 bool IsochronousClockModel::isStarting() {
64 return mState == STATE_STARTING;
65 }
66
processTimestamp(int64_t framePosition,int64_t nanoTime)67 void IsochronousClockModel::processTimestamp(int64_t framePosition, int64_t nanoTime) {
68 // ALOGD("processTimestamp() - framePosition = %lld at nanoTime %llu",
69 // (long long)framePosition,
70 // (long long)nanoTime);
71 int64_t framesDelta = framePosition - mMarkerFramePosition;
72 int64_t nanosDelta = nanoTime - mMarkerNanoTime;
73 if (nanosDelta < 1000) {
74 return;
75 }
76
77 // ALOGD("processTimestamp() - mMarkerFramePosition = %lld at mMarkerNanoTime %llu",
78 // (long long)mMarkerFramePosition,
79 // (long long)mMarkerNanoTime);
80
81 int64_t expectedNanosDelta = convertDeltaPositionToTime(framesDelta);
82 // ALOGD("processTimestamp() - expectedNanosDelta = %lld, nanosDelta = %llu",
83 // (long long)expectedNanosDelta,
84 // (long long)nanosDelta);
85
86 // ALOGD("processTimestamp() - mSampleRate = %d", mSampleRate);
87 // ALOGD("processTimestamp() - mState = %d", mState);
88 switch (mState) {
89 case STATE_STOPPED:
90 break;
91 case STATE_STARTING:
92 setPositionAndTime(framePosition, nanoTime);
93 mState = STATE_SYNCING;
94 break;
95 case STATE_SYNCING:
96 // This will handle a burst of rapid transfer at the beginning.
97 if (nanosDelta < expectedNanosDelta) {
98 setPositionAndTime(framePosition, nanoTime);
99 } else {
100 // ALOGD("processTimestamp() - advance to STATE_RUNNING");
101 mState = STATE_RUNNING;
102 }
103 break;
104 case STATE_RUNNING:
105 if (nanosDelta < expectedNanosDelta) {
106 // Earlier than expected timestamp.
107 // This data is probably more accurate so use it.
108 // or we may be drifting due to a slow HW clock.
109 // ALOGD("processTimestamp() - STATE_RUNNING - %d < %d micros - EARLY",
110 // (int) (nanosDelta / 1000), (int)(expectedNanosDelta / 1000));
111 setPositionAndTime(framePosition, nanoTime);
112 } else if (nanosDelta > (expectedNanosDelta + mMaxLatenessInNanos)) {
113 // Later than expected timestamp.
114 // ALOGD("processTimestamp() - STATE_RUNNING - %d > %d + %d micros - LATE",
115 // (int) (nanosDelta / 1000), (int)(expectedNanosDelta / 1000),
116 // (int) (mMaxLatenessInNanos / 1000));
117 setPositionAndTime(framePosition - mFramesPerBurst, nanoTime - mMaxLatenessInNanos);
118 }
119 break;
120 default:
121 break;
122 }
123
124 // ALOGD("processTimestamp() - mState = %d", mState);
125 }
126
setSampleRate(int32_t sampleRate)127 void IsochronousClockModel::setSampleRate(int32_t sampleRate) {
128 mSampleRate = sampleRate;
129 update();
130 }
131
setFramesPerBurst(int32_t framesPerBurst)132 void IsochronousClockModel::setFramesPerBurst(int32_t framesPerBurst) {
133 mFramesPerBurst = framesPerBurst;
134 update();
135 }
136
update()137 void IsochronousClockModel::update() {
138 int64_t nanosLate = convertDeltaPositionToTime(mFramesPerBurst); // uses mSampleRate
139 mMaxLatenessInNanos = (nanosLate > MIN_LATENESS_NANOS) ? nanosLate : MIN_LATENESS_NANOS;
140 }
141
convertDeltaPositionToTime(int64_t framesDelta) const142 int64_t IsochronousClockModel::convertDeltaPositionToTime(int64_t framesDelta) const {
143 return (AAUDIO_NANOS_PER_SECOND * framesDelta) / mSampleRate;
144 }
145
convertDeltaTimeToPosition(int64_t nanosDelta) const146 int64_t IsochronousClockModel::convertDeltaTimeToPosition(int64_t nanosDelta) const {
147 return (mSampleRate * nanosDelta) / AAUDIO_NANOS_PER_SECOND;
148 }
149
convertPositionToTime(int64_t framePosition) const150 int64_t IsochronousClockModel::convertPositionToTime(int64_t framePosition) const {
151 if (mState == STATE_STOPPED) {
152 return mMarkerNanoTime;
153 }
154 int64_t nextBurstIndex = (framePosition + mFramesPerBurst - 1) / mFramesPerBurst;
155 int64_t nextBurstPosition = mFramesPerBurst * nextBurstIndex;
156 int64_t framesDelta = nextBurstPosition - mMarkerFramePosition;
157 int64_t nanosDelta = convertDeltaPositionToTime(framesDelta);
158 int64_t time = mMarkerNanoTime + nanosDelta;
159 // ALOGD("convertPositionToTime: pos = %llu --> time = %llu",
160 // (unsigned long long)framePosition,
161 // (unsigned long long)time);
162 return time;
163 }
164
convertTimeToPosition(int64_t nanoTime) const165 int64_t IsochronousClockModel::convertTimeToPosition(int64_t nanoTime) const {
166 if (mState == STATE_STOPPED) {
167 return mMarkerFramePosition;
168 }
169 int64_t nanosDelta = nanoTime - mMarkerNanoTime;
170 int64_t framesDelta = convertDeltaTimeToPosition(nanosDelta);
171 int64_t nextBurstPosition = mMarkerFramePosition + framesDelta;
172 int64_t nextBurstIndex = nextBurstPosition / mFramesPerBurst;
173 int64_t position = nextBurstIndex * mFramesPerBurst;
174 // ALOGD("convertTimeToPosition: time = %llu --> pos = %llu",
175 // (unsigned long long)nanoTime,
176 // (unsigned long long)position);
177 // ALOGD("convertTimeToPosition: framesDelta = %llu, mFramesPerBurst = %d",
178 // (long long) framesDelta, mFramesPerBurst);
179 return position;
180 }
181
dump() const182 void IsochronousClockModel::dump() const {
183 ALOGD("mMarkerFramePosition = %lld", (long long) mMarkerFramePosition);
184 ALOGD("mMarkerNanoTime = %lld", (long long) mMarkerNanoTime);
185 ALOGD("mSampleRate = %6d", mSampleRate);
186 ALOGD("mFramesPerBurst = %6d", mFramesPerBurst);
187 ALOGD("mMaxLatenessInNanos = %6d", mMaxLatenessInNanos);
188 ALOGD("mState = %6d", mState);
189 }
190