1 /*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <assert.h>
18 #include <dirent.h>
19 #include <errno.h>
20 #include <fcntl.h>
21 #include <inttypes.h>
22 #include <memory.h>
23 #include <stdint.h>
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <sys/epoll.h>
28 #include <sys/limits.h>
29 #include <sys/inotify.h>
30 #include <sys/ioctl.h>
31 #include <sys/utsname.h>
32 #include <unistd.h>
33
34 #define LOG_TAG "EventHub"
35
36 // #define LOG_NDEBUG 0
37
38 #include "EventHub.h"
39
40 #include <hardware_legacy/power.h>
41
42 #include <android-base/stringprintf.h>
43 #include <cutils/properties.h>
44 #include <openssl/sha.h>
45 #include <utils/Log.h>
46 #include <utils/Timers.h>
47 #include <utils/threads.h>
48 #include <utils/Errors.h>
49
50 #include <input/KeyLayoutMap.h>
51 #include <input/KeyCharacterMap.h>
52 #include <input/VirtualKeyMap.h>
53
54 /* this macro is used to tell if "bit" is set in "array"
55 * it selects a byte from the array, and does a boolean AND
56 * operation with a byte that only has the relevant bit set.
57 * eg. to check for the 12th bit, we do (array[1] & 1<<4)
58 */
59 #define test_bit(bit, array) ((array)[(bit)/8] & (1<<((bit)%8)))
60
61 /* this macro computes the number of bytes needed to represent a bit array of the specified size */
62 #define sizeof_bit_array(bits) (((bits) + 7) / 8)
63
64 #define INDENT " "
65 #define INDENT2 " "
66 #define INDENT3 " "
67
68 using android::base::StringPrintf;
69
70 namespace android {
71
72 static const char *WAKE_LOCK_ID = "KeyEvents";
73 static const char *DEVICE_PATH = "/dev/input";
74
toString(bool value)75 static inline const char* toString(bool value) {
76 return value ? "true" : "false";
77 }
78
sha1(const String8 & in)79 static String8 sha1(const String8& in) {
80 SHA_CTX ctx;
81 SHA1_Init(&ctx);
82 SHA1_Update(&ctx, reinterpret_cast<const u_char*>(in.string()), in.size());
83 u_char digest[SHA_DIGEST_LENGTH];
84 SHA1_Final(digest, &ctx);
85
86 String8 out;
87 for (size_t i = 0; i < SHA_DIGEST_LENGTH; i++) {
88 out.appendFormat("%02x", digest[i]);
89 }
90 return out;
91 }
92
getLinuxRelease(int * major,int * minor)93 static void getLinuxRelease(int* major, int* minor) {
94 struct utsname info;
95 if (uname(&info) || sscanf(info.release, "%d.%d", major, minor) <= 0) {
96 *major = 0, *minor = 0;
97 ALOGE("Could not get linux version: %s", strerror(errno));
98 }
99 }
100
101 // --- Global Functions ---
102
getAbsAxisUsage(int32_t axis,uint32_t deviceClasses)103 uint32_t getAbsAxisUsage(int32_t axis, uint32_t deviceClasses) {
104 // Touch devices get dibs on touch-related axes.
105 if (deviceClasses & INPUT_DEVICE_CLASS_TOUCH) {
106 switch (axis) {
107 case ABS_X:
108 case ABS_Y:
109 case ABS_PRESSURE:
110 case ABS_TOOL_WIDTH:
111 case ABS_DISTANCE:
112 case ABS_TILT_X:
113 case ABS_TILT_Y:
114 case ABS_MT_SLOT:
115 case ABS_MT_TOUCH_MAJOR:
116 case ABS_MT_TOUCH_MINOR:
117 case ABS_MT_WIDTH_MAJOR:
118 case ABS_MT_WIDTH_MINOR:
119 case ABS_MT_ORIENTATION:
120 case ABS_MT_POSITION_X:
121 case ABS_MT_POSITION_Y:
122 case ABS_MT_TOOL_TYPE:
123 case ABS_MT_BLOB_ID:
124 case ABS_MT_TRACKING_ID:
125 case ABS_MT_PRESSURE:
126 case ABS_MT_DISTANCE:
127 return INPUT_DEVICE_CLASS_TOUCH;
128 }
129 }
130
131 // External stylus gets the pressure axis
132 if (deviceClasses & INPUT_DEVICE_CLASS_EXTERNAL_STYLUS) {
133 if (axis == ABS_PRESSURE) {
134 return INPUT_DEVICE_CLASS_EXTERNAL_STYLUS;
135 }
136 }
137
138 // Joystick devices get the rest.
139 return deviceClasses & INPUT_DEVICE_CLASS_JOYSTICK;
140 }
141
142 // --- EventHub::Device ---
143
Device(int fd,int32_t id,const String8 & path,const InputDeviceIdentifier & identifier)144 EventHub::Device::Device(int fd, int32_t id, const String8& path,
145 const InputDeviceIdentifier& identifier) :
146 next(NULL),
147 fd(fd), id(id), path(path), identifier(identifier),
148 classes(0), configuration(NULL), virtualKeyMap(NULL),
149 ffEffectPlaying(false), ffEffectId(-1), controllerNumber(0),
150 timestampOverrideSec(0), timestampOverrideUsec(0), enabled(true),
151 isVirtual(fd < 0) {
152 memset(keyBitmask, 0, sizeof(keyBitmask));
153 memset(absBitmask, 0, sizeof(absBitmask));
154 memset(relBitmask, 0, sizeof(relBitmask));
155 memset(swBitmask, 0, sizeof(swBitmask));
156 memset(ledBitmask, 0, sizeof(ledBitmask));
157 memset(ffBitmask, 0, sizeof(ffBitmask));
158 memset(propBitmask, 0, sizeof(propBitmask));
159 }
160
~Device()161 EventHub::Device::~Device() {
162 close();
163 delete configuration;
164 delete virtualKeyMap;
165 }
166
close()167 void EventHub::Device::close() {
168 if (fd >= 0) {
169 ::close(fd);
170 fd = -1;
171 }
172 }
173
enable()174 status_t EventHub::Device::enable() {
175 fd = open(path, O_RDWR | O_CLOEXEC | O_NONBLOCK);
176 if(fd < 0) {
177 ALOGE("could not open %s, %s\n", path.string(), strerror(errno));
178 return -errno;
179 }
180 enabled = true;
181 return OK;
182 }
183
disable()184 status_t EventHub::Device::disable() {
185 close();
186 enabled = false;
187 return OK;
188 }
189
hasValidFd()190 bool EventHub::Device::hasValidFd() {
191 return !isVirtual && enabled;
192 }
193
194 // --- EventHub ---
195
196 const uint32_t EventHub::EPOLL_ID_INOTIFY;
197 const uint32_t EventHub::EPOLL_ID_WAKE;
198 const int EventHub::EPOLL_SIZE_HINT;
199 const int EventHub::EPOLL_MAX_EVENTS;
200
EventHub(void)201 EventHub::EventHub(void) :
202 mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD), mNextDeviceId(1), mControllerNumbers(),
203 mOpeningDevices(0), mClosingDevices(0),
204 mNeedToSendFinishedDeviceScan(false),
205 mNeedToReopenDevices(false), mNeedToScanDevices(true),
206 mPendingEventCount(0), mPendingEventIndex(0), mPendingINotify(false) {
207 acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
208
209 mEpollFd = epoll_create(EPOLL_SIZE_HINT);
210 LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance. errno=%d", errno);
211
212 mINotifyFd = inotify_init();
213 int result = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
214 LOG_ALWAYS_FATAL_IF(result < 0, "Could not register INotify for %s. errno=%d",
215 DEVICE_PATH, errno);
216
217 struct epoll_event eventItem;
218 memset(&eventItem, 0, sizeof(eventItem));
219 eventItem.events = EPOLLIN;
220 eventItem.data.u32 = EPOLL_ID_INOTIFY;
221 result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
222 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance. errno=%d", errno);
223
224 int wakeFds[2];
225 result = pipe(wakeFds);
226 LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno);
227
228 mWakeReadPipeFd = wakeFds[0];
229 mWakeWritePipeFd = wakeFds[1];
230
231 result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
232 LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking. errno=%d",
233 errno);
234
235 result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
236 LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking. errno=%d",
237 errno);
238
239 eventItem.data.u32 = EPOLL_ID_WAKE;
240 result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
241 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance. errno=%d",
242 errno);
243
244 int major, minor;
245 getLinuxRelease(&major, &minor);
246 // EPOLLWAKEUP was introduced in kernel 3.5
247 mUsingEpollWakeup = major > 3 || (major == 3 && minor >= 5);
248 }
249
~EventHub(void)250 EventHub::~EventHub(void) {
251 closeAllDevicesLocked();
252
253 while (mClosingDevices) {
254 Device* device = mClosingDevices;
255 mClosingDevices = device->next;
256 delete device;
257 }
258
259 ::close(mEpollFd);
260 ::close(mINotifyFd);
261 ::close(mWakeReadPipeFd);
262 ::close(mWakeWritePipeFd);
263
264 release_wake_lock(WAKE_LOCK_ID);
265 }
266
getDeviceIdentifier(int32_t deviceId) const267 InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const {
268 AutoMutex _l(mLock);
269 Device* device = getDeviceLocked(deviceId);
270 if (device == NULL) return InputDeviceIdentifier();
271 return device->identifier;
272 }
273
getDeviceClasses(int32_t deviceId) const274 uint32_t EventHub::getDeviceClasses(int32_t deviceId) const {
275 AutoMutex _l(mLock);
276 Device* device = getDeviceLocked(deviceId);
277 if (device == NULL) return 0;
278 return device->classes;
279 }
280
getDeviceControllerNumber(int32_t deviceId) const281 int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const {
282 AutoMutex _l(mLock);
283 Device* device = getDeviceLocked(deviceId);
284 if (device == NULL) return 0;
285 return device->controllerNumber;
286 }
287
getConfiguration(int32_t deviceId,PropertyMap * outConfiguration) const288 void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
289 AutoMutex _l(mLock);
290 Device* device = getDeviceLocked(deviceId);
291 if (device && device->configuration) {
292 *outConfiguration = *device->configuration;
293 } else {
294 outConfiguration->clear();
295 }
296 }
297
getAbsoluteAxisInfo(int32_t deviceId,int axis,RawAbsoluteAxisInfo * outAxisInfo) const298 status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
299 RawAbsoluteAxisInfo* outAxisInfo) const {
300 outAxisInfo->clear();
301
302 if (axis >= 0 && axis <= ABS_MAX) {
303 AutoMutex _l(mLock);
304
305 Device* device = getDeviceLocked(deviceId);
306 if (device && device->hasValidFd() && test_bit(axis, device->absBitmask)) {
307 struct input_absinfo info;
308 if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
309 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
310 axis, device->identifier.name.string(), device->fd, errno);
311 return -errno;
312 }
313
314 if (info.minimum != info.maximum) {
315 outAxisInfo->valid = true;
316 outAxisInfo->minValue = info.minimum;
317 outAxisInfo->maxValue = info.maximum;
318 outAxisInfo->flat = info.flat;
319 outAxisInfo->fuzz = info.fuzz;
320 outAxisInfo->resolution = info.resolution;
321 }
322 return OK;
323 }
324 }
325 return -1;
326 }
327
hasRelativeAxis(int32_t deviceId,int axis) const328 bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
329 if (axis >= 0 && axis <= REL_MAX) {
330 AutoMutex _l(mLock);
331
332 Device* device = getDeviceLocked(deviceId);
333 if (device) {
334 return test_bit(axis, device->relBitmask);
335 }
336 }
337 return false;
338 }
339
hasInputProperty(int32_t deviceId,int property) const340 bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
341 if (property >= 0 && property <= INPUT_PROP_MAX) {
342 AutoMutex _l(mLock);
343
344 Device* device = getDeviceLocked(deviceId);
345 if (device) {
346 return test_bit(property, device->propBitmask);
347 }
348 }
349 return false;
350 }
351
getScanCodeState(int32_t deviceId,int32_t scanCode) const352 int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
353 if (scanCode >= 0 && scanCode <= KEY_MAX) {
354 AutoMutex _l(mLock);
355
356 Device* device = getDeviceLocked(deviceId);
357 if (device && device->hasValidFd() && test_bit(scanCode, device->keyBitmask)) {
358 uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
359 memset(keyState, 0, sizeof(keyState));
360 if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
361 return test_bit(scanCode, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
362 }
363 }
364 }
365 return AKEY_STATE_UNKNOWN;
366 }
367
getKeyCodeState(int32_t deviceId,int32_t keyCode) const368 int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
369 AutoMutex _l(mLock);
370
371 Device* device = getDeviceLocked(deviceId);
372 if (device && device->hasValidFd() && device->keyMap.haveKeyLayout()) {
373 Vector<int32_t> scanCodes;
374 device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes);
375 if (scanCodes.size() != 0) {
376 uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
377 memset(keyState, 0, sizeof(keyState));
378 if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
379 for (size_t i = 0; i < scanCodes.size(); i++) {
380 int32_t sc = scanCodes.itemAt(i);
381 if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, keyState)) {
382 return AKEY_STATE_DOWN;
383 }
384 }
385 return AKEY_STATE_UP;
386 }
387 }
388 }
389 return AKEY_STATE_UNKNOWN;
390 }
391
getSwitchState(int32_t deviceId,int32_t sw) const392 int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
393 if (sw >= 0 && sw <= SW_MAX) {
394 AutoMutex _l(mLock);
395
396 Device* device = getDeviceLocked(deviceId);
397 if (device && device->hasValidFd() && test_bit(sw, device->swBitmask)) {
398 uint8_t swState[sizeof_bit_array(SW_MAX + 1)];
399 memset(swState, 0, sizeof(swState));
400 if (ioctl(device->fd, EVIOCGSW(sizeof(swState)), swState) >= 0) {
401 return test_bit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
402 }
403 }
404 }
405 return AKEY_STATE_UNKNOWN;
406 }
407
getAbsoluteAxisValue(int32_t deviceId,int32_t axis,int32_t * outValue) const408 status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const {
409 *outValue = 0;
410
411 if (axis >= 0 && axis <= ABS_MAX) {
412 AutoMutex _l(mLock);
413
414 Device* device = getDeviceLocked(deviceId);
415 if (device && device->hasValidFd() && test_bit(axis, device->absBitmask)) {
416 struct input_absinfo info;
417 if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
418 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
419 axis, device->identifier.name.string(), device->fd, errno);
420 return -errno;
421 }
422
423 *outValue = info.value;
424 return OK;
425 }
426 }
427 return -1;
428 }
429
markSupportedKeyCodes(int32_t deviceId,size_t numCodes,const int32_t * keyCodes,uint8_t * outFlags) const430 bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes,
431 const int32_t* keyCodes, uint8_t* outFlags) const {
432 AutoMutex _l(mLock);
433
434 Device* device = getDeviceLocked(deviceId);
435 if (device && device->keyMap.haveKeyLayout()) {
436 Vector<int32_t> scanCodes;
437 for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
438 scanCodes.clear();
439
440 status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey(
441 keyCodes[codeIndex], &scanCodes);
442 if (! err) {
443 // check the possible scan codes identified by the layout map against the
444 // map of codes actually emitted by the driver
445 for (size_t sc = 0; sc < scanCodes.size(); sc++) {
446 if (test_bit(scanCodes[sc], device->keyBitmask)) {
447 outFlags[codeIndex] = 1;
448 break;
449 }
450 }
451 }
452 }
453 return true;
454 }
455 return false;
456 }
457
mapKey(int32_t deviceId,int32_t scanCode,int32_t usageCode,int32_t metaState,int32_t * outKeycode,int32_t * outMetaState,uint32_t * outFlags) const458 status_t EventHub::mapKey(int32_t deviceId,
459 int32_t scanCode, int32_t usageCode, int32_t metaState,
460 int32_t* outKeycode, int32_t* outMetaState, uint32_t* outFlags) const {
461 AutoMutex _l(mLock);
462 Device* device = getDeviceLocked(deviceId);
463 status_t status = NAME_NOT_FOUND;
464
465 if (device) {
466 // Check the key character map first.
467 sp<KeyCharacterMap> kcm = device->getKeyCharacterMap();
468 if (kcm != NULL) {
469 if (!kcm->mapKey(scanCode, usageCode, outKeycode)) {
470 *outFlags = 0;
471 status = NO_ERROR;
472 }
473 }
474
475 // Check the key layout next.
476 if (status != NO_ERROR && device->keyMap.haveKeyLayout()) {
477 if (!device->keyMap.keyLayoutMap->mapKey(
478 scanCode, usageCode, outKeycode, outFlags)) {
479 status = NO_ERROR;
480 }
481 }
482
483 if (status == NO_ERROR) {
484 if (kcm != NULL) {
485 kcm->tryRemapKey(*outKeycode, metaState, outKeycode, outMetaState);
486 } else {
487 *outMetaState = metaState;
488 }
489 }
490 }
491
492 if (status != NO_ERROR) {
493 *outKeycode = 0;
494 *outFlags = 0;
495 *outMetaState = metaState;
496 }
497
498 return status;
499 }
500
mapAxis(int32_t deviceId,int32_t scanCode,AxisInfo * outAxisInfo) const501 status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const {
502 AutoMutex _l(mLock);
503 Device* device = getDeviceLocked(deviceId);
504
505 if (device && device->keyMap.haveKeyLayout()) {
506 status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo);
507 if (err == NO_ERROR) {
508 return NO_ERROR;
509 }
510 }
511
512 return NAME_NOT_FOUND;
513 }
514
setExcludedDevices(const Vector<String8> & devices)515 void EventHub::setExcludedDevices(const Vector<String8>& devices) {
516 AutoMutex _l(mLock);
517
518 mExcludedDevices = devices;
519 }
520
hasScanCode(int32_t deviceId,int32_t scanCode) const521 bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
522 AutoMutex _l(mLock);
523 Device* device = getDeviceLocked(deviceId);
524 if (device && scanCode >= 0 && scanCode <= KEY_MAX) {
525 if (test_bit(scanCode, device->keyBitmask)) {
526 return true;
527 }
528 }
529 return false;
530 }
531
hasLed(int32_t deviceId,int32_t led) const532 bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
533 AutoMutex _l(mLock);
534 Device* device = getDeviceLocked(deviceId);
535 int32_t sc;
536 if (device && mapLed(device, led, &sc) == NO_ERROR) {
537 if (test_bit(sc, device->ledBitmask)) {
538 return true;
539 }
540 }
541 return false;
542 }
543
setLedState(int32_t deviceId,int32_t led,bool on)544 void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
545 AutoMutex _l(mLock);
546 Device* device = getDeviceLocked(deviceId);
547 setLedStateLocked(device, led, on);
548 }
549
setLedStateLocked(Device * device,int32_t led,bool on)550 void EventHub::setLedStateLocked(Device* device, int32_t led, bool on) {
551 int32_t sc;
552 if (device && device->hasValidFd() && mapLed(device, led, &sc) != NAME_NOT_FOUND) {
553 struct input_event ev;
554 ev.time.tv_sec = 0;
555 ev.time.tv_usec = 0;
556 ev.type = EV_LED;
557 ev.code = sc;
558 ev.value = on ? 1 : 0;
559
560 ssize_t nWrite;
561 do {
562 nWrite = write(device->fd, &ev, sizeof(struct input_event));
563 } while (nWrite == -1 && errno == EINTR);
564 }
565 }
566
getVirtualKeyDefinitions(int32_t deviceId,Vector<VirtualKeyDefinition> & outVirtualKeys) const567 void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
568 Vector<VirtualKeyDefinition>& outVirtualKeys) const {
569 outVirtualKeys.clear();
570
571 AutoMutex _l(mLock);
572 Device* device = getDeviceLocked(deviceId);
573 if (device && device->virtualKeyMap) {
574 outVirtualKeys.appendVector(device->virtualKeyMap->getVirtualKeys());
575 }
576 }
577
getKeyCharacterMap(int32_t deviceId) const578 sp<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const {
579 AutoMutex _l(mLock);
580 Device* device = getDeviceLocked(deviceId);
581 if (device) {
582 return device->getKeyCharacterMap();
583 }
584 return NULL;
585 }
586
setKeyboardLayoutOverlay(int32_t deviceId,const sp<KeyCharacterMap> & map)587 bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId,
588 const sp<KeyCharacterMap>& map) {
589 AutoMutex _l(mLock);
590 Device* device = getDeviceLocked(deviceId);
591 if (device) {
592 if (map != device->overlayKeyMap) {
593 device->overlayKeyMap = map;
594 device->combinedKeyMap = KeyCharacterMap::combine(
595 device->keyMap.keyCharacterMap, map);
596 return true;
597 }
598 }
599 return false;
600 }
601
generateDescriptor(InputDeviceIdentifier & identifier)602 static String8 generateDescriptor(InputDeviceIdentifier& identifier) {
603 String8 rawDescriptor;
604 rawDescriptor.appendFormat(":%04x:%04x:", identifier.vendor,
605 identifier.product);
606 // TODO add handling for USB devices to not uniqueify kbs that show up twice
607 if (!identifier.uniqueId.isEmpty()) {
608 rawDescriptor.append("uniqueId:");
609 rawDescriptor.append(identifier.uniqueId);
610 } else if (identifier.nonce != 0) {
611 rawDescriptor.appendFormat("nonce:%04x", identifier.nonce);
612 }
613
614 if (identifier.vendor == 0 && identifier.product == 0) {
615 // If we don't know the vendor and product id, then the device is probably
616 // built-in so we need to rely on other information to uniquely identify
617 // the input device. Usually we try to avoid relying on the device name or
618 // location but for built-in input device, they are unlikely to ever change.
619 if (!identifier.name.isEmpty()) {
620 rawDescriptor.append("name:");
621 rawDescriptor.append(identifier.name);
622 } else if (!identifier.location.isEmpty()) {
623 rawDescriptor.append("location:");
624 rawDescriptor.append(identifier.location);
625 }
626 }
627 identifier.descriptor = sha1(rawDescriptor);
628 return rawDescriptor;
629 }
630
assignDescriptorLocked(InputDeviceIdentifier & identifier)631 void EventHub::assignDescriptorLocked(InputDeviceIdentifier& identifier) {
632 // Compute a device descriptor that uniquely identifies the device.
633 // The descriptor is assumed to be a stable identifier. Its value should not
634 // change between reboots, reconnections, firmware updates or new releases
635 // of Android. In practice we sometimes get devices that cannot be uniquely
636 // identified. In this case we enforce uniqueness between connected devices.
637 // Ideally, we also want the descriptor to be short and relatively opaque.
638
639 identifier.nonce = 0;
640 String8 rawDescriptor = generateDescriptor(identifier);
641 if (identifier.uniqueId.isEmpty()) {
642 // If it didn't have a unique id check for conflicts and enforce
643 // uniqueness if necessary.
644 while(getDeviceByDescriptorLocked(identifier.descriptor) != NULL) {
645 identifier.nonce++;
646 rawDescriptor = generateDescriptor(identifier);
647 }
648 }
649 ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.string(),
650 identifier.descriptor.string());
651 }
652
vibrate(int32_t deviceId,nsecs_t duration)653 void EventHub::vibrate(int32_t deviceId, nsecs_t duration) {
654 AutoMutex _l(mLock);
655 Device* device = getDeviceLocked(deviceId);
656 if (device && device->hasValidFd()) {
657 ff_effect effect;
658 memset(&effect, 0, sizeof(effect));
659 effect.type = FF_RUMBLE;
660 effect.id = device->ffEffectId;
661 effect.u.rumble.strong_magnitude = 0xc000;
662 effect.u.rumble.weak_magnitude = 0xc000;
663 effect.replay.length = (duration + 999999LL) / 1000000LL;
664 effect.replay.delay = 0;
665 if (ioctl(device->fd, EVIOCSFF, &effect)) {
666 ALOGW("Could not upload force feedback effect to device %s due to error %d.",
667 device->identifier.name.string(), errno);
668 return;
669 }
670 device->ffEffectId = effect.id;
671
672 struct input_event ev;
673 ev.time.tv_sec = 0;
674 ev.time.tv_usec = 0;
675 ev.type = EV_FF;
676 ev.code = device->ffEffectId;
677 ev.value = 1;
678 if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
679 ALOGW("Could not start force feedback effect on device %s due to error %d.",
680 device->identifier.name.string(), errno);
681 return;
682 }
683 device->ffEffectPlaying = true;
684 }
685 }
686
cancelVibrate(int32_t deviceId)687 void EventHub::cancelVibrate(int32_t deviceId) {
688 AutoMutex _l(mLock);
689 Device* device = getDeviceLocked(deviceId);
690 if (device && device->hasValidFd()) {
691 if (device->ffEffectPlaying) {
692 device->ffEffectPlaying = false;
693
694 struct input_event ev;
695 ev.time.tv_sec = 0;
696 ev.time.tv_usec = 0;
697 ev.type = EV_FF;
698 ev.code = device->ffEffectId;
699 ev.value = 0;
700 if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
701 ALOGW("Could not stop force feedback effect on device %s due to error %d.",
702 device->identifier.name.string(), errno);
703 return;
704 }
705 }
706 }
707 }
708
getDeviceByDescriptorLocked(String8 & descriptor) const709 EventHub::Device* EventHub::getDeviceByDescriptorLocked(String8& descriptor) const {
710 size_t size = mDevices.size();
711 for (size_t i = 0; i < size; i++) {
712 Device* device = mDevices.valueAt(i);
713 if (descriptor.compare(device->identifier.descriptor) == 0) {
714 return device;
715 }
716 }
717 return NULL;
718 }
719
getDeviceLocked(int32_t deviceId) const720 EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
721 if (deviceId == BUILT_IN_KEYBOARD_ID) {
722 deviceId = mBuiltInKeyboardId;
723 }
724 ssize_t index = mDevices.indexOfKey(deviceId);
725 return index >= 0 ? mDevices.valueAt(index) : NULL;
726 }
727
getDeviceByPathLocked(const char * devicePath) const728 EventHub::Device* EventHub::getDeviceByPathLocked(const char* devicePath) const {
729 for (size_t i = 0; i < mDevices.size(); i++) {
730 Device* device = mDevices.valueAt(i);
731 if (device->path == devicePath) {
732 return device;
733 }
734 }
735 return NULL;
736 }
737
getEvents(int timeoutMillis,RawEvent * buffer,size_t bufferSize)738 size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
739 ALOG_ASSERT(bufferSize >= 1);
740
741 AutoMutex _l(mLock);
742
743 struct input_event readBuffer[bufferSize];
744
745 RawEvent* event = buffer;
746 size_t capacity = bufferSize;
747 bool awoken = false;
748 for (;;) {
749 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
750
751 // Reopen input devices if needed.
752 if (mNeedToReopenDevices) {
753 mNeedToReopenDevices = false;
754
755 ALOGI("Reopening all input devices due to a configuration change.");
756
757 closeAllDevicesLocked();
758 mNeedToScanDevices = true;
759 break; // return to the caller before we actually rescan
760 }
761
762 // Report any devices that had last been added/removed.
763 while (mClosingDevices) {
764 Device* device = mClosingDevices;
765 ALOGV("Reporting device closed: id=%d, name=%s\n",
766 device->id, device->path.string());
767 mClosingDevices = device->next;
768 event->when = now;
769 event->deviceId = device->id == mBuiltInKeyboardId ? BUILT_IN_KEYBOARD_ID : device->id;
770 event->type = DEVICE_REMOVED;
771 event += 1;
772 delete device;
773 mNeedToSendFinishedDeviceScan = true;
774 if (--capacity == 0) {
775 break;
776 }
777 }
778
779 if (mNeedToScanDevices) {
780 mNeedToScanDevices = false;
781 scanDevicesLocked();
782 mNeedToSendFinishedDeviceScan = true;
783 }
784
785 while (mOpeningDevices != NULL) {
786 Device* device = mOpeningDevices;
787 ALOGV("Reporting device opened: id=%d, name=%s\n",
788 device->id, device->path.string());
789 mOpeningDevices = device->next;
790 event->when = now;
791 event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
792 event->type = DEVICE_ADDED;
793 event += 1;
794 mNeedToSendFinishedDeviceScan = true;
795 if (--capacity == 0) {
796 break;
797 }
798 }
799
800 if (mNeedToSendFinishedDeviceScan) {
801 mNeedToSendFinishedDeviceScan = false;
802 event->when = now;
803 event->type = FINISHED_DEVICE_SCAN;
804 event += 1;
805 if (--capacity == 0) {
806 break;
807 }
808 }
809
810 // Grab the next input event.
811 bool deviceChanged = false;
812 while (mPendingEventIndex < mPendingEventCount) {
813 const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
814 if (eventItem.data.u32 == EPOLL_ID_INOTIFY) {
815 if (eventItem.events & EPOLLIN) {
816 mPendingINotify = true;
817 } else {
818 ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
819 }
820 continue;
821 }
822
823 if (eventItem.data.u32 == EPOLL_ID_WAKE) {
824 if (eventItem.events & EPOLLIN) {
825 ALOGV("awoken after wake()");
826 awoken = true;
827 char buffer[16];
828 ssize_t nRead;
829 do {
830 nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer));
831 } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer));
832 } else {
833 ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
834 eventItem.events);
835 }
836 continue;
837 }
838
839 ssize_t deviceIndex = mDevices.indexOfKey(eventItem.data.u32);
840 if (deviceIndex < 0) {
841 ALOGW("Received unexpected epoll event 0x%08x for unknown device id %d.",
842 eventItem.events, eventItem.data.u32);
843 continue;
844 }
845
846 Device* device = mDevices.valueAt(deviceIndex);
847 if (eventItem.events & EPOLLIN) {
848 int32_t readSize = read(device->fd, readBuffer,
849 sizeof(struct input_event) * capacity);
850 if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
851 // Device was removed before INotify noticed.
852 ALOGW("could not get event, removed? (fd: %d size: %" PRId32
853 " bufferSize: %zu capacity: %zu errno: %d)\n",
854 device->fd, readSize, bufferSize, capacity, errno);
855 deviceChanged = true;
856 closeDeviceLocked(device);
857 } else if (readSize < 0) {
858 if (errno != EAGAIN && errno != EINTR) {
859 ALOGW("could not get event (errno=%d)", errno);
860 }
861 } else if ((readSize % sizeof(struct input_event)) != 0) {
862 ALOGE("could not get event (wrong size: %d)", readSize);
863 } else {
864 int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
865
866 size_t count = size_t(readSize) / sizeof(struct input_event);
867 for (size_t i = 0; i < count; i++) {
868 struct input_event& iev = readBuffer[i];
869 ALOGV("%s got: time=%d.%06d, type=%d, code=%d, value=%d",
870 device->path.string(),
871 (int) iev.time.tv_sec, (int) iev.time.tv_usec,
872 iev.type, iev.code, iev.value);
873
874 // Some input devices may have a better concept of the time
875 // when an input event was actually generated than the kernel
876 // which simply timestamps all events on entry to evdev.
877 // This is a custom Android extension of the input protocol
878 // mainly intended for use with uinput based device drivers.
879 if (iev.type == EV_MSC) {
880 if (iev.code == MSC_ANDROID_TIME_SEC) {
881 device->timestampOverrideSec = iev.value;
882 continue;
883 } else if (iev.code == MSC_ANDROID_TIME_USEC) {
884 device->timestampOverrideUsec = iev.value;
885 continue;
886 }
887 }
888 if (device->timestampOverrideSec || device->timestampOverrideUsec) {
889 iev.time.tv_sec = device->timestampOverrideSec;
890 iev.time.tv_usec = device->timestampOverrideUsec;
891 if (iev.type == EV_SYN && iev.code == SYN_REPORT) {
892 device->timestampOverrideSec = 0;
893 device->timestampOverrideUsec = 0;
894 }
895 ALOGV("applied override time %d.%06d",
896 int(iev.time.tv_sec), int(iev.time.tv_usec));
897 }
898
899 // Use the time specified in the event instead of the current time
900 // so that downstream code can get more accurate estimates of
901 // event dispatch latency from the time the event is enqueued onto
902 // the evdev client buffer.
903 //
904 // The event's timestamp fortuitously uses the same monotonic clock
905 // time base as the rest of Android. The kernel event device driver
906 // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
907 // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
908 // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
909 // system call that also queries ktime_get_ts().
910 event->when = nsecs_t(iev.time.tv_sec) * 1000000000LL
911 + nsecs_t(iev.time.tv_usec) * 1000LL;
912 ALOGV("event time %" PRId64 ", now %" PRId64, event->when, now);
913
914 // Bug 7291243: Add a guard in case the kernel generates timestamps
915 // that appear to be far into the future because they were generated
916 // using the wrong clock source.
917 //
918 // This can happen because when the input device is initially opened
919 // it has a default clock source of CLOCK_REALTIME. Any input events
920 // enqueued right after the device is opened will have timestamps
921 // generated using CLOCK_REALTIME. We later set the clock source
922 // to CLOCK_MONOTONIC but it is already too late.
923 //
924 // Invalid input event timestamps can result in ANRs, crashes and
925 // and other issues that are hard to track down. We must not let them
926 // propagate through the system.
927 //
928 // Log a warning so that we notice the problem and recover gracefully.
929 if (event->when >= now + 10 * 1000000000LL) {
930 // Double-check. Time may have moved on.
931 nsecs_t time = systemTime(SYSTEM_TIME_MONOTONIC);
932 if (event->when > time) {
933 ALOGW("An input event from %s has a timestamp that appears to "
934 "have been generated using the wrong clock source "
935 "(expected CLOCK_MONOTONIC): "
936 "event time %" PRId64 ", current time %" PRId64
937 ", call time %" PRId64 ". "
938 "Using current time instead.",
939 device->path.string(), event->when, time, now);
940 event->when = time;
941 } else {
942 ALOGV("Event time is ok but failed the fast path and required "
943 "an extra call to systemTime: "
944 "event time %" PRId64 ", current time %" PRId64
945 ", call time %" PRId64 ".",
946 event->when, time, now);
947 }
948 }
949 event->deviceId = deviceId;
950 event->type = iev.type;
951 event->code = iev.code;
952 event->value = iev.value;
953 event += 1;
954 capacity -= 1;
955 }
956 if (capacity == 0) {
957 // The result buffer is full. Reset the pending event index
958 // so we will try to read the device again on the next iteration.
959 mPendingEventIndex -= 1;
960 break;
961 }
962 }
963 } else if (eventItem.events & EPOLLHUP) {
964 ALOGI("Removing device %s due to epoll hang-up event.",
965 device->identifier.name.string());
966 deviceChanged = true;
967 closeDeviceLocked(device);
968 } else {
969 ALOGW("Received unexpected epoll event 0x%08x for device %s.",
970 eventItem.events, device->identifier.name.string());
971 }
972 }
973
974 // readNotify() will modify the list of devices so this must be done after
975 // processing all other events to ensure that we read all remaining events
976 // before closing the devices.
977 if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
978 mPendingINotify = false;
979 readNotifyLocked();
980 deviceChanged = true;
981 }
982
983 // Report added or removed devices immediately.
984 if (deviceChanged) {
985 continue;
986 }
987
988 // Return now if we have collected any events or if we were explicitly awoken.
989 if (event != buffer || awoken) {
990 break;
991 }
992
993 // Poll for events. Mind the wake lock dance!
994 // We hold a wake lock at all times except during epoll_wait(). This works due to some
995 // subtle choreography. When a device driver has pending (unread) events, it acquires
996 // a kernel wake lock. However, once the last pending event has been read, the device
997 // driver will release the kernel wake lock. To prevent the system from going to sleep
998 // when this happens, the EventHub holds onto its own user wake lock while the client
999 // is processing events. Thus the system can only sleep if there are no events
1000 // pending or currently being processed.
1001 //
1002 // The timeout is advisory only. If the device is asleep, it will not wake just to
1003 // service the timeout.
1004 mPendingEventIndex = 0;
1005
1006 mLock.unlock(); // release lock before poll, must be before release_wake_lock
1007 release_wake_lock(WAKE_LOCK_ID);
1008
1009 int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
1010
1011 acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
1012 mLock.lock(); // reacquire lock after poll, must be after acquire_wake_lock
1013
1014 if (pollResult == 0) {
1015 // Timed out.
1016 mPendingEventCount = 0;
1017 break;
1018 }
1019
1020 if (pollResult < 0) {
1021 // An error occurred.
1022 mPendingEventCount = 0;
1023
1024 // Sleep after errors to avoid locking up the system.
1025 // Hopefully the error is transient.
1026 if (errno != EINTR) {
1027 ALOGW("poll failed (errno=%d)\n", errno);
1028 usleep(100000);
1029 }
1030 } else {
1031 // Some events occurred.
1032 mPendingEventCount = size_t(pollResult);
1033 }
1034 }
1035
1036 // All done, return the number of events we read.
1037 return event - buffer;
1038 }
1039
wake()1040 void EventHub::wake() {
1041 ALOGV("wake() called");
1042
1043 ssize_t nWrite;
1044 do {
1045 nWrite = write(mWakeWritePipeFd, "W", 1);
1046 } while (nWrite == -1 && errno == EINTR);
1047
1048 if (nWrite != 1 && errno != EAGAIN) {
1049 ALOGW("Could not write wake signal, errno=%d", errno);
1050 }
1051 }
1052
scanDevicesLocked()1053 void EventHub::scanDevicesLocked() {
1054 status_t res = scanDirLocked(DEVICE_PATH);
1055 if(res < 0) {
1056 ALOGE("scan dir failed for %s\n", DEVICE_PATH);
1057 }
1058 if (mDevices.indexOfKey(VIRTUAL_KEYBOARD_ID) < 0) {
1059 createVirtualKeyboardLocked();
1060 }
1061 }
1062
1063 // ----------------------------------------------------------------------------
1064
containsNonZeroByte(const uint8_t * array,uint32_t startIndex,uint32_t endIndex)1065 static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) {
1066 const uint8_t* end = array + endIndex;
1067 array += startIndex;
1068 while (array != end) {
1069 if (*(array++) != 0) {
1070 return true;
1071 }
1072 }
1073 return false;
1074 }
1075
1076 static const int32_t GAMEPAD_KEYCODES[] = {
1077 AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C,
1078 AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z,
1079 AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1,
1080 AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2,
1081 AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR,
1082 AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE,
1083 };
1084
registerDeviceForEpollLocked(Device * device)1085 status_t EventHub::registerDeviceForEpollLocked(Device* device) {
1086 struct epoll_event eventItem;
1087 memset(&eventItem, 0, sizeof(eventItem));
1088 eventItem.events = EPOLLIN;
1089 if (mUsingEpollWakeup) {
1090 eventItem.events |= EPOLLWAKEUP;
1091 }
1092 eventItem.data.u32 = device->id;
1093 if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, device->fd, &eventItem)) {
1094 ALOGE("Could not add device fd to epoll instance. errno=%d", errno);
1095 return -errno;
1096 }
1097 return OK;
1098 }
1099
unregisterDeviceFromEpollLocked(Device * device)1100 status_t EventHub::unregisterDeviceFromEpollLocked(Device* device) {
1101 if (device->hasValidFd()) {
1102 if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, device->fd, NULL)) {
1103 ALOGW("Could not remove device fd from epoll instance. errno=%d", errno);
1104 return -errno;
1105 }
1106 }
1107 return OK;
1108 }
1109
openDeviceLocked(const char * devicePath)1110 status_t EventHub::openDeviceLocked(const char *devicePath) {
1111 char buffer[80];
1112
1113 ALOGV("Opening device: %s", devicePath);
1114
1115 int fd = open(devicePath, O_RDWR | O_CLOEXEC | O_NONBLOCK);
1116 if(fd < 0) {
1117 ALOGE("could not open %s, %s\n", devicePath, strerror(errno));
1118 return -1;
1119 }
1120
1121 InputDeviceIdentifier identifier;
1122
1123 // Get device name.
1124 if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
1125 //fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno));
1126 } else {
1127 buffer[sizeof(buffer) - 1] = '\0';
1128 identifier.name.setTo(buffer);
1129 }
1130
1131 // Check to see if the device is on our excluded list
1132 for (size_t i = 0; i < mExcludedDevices.size(); i++) {
1133 const String8& item = mExcludedDevices.itemAt(i);
1134 if (identifier.name == item) {
1135 ALOGI("ignoring event id %s driver %s\n", devicePath, item.string());
1136 close(fd);
1137 return -1;
1138 }
1139 }
1140
1141 // Get device driver version.
1142 int driverVersion;
1143 if(ioctl(fd, EVIOCGVERSION, &driverVersion)) {
1144 ALOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno));
1145 close(fd);
1146 return -1;
1147 }
1148
1149 // Get device identifier.
1150 struct input_id inputId;
1151 if(ioctl(fd, EVIOCGID, &inputId)) {
1152 ALOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno));
1153 close(fd);
1154 return -1;
1155 }
1156 identifier.bus = inputId.bustype;
1157 identifier.product = inputId.product;
1158 identifier.vendor = inputId.vendor;
1159 identifier.version = inputId.version;
1160
1161 // Get device physical location.
1162 if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
1163 //fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
1164 } else {
1165 buffer[sizeof(buffer) - 1] = '\0';
1166 identifier.location.setTo(buffer);
1167 }
1168
1169 // Get device unique id.
1170 if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
1171 //fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
1172 } else {
1173 buffer[sizeof(buffer) - 1] = '\0';
1174 identifier.uniqueId.setTo(buffer);
1175 }
1176
1177 // Fill in the descriptor.
1178 assignDescriptorLocked(identifier);
1179
1180 // Allocate device. (The device object takes ownership of the fd at this point.)
1181 int32_t deviceId = mNextDeviceId++;
1182 Device* device = new Device(fd, deviceId, String8(devicePath), identifier);
1183
1184 ALOGV("add device %d: %s\n", deviceId, devicePath);
1185 ALOGV(" bus: %04x\n"
1186 " vendor %04x\n"
1187 " product %04x\n"
1188 " version %04x\n",
1189 identifier.bus, identifier.vendor, identifier.product, identifier.version);
1190 ALOGV(" name: \"%s\"\n", identifier.name.string());
1191 ALOGV(" location: \"%s\"\n", identifier.location.string());
1192 ALOGV(" unique id: \"%s\"\n", identifier.uniqueId.string());
1193 ALOGV(" descriptor: \"%s\"\n", identifier.descriptor.string());
1194 ALOGV(" driver: v%d.%d.%d\n",
1195 driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff);
1196
1197 // Load the configuration file for the device.
1198 loadConfigurationLocked(device);
1199
1200 // Figure out the kinds of events the device reports.
1201 ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(device->keyBitmask)), device->keyBitmask);
1202 ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(device->absBitmask)), device->absBitmask);
1203 ioctl(fd, EVIOCGBIT(EV_REL, sizeof(device->relBitmask)), device->relBitmask);
1204 ioctl(fd, EVIOCGBIT(EV_SW, sizeof(device->swBitmask)), device->swBitmask);
1205 ioctl(fd, EVIOCGBIT(EV_LED, sizeof(device->ledBitmask)), device->ledBitmask);
1206 ioctl(fd, EVIOCGBIT(EV_FF, sizeof(device->ffBitmask)), device->ffBitmask);
1207 ioctl(fd, EVIOCGPROP(sizeof(device->propBitmask)), device->propBitmask);
1208
1209 // See if this is a keyboard. Ignore everything in the button range except for
1210 // joystick and gamepad buttons which are handled like keyboards for the most part.
1211 bool haveKeyboardKeys = containsNonZeroByte(device->keyBitmask, 0, sizeof_bit_array(BTN_MISC))
1212 || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(KEY_OK),
1213 sizeof_bit_array(KEY_MAX + 1));
1214 bool haveGamepadButtons = containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_MISC),
1215 sizeof_bit_array(BTN_MOUSE))
1216 || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_JOYSTICK),
1217 sizeof_bit_array(BTN_DIGI));
1218 if (haveKeyboardKeys || haveGamepadButtons) {
1219 device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
1220 }
1221
1222 // See if this is a cursor device such as a trackball or mouse.
1223 if (test_bit(BTN_MOUSE, device->keyBitmask)
1224 && test_bit(REL_X, device->relBitmask)
1225 && test_bit(REL_Y, device->relBitmask)) {
1226 device->classes |= INPUT_DEVICE_CLASS_CURSOR;
1227 }
1228
1229 // See if this is a rotary encoder type device.
1230 String8 deviceType = String8();
1231 if (device->configuration &&
1232 device->configuration->tryGetProperty(String8("device.type"), deviceType)) {
1233 if (!deviceType.compare(String8("rotaryEncoder"))) {
1234 device->classes |= INPUT_DEVICE_CLASS_ROTARY_ENCODER;
1235 }
1236 }
1237
1238 // See if this is a touch pad.
1239 // Is this a new modern multi-touch driver?
1240 if (test_bit(ABS_MT_POSITION_X, device->absBitmask)
1241 && test_bit(ABS_MT_POSITION_Y, device->absBitmask)) {
1242 // Some joysticks such as the PS3 controller report axes that conflict
1243 // with the ABS_MT range. Try to confirm that the device really is
1244 // a touch screen.
1245 if (test_bit(BTN_TOUCH, device->keyBitmask) || !haveGamepadButtons) {
1246 device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT;
1247 }
1248 // Is this an old style single-touch driver?
1249 } else if (test_bit(BTN_TOUCH, device->keyBitmask)
1250 && test_bit(ABS_X, device->absBitmask)
1251 && test_bit(ABS_Y, device->absBitmask)) {
1252 device->classes |= INPUT_DEVICE_CLASS_TOUCH;
1253 // Is this a BT stylus?
1254 } else if ((test_bit(ABS_PRESSURE, device->absBitmask) ||
1255 test_bit(BTN_TOUCH, device->keyBitmask))
1256 && !test_bit(ABS_X, device->absBitmask)
1257 && !test_bit(ABS_Y, device->absBitmask)) {
1258 device->classes |= INPUT_DEVICE_CLASS_EXTERNAL_STYLUS;
1259 // Keyboard will try to claim some of the buttons but we really want to reserve those so we
1260 // can fuse it with the touch screen data, so just take them back. Note this means an
1261 // external stylus cannot also be a keyboard device.
1262 device->classes &= ~INPUT_DEVICE_CLASS_KEYBOARD;
1263 }
1264
1265 // See if this device is a joystick.
1266 // Assumes that joysticks always have gamepad buttons in order to distinguish them
1267 // from other devices such as accelerometers that also have absolute axes.
1268 if (haveGamepadButtons) {
1269 uint32_t assumedClasses = device->classes | INPUT_DEVICE_CLASS_JOYSTICK;
1270 for (int i = 0; i <= ABS_MAX; i++) {
1271 if (test_bit(i, device->absBitmask)
1272 && (getAbsAxisUsage(i, assumedClasses) & INPUT_DEVICE_CLASS_JOYSTICK)) {
1273 device->classes = assumedClasses;
1274 break;
1275 }
1276 }
1277 }
1278
1279 // Check whether this device has switches.
1280 for (int i = 0; i <= SW_MAX; i++) {
1281 if (test_bit(i, device->swBitmask)) {
1282 device->classes |= INPUT_DEVICE_CLASS_SWITCH;
1283 break;
1284 }
1285 }
1286
1287 // Check whether this device supports the vibrator.
1288 if (test_bit(FF_RUMBLE, device->ffBitmask)) {
1289 device->classes |= INPUT_DEVICE_CLASS_VIBRATOR;
1290 }
1291
1292 // Configure virtual keys.
1293 if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) {
1294 // Load the virtual keys for the touch screen, if any.
1295 // We do this now so that we can make sure to load the keymap if necessary.
1296 status_t status = loadVirtualKeyMapLocked(device);
1297 if (!status) {
1298 device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
1299 }
1300 }
1301
1302 // Load the key map.
1303 // We need to do this for joysticks too because the key layout may specify axes.
1304 status_t keyMapStatus = NAME_NOT_FOUND;
1305 if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) {
1306 // Load the keymap for the device.
1307 keyMapStatus = loadKeyMapLocked(device);
1308 }
1309
1310 // Configure the keyboard, gamepad or virtual keyboard.
1311 if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) {
1312 // Register the keyboard as a built-in keyboard if it is eligible.
1313 if (!keyMapStatus
1314 && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD
1315 && isEligibleBuiltInKeyboard(device->identifier,
1316 device->configuration, &device->keyMap)) {
1317 mBuiltInKeyboardId = device->id;
1318 }
1319
1320 // 'Q' key support = cheap test of whether this is an alpha-capable kbd
1321 if (hasKeycodeLocked(device, AKEYCODE_Q)) {
1322 device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY;
1323 }
1324
1325 // See if this device has a DPAD.
1326 if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) &&
1327 hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) &&
1328 hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) &&
1329 hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) &&
1330 hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) {
1331 device->classes |= INPUT_DEVICE_CLASS_DPAD;
1332 }
1333
1334 // See if this device has a gamepad.
1335 for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) {
1336 if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) {
1337 device->classes |= INPUT_DEVICE_CLASS_GAMEPAD;
1338 break;
1339 }
1340 }
1341 }
1342
1343 // If the device isn't recognized as something we handle, don't monitor it.
1344 if (device->classes == 0) {
1345 ALOGV("Dropping device: id=%d, path='%s', name='%s'",
1346 deviceId, devicePath, device->identifier.name.string());
1347 delete device;
1348 return -1;
1349 }
1350
1351 // Determine whether the device has a mic.
1352 if (deviceHasMicLocked(device)) {
1353 device->classes |= INPUT_DEVICE_CLASS_MIC;
1354 }
1355
1356 // Determine whether the device is external or internal.
1357 if (isExternalDeviceLocked(device)) {
1358 device->classes |= INPUT_DEVICE_CLASS_EXTERNAL;
1359 }
1360
1361 if (device->classes & (INPUT_DEVICE_CLASS_JOYSTICK | INPUT_DEVICE_CLASS_DPAD)
1362 && device->classes & INPUT_DEVICE_CLASS_GAMEPAD) {
1363 device->controllerNumber = getNextControllerNumberLocked(device);
1364 setLedForControllerLocked(device);
1365 }
1366
1367
1368 if (registerDeviceForEpollLocked(device) != OK) {
1369 delete device;
1370 return -1;
1371 }
1372
1373 configureFd(device);
1374
1375 ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, "
1376 "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, ",
1377 deviceId, fd, devicePath, device->identifier.name.string(),
1378 device->classes,
1379 device->configurationFile.string(),
1380 device->keyMap.keyLayoutFile.string(),
1381 device->keyMap.keyCharacterMapFile.string(),
1382 toString(mBuiltInKeyboardId == deviceId));
1383
1384 addDeviceLocked(device);
1385 return OK;
1386 }
1387
configureFd(Device * device)1388 void EventHub::configureFd(Device* device) {
1389 // Set fd parameters with ioctl, such as key repeat, suspend block, and clock type
1390 if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) {
1391 // Disable kernel key repeat since we handle it ourselves
1392 unsigned int repeatRate[] = {0, 0};
1393 if (ioctl(device->fd, EVIOCSREP, repeatRate)) {
1394 ALOGW("Unable to disable kernel key repeat for %s: %s",
1395 device->path.string(), strerror(errno));
1396 }
1397 }
1398
1399 String8 wakeMechanism("EPOLLWAKEUP");
1400 if (!mUsingEpollWakeup) {
1401 #ifndef EVIOCSSUSPENDBLOCK
1402 // uapi headers don't include EVIOCSSUSPENDBLOCK, and future kernels
1403 // will use an epoll flag instead, so as long as we want to support
1404 // this feature, we need to be prepared to define the ioctl ourselves.
1405 #define EVIOCSSUSPENDBLOCK _IOW('E', 0x91, int)
1406 #endif
1407 if (ioctl(device->fd, EVIOCSSUSPENDBLOCK, 1)) {
1408 wakeMechanism = "<none>";
1409 } else {
1410 wakeMechanism = "EVIOCSSUSPENDBLOCK";
1411 }
1412 }
1413 // Tell the kernel that we want to use the monotonic clock for reporting timestamps
1414 // associated with input events. This is important because the input system
1415 // uses the timestamps extensively and assumes they were recorded using the monotonic
1416 // clock.
1417 int clockId = CLOCK_MONOTONIC;
1418 bool usingClockIoctl = !ioctl(device->fd, EVIOCSCLOCKID, &clockId);
1419 ALOGI("wakeMechanism=%s, usingClockIoctl=%s", wakeMechanism.string(),
1420 toString(usingClockIoctl));
1421 }
1422
isDeviceEnabled(int32_t deviceId)1423 bool EventHub::isDeviceEnabled(int32_t deviceId) {
1424 AutoMutex _l(mLock);
1425 Device* device = getDeviceLocked(deviceId);
1426 if (device == NULL) {
1427 ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
1428 return false;
1429 }
1430 return device->enabled;
1431 }
1432
enableDevice(int32_t deviceId)1433 status_t EventHub::enableDevice(int32_t deviceId) {
1434 AutoMutex _l(mLock);
1435 Device* device = getDeviceLocked(deviceId);
1436 if (device == NULL) {
1437 ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
1438 return BAD_VALUE;
1439 }
1440 if (device->enabled) {
1441 ALOGW("Duplicate call to %s, input device %" PRId32 " already enabled", __func__, deviceId);
1442 return OK;
1443 }
1444 status_t result = device->enable();
1445 if (result != OK) {
1446 ALOGE("Failed to enable device %" PRId32, deviceId);
1447 return result;
1448 }
1449
1450 configureFd(device);
1451
1452 return registerDeviceForEpollLocked(device);
1453 }
1454
disableDevice(int32_t deviceId)1455 status_t EventHub::disableDevice(int32_t deviceId) {
1456 AutoMutex _l(mLock);
1457 Device* device = getDeviceLocked(deviceId);
1458 if (device == NULL) {
1459 ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__);
1460 return BAD_VALUE;
1461 }
1462 if (!device->enabled) {
1463 ALOGW("Duplicate call to %s, input device already disabled", __func__);
1464 return OK;
1465 }
1466 unregisterDeviceFromEpollLocked(device);
1467 return device->disable();
1468 }
1469
createVirtualKeyboardLocked()1470 void EventHub::createVirtualKeyboardLocked() {
1471 InputDeviceIdentifier identifier;
1472 identifier.name = "Virtual";
1473 identifier.uniqueId = "<virtual>";
1474 assignDescriptorLocked(identifier);
1475
1476 Device* device = new Device(-1, VIRTUAL_KEYBOARD_ID, String8("<virtual>"), identifier);
1477 device->classes = INPUT_DEVICE_CLASS_KEYBOARD
1478 | INPUT_DEVICE_CLASS_ALPHAKEY
1479 | INPUT_DEVICE_CLASS_DPAD
1480 | INPUT_DEVICE_CLASS_VIRTUAL;
1481 loadKeyMapLocked(device);
1482 addDeviceLocked(device);
1483 }
1484
addDeviceLocked(Device * device)1485 void EventHub::addDeviceLocked(Device* device) {
1486 mDevices.add(device->id, device);
1487 device->next = mOpeningDevices;
1488 mOpeningDevices = device;
1489 }
1490
loadConfigurationLocked(Device * device)1491 void EventHub::loadConfigurationLocked(Device* device) {
1492 device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier(
1493 device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION);
1494 if (device->configurationFile.isEmpty()) {
1495 ALOGD("No input device configuration file found for device '%s'.",
1496 device->identifier.name.string());
1497 } else {
1498 status_t status = PropertyMap::load(device->configurationFile,
1499 &device->configuration);
1500 if (status) {
1501 ALOGE("Error loading input device configuration file for device '%s'. "
1502 "Using default configuration.",
1503 device->identifier.name.string());
1504 }
1505 }
1506 }
1507
loadVirtualKeyMapLocked(Device * device)1508 status_t EventHub::loadVirtualKeyMapLocked(Device* device) {
1509 // The virtual key map is supplied by the kernel as a system board property file.
1510 String8 path;
1511 path.append("/sys/board_properties/virtualkeys.");
1512 path.append(device->identifier.name);
1513 if (access(path.string(), R_OK)) {
1514 return NAME_NOT_FOUND;
1515 }
1516 return VirtualKeyMap::load(path, &device->virtualKeyMap);
1517 }
1518
loadKeyMapLocked(Device * device)1519 status_t EventHub::loadKeyMapLocked(Device* device) {
1520 return device->keyMap.load(device->identifier, device->configuration);
1521 }
1522
isExternalDeviceLocked(Device * device)1523 bool EventHub::isExternalDeviceLocked(Device* device) {
1524 if (device->configuration) {
1525 bool value;
1526 if (device->configuration->tryGetProperty(String8("device.internal"), value)) {
1527 return !value;
1528 }
1529 }
1530 return device->identifier.bus == BUS_USB || device->identifier.bus == BUS_BLUETOOTH;
1531 }
1532
deviceHasMicLocked(Device * device)1533 bool EventHub::deviceHasMicLocked(Device* device) {
1534 if (device->configuration) {
1535 bool value;
1536 if (device->configuration->tryGetProperty(String8("audio.mic"), value)) {
1537 return value;
1538 }
1539 }
1540 return false;
1541 }
1542
getNextControllerNumberLocked(Device * device)1543 int32_t EventHub::getNextControllerNumberLocked(Device* device) {
1544 if (mControllerNumbers.isFull()) {
1545 ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s",
1546 device->identifier.name.string());
1547 return 0;
1548 }
1549 // Since the controller number 0 is reserved for non-controllers, translate all numbers up by
1550 // one
1551 return static_cast<int32_t>(mControllerNumbers.markFirstUnmarkedBit() + 1);
1552 }
1553
releaseControllerNumberLocked(Device * device)1554 void EventHub::releaseControllerNumberLocked(Device* device) {
1555 int32_t num = device->controllerNumber;
1556 device->controllerNumber= 0;
1557 if (num == 0) {
1558 return;
1559 }
1560 mControllerNumbers.clearBit(static_cast<uint32_t>(num - 1));
1561 }
1562
setLedForControllerLocked(Device * device)1563 void EventHub::setLedForControllerLocked(Device* device) {
1564 for (int i = 0; i < MAX_CONTROLLER_LEDS; i++) {
1565 setLedStateLocked(device, ALED_CONTROLLER_1 + i, device->controllerNumber == i + 1);
1566 }
1567 }
1568
hasKeycodeLocked(Device * device,int keycode) const1569 bool EventHub::hasKeycodeLocked(Device* device, int keycode) const {
1570 if (!device->keyMap.haveKeyLayout()) {
1571 return false;
1572 }
1573
1574 Vector<int32_t> scanCodes;
1575 device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes);
1576 const size_t N = scanCodes.size();
1577 for (size_t i=0; i<N && i<=KEY_MAX; i++) {
1578 int32_t sc = scanCodes.itemAt(i);
1579 if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) {
1580 return true;
1581 }
1582 }
1583
1584 return false;
1585 }
1586
mapLed(Device * device,int32_t led,int32_t * outScanCode) const1587 status_t EventHub::mapLed(Device* device, int32_t led, int32_t* outScanCode) const {
1588 if (!device->keyMap.haveKeyLayout()) {
1589 return NAME_NOT_FOUND;
1590 }
1591
1592 int32_t scanCode;
1593 if(device->keyMap.keyLayoutMap->findScanCodeForLed(led, &scanCode) != NAME_NOT_FOUND) {
1594 if(scanCode >= 0 && scanCode <= LED_MAX && test_bit(scanCode, device->ledBitmask)) {
1595 *outScanCode = scanCode;
1596 return NO_ERROR;
1597 }
1598 }
1599 return NAME_NOT_FOUND;
1600 }
1601
closeDeviceByPathLocked(const char * devicePath)1602 status_t EventHub::closeDeviceByPathLocked(const char *devicePath) {
1603 Device* device = getDeviceByPathLocked(devicePath);
1604 if (device) {
1605 closeDeviceLocked(device);
1606 return 0;
1607 }
1608 ALOGV("Remove device: %s not found, device may already have been removed.", devicePath);
1609 return -1;
1610 }
1611
closeAllDevicesLocked()1612 void EventHub::closeAllDevicesLocked() {
1613 while (mDevices.size() > 0) {
1614 closeDeviceLocked(mDevices.valueAt(mDevices.size() - 1));
1615 }
1616 }
1617
closeDeviceLocked(Device * device)1618 void EventHub::closeDeviceLocked(Device* device) {
1619 ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x\n",
1620 device->path.string(), device->identifier.name.string(), device->id,
1621 device->fd, device->classes);
1622
1623 if (device->id == mBuiltInKeyboardId) {
1624 ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
1625 device->path.string(), mBuiltInKeyboardId);
1626 mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD;
1627 }
1628
1629 unregisterDeviceFromEpollLocked(device);
1630
1631 releaseControllerNumberLocked(device);
1632
1633 mDevices.removeItem(device->id);
1634 device->close();
1635
1636 // Unlink for opening devices list if it is present.
1637 Device* pred = NULL;
1638 bool found = false;
1639 for (Device* entry = mOpeningDevices; entry != NULL; ) {
1640 if (entry == device) {
1641 found = true;
1642 break;
1643 }
1644 pred = entry;
1645 entry = entry->next;
1646 }
1647 if (found) {
1648 // Unlink the device from the opening devices list then delete it.
1649 // We don't need to tell the client that the device was closed because
1650 // it does not even know it was opened in the first place.
1651 ALOGI("Device %s was immediately closed after opening.", device->path.string());
1652 if (pred) {
1653 pred->next = device->next;
1654 } else {
1655 mOpeningDevices = device->next;
1656 }
1657 delete device;
1658 } else {
1659 // Link into closing devices list.
1660 // The device will be deleted later after we have informed the client.
1661 device->next = mClosingDevices;
1662 mClosingDevices = device;
1663 }
1664 }
1665
readNotifyLocked()1666 status_t EventHub::readNotifyLocked() {
1667 int res;
1668 char devname[PATH_MAX];
1669 char *filename;
1670 char event_buf[512];
1671 int event_size;
1672 int event_pos = 0;
1673 struct inotify_event *event;
1674
1675 ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd);
1676 res = read(mINotifyFd, event_buf, sizeof(event_buf));
1677 if(res < (int)sizeof(*event)) {
1678 if(errno == EINTR)
1679 return 0;
1680 ALOGW("could not get event, %s\n", strerror(errno));
1681 return -1;
1682 }
1683 //printf("got %d bytes of event information\n", res);
1684
1685 strcpy(devname, DEVICE_PATH);
1686 filename = devname + strlen(devname);
1687 *filename++ = '/';
1688
1689 while(res >= (int)sizeof(*event)) {
1690 event = (struct inotify_event *)(event_buf + event_pos);
1691 //printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : "");
1692 if(event->len) {
1693 strcpy(filename, event->name);
1694 if(event->mask & IN_CREATE) {
1695 openDeviceLocked(devname);
1696 } else {
1697 ALOGI("Removing device '%s' due to inotify event\n", devname);
1698 closeDeviceByPathLocked(devname);
1699 }
1700 }
1701 event_size = sizeof(*event) + event->len;
1702 res -= event_size;
1703 event_pos += event_size;
1704 }
1705 return 0;
1706 }
1707
scanDirLocked(const char * dirname)1708 status_t EventHub::scanDirLocked(const char *dirname)
1709 {
1710 char devname[PATH_MAX];
1711 char *filename;
1712 DIR *dir;
1713 struct dirent *de;
1714 dir = opendir(dirname);
1715 if(dir == NULL)
1716 return -1;
1717 strcpy(devname, dirname);
1718 filename = devname + strlen(devname);
1719 *filename++ = '/';
1720 while((de = readdir(dir))) {
1721 if(de->d_name[0] == '.' &&
1722 (de->d_name[1] == '\0' ||
1723 (de->d_name[1] == '.' && de->d_name[2] == '\0')))
1724 continue;
1725 strcpy(filename, de->d_name);
1726 openDeviceLocked(devname);
1727 }
1728 closedir(dir);
1729 return 0;
1730 }
1731
requestReopenDevices()1732 void EventHub::requestReopenDevices() {
1733 ALOGV("requestReopenDevices() called");
1734
1735 AutoMutex _l(mLock);
1736 mNeedToReopenDevices = true;
1737 }
1738
dump(std::string & dump)1739 void EventHub::dump(std::string& dump) {
1740 dump += "Event Hub State:\n";
1741
1742 { // acquire lock
1743 AutoMutex _l(mLock);
1744
1745 dump += StringPrintf(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
1746
1747 dump += INDENT "Devices:\n";
1748
1749 for (size_t i = 0; i < mDevices.size(); i++) {
1750 const Device* device = mDevices.valueAt(i);
1751 if (mBuiltInKeyboardId == device->id) {
1752 dump += StringPrintf(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
1753 device->id, device->identifier.name.string());
1754 } else {
1755 dump += StringPrintf(INDENT2 "%d: %s\n", device->id,
1756 device->identifier.name.string());
1757 }
1758 dump += StringPrintf(INDENT3 "Classes: 0x%08x\n", device->classes);
1759 dump += StringPrintf(INDENT3 "Path: %s\n", device->path.string());
1760 dump += StringPrintf(INDENT3 "Enabled: %s\n", toString(device->enabled));
1761 dump += StringPrintf(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.string());
1762 dump += StringPrintf(INDENT3 "Location: %s\n", device->identifier.location.string());
1763 dump += StringPrintf(INDENT3 "ControllerNumber: %d\n", device->controllerNumber);
1764 dump += StringPrintf(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.string());
1765 dump += StringPrintf(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
1766 "product=0x%04x, version=0x%04x\n",
1767 device->identifier.bus, device->identifier.vendor,
1768 device->identifier.product, device->identifier.version);
1769 dump += StringPrintf(INDENT3 "KeyLayoutFile: %s\n",
1770 device->keyMap.keyLayoutFile.string());
1771 dump += StringPrintf(INDENT3 "KeyCharacterMapFile: %s\n",
1772 device->keyMap.keyCharacterMapFile.string());
1773 dump += StringPrintf(INDENT3 "ConfigurationFile: %s\n",
1774 device->configurationFile.string());
1775 dump += StringPrintf(INDENT3 "HaveKeyboardLayoutOverlay: %s\n",
1776 toString(device->overlayKeyMap != NULL));
1777 }
1778 } // release lock
1779 }
1780
monitor()1781 void EventHub::monitor() {
1782 // Acquire and release the lock to ensure that the event hub has not deadlocked.
1783 mLock.lock();
1784 mLock.unlock();
1785 }
1786
1787
1788 }; // namespace android
1789