1 // layout.cc -- lay out output file sections for gold
2 
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37 
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "gdb-index.h"
48 #include "compressed_output.h"
49 #include "reduced_debug_output.h"
50 #include "object.h"
51 #include "reloc.h"
52 #include "descriptors.h"
53 #include "plugin.h"
54 #include "incremental.h"
55 #include "layout.h"
56 
57 namespace gold
58 {
59 
60 // Class Free_list.
61 
62 // The total number of free lists used.
63 unsigned int Free_list::num_lists = 0;
64 // The total number of free list nodes used.
65 unsigned int Free_list::num_nodes = 0;
66 // The total number of calls to Free_list::remove.
67 unsigned int Free_list::num_removes = 0;
68 // The total number of nodes visited during calls to Free_list::remove.
69 unsigned int Free_list::num_remove_visits = 0;
70 // The total number of calls to Free_list::allocate.
71 unsigned int Free_list::num_allocates = 0;
72 // The total number of nodes visited during calls to Free_list::allocate.
73 unsigned int Free_list::num_allocate_visits = 0;
74 
75 // Initialize the free list.  Creates a single free list node that
76 // describes the entire region of length LEN.  If EXTEND is true,
77 // allocate() is allowed to extend the region beyond its initial
78 // length.
79 
80 void
init(off_t len,bool extend)81 Free_list::init(off_t len, bool extend)
82 {
83   this->list_.push_front(Free_list_node(0, len));
84   this->last_remove_ = this->list_.begin();
85   this->extend_ = extend;
86   this->length_ = len;
87   ++Free_list::num_lists;
88   ++Free_list::num_nodes;
89 }
90 
91 // Remove a chunk from the free list.  Because we start with a single
92 // node that covers the entire section, and remove chunks from it one
93 // at a time, we do not need to coalesce chunks or handle cases that
94 // span more than one free node.  We expect to remove chunks from the
95 // free list in order, and we expect to have only a few chunks of free
96 // space left (corresponding to files that have changed since the last
97 // incremental link), so a simple linear list should provide sufficient
98 // performance.
99 
100 void
remove(off_t start,off_t end)101 Free_list::remove(off_t start, off_t end)
102 {
103   if (start == end)
104     return;
105   gold_assert(start < end);
106 
107   ++Free_list::num_removes;
108 
109   Iterator p = this->last_remove_;
110   if (p->start_ > start)
111     p = this->list_.begin();
112 
113   for (; p != this->list_.end(); ++p)
114     {
115       ++Free_list::num_remove_visits;
116       // Find a node that wholly contains the indicated region.
117       if (p->start_ <= start && p->end_ >= end)
118 	{
119 	  // Case 1: the indicated region spans the whole node.
120 	  // Add some fuzz to avoid creating tiny free chunks.
121 	  if (p->start_ + 3 >= start && p->end_ <= end + 3)
122 	    p = this->list_.erase(p);
123 	  // Case 2: remove a chunk from the start of the node.
124 	  else if (p->start_ + 3 >= start)
125 	    p->start_ = end;
126 	  // Case 3: remove a chunk from the end of the node.
127 	  else if (p->end_ <= end + 3)
128 	    p->end_ = start;
129 	  // Case 4: remove a chunk from the middle, and split
130 	  // the node into two.
131 	  else
132 	    {
133 	      Free_list_node newnode(p->start_, start);
134 	      p->start_ = end;
135 	      this->list_.insert(p, newnode);
136 	      ++Free_list::num_nodes;
137 	    }
138 	  this->last_remove_ = p;
139 	  return;
140 	}
141     }
142 
143   // Did not find a node containing the given chunk.  This could happen
144   // because a small chunk was already removed due to the fuzz.
145   gold_debug(DEBUG_INCREMENTAL,
146 	     "Free_list::remove(%d,%d) not found",
147 	     static_cast<int>(start), static_cast<int>(end));
148 }
149 
150 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
151 // if a sufficiently large chunk of free space is not found.
152 // We use a simple first-fit algorithm.
153 
154 off_t
allocate(off_t len,uint64_t align,off_t minoff)155 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
156 {
157   gold_debug(DEBUG_INCREMENTAL,
158 	     "Free_list::allocate(%08lx, %d, %08lx)",
159 	     static_cast<long>(len), static_cast<int>(align),
160 	     static_cast<long>(minoff));
161   if (len == 0)
162     return align_address(minoff, align);
163 
164   ++Free_list::num_allocates;
165 
166   // We usually want to drop free chunks smaller than 4 bytes.
167   // If we need to guarantee a minimum hole size, though, we need
168   // to keep track of all free chunks.
169   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
170 
171   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
172     {
173       ++Free_list::num_allocate_visits;
174       off_t start = p->start_ > minoff ? p->start_ : minoff;
175       start = align_address(start, align);
176       off_t end = start + len;
177       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
178 	{
179 	  this->length_ = end;
180 	  p->end_ = end;
181 	}
182       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
183 	{
184 	  if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
185 	    this->list_.erase(p);
186 	  else if (p->start_ + fuzz >= start)
187 	    p->start_ = end;
188 	  else if (p->end_ <= end + fuzz)
189 	    p->end_ = start;
190 	  else
191 	    {
192 	      Free_list_node newnode(p->start_, start);
193 	      p->start_ = end;
194 	      this->list_.insert(p, newnode);
195 	      ++Free_list::num_nodes;
196 	    }
197 	  return start;
198 	}
199     }
200   if (this->extend_)
201     {
202       off_t start = align_address(this->length_, align);
203       this->length_ = start + len;
204       return start;
205     }
206   return -1;
207 }
208 
209 // Dump the free list (for debugging).
210 void
dump()211 Free_list::dump()
212 {
213   gold_info("Free list:\n     start      end   length\n");
214   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
215     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
216 	      static_cast<long>(p->end_),
217 	      static_cast<long>(p->end_ - p->start_));
218 }
219 
220 // Print the statistics for the free lists.
221 void
print_stats()222 Free_list::print_stats()
223 {
224   fprintf(stderr, _("%s: total free lists: %u\n"),
225 	  program_name, Free_list::num_lists);
226   fprintf(stderr, _("%s: total free list nodes: %u\n"),
227 	  program_name, Free_list::num_nodes);
228   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
229 	  program_name, Free_list::num_removes);
230   fprintf(stderr, _("%s: nodes visited: %u\n"),
231 	  program_name, Free_list::num_remove_visits);
232   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
233 	  program_name, Free_list::num_allocates);
234   fprintf(stderr, _("%s: nodes visited: %u\n"),
235 	  program_name, Free_list::num_allocate_visits);
236 }
237 
238 // A Hash_task computes the MD5 checksum of an array of char.
239 
240 class Hash_task : public Task
241 {
242  public:
Hash_task(Output_file * of,size_t offset,size_t size,unsigned char * dst,Task_token * final_blocker)243   Hash_task(Output_file* of,
244 	    size_t offset,
245 	    size_t size,
246 	    unsigned char* dst,
247 	    Task_token* final_blocker)
248     : of_(of), offset_(offset), size_(size), dst_(dst),
249       final_blocker_(final_blocker)
250   { }
251 
252   void
run(Workqueue *)253   run(Workqueue*)
254   {
255     const unsigned char* iv =
256 	this->of_->get_input_view(this->offset_, this->size_);
257     md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
258     this->of_->free_input_view(this->offset_, this->size_, iv);
259   }
260 
261   Task_token*
is_runnable()262   is_runnable()
263   { return NULL; }
264 
265   // Unblock FINAL_BLOCKER_ when done.
266   void
locks(Task_locker * tl)267   locks(Task_locker* tl)
268   { tl->add(this, this->final_blocker_); }
269 
270   std::string
get_name() const271   get_name() const
272   { return "Hash_task"; }
273 
274  private:
275   Output_file* of_;
276   const size_t offset_;
277   const size_t size_;
278   unsigned char* const dst_;
279   Task_token* const final_blocker_;
280 };
281 
282 // Layout::Relaxation_debug_check methods.
283 
284 // Check that sections and special data are in reset states.
285 // We do not save states for Output_sections and special Output_data.
286 // So we check that they have not assigned any addresses or offsets.
287 // clean_up_after_relaxation simply resets their addresses and offsets.
288 void
check_output_data_for_reset_values(const Layout::Section_list & sections,const Layout::Data_list & special_outputs,const Layout::Data_list & relax_outputs)289 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
290     const Layout::Section_list& sections,
291     const Layout::Data_list& special_outputs,
292     const Layout::Data_list& relax_outputs)
293 {
294   for(Layout::Section_list::const_iterator p = sections.begin();
295       p != sections.end();
296       ++p)
297     gold_assert((*p)->address_and_file_offset_have_reset_values());
298 
299   for(Layout::Data_list::const_iterator p = special_outputs.begin();
300       p != special_outputs.end();
301       ++p)
302     gold_assert((*p)->address_and_file_offset_have_reset_values());
303 
304   gold_assert(relax_outputs.empty());
305 }
306 
307 // Save information of SECTIONS for checking later.
308 
309 void
read_sections(const Layout::Section_list & sections)310 Layout::Relaxation_debug_check::read_sections(
311     const Layout::Section_list& sections)
312 {
313   for(Layout::Section_list::const_iterator p = sections.begin();
314       p != sections.end();
315       ++p)
316     {
317       Output_section* os = *p;
318       Section_info info;
319       info.output_section = os;
320       info.address = os->is_address_valid() ? os->address() : 0;
321       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
322       info.offset = os->is_offset_valid()? os->offset() : -1 ;
323       this->section_infos_.push_back(info);
324     }
325 }
326 
327 // Verify SECTIONS using previously recorded information.
328 
329 void
verify_sections(const Layout::Section_list & sections)330 Layout::Relaxation_debug_check::verify_sections(
331     const Layout::Section_list& sections)
332 {
333   size_t i = 0;
334   for(Layout::Section_list::const_iterator p = sections.begin();
335       p != sections.end();
336       ++p, ++i)
337     {
338       Output_section* os = *p;
339       uint64_t address = os->is_address_valid() ? os->address() : 0;
340       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
341       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
342 
343       if (i >= this->section_infos_.size())
344 	{
345 	  gold_fatal("Section_info of %s missing.\n", os->name());
346 	}
347       const Section_info& info = this->section_infos_[i];
348       if (os != info.output_section)
349 	gold_fatal("Section order changed.  Expecting %s but see %s\n",
350 		   info.output_section->name(), os->name());
351       if (address != info.address
352 	  || data_size != info.data_size
353 	  || offset != info.offset)
354 	gold_fatal("Section %s changed.\n", os->name());
355     }
356 }
357 
358 // Layout_task_runner methods.
359 
360 // Lay out the sections.  This is called after all the input objects
361 // have been read.
362 
363 void
run(Workqueue * workqueue,const Task * task)364 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
365 {
366   // See if any of the input definitions violate the One Definition Rule.
367   // TODO: if this is too slow, do this as a task, rather than inline.
368   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
369 
370   Layout* layout = this->layout_;
371   off_t file_size = layout->finalize(this->input_objects_,
372 				     this->symtab_,
373 				     this->target_,
374 				     task);
375 
376   // Now we know the final size of the output file and we know where
377   // each piece of information goes.
378 
379   if (this->mapfile_ != NULL)
380     {
381       this->mapfile_->print_discarded_sections(this->input_objects_);
382       layout->print_to_mapfile(this->mapfile_);
383     }
384 
385   Output_file* of;
386   if (layout->incremental_base() == NULL)
387     {
388       of = new Output_file(parameters->options().output_file_name());
389       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
390 	of->set_is_temporary();
391       of->open(file_size);
392     }
393   else
394     {
395       of = layout->incremental_base()->output_file();
396 
397       // Apply the incremental relocations for symbols whose values
398       // have changed.  We do this before we resize the file and start
399       // writing anything else to it, so that we can read the old
400       // incremental information from the file before (possibly)
401       // overwriting it.
402       if (parameters->incremental_update())
403 	layout->incremental_base()->apply_incremental_relocs(this->symtab_,
404 							     this->layout_,
405 							     of);
406 
407       of->resize(file_size);
408     }
409 
410   // Queue up the final set of tasks.
411   gold::queue_final_tasks(this->options_, this->input_objects_,
412 			  this->symtab_, layout, workqueue, of);
413 }
414 
415 // Layout methods.
416 
Layout(int number_of_input_files,Script_options * script_options)417 Layout::Layout(int number_of_input_files, Script_options* script_options)
418   : number_of_input_files_(number_of_input_files),
419     script_options_(script_options),
420     namepool_(),
421     sympool_(),
422     dynpool_(),
423     signatures_(),
424     section_name_map_(),
425     segment_list_(),
426     section_list_(),
427     unattached_section_list_(),
428     special_output_list_(),
429     relax_output_list_(),
430     section_headers_(NULL),
431     tls_segment_(NULL),
432     relro_segment_(NULL),
433     interp_segment_(NULL),
434     increase_relro_(0),
435     symtab_section_(NULL),
436     symtab_xindex_(NULL),
437     dynsym_section_(NULL),
438     dynsym_xindex_(NULL),
439     dynamic_section_(NULL),
440     dynamic_symbol_(NULL),
441     dynamic_data_(NULL),
442     eh_frame_section_(NULL),
443     eh_frame_data_(NULL),
444     added_eh_frame_data_(false),
445     eh_frame_hdr_section_(NULL),
446     gdb_index_data_(NULL),
447     build_id_note_(NULL),
448     debug_abbrev_(NULL),
449     debug_info_(NULL),
450     group_signatures_(),
451     output_file_size_(-1),
452     have_added_input_section_(false),
453     sections_are_attached_(false),
454     input_requires_executable_stack_(false),
455     input_with_gnu_stack_note_(false),
456     input_without_gnu_stack_note_(false),
457     has_static_tls_(false),
458     any_postprocessing_sections_(false),
459     resized_signatures_(false),
460     have_stabstr_section_(false),
461     section_ordering_specified_(false),
462     unique_segment_for_sections_specified_(false),
463     incremental_inputs_(NULL),
464     record_output_section_data_from_script_(false),
465     script_output_section_data_list_(),
466     segment_states_(NULL),
467     relaxation_debug_check_(NULL),
468     section_order_map_(),
469     section_segment_map_(),
470     input_section_position_(),
471     input_section_glob_(),
472     incremental_base_(NULL),
473     free_list_()
474 {
475   // Make space for more than enough segments for a typical file.
476   // This is just for efficiency--it's OK if we wind up needing more.
477   this->segment_list_.reserve(12);
478 
479   // We expect two unattached Output_data objects: the file header and
480   // the segment headers.
481   this->special_output_list_.reserve(2);
482 
483   // Initialize structure needed for an incremental build.
484   if (parameters->incremental())
485     this->incremental_inputs_ = new Incremental_inputs;
486 
487   // The section name pool is worth optimizing in all cases, because
488   // it is small, but there are often overlaps due to .rel sections.
489   this->namepool_.set_optimize();
490 }
491 
492 // For incremental links, record the base file to be modified.
493 
494 void
set_incremental_base(Incremental_binary * base)495 Layout::set_incremental_base(Incremental_binary* base)
496 {
497   this->incremental_base_ = base;
498   this->free_list_.init(base->output_file()->filesize(), true);
499 }
500 
501 // Hash a key we use to look up an output section mapping.
502 
503 size_t
operator ()(const Layout::Key & k) const504 Layout::Hash_key::operator()(const Layout::Key& k) const
505 {
506  return k.first + k.second.first + k.second.second;
507 }
508 
509 // These are the debug sections that are actually used by gdb.
510 // Currently, we've checked versions of gdb up to and including 7.4.
511 // We only check the part of the name that follows ".debug_" or
512 // ".zdebug_".
513 
514 static const char* gdb_sections[] =
515 {
516   "abbrev",
517   "addr",         // Fission extension
518   // "aranges",   // not used by gdb as of 7.4
519   "frame",
520   "gdb_scripts",
521   "info",
522   "types",
523   "line",
524   "loc",
525   "macinfo",
526   "macro",
527   // "pubnames",  // not used by gdb as of 7.4
528   // "pubtypes",  // not used by gdb as of 7.4
529   // "gnu_pubnames",  // Fission extension
530   // "gnu_pubtypes",  // Fission extension
531   "ranges",
532   "str",
533   "str_offsets",
534 };
535 
536 // This is the minimum set of sections needed for line numbers.
537 
538 static const char* lines_only_debug_sections[] =
539 {
540   "abbrev",
541   // "addr",      // Fission extension
542   // "aranges",   // not used by gdb as of 7.4
543   // "frame",
544   // "gdb_scripts",
545   "info",
546   // "types",
547   "line",
548   // "loc",
549   // "macinfo",
550   // "macro",
551   // "pubnames",  // not used by gdb as of 7.4
552   // "pubtypes",  // not used by gdb as of 7.4
553   // "gnu_pubnames",  // Fission extension
554   // "gnu_pubtypes",  // Fission extension
555   // "ranges",
556   "str",
557   "str_offsets",  // Fission extension
558 };
559 
560 // These sections are the DWARF fast-lookup tables, and are not needed
561 // when building a .gdb_index section.
562 
563 static const char* gdb_fast_lookup_sections[] =
564 {
565   "aranges",
566   "pubnames",
567   "gnu_pubnames",
568   "pubtypes",
569   "gnu_pubtypes",
570 };
571 
572 // Returns whether the given debug section is in the list of
573 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
574 // portion of the name following ".debug_" or ".zdebug_".
575 
576 static inline bool
is_gdb_debug_section(const char * suffix)577 is_gdb_debug_section(const char* suffix)
578 {
579   // We can do this faster: binary search or a hashtable.  But why bother?
580   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
581     if (strcmp(suffix, gdb_sections[i]) == 0)
582       return true;
583   return false;
584 }
585 
586 // Returns whether the given section is needed for lines-only debugging.
587 
588 static inline bool
is_lines_only_debug_section(const char * suffix)589 is_lines_only_debug_section(const char* suffix)
590 {
591   // We can do this faster: binary search or a hashtable.  But why bother?
592   for (size_t i = 0;
593        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
594        ++i)
595     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
596       return true;
597   return false;
598 }
599 
600 // Returns whether the given section is a fast-lookup section that
601 // will not be needed when building a .gdb_index section.
602 
603 static inline bool
is_gdb_fast_lookup_section(const char * suffix)604 is_gdb_fast_lookup_section(const char* suffix)
605 {
606   // We can do this faster: binary search or a hashtable.  But why bother?
607   for (size_t i = 0;
608        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
609        ++i)
610     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
611       return true;
612   return false;
613 }
614 
615 // Sometimes we compress sections.  This is typically done for
616 // sections that are not part of normal program execution (such as
617 // .debug_* sections), and where the readers of these sections know
618 // how to deal with compressed sections.  This routine doesn't say for
619 // certain whether we'll compress -- it depends on commandline options
620 // as well -- just whether this section is a candidate for compression.
621 // (The Output_compressed_section class decides whether to compress
622 // a given section, and picks the name of the compressed section.)
623 
624 static bool
is_compressible_debug_section(const char * secname)625 is_compressible_debug_section(const char* secname)
626 {
627   return (is_prefix_of(".debug", secname));
628 }
629 
630 // We may see compressed debug sections in input files.  Return TRUE
631 // if this is the name of a compressed debug section.
632 
633 bool
is_compressed_debug_section(const char * secname)634 is_compressed_debug_section(const char* secname)
635 {
636   return (is_prefix_of(".zdebug", secname));
637 }
638 
639 std::string
corresponding_uncompressed_section_name(std::string secname)640 corresponding_uncompressed_section_name(std::string secname)
641 {
642   gold_assert(secname[0] == '.' && secname[1] == 'z');
643   std::string ret(".");
644   ret.append(secname, 2, std::string::npos);
645   return ret;
646 }
647 
648 // Whether to include this section in the link.
649 
650 template<int size, bool big_endian>
651 bool
include_section(Sized_relobj_file<size,big_endian> *,const char * name,const elfcpp::Shdr<size,big_endian> & shdr)652 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
653 			const elfcpp::Shdr<size, big_endian>& shdr)
654 {
655   if (!parameters->options().relocatable()
656       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
657     return false;
658 
659   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
660 
661   if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
662       || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
663     return parameters->target().should_include_section(sh_type);
664 
665   switch (sh_type)
666     {
667     case elfcpp::SHT_NULL:
668     case elfcpp::SHT_SYMTAB:
669     case elfcpp::SHT_DYNSYM:
670     case elfcpp::SHT_HASH:
671     case elfcpp::SHT_DYNAMIC:
672     case elfcpp::SHT_SYMTAB_SHNDX:
673       return false;
674 
675     case elfcpp::SHT_STRTAB:
676       // Discard the sections which have special meanings in the ELF
677       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
678       // checking the sh_link fields of the appropriate sections.
679       return (strcmp(name, ".dynstr") != 0
680 	      && strcmp(name, ".strtab") != 0
681 	      && strcmp(name, ".shstrtab") != 0);
682 
683     case elfcpp::SHT_RELA:
684     case elfcpp::SHT_REL:
685     case elfcpp::SHT_GROUP:
686       // If we are emitting relocations these should be handled
687       // elsewhere.
688       gold_assert(!parameters->options().relocatable());
689       return false;
690 
691     case elfcpp::SHT_PROGBITS:
692       if (parameters->options().strip_debug()
693 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
694 	{
695 	  if (is_debug_info_section(name))
696 	    return false;
697 	}
698       if (parameters->options().strip_debug_non_line()
699 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
700 	{
701 	  // Debugging sections can only be recognized by name.
702 	  if (is_prefix_of(".debug_", name)
703 	      && !is_lines_only_debug_section(name + 7))
704 	    return false;
705 	  if (is_prefix_of(".zdebug_", name)
706 	      && !is_lines_only_debug_section(name + 8))
707 	    return false;
708 	}
709       if (parameters->options().strip_debug_gdb()
710 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
711 	{
712 	  // Debugging sections can only be recognized by name.
713 	  if (is_prefix_of(".debug_", name)
714 	      && !is_gdb_debug_section(name + 7))
715 	    return false;
716 	  if (is_prefix_of(".zdebug_", name)
717 	      && !is_gdb_debug_section(name + 8))
718 	    return false;
719 	}
720       if (parameters->options().gdb_index()
721 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
722 	{
723 	  // When building .gdb_index, we can strip .debug_pubnames,
724 	  // .debug_pubtypes, and .debug_aranges sections.
725 	  if (is_prefix_of(".debug_", name)
726 	      && is_gdb_fast_lookup_section(name + 7))
727 	    return false;
728 	  if (is_prefix_of(".zdebug_", name)
729 	      && is_gdb_fast_lookup_section(name + 8))
730 	    return false;
731 	}
732       if (parameters->options().strip_lto_sections()
733 	  && !parameters->options().relocatable()
734 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
735 	{
736 	  // Ignore LTO sections containing intermediate code.
737 	  if (is_prefix_of(".gnu.lto_", name))
738 	    return false;
739 	}
740       // The GNU linker strips .gnu_debuglink sections, so we do too.
741       // This is a feature used to keep debugging information in
742       // separate files.
743       if (strcmp(name, ".gnu_debuglink") == 0)
744 	return false;
745       return true;
746 
747     default:
748       return true;
749     }
750 }
751 
752 // Return an output section named NAME, or NULL if there is none.
753 
754 Output_section*
find_output_section(const char * name) const755 Layout::find_output_section(const char* name) const
756 {
757   for (Section_list::const_iterator p = this->section_list_.begin();
758        p != this->section_list_.end();
759        ++p)
760     if (strcmp((*p)->name(), name) == 0)
761       return *p;
762   return NULL;
763 }
764 
765 // Return an output segment of type TYPE, with segment flags SET set
766 // and segment flags CLEAR clear.  Return NULL if there is none.
767 
768 Output_segment*
find_output_segment(elfcpp::PT type,elfcpp::Elf_Word set,elfcpp::Elf_Word clear) const769 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
770 			    elfcpp::Elf_Word clear) const
771 {
772   for (Segment_list::const_iterator p = this->segment_list_.begin();
773        p != this->segment_list_.end();
774        ++p)
775     if (static_cast<elfcpp::PT>((*p)->type()) == type
776 	&& ((*p)->flags() & set) == set
777 	&& ((*p)->flags() & clear) == 0)
778       return *p;
779   return NULL;
780 }
781 
782 // When we put a .ctors or .dtors section with more than one word into
783 // a .init_array or .fini_array section, we need to reverse the words
784 // in the .ctors/.dtors section.  This is because .init_array executes
785 // constructors front to back, where .ctors executes them back to
786 // front, and vice-versa for .fini_array/.dtors.  Although we do want
787 // to remap .ctors/.dtors into .init_array/.fini_array because it can
788 // be more efficient, we don't want to change the order in which
789 // constructors/destructors are run.  This set just keeps track of
790 // these sections which need to be reversed.  It is only changed by
791 // Layout::layout.  It should be a private member of Layout, but that
792 // would require layout.h to #include object.h to get the definition
793 // of Section_id.
794 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
795 
796 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
797 // .init_array/.fini_array section.
798 
799 bool
is_ctors_in_init_array(Relobj * relobj,unsigned int shndx) const800 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
801 {
802   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
803 	  != ctors_sections_in_init_array.end());
804 }
805 
806 // Return the output section to use for section NAME with type TYPE
807 // and section flags FLAGS.  NAME must be canonicalized in the string
808 // pool, and NAME_KEY is the key.  ORDER is where this should appear
809 // in the output sections.  IS_RELRO is true for a relro section.
810 
811 Output_section*
get_output_section(const char * name,Stringpool::Key name_key,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags,Output_section_order order,bool is_relro)812 Layout::get_output_section(const char* name, Stringpool::Key name_key,
813 			   elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
814 			   Output_section_order order, bool is_relro)
815 {
816   elfcpp::Elf_Word lookup_type = type;
817 
818   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
819   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
820   // .init_array, .fini_array, and .preinit_array sections by name
821   // whatever their type in the input file.  We do this because the
822   // types are not always right in the input files.
823   if (lookup_type == elfcpp::SHT_INIT_ARRAY
824       || lookup_type == elfcpp::SHT_FINI_ARRAY
825       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
826     lookup_type = elfcpp::SHT_PROGBITS;
827 
828   elfcpp::Elf_Xword lookup_flags = flags;
829 
830   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
831   // read-write with read-only sections.  Some other ELF linkers do
832   // not do this.  FIXME: Perhaps there should be an option
833   // controlling this.
834   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
835 
836   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
837   const std::pair<Key, Output_section*> v(key, NULL);
838   std::pair<Section_name_map::iterator, bool> ins(
839     this->section_name_map_.insert(v));
840 
841   if (!ins.second)
842     return ins.first->second;
843   else
844     {
845       // This is the first time we've seen this name/type/flags
846       // combination.  For compatibility with the GNU linker, we
847       // combine sections with contents and zero flags with sections
848       // with non-zero flags.  This is a workaround for cases where
849       // assembler code forgets to set section flags.  FIXME: Perhaps
850       // there should be an option to control this.
851       Output_section* os = NULL;
852 
853       if (lookup_type == elfcpp::SHT_PROGBITS)
854 	{
855 	  if (flags == 0)
856 	    {
857 	      Output_section* same_name = this->find_output_section(name);
858 	      if (same_name != NULL
859 		  && (same_name->type() == elfcpp::SHT_PROGBITS
860 		      || same_name->type() == elfcpp::SHT_INIT_ARRAY
861 		      || same_name->type() == elfcpp::SHT_FINI_ARRAY
862 		      || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
863 		  && (same_name->flags() & elfcpp::SHF_TLS) == 0)
864 		os = same_name;
865 	    }
866 	  else if ((flags & elfcpp::SHF_TLS) == 0)
867 	    {
868 	      elfcpp::Elf_Xword zero_flags = 0;
869 	      const Key zero_key(name_key, std::make_pair(lookup_type,
870 							  zero_flags));
871 	      Section_name_map::iterator p =
872 		  this->section_name_map_.find(zero_key);
873 	      if (p != this->section_name_map_.end())
874 		os = p->second;
875 	    }
876 	}
877 
878       if (os == NULL)
879 	os = this->make_output_section(name, type, flags, order, is_relro);
880 
881       ins.first->second = os;
882       return os;
883     }
884 }
885 
886 // Returns TRUE iff NAME (an input section from RELOBJ) will
887 // be mapped to an output section that should be KEPT.
888 
889 bool
keep_input_section(const Relobj * relobj,const char * name)890 Layout::keep_input_section(const Relobj* relobj, const char* name)
891 {
892   if (! this->script_options_->saw_sections_clause())
893     return false;
894 
895   Script_sections* ss = this->script_options_->script_sections();
896   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
897   Output_section** output_section_slot;
898   Script_sections::Section_type script_section_type;
899   bool keep;
900 
901   name = ss->output_section_name(file_name, name, &output_section_slot,
902 				 &script_section_type, &keep);
903   return name != NULL && keep;
904 }
905 
906 // Clear the input section flags that should not be copied to the
907 // output section.
908 
909 elfcpp::Elf_Xword
get_output_section_flags(elfcpp::Elf_Xword input_section_flags)910 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
911 {
912   // Some flags in the input section should not be automatically
913   // copied to the output section.
914   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
915 			    | elfcpp::SHF_GROUP
916 			    | elfcpp::SHF_COMPRESSED
917 			    | elfcpp::SHF_MERGE
918 			    | elfcpp::SHF_STRINGS);
919 
920   // We only clear the SHF_LINK_ORDER flag in for
921   // a non-relocatable link.
922   if (!parameters->options().relocatable())
923     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
924 
925   return input_section_flags;
926 }
927 
928 // Pick the output section to use for section NAME, in input file
929 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
930 // linker created section.  IS_INPUT_SECTION is true if we are
931 // choosing an output section for an input section found in a input
932 // file.  ORDER is where this section should appear in the output
933 // sections.  IS_RELRO is true for a relro section.  This will return
934 // NULL if the input section should be discarded.
935 
936 Output_section*
choose_output_section(const Relobj * relobj,const char * name,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags,bool is_input_section,Output_section_order order,bool is_relro)937 Layout::choose_output_section(const Relobj* relobj, const char* name,
938 			      elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
939 			      bool is_input_section, Output_section_order order,
940 			      bool is_relro)
941 {
942   // We should not see any input sections after we have attached
943   // sections to segments.
944   gold_assert(!is_input_section || !this->sections_are_attached_);
945 
946   flags = this->get_output_section_flags(flags);
947 
948   if (this->script_options_->saw_sections_clause())
949     {
950       // We are using a SECTIONS clause, so the output section is
951       // chosen based only on the name.
952 
953       Script_sections* ss = this->script_options_->script_sections();
954       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
955       Output_section** output_section_slot;
956       Script_sections::Section_type script_section_type;
957       const char* orig_name = name;
958       bool keep;
959       name = ss->output_section_name(file_name, name, &output_section_slot,
960 				     &script_section_type, &keep);
961 
962       if (name == NULL)
963 	{
964 	  gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
965 				     "because it is not allowed by the "
966 				     "SECTIONS clause of the linker script"),
967 		     orig_name);
968 	  // The SECTIONS clause says to discard this input section.
969 	  return NULL;
970 	}
971 
972       // We can only handle script section types ST_NONE and ST_NOLOAD.
973       switch (script_section_type)
974 	{
975 	case Script_sections::ST_NONE:
976 	  break;
977 	case Script_sections::ST_NOLOAD:
978 	  flags &= elfcpp::SHF_ALLOC;
979 	  break;
980 	default:
981 	  gold_unreachable();
982 	}
983 
984       // If this is an orphan section--one not mentioned in the linker
985       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
986       // default processing below.
987 
988       if (output_section_slot != NULL)
989 	{
990 	  if (*output_section_slot != NULL)
991 	    {
992 	      (*output_section_slot)->update_flags_for_input_section(flags);
993 	      return *output_section_slot;
994 	    }
995 
996 	  // We don't put sections found in the linker script into
997 	  // SECTION_NAME_MAP_.  That keeps us from getting confused
998 	  // if an orphan section is mapped to a section with the same
999 	  // name as one in the linker script.
1000 
1001 	  name = this->namepool_.add(name, false, NULL);
1002 
1003 	  Output_section* os = this->make_output_section(name, type, flags,
1004 							 order, is_relro);
1005 
1006 	  os->set_found_in_sections_clause();
1007 
1008 	  // Special handling for NOLOAD sections.
1009 	  if (script_section_type == Script_sections::ST_NOLOAD)
1010 	    {
1011 	      os->set_is_noload();
1012 
1013 	      // The constructor of Output_section sets addresses of non-ALLOC
1014 	      // sections to 0 by default.  We don't want that for NOLOAD
1015 	      // sections even if they have no SHF_ALLOC flag.
1016 	      if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1017 		  && os->is_address_valid())
1018 		{
1019 		  gold_assert(os->address() == 0
1020 			      && !os->is_offset_valid()
1021 			      && !os->is_data_size_valid());
1022 		  os->reset_address_and_file_offset();
1023 		}
1024 	    }
1025 
1026 	  *output_section_slot = os;
1027 	  return os;
1028 	}
1029     }
1030 
1031   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1032 
1033   size_t len = strlen(name);
1034   std::string uncompressed_name;
1035 
1036   // Compressed debug sections should be mapped to the corresponding
1037   // uncompressed section.
1038   if (is_compressed_debug_section(name))
1039     {
1040       uncompressed_name =
1041 	  corresponding_uncompressed_section_name(std::string(name, len));
1042       name = uncompressed_name.c_str();
1043       len = uncompressed_name.length();
1044     }
1045 
1046   // Turn NAME from the name of the input section into the name of the
1047   // output section.
1048   if (is_input_section
1049       && !this->script_options_->saw_sections_clause()
1050       && !parameters->options().relocatable())
1051     {
1052       const char *orig_name = name;
1053       name = parameters->target().output_section_name(relobj, name, &len);
1054       if (name == NULL)
1055 	name = Layout::output_section_name(relobj, orig_name, &len);
1056     }
1057 
1058   Stringpool::Key name_key;
1059   name = this->namepool_.add_with_length(name, len, true, &name_key);
1060 
1061   // Find or make the output section.  The output section is selected
1062   // based on the section name, type, and flags.
1063   return this->get_output_section(name, name_key, type, flags, order, is_relro);
1064 }
1065 
1066 // For incremental links, record the initial fixed layout of a section
1067 // from the base file, and return a pointer to the Output_section.
1068 
1069 template<int size, bool big_endian>
1070 Output_section*
init_fixed_output_section(const char * name,elfcpp::Shdr<size,big_endian> & shdr)1071 Layout::init_fixed_output_section(const char* name,
1072 				  elfcpp::Shdr<size, big_endian>& shdr)
1073 {
1074   unsigned int sh_type = shdr.get_sh_type();
1075 
1076   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1077   // PRE_INIT_ARRAY, and NOTE sections.
1078   // All others will be created from scratch and reallocated.
1079   if (!can_incremental_update(sh_type))
1080     return NULL;
1081 
1082   // If we're generating a .gdb_index section, we need to regenerate
1083   // it from scratch.
1084   if (parameters->options().gdb_index()
1085       && sh_type == elfcpp::SHT_PROGBITS
1086       && strcmp(name, ".gdb_index") == 0)
1087     return NULL;
1088 
1089   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1090   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1091   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1092   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1093   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1094       shdr.get_sh_addralign();
1095 
1096   // Make the output section.
1097   Stringpool::Key name_key;
1098   name = this->namepool_.add(name, true, &name_key);
1099   Output_section* os = this->get_output_section(name, name_key, sh_type,
1100 						sh_flags, ORDER_INVALID, false);
1101   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1102   if (sh_type != elfcpp::SHT_NOBITS)
1103     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1104   return os;
1105 }
1106 
1107 // Return the index by which an input section should be ordered.  This
1108 // is used to sort some .text sections, for compatibility with GNU ld.
1109 
1110 int
special_ordering_of_input_section(const char * name)1111 Layout::special_ordering_of_input_section(const char* name)
1112 {
1113   // The GNU linker has some special handling for some sections that
1114   // wind up in the .text section.  Sections that start with these
1115   // prefixes must appear first, and must appear in the order listed
1116   // here.
1117   static const char* const text_section_sort[] =
1118   {
1119     ".text.unlikely",
1120     ".text.exit",
1121     ".text.startup",
1122     ".text.hot"
1123   };
1124 
1125   for (size_t i = 0;
1126        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1127        i++)
1128     if (is_prefix_of(text_section_sort[i], name))
1129       return i;
1130 
1131   return -1;
1132 }
1133 
1134 // Return the output section to use for input section SHNDX, with name
1135 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1136 // index of a relocation section which applies to this section, or 0
1137 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1138 // relocation section if there is one.  Set *OFF to the offset of this
1139 // input section without the output section.  Return NULL if the
1140 // section should be discarded.  Set *OFF to -1 if the section
1141 // contents should not be written directly to the output file, but
1142 // will instead receive special handling.
1143 
1144 template<int size, bool big_endian>
1145 Output_section*
layout(Sized_relobj_file<size,big_endian> * object,unsigned int shndx,const char * name,const elfcpp::Shdr<size,big_endian> & shdr,unsigned int reloc_shndx,unsigned int,off_t * off)1146 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1147 	       const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1148 	       unsigned int reloc_shndx, unsigned int, off_t* off)
1149 {
1150   *off = 0;
1151 
1152   if (!this->include_section(object, name, shdr))
1153     return NULL;
1154 
1155   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1156 
1157   // In a relocatable link a grouped section must not be combined with
1158   // any other sections.
1159   Output_section* os;
1160   if (parameters->options().relocatable()
1161       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1162     {
1163       // Some flags in the input section should not be automatically
1164       // copied to the output section.
1165       elfcpp::Elf_Xword flags = (shdr.get_sh_flags()
1166 				 & ~ elfcpp::SHF_COMPRESSED);
1167       name = this->namepool_.add(name, true, NULL);
1168       os = this->make_output_section(name, sh_type, flags,
1169 				     ORDER_INVALID, false);
1170     }
1171   else
1172     {
1173       // Plugins can choose to place one or more subsets of sections in
1174       // unique segments and this is done by mapping these section subsets
1175       // to unique output sections.  Check if this section needs to be
1176       // remapped to a unique output section.
1177       Section_segment_map::iterator it
1178 	  = this->section_segment_map_.find(Const_section_id(object, shndx));
1179       if (it == this->section_segment_map_.end())
1180 	{
1181 	  os = this->choose_output_section(object, name, sh_type,
1182 					   shdr.get_sh_flags(), true,
1183 					   ORDER_INVALID, false);
1184 	}
1185       else
1186 	{
1187 	  // We know the name of the output section, directly call
1188 	  // get_output_section here by-passing choose_output_section.
1189 	  elfcpp::Elf_Xword flags
1190 	    = this->get_output_section_flags(shdr.get_sh_flags());
1191 
1192 	  const char* os_name = it->second->name;
1193 	  Stringpool::Key name_key;
1194 	  os_name = this->namepool_.add(os_name, true, &name_key);
1195 	  os = this->get_output_section(os_name, name_key, sh_type, flags,
1196 					ORDER_INVALID, false);
1197 	  if (!os->is_unique_segment())
1198 	    {
1199 	      os->set_is_unique_segment();
1200 	      os->set_extra_segment_flags(it->second->flags);
1201 	      os->set_segment_alignment(it->second->align);
1202 	    }
1203 	}
1204       if (os == NULL)
1205 	return NULL;
1206     }
1207 
1208   // By default the GNU linker sorts input sections whose names match
1209   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1210   // sections are sorted by name.  This is used to implement
1211   // constructor priority ordering.  We are compatible.  When we put
1212   // .ctor sections in .init_array and .dtor sections in .fini_array,
1213   // we must also sort plain .ctor and .dtor sections.
1214   if (!this->script_options_->saw_sections_clause()
1215       && !parameters->options().relocatable()
1216       && (is_prefix_of(".ctors.", name)
1217 	  || is_prefix_of(".dtors.", name)
1218 	  || is_prefix_of(".init_array.", name)
1219 	  || is_prefix_of(".fini_array.", name)
1220 	  || (parameters->options().ctors_in_init_array()
1221 	      && (strcmp(name, ".ctors") == 0
1222 		  || strcmp(name, ".dtors") == 0))))
1223     os->set_must_sort_attached_input_sections();
1224 
1225   // By default the GNU linker sorts some special text sections ahead
1226   // of others.  We are compatible.
1227   if (parameters->options().text_reorder()
1228       && !this->script_options_->saw_sections_clause()
1229       && !this->is_section_ordering_specified()
1230       && !parameters->options().relocatable()
1231       && Layout::special_ordering_of_input_section(name) >= 0)
1232     os->set_must_sort_attached_input_sections();
1233 
1234   // If this is a .ctors or .ctors.* section being mapped to a
1235   // .init_array section, or a .dtors or .dtors.* section being mapped
1236   // to a .fini_array section, we will need to reverse the words if
1237   // there is more than one.  Record this section for later.  See
1238   // ctors_sections_in_init_array above.
1239   if (!this->script_options_->saw_sections_clause()
1240       && !parameters->options().relocatable()
1241       && shdr.get_sh_size() > size / 8
1242       && (((strcmp(name, ".ctors") == 0
1243 	    || is_prefix_of(".ctors.", name))
1244 	   && strcmp(os->name(), ".init_array") == 0)
1245 	  || ((strcmp(name, ".dtors") == 0
1246 	       || is_prefix_of(".dtors.", name))
1247 	      && strcmp(os->name(), ".fini_array") == 0)))
1248     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1249 
1250   // FIXME: Handle SHF_LINK_ORDER somewhere.
1251 
1252   elfcpp::Elf_Xword orig_flags = os->flags();
1253 
1254   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1255 			       this->script_options_->saw_sections_clause());
1256 
1257   // If the flags changed, we may have to change the order.
1258   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1259     {
1260       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1261       elfcpp::Elf_Xword new_flags =
1262 	os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1263       if (orig_flags != new_flags)
1264 	os->set_order(this->default_section_order(os, false));
1265     }
1266 
1267   this->have_added_input_section_ = true;
1268 
1269   return os;
1270 }
1271 
1272 // Maps section SECN to SEGMENT s.
1273 void
insert_section_segment_map(Const_section_id secn,Unique_segment_info * s)1274 Layout::insert_section_segment_map(Const_section_id secn,
1275 				   Unique_segment_info *s)
1276 {
1277   gold_assert(this->unique_segment_for_sections_specified_);
1278   this->section_segment_map_[secn] = s;
1279 }
1280 
1281 // Handle a relocation section when doing a relocatable link.
1282 
1283 template<int size, bool big_endian>
1284 Output_section*
layout_reloc(Sized_relobj_file<size,big_endian> * object,unsigned int,const elfcpp::Shdr<size,big_endian> & shdr,Output_section * data_section,Relocatable_relocs * rr)1285 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1286 		     unsigned int,
1287 		     const elfcpp::Shdr<size, big_endian>& shdr,
1288 		     Output_section* data_section,
1289 		     Relocatable_relocs* rr)
1290 {
1291   gold_assert(parameters->options().relocatable()
1292 	      || parameters->options().emit_relocs());
1293 
1294   int sh_type = shdr.get_sh_type();
1295 
1296   std::string name;
1297   if (sh_type == elfcpp::SHT_REL)
1298     name = ".rel";
1299   else if (sh_type == elfcpp::SHT_RELA)
1300     name = ".rela";
1301   else
1302     gold_unreachable();
1303   name += data_section->name();
1304 
1305   // In a relocatable link relocs for a grouped section must not be
1306   // combined with other reloc sections.
1307   Output_section* os;
1308   if (!parameters->options().relocatable()
1309       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1310     os = this->choose_output_section(object, name.c_str(), sh_type,
1311 				     shdr.get_sh_flags(), false,
1312 				     ORDER_INVALID, false);
1313   else
1314     {
1315       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1316       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1317 				     ORDER_INVALID, false);
1318     }
1319 
1320   os->set_should_link_to_symtab();
1321   os->set_info_section(data_section);
1322 
1323   Output_section_data* posd;
1324   if (sh_type == elfcpp::SHT_REL)
1325     {
1326       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1327       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1328 					   size,
1329 					   big_endian>(rr);
1330     }
1331   else if (sh_type == elfcpp::SHT_RELA)
1332     {
1333       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1334       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1335 					   size,
1336 					   big_endian>(rr);
1337     }
1338   else
1339     gold_unreachable();
1340 
1341   os->add_output_section_data(posd);
1342   rr->set_output_data(posd);
1343 
1344   return os;
1345 }
1346 
1347 // Handle a group section when doing a relocatable link.
1348 
1349 template<int size, bool big_endian>
1350 void
layout_group(Symbol_table * symtab,Sized_relobj_file<size,big_endian> * object,unsigned int,const char * group_section_name,const char * signature,const elfcpp::Shdr<size,big_endian> & shdr,elfcpp::Elf_Word flags,std::vector<unsigned int> * shndxes)1351 Layout::layout_group(Symbol_table* symtab,
1352 		     Sized_relobj_file<size, big_endian>* object,
1353 		     unsigned int,
1354 		     const char* group_section_name,
1355 		     const char* signature,
1356 		     const elfcpp::Shdr<size, big_endian>& shdr,
1357 		     elfcpp::Elf_Word flags,
1358 		     std::vector<unsigned int>* shndxes)
1359 {
1360   gold_assert(parameters->options().relocatable());
1361   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1362   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1363   Output_section* os = this->make_output_section(group_section_name,
1364 						 elfcpp::SHT_GROUP,
1365 						 shdr.get_sh_flags(),
1366 						 ORDER_INVALID, false);
1367 
1368   // We need to find a symbol with the signature in the symbol table.
1369   // If we don't find one now, we need to look again later.
1370   Symbol* sym = symtab->lookup(signature, NULL);
1371   if (sym != NULL)
1372     os->set_info_symndx(sym);
1373   else
1374     {
1375       // Reserve some space to minimize reallocations.
1376       if (this->group_signatures_.empty())
1377 	this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1378 
1379       // We will wind up using a symbol whose name is the signature.
1380       // So just put the signature in the symbol name pool to save it.
1381       signature = symtab->canonicalize_name(signature);
1382       this->group_signatures_.push_back(Group_signature(os, signature));
1383     }
1384 
1385   os->set_should_link_to_symtab();
1386   os->set_entsize(4);
1387 
1388   section_size_type entry_count =
1389     convert_to_section_size_type(shdr.get_sh_size() / 4);
1390   Output_section_data* posd =
1391     new Output_data_group<size, big_endian>(object, entry_count, flags,
1392 					    shndxes);
1393   os->add_output_section_data(posd);
1394 }
1395 
1396 // Special GNU handling of sections name .eh_frame.  They will
1397 // normally hold exception frame data as defined by the C++ ABI
1398 // (http://codesourcery.com/cxx-abi/).
1399 
1400 template<int size, bool big_endian>
1401 Output_section*
layout_eh_frame(Sized_relobj_file<size,big_endian> * object,const unsigned char * symbols,off_t symbols_size,const unsigned char * symbol_names,off_t symbol_names_size,unsigned int shndx,const elfcpp::Shdr<size,big_endian> & shdr,unsigned int reloc_shndx,unsigned int reloc_type,off_t * off)1402 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1403 			const unsigned char* symbols,
1404 			off_t symbols_size,
1405 			const unsigned char* symbol_names,
1406 			off_t symbol_names_size,
1407 			unsigned int shndx,
1408 			const elfcpp::Shdr<size, big_endian>& shdr,
1409 			unsigned int reloc_shndx, unsigned int reloc_type,
1410 			off_t* off)
1411 {
1412   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1413 	      || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1414   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1415 
1416   Output_section* os = this->make_eh_frame_section(object);
1417   if (os == NULL)
1418     return NULL;
1419 
1420   gold_assert(this->eh_frame_section_ == os);
1421 
1422   elfcpp::Elf_Xword orig_flags = os->flags();
1423 
1424   Eh_frame::Eh_frame_section_disposition disp =
1425       Eh_frame::EH_UNRECOGNIZED_SECTION;
1426   if (!parameters->incremental())
1427     {
1428       disp = this->eh_frame_data_->add_ehframe_input_section(object,
1429 							     symbols,
1430 							     symbols_size,
1431 							     symbol_names,
1432 							     symbol_names_size,
1433 							     shndx,
1434 							     reloc_shndx,
1435 							     reloc_type);
1436     }
1437 
1438   if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1439     {
1440       os->update_flags_for_input_section(shdr.get_sh_flags());
1441 
1442       // A writable .eh_frame section is a RELRO section.
1443       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1444 	  != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1445 	{
1446 	  os->set_is_relro();
1447 	  os->set_order(ORDER_RELRO);
1448 	}
1449 
1450       *off = -1;
1451       return os;
1452     }
1453 
1454   if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1455     {
1456       // We found the end marker section, so now we can add the set of
1457       // optimized sections to the output section.  We need to postpone
1458       // adding this until we've found a section we can optimize so that
1459       // the .eh_frame section in crtbeginT.o winds up at the start of
1460       // the output section.
1461       os->add_output_section_data(this->eh_frame_data_);
1462       this->added_eh_frame_data_ = true;
1463      }
1464 
1465   // We couldn't handle this .eh_frame section for some reason.
1466   // Add it as a normal section.
1467   bool saw_sections_clause = this->script_options_->saw_sections_clause();
1468   *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1469 			       reloc_shndx, saw_sections_clause);
1470   this->have_added_input_section_ = true;
1471 
1472   if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1473       != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1474     os->set_order(this->default_section_order(os, false));
1475 
1476   return os;
1477 }
1478 
1479 void
finalize_eh_frame_section()1480 Layout::finalize_eh_frame_section()
1481 {
1482   // If we never found an end marker section, we need to add the
1483   // optimized eh sections to the output section now.
1484   if (!parameters->incremental()
1485       && this->eh_frame_section_ != NULL
1486       && !this->added_eh_frame_data_)
1487     {
1488       this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1489       this->added_eh_frame_data_ = true;
1490     }
1491 }
1492 
1493 // Create and return the magic .eh_frame section.  Create
1494 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1495 // input .eh_frame section; it may be NULL.
1496 
1497 Output_section*
make_eh_frame_section(const Relobj * object)1498 Layout::make_eh_frame_section(const Relobj* object)
1499 {
1500   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1501   // SHT_PROGBITS.
1502   Output_section* os = this->choose_output_section(object, ".eh_frame",
1503 						   elfcpp::SHT_PROGBITS,
1504 						   elfcpp::SHF_ALLOC, false,
1505 						   ORDER_EHFRAME, false);
1506   if (os == NULL)
1507     return NULL;
1508 
1509   if (this->eh_frame_section_ == NULL)
1510     {
1511       this->eh_frame_section_ = os;
1512       this->eh_frame_data_ = new Eh_frame();
1513 
1514       // For incremental linking, we do not optimize .eh_frame sections
1515       // or create a .eh_frame_hdr section.
1516       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1517 	{
1518 	  Output_section* hdr_os =
1519 	    this->choose_output_section(NULL, ".eh_frame_hdr",
1520 					elfcpp::SHT_PROGBITS,
1521 					elfcpp::SHF_ALLOC, false,
1522 					ORDER_EHFRAME, false);
1523 
1524 	  if (hdr_os != NULL)
1525 	    {
1526 	      Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1527 							this->eh_frame_data_);
1528 	      hdr_os->add_output_section_data(hdr_posd);
1529 
1530 	      hdr_os->set_after_input_sections();
1531 
1532 	      if (!this->script_options_->saw_phdrs_clause())
1533 		{
1534 		  Output_segment* hdr_oseg;
1535 		  hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1536 						       elfcpp::PF_R);
1537 		  hdr_oseg->add_output_section_to_nonload(hdr_os,
1538 							  elfcpp::PF_R);
1539 		}
1540 
1541 	      this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1542 	    }
1543 	}
1544     }
1545 
1546   return os;
1547 }
1548 
1549 // Add an exception frame for a PLT.  This is called from target code.
1550 
1551 void
add_eh_frame_for_plt(Output_data * plt,const unsigned char * cie_data,size_t cie_length,const unsigned char * fde_data,size_t fde_length)1552 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1553 			     size_t cie_length, const unsigned char* fde_data,
1554 			     size_t fde_length)
1555 {
1556   if (parameters->incremental())
1557     {
1558       // FIXME: Maybe this could work some day....
1559       return;
1560     }
1561   Output_section* os = this->make_eh_frame_section(NULL);
1562   if (os == NULL)
1563     return;
1564   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1565 					    fde_data, fde_length);
1566   if (!this->added_eh_frame_data_)
1567     {
1568       os->add_output_section_data(this->eh_frame_data_);
1569       this->added_eh_frame_data_ = true;
1570     }
1571 }
1572 
1573 // Scan a .debug_info or .debug_types section, and add summary
1574 // information to the .gdb_index section.
1575 
1576 template<int size, bool big_endian>
1577 void
add_to_gdb_index(bool is_type_unit,Sized_relobj<size,big_endian> * object,const unsigned char * symbols,off_t symbols_size,unsigned int shndx,unsigned int reloc_shndx,unsigned int reloc_type)1578 Layout::add_to_gdb_index(bool is_type_unit,
1579 			 Sized_relobj<size, big_endian>* object,
1580 			 const unsigned char* symbols,
1581 			 off_t symbols_size,
1582 			 unsigned int shndx,
1583 			 unsigned int reloc_shndx,
1584 			 unsigned int reloc_type)
1585 {
1586   if (this->gdb_index_data_ == NULL)
1587     {
1588       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1589 						       elfcpp::SHT_PROGBITS, 0,
1590 						       false, ORDER_INVALID,
1591 						       false);
1592       if (os == NULL)
1593 	return;
1594 
1595       this->gdb_index_data_ = new Gdb_index(os);
1596       os->add_output_section_data(this->gdb_index_data_);
1597       os->set_after_input_sections();
1598     }
1599 
1600   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1601 					 symbols_size, shndx, reloc_shndx,
1602 					 reloc_type);
1603 }
1604 
1605 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1606 // the output section.
1607 
1608 Output_section*
add_output_section_data(const char * name,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags,Output_section_data * posd,Output_section_order order,bool is_relro)1609 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1610 				elfcpp::Elf_Xword flags,
1611 				Output_section_data* posd,
1612 				Output_section_order order, bool is_relro)
1613 {
1614   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1615 						   false, order, is_relro);
1616   if (os != NULL)
1617     os->add_output_section_data(posd);
1618   return os;
1619 }
1620 
1621 // Map section flags to segment flags.
1622 
1623 elfcpp::Elf_Word
section_flags_to_segment(elfcpp::Elf_Xword flags)1624 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1625 {
1626   elfcpp::Elf_Word ret = elfcpp::PF_R;
1627   if ((flags & elfcpp::SHF_WRITE) != 0)
1628     ret |= elfcpp::PF_W;
1629   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1630     ret |= elfcpp::PF_X;
1631   return ret;
1632 }
1633 
1634 // Make a new Output_section, and attach it to segments as
1635 // appropriate.  ORDER is the order in which this section should
1636 // appear in the output segment.  IS_RELRO is true if this is a relro
1637 // (read-only after relocations) section.
1638 
1639 Output_section*
make_output_section(const char * name,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags,Output_section_order order,bool is_relro)1640 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1641 			    elfcpp::Elf_Xword flags,
1642 			    Output_section_order order, bool is_relro)
1643 {
1644   Output_section* os;
1645   if ((flags & elfcpp::SHF_ALLOC) == 0
1646       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1647       && is_compressible_debug_section(name))
1648     os = new Output_compressed_section(&parameters->options(), name, type,
1649 				       flags);
1650   else if ((flags & elfcpp::SHF_ALLOC) == 0
1651 	   && parameters->options().strip_debug_non_line()
1652 	   && strcmp(".debug_abbrev", name) == 0)
1653     {
1654       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1655 	  name, type, flags);
1656       if (this->debug_info_)
1657 	this->debug_info_->set_abbreviations(this->debug_abbrev_);
1658     }
1659   else if ((flags & elfcpp::SHF_ALLOC) == 0
1660 	   && parameters->options().strip_debug_non_line()
1661 	   && strcmp(".debug_info", name) == 0)
1662     {
1663       os = this->debug_info_ = new Output_reduced_debug_info_section(
1664 	  name, type, flags);
1665       if (this->debug_abbrev_)
1666 	this->debug_info_->set_abbreviations(this->debug_abbrev_);
1667     }
1668   else
1669     {
1670       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1671       // not have correct section types.  Force them here.
1672       if (type == elfcpp::SHT_PROGBITS)
1673 	{
1674 	  if (is_prefix_of(".init_array", name))
1675 	    type = elfcpp::SHT_INIT_ARRAY;
1676 	  else if (is_prefix_of(".preinit_array", name))
1677 	    type = elfcpp::SHT_PREINIT_ARRAY;
1678 	  else if (is_prefix_of(".fini_array", name))
1679 	    type = elfcpp::SHT_FINI_ARRAY;
1680 	}
1681 
1682       // FIXME: const_cast is ugly.
1683       Target* target = const_cast<Target*>(&parameters->target());
1684       os = target->make_output_section(name, type, flags);
1685     }
1686 
1687   // With -z relro, we have to recognize the special sections by name.
1688   // There is no other way.
1689   bool is_relro_local = false;
1690   if (!this->script_options_->saw_sections_clause()
1691       && parameters->options().relro()
1692       && (flags & elfcpp::SHF_ALLOC) != 0
1693       && (flags & elfcpp::SHF_WRITE) != 0)
1694     {
1695       if (type == elfcpp::SHT_PROGBITS)
1696 	{
1697 	  if ((flags & elfcpp::SHF_TLS) != 0)
1698 	    is_relro = true;
1699 	  else if (strcmp(name, ".data.rel.ro") == 0)
1700 	    is_relro = true;
1701 	  else if (strcmp(name, ".data.rel.ro.local") == 0)
1702 	    {
1703 	      is_relro = true;
1704 	      is_relro_local = true;
1705 	    }
1706 	  else if (strcmp(name, ".ctors") == 0
1707 		   || strcmp(name, ".dtors") == 0
1708 		   || strcmp(name, ".jcr") == 0)
1709 	    is_relro = true;
1710 	}
1711       else if (type == elfcpp::SHT_INIT_ARRAY
1712 	       || type == elfcpp::SHT_FINI_ARRAY
1713 	       || type == elfcpp::SHT_PREINIT_ARRAY)
1714 	is_relro = true;
1715     }
1716 
1717   if (is_relro)
1718     os->set_is_relro();
1719 
1720   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1721     order = this->default_section_order(os, is_relro_local);
1722 
1723   os->set_order(order);
1724 
1725   parameters->target().new_output_section(os);
1726 
1727   this->section_list_.push_back(os);
1728 
1729   // The GNU linker by default sorts some sections by priority, so we
1730   // do the same.  We need to know that this might happen before we
1731   // attach any input sections.
1732   if (!this->script_options_->saw_sections_clause()
1733       && !parameters->options().relocatable()
1734       && (strcmp(name, ".init_array") == 0
1735 	  || strcmp(name, ".fini_array") == 0
1736 	  || (!parameters->options().ctors_in_init_array()
1737 	      && (strcmp(name, ".ctors") == 0
1738 		  || strcmp(name, ".dtors") == 0))))
1739     os->set_may_sort_attached_input_sections();
1740 
1741   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1742   // sections before other .text sections.  We are compatible.  We
1743   // need to know that this might happen before we attach any input
1744   // sections.
1745   if (parameters->options().text_reorder()
1746       && !this->script_options_->saw_sections_clause()
1747       && !this->is_section_ordering_specified()
1748       && !parameters->options().relocatable()
1749       && strcmp(name, ".text") == 0)
1750     os->set_may_sort_attached_input_sections();
1751 
1752   // GNU linker sorts section by name with --sort-section=name.
1753   if (strcmp(parameters->options().sort_section(), "name") == 0)
1754       os->set_must_sort_attached_input_sections();
1755 
1756   // Check for .stab*str sections, as .stab* sections need to link to
1757   // them.
1758   if (type == elfcpp::SHT_STRTAB
1759       && !this->have_stabstr_section_
1760       && strncmp(name, ".stab", 5) == 0
1761       && strcmp(name + strlen(name) - 3, "str") == 0)
1762     this->have_stabstr_section_ = true;
1763 
1764   // During a full incremental link, we add patch space to most
1765   // PROGBITS and NOBITS sections.  Flag those that may be
1766   // arbitrarily padded.
1767   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1768       && order != ORDER_INTERP
1769       && order != ORDER_INIT
1770       && order != ORDER_PLT
1771       && order != ORDER_FINI
1772       && order != ORDER_RELRO_LAST
1773       && order != ORDER_NON_RELRO_FIRST
1774       && strcmp(name, ".eh_frame") != 0
1775       && strcmp(name, ".ctors") != 0
1776       && strcmp(name, ".dtors") != 0
1777       && strcmp(name, ".jcr") != 0)
1778     {
1779       os->set_is_patch_space_allowed();
1780 
1781       // Certain sections require "holes" to be filled with
1782       // specific fill patterns.  These fill patterns may have
1783       // a minimum size, so we must prevent allocations from the
1784       // free list that leave a hole smaller than the minimum.
1785       if (strcmp(name, ".debug_info") == 0)
1786 	os->set_free_space_fill(new Output_fill_debug_info(false));
1787       else if (strcmp(name, ".debug_types") == 0)
1788 	os->set_free_space_fill(new Output_fill_debug_info(true));
1789       else if (strcmp(name, ".debug_line") == 0)
1790 	os->set_free_space_fill(new Output_fill_debug_line());
1791     }
1792 
1793   // If we have already attached the sections to segments, then we
1794   // need to attach this one now.  This happens for sections created
1795   // directly by the linker.
1796   if (this->sections_are_attached_)
1797     this->attach_section_to_segment(&parameters->target(), os);
1798 
1799   return os;
1800 }
1801 
1802 // Return the default order in which a section should be placed in an
1803 // output segment.  This function captures a lot of the ideas in
1804 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1805 // linker created section is normally set when the section is created;
1806 // this function is used for input sections.
1807 
1808 Output_section_order
default_section_order(Output_section * os,bool is_relro_local)1809 Layout::default_section_order(Output_section* os, bool is_relro_local)
1810 {
1811   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1812   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1813   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1814   bool is_bss = false;
1815 
1816   switch (os->type())
1817     {
1818     default:
1819     case elfcpp::SHT_PROGBITS:
1820       break;
1821     case elfcpp::SHT_NOBITS:
1822       is_bss = true;
1823       break;
1824     case elfcpp::SHT_RELA:
1825     case elfcpp::SHT_REL:
1826       if (!is_write)
1827 	return ORDER_DYNAMIC_RELOCS;
1828       break;
1829     case elfcpp::SHT_HASH:
1830     case elfcpp::SHT_DYNAMIC:
1831     case elfcpp::SHT_SHLIB:
1832     case elfcpp::SHT_DYNSYM:
1833     case elfcpp::SHT_GNU_HASH:
1834     case elfcpp::SHT_GNU_verdef:
1835     case elfcpp::SHT_GNU_verneed:
1836     case elfcpp::SHT_GNU_versym:
1837       if (!is_write)
1838 	return ORDER_DYNAMIC_LINKER;
1839       break;
1840     case elfcpp::SHT_NOTE:
1841       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1842     }
1843 
1844   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1845     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1846 
1847   if (!is_bss && !is_write)
1848     {
1849       if (is_execinstr)
1850 	{
1851 	  if (strcmp(os->name(), ".init") == 0)
1852 	    return ORDER_INIT;
1853 	  else if (strcmp(os->name(), ".fini") == 0)
1854 	    return ORDER_FINI;
1855 	}
1856       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1857     }
1858 
1859   if (os->is_relro())
1860     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1861 
1862   if (os->is_small_section())
1863     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1864   if (os->is_large_section())
1865     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1866 
1867   return is_bss ? ORDER_BSS : ORDER_DATA;
1868 }
1869 
1870 // Attach output sections to segments.  This is called after we have
1871 // seen all the input sections.
1872 
1873 void
attach_sections_to_segments(const Target * target)1874 Layout::attach_sections_to_segments(const Target* target)
1875 {
1876   for (Section_list::iterator p = this->section_list_.begin();
1877        p != this->section_list_.end();
1878        ++p)
1879     this->attach_section_to_segment(target, *p);
1880 
1881   this->sections_are_attached_ = true;
1882 }
1883 
1884 // Attach an output section to a segment.
1885 
1886 void
attach_section_to_segment(const Target * target,Output_section * os)1887 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1888 {
1889   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1890     this->unattached_section_list_.push_back(os);
1891   else
1892     this->attach_allocated_section_to_segment(target, os);
1893 }
1894 
1895 // Attach an allocated output section to a segment.
1896 
1897 void
attach_allocated_section_to_segment(const Target * target,Output_section * os)1898 Layout::attach_allocated_section_to_segment(const Target* target,
1899 					    Output_section* os)
1900 {
1901   elfcpp::Elf_Xword flags = os->flags();
1902   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1903 
1904   if (parameters->options().relocatable())
1905     return;
1906 
1907   // If we have a SECTIONS clause, we can't handle the attachment to
1908   // segments until after we've seen all the sections.
1909   if (this->script_options_->saw_sections_clause())
1910     return;
1911 
1912   gold_assert(!this->script_options_->saw_phdrs_clause());
1913 
1914   // This output section goes into a PT_LOAD segment.
1915 
1916   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1917 
1918   // If this output section's segment has extra flags that need to be set,
1919   // coming from a linker plugin, do that.
1920   seg_flags |= os->extra_segment_flags();
1921 
1922   // Check for --section-start.
1923   uint64_t addr;
1924   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1925 
1926   // In general the only thing we really care about for PT_LOAD
1927   // segments is whether or not they are writable or executable,
1928   // so that is how we search for them.
1929   // Large data sections also go into their own PT_LOAD segment.
1930   // People who need segments sorted on some other basis will
1931   // have to use a linker script.
1932 
1933   Segment_list::const_iterator p;
1934   if (!os->is_unique_segment())
1935     {
1936       for (p = this->segment_list_.begin();
1937 	   p != this->segment_list_.end();
1938 	   ++p)
1939 	{
1940 	  if ((*p)->type() != elfcpp::PT_LOAD)
1941 	    continue;
1942 	  if ((*p)->is_unique_segment())
1943 	    continue;
1944 	  if (!parameters->options().omagic()
1945 	      && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1946 	    continue;
1947 	  if ((target->isolate_execinstr() || parameters->options().rosegment())
1948 	      && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1949 	    continue;
1950 	  // If -Tbss was specified, we need to separate the data and BSS
1951 	  // segments.
1952 	  if (parameters->options().user_set_Tbss())
1953 	    {
1954 	      if ((os->type() == elfcpp::SHT_NOBITS)
1955 		  == (*p)->has_any_data_sections())
1956 		continue;
1957 	    }
1958 	  if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1959 	    continue;
1960 
1961 	  if (is_address_set)
1962 	    {
1963 	      if ((*p)->are_addresses_set())
1964 		continue;
1965 
1966 	      (*p)->add_initial_output_data(os);
1967 	      (*p)->update_flags_for_output_section(seg_flags);
1968 	      (*p)->set_addresses(addr, addr);
1969 	      break;
1970 	    }
1971 
1972 	  (*p)->add_output_section_to_load(this, os, seg_flags);
1973 	  break;
1974 	}
1975     }
1976 
1977   if (p == this->segment_list_.end()
1978       || os->is_unique_segment())
1979     {
1980       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1981 						       seg_flags);
1982       if (os->is_large_data_section())
1983 	oseg->set_is_large_data_segment();
1984       oseg->add_output_section_to_load(this, os, seg_flags);
1985       if (is_address_set)
1986 	oseg->set_addresses(addr, addr);
1987       // Check if segment should be marked unique.  For segments marked
1988       // unique by linker plugins, set the new alignment if specified.
1989       if (os->is_unique_segment())
1990 	{
1991 	  oseg->set_is_unique_segment();
1992 	  if (os->segment_alignment() != 0)
1993 	    oseg->set_minimum_p_align(os->segment_alignment());
1994 	}
1995     }
1996 
1997   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1998   // segment.
1999   if (os->type() == elfcpp::SHT_NOTE)
2000     {
2001       // See if we already have an equivalent PT_NOTE segment.
2002       for (p = this->segment_list_.begin();
2003 	   p != segment_list_.end();
2004 	   ++p)
2005 	{
2006 	  if ((*p)->type() == elfcpp::PT_NOTE
2007 	      && (((*p)->flags() & elfcpp::PF_W)
2008 		  == (seg_flags & elfcpp::PF_W)))
2009 	    {
2010 	      (*p)->add_output_section_to_nonload(os, seg_flags);
2011 	      break;
2012 	    }
2013 	}
2014 
2015       if (p == this->segment_list_.end())
2016 	{
2017 	  Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2018 							   seg_flags);
2019 	  oseg->add_output_section_to_nonload(os, seg_flags);
2020 	}
2021     }
2022 
2023   // If we see a loadable SHF_TLS section, we create a PT_TLS
2024   // segment.  There can only be one such segment.
2025   if ((flags & elfcpp::SHF_TLS) != 0)
2026     {
2027       if (this->tls_segment_ == NULL)
2028 	this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2029       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2030     }
2031 
2032   // If -z relro is in effect, and we see a relro section, we create a
2033   // PT_GNU_RELRO segment.  There can only be one such segment.
2034   if (os->is_relro() && parameters->options().relro())
2035     {
2036       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2037       if (this->relro_segment_ == NULL)
2038 	this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2039       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2040     }
2041 
2042   // If we see a section named .interp, put it into a PT_INTERP
2043   // segment.  This seems broken to me, but this is what GNU ld does,
2044   // and glibc expects it.
2045   if (strcmp(os->name(), ".interp") == 0
2046       && !this->script_options_->saw_phdrs_clause())
2047     {
2048       if (this->interp_segment_ == NULL)
2049 	this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2050       else
2051 	gold_warning(_("multiple '.interp' sections in input files "
2052 		       "may cause confusing PT_INTERP segment"));
2053       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2054     }
2055 }
2056 
2057 // Make an output section for a script.
2058 
2059 Output_section*
make_output_section_for_script(const char * name,Script_sections::Section_type section_type)2060 Layout::make_output_section_for_script(
2061     const char* name,
2062     Script_sections::Section_type section_type)
2063 {
2064   name = this->namepool_.add(name, false, NULL);
2065   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2066   if (section_type == Script_sections::ST_NOLOAD)
2067     sh_flags = 0;
2068   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2069 						 sh_flags, ORDER_INVALID,
2070 						 false);
2071   os->set_found_in_sections_clause();
2072   if (section_type == Script_sections::ST_NOLOAD)
2073     os->set_is_noload();
2074   return os;
2075 }
2076 
2077 // Return the number of segments we expect to see.
2078 
2079 size_t
expected_segment_count() const2080 Layout::expected_segment_count() const
2081 {
2082   size_t ret = this->segment_list_.size();
2083 
2084   // If we didn't see a SECTIONS clause in a linker script, we should
2085   // already have the complete list of segments.  Otherwise we ask the
2086   // SECTIONS clause how many segments it expects, and add in the ones
2087   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2088 
2089   if (!this->script_options_->saw_sections_clause())
2090     return ret;
2091   else
2092     {
2093       const Script_sections* ss = this->script_options_->script_sections();
2094       return ret + ss->expected_segment_count(this);
2095     }
2096 }
2097 
2098 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2099 // is whether we saw a .note.GNU-stack section in the object file.
2100 // GNU_STACK_FLAGS is the section flags.  The flags give the
2101 // protection required for stack memory.  We record this in an
2102 // executable as a PT_GNU_STACK segment.  If an object file does not
2103 // have a .note.GNU-stack segment, we must assume that it is an old
2104 // object.  On some targets that will force an executable stack.
2105 
2106 void
layout_gnu_stack(bool seen_gnu_stack,uint64_t gnu_stack_flags,const Object * obj)2107 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2108 			 const Object* obj)
2109 {
2110   if (!seen_gnu_stack)
2111     {
2112       this->input_without_gnu_stack_note_ = true;
2113       if (parameters->options().warn_execstack()
2114 	  && parameters->target().is_default_stack_executable())
2115 	gold_warning(_("%s: missing .note.GNU-stack section"
2116 		       " implies executable stack"),
2117 		     obj->name().c_str());
2118     }
2119   else
2120     {
2121       this->input_with_gnu_stack_note_ = true;
2122       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2123 	{
2124 	  this->input_requires_executable_stack_ = true;
2125 	  if (parameters->options().warn_execstack())
2126 	    gold_warning(_("%s: requires executable stack"),
2127 			 obj->name().c_str());
2128 	}
2129     }
2130 }
2131 
2132 // Create automatic note sections.
2133 
2134 void
create_notes()2135 Layout::create_notes()
2136 {
2137   this->create_gold_note();
2138   this->create_stack_segment();
2139   this->create_build_id();
2140 }
2141 
2142 // Create the dynamic sections which are needed before we read the
2143 // relocs.
2144 
2145 void
create_initial_dynamic_sections(Symbol_table * symtab)2146 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2147 {
2148   if (parameters->doing_static_link())
2149     return;
2150 
2151   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2152 						       elfcpp::SHT_DYNAMIC,
2153 						       (elfcpp::SHF_ALLOC
2154 							| elfcpp::SHF_WRITE),
2155 						       false, ORDER_RELRO,
2156 						       true);
2157 
2158   // A linker script may discard .dynamic, so check for NULL.
2159   if (this->dynamic_section_ != NULL)
2160     {
2161       this->dynamic_symbol_ =
2162 	symtab->define_in_output_data("_DYNAMIC", NULL,
2163 				      Symbol_table::PREDEFINED,
2164 				      this->dynamic_section_, 0, 0,
2165 				      elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2166 				      elfcpp::STV_HIDDEN, 0, false, false);
2167 
2168       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2169 
2170       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2171     }
2172 }
2173 
2174 // For each output section whose name can be represented as C symbol,
2175 // define __start and __stop symbols for the section.  This is a GNU
2176 // extension.
2177 
2178 void
define_section_symbols(Symbol_table * symtab)2179 Layout::define_section_symbols(Symbol_table* symtab)
2180 {
2181   for (Section_list::const_iterator p = this->section_list_.begin();
2182        p != this->section_list_.end();
2183        ++p)
2184     {
2185       const char* const name = (*p)->name();
2186       if (is_cident(name))
2187 	{
2188 	  const std::string name_string(name);
2189 	  const std::string start_name(cident_section_start_prefix
2190 				       + name_string);
2191 	  const std::string stop_name(cident_section_stop_prefix
2192 				      + name_string);
2193 
2194 	  symtab->define_in_output_data(start_name.c_str(),
2195 					NULL, // version
2196 					Symbol_table::PREDEFINED,
2197 					*p,
2198 					0, // value
2199 					0, // symsize
2200 					elfcpp::STT_NOTYPE,
2201 					elfcpp::STB_GLOBAL,
2202 					elfcpp::STV_DEFAULT,
2203 					0, // nonvis
2204 					false, // offset_is_from_end
2205 					true); // only_if_ref
2206 
2207 	  symtab->define_in_output_data(stop_name.c_str(),
2208 					NULL, // version
2209 					Symbol_table::PREDEFINED,
2210 					*p,
2211 					0, // value
2212 					0, // symsize
2213 					elfcpp::STT_NOTYPE,
2214 					elfcpp::STB_GLOBAL,
2215 					elfcpp::STV_DEFAULT,
2216 					0, // nonvis
2217 					true, // offset_is_from_end
2218 					true); // only_if_ref
2219 	}
2220     }
2221 }
2222 
2223 // Define symbols for group signatures.
2224 
2225 void
define_group_signatures(Symbol_table * symtab)2226 Layout::define_group_signatures(Symbol_table* symtab)
2227 {
2228   for (Group_signatures::iterator p = this->group_signatures_.begin();
2229        p != this->group_signatures_.end();
2230        ++p)
2231     {
2232       Symbol* sym = symtab->lookup(p->signature, NULL);
2233       if (sym != NULL)
2234 	p->section->set_info_symndx(sym);
2235       else
2236 	{
2237 	  // Force the name of the group section to the group
2238 	  // signature, and use the group's section symbol as the
2239 	  // signature symbol.
2240 	  if (strcmp(p->section->name(), p->signature) != 0)
2241 	    {
2242 	      const char* name = this->namepool_.add(p->signature,
2243 						     true, NULL);
2244 	      p->section->set_name(name);
2245 	    }
2246 	  p->section->set_needs_symtab_index();
2247 	  p->section->set_info_section_symndx(p->section);
2248 	}
2249     }
2250 
2251   this->group_signatures_.clear();
2252 }
2253 
2254 // Find the first read-only PT_LOAD segment, creating one if
2255 // necessary.
2256 
2257 Output_segment*
find_first_load_seg(const Target * target)2258 Layout::find_first_load_seg(const Target* target)
2259 {
2260   Output_segment* best = NULL;
2261   for (Segment_list::const_iterator p = this->segment_list_.begin();
2262        p != this->segment_list_.end();
2263        ++p)
2264     {
2265       if ((*p)->type() == elfcpp::PT_LOAD
2266 	  && ((*p)->flags() & elfcpp::PF_R) != 0
2267 	  && (parameters->options().omagic()
2268 	      || ((*p)->flags() & elfcpp::PF_W) == 0)
2269 	  && (!target->isolate_execinstr()
2270 	      || ((*p)->flags() & elfcpp::PF_X) == 0))
2271 	{
2272 	  if (best == NULL || this->segment_precedes(*p, best))
2273 	    best = *p;
2274 	}
2275     }
2276   if (best != NULL)
2277     return best;
2278 
2279   gold_assert(!this->script_options_->saw_phdrs_clause());
2280 
2281   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2282 						       elfcpp::PF_R);
2283   return load_seg;
2284 }
2285 
2286 // Save states of all current output segments.  Store saved states
2287 // in SEGMENT_STATES.
2288 
2289 void
save_segments(Segment_states * segment_states)2290 Layout::save_segments(Segment_states* segment_states)
2291 {
2292   for (Segment_list::const_iterator p = this->segment_list_.begin();
2293        p != this->segment_list_.end();
2294        ++p)
2295     {
2296       Output_segment* segment = *p;
2297       // Shallow copy.
2298       Output_segment* copy = new Output_segment(*segment);
2299       (*segment_states)[segment] = copy;
2300     }
2301 }
2302 
2303 // Restore states of output segments and delete any segment not found in
2304 // SEGMENT_STATES.
2305 
2306 void
restore_segments(const Segment_states * segment_states)2307 Layout::restore_segments(const Segment_states* segment_states)
2308 {
2309   // Go through the segment list and remove any segment added in the
2310   // relaxation loop.
2311   this->tls_segment_ = NULL;
2312   this->relro_segment_ = NULL;
2313   Segment_list::iterator list_iter = this->segment_list_.begin();
2314   while (list_iter != this->segment_list_.end())
2315     {
2316       Output_segment* segment = *list_iter;
2317       Segment_states::const_iterator states_iter =
2318 	  segment_states->find(segment);
2319       if (states_iter != segment_states->end())
2320 	{
2321 	  const Output_segment* copy = states_iter->second;
2322 	  // Shallow copy to restore states.
2323 	  *segment = *copy;
2324 
2325 	  // Also fix up TLS and RELRO segment pointers as appropriate.
2326 	  if (segment->type() == elfcpp::PT_TLS)
2327 	    this->tls_segment_ = segment;
2328 	  else if (segment->type() == elfcpp::PT_GNU_RELRO)
2329 	    this->relro_segment_ = segment;
2330 
2331 	  ++list_iter;
2332 	}
2333       else
2334 	{
2335 	  list_iter = this->segment_list_.erase(list_iter);
2336 	  // This is a segment created during section layout.  It should be
2337 	  // safe to remove it since we should have removed all pointers to it.
2338 	  delete segment;
2339 	}
2340     }
2341 }
2342 
2343 // Clean up after relaxation so that sections can be laid out again.
2344 
2345 void
clean_up_after_relaxation()2346 Layout::clean_up_after_relaxation()
2347 {
2348   // Restore the segments to point state just prior to the relaxation loop.
2349   Script_sections* script_section = this->script_options_->script_sections();
2350   script_section->release_segments();
2351   this->restore_segments(this->segment_states_);
2352 
2353   // Reset section addresses and file offsets
2354   for (Section_list::iterator p = this->section_list_.begin();
2355        p != this->section_list_.end();
2356        ++p)
2357     {
2358       (*p)->restore_states();
2359 
2360       // If an input section changes size because of relaxation,
2361       // we need to adjust the section offsets of all input sections.
2362       // after such a section.
2363       if ((*p)->section_offsets_need_adjustment())
2364 	(*p)->adjust_section_offsets();
2365 
2366       (*p)->reset_address_and_file_offset();
2367     }
2368 
2369   // Reset special output object address and file offsets.
2370   for (Data_list::iterator p = this->special_output_list_.begin();
2371        p != this->special_output_list_.end();
2372        ++p)
2373     (*p)->reset_address_and_file_offset();
2374 
2375   // A linker script may have created some output section data objects.
2376   // They are useless now.
2377   for (Output_section_data_list::const_iterator p =
2378 	 this->script_output_section_data_list_.begin();
2379        p != this->script_output_section_data_list_.end();
2380        ++p)
2381     delete *p;
2382   this->script_output_section_data_list_.clear();
2383 
2384   // Special-case fill output objects are recreated each time through
2385   // the relaxation loop.
2386   this->reset_relax_output();
2387 }
2388 
2389 void
reset_relax_output()2390 Layout::reset_relax_output()
2391 {
2392   for (Data_list::const_iterator p = this->relax_output_list_.begin();
2393        p != this->relax_output_list_.end();
2394        ++p)
2395     delete *p;
2396   this->relax_output_list_.clear();
2397 }
2398 
2399 // Prepare for relaxation.
2400 
2401 void
prepare_for_relaxation()2402 Layout::prepare_for_relaxation()
2403 {
2404   // Create an relaxation debug check if in debugging mode.
2405   if (is_debugging_enabled(DEBUG_RELAXATION))
2406     this->relaxation_debug_check_ = new Relaxation_debug_check();
2407 
2408   // Save segment states.
2409   this->segment_states_ = new Segment_states();
2410   this->save_segments(this->segment_states_);
2411 
2412   for(Section_list::const_iterator p = this->section_list_.begin();
2413       p != this->section_list_.end();
2414       ++p)
2415     (*p)->save_states();
2416 
2417   if (is_debugging_enabled(DEBUG_RELAXATION))
2418     this->relaxation_debug_check_->check_output_data_for_reset_values(
2419 	this->section_list_, this->special_output_list_,
2420 	this->relax_output_list_);
2421 
2422   // Also enable recording of output section data from scripts.
2423   this->record_output_section_data_from_script_ = true;
2424 }
2425 
2426 // If the user set the address of the text segment, that may not be
2427 // compatible with putting the segment headers and file headers into
2428 // that segment.  For isolate_execinstr() targets, it's the rodata
2429 // segment rather than text where we might put the headers.
2430 static inline bool
load_seg_unusable_for_headers(const Target * target)2431 load_seg_unusable_for_headers(const Target* target)
2432 {
2433   const General_options& options = parameters->options();
2434   if (target->isolate_execinstr())
2435     return (options.user_set_Trodata_segment()
2436 	    && options.Trodata_segment() % target->abi_pagesize() != 0);
2437   else
2438     return (options.user_set_Ttext()
2439 	    && options.Ttext() % target->abi_pagesize() != 0);
2440 }
2441 
2442 // Relaxation loop body:  If target has no relaxation, this runs only once
2443 // Otherwise, the target relaxation hook is called at the end of
2444 // each iteration.  If the hook returns true, it means re-layout of
2445 // section is required.
2446 //
2447 // The number of segments created by a linking script without a PHDRS
2448 // clause may be affected by section sizes and alignments.  There is
2449 // a remote chance that relaxation causes different number of PT_LOAD
2450 // segments are created and sections are attached to different segments.
2451 // Therefore, we always throw away all segments created during section
2452 // layout.  In order to be able to restart the section layout, we keep
2453 // a copy of the segment list right before the relaxation loop and use
2454 // that to restore the segments.
2455 //
2456 // PASS is the current relaxation pass number.
2457 // SYMTAB is a symbol table.
2458 // PLOAD_SEG is the address of a pointer for the load segment.
2459 // PHDR_SEG is a pointer to the PHDR segment.
2460 // SEGMENT_HEADERS points to the output segment header.
2461 // FILE_HEADER points to the output file header.
2462 // PSHNDX is the address to store the output section index.
2463 
2464 off_t inline
relaxation_loop_body(int pass,Target * target,Symbol_table * symtab,Output_segment ** pload_seg,Output_segment * phdr_seg,Output_segment_headers * segment_headers,Output_file_header * file_header,unsigned int * pshndx)2465 Layout::relaxation_loop_body(
2466     int pass,
2467     Target* target,
2468     Symbol_table* symtab,
2469     Output_segment** pload_seg,
2470     Output_segment* phdr_seg,
2471     Output_segment_headers* segment_headers,
2472     Output_file_header* file_header,
2473     unsigned int* pshndx)
2474 {
2475   // If this is not the first iteration, we need to clean up after
2476   // relaxation so that we can lay out the sections again.
2477   if (pass != 0)
2478     this->clean_up_after_relaxation();
2479 
2480   // If there is a SECTIONS clause, put all the input sections into
2481   // the required order.
2482   Output_segment* load_seg;
2483   if (this->script_options_->saw_sections_clause())
2484     load_seg = this->set_section_addresses_from_script(symtab);
2485   else if (parameters->options().relocatable())
2486     load_seg = NULL;
2487   else
2488     load_seg = this->find_first_load_seg(target);
2489 
2490   if (parameters->options().oformat_enum()
2491       != General_options::OBJECT_FORMAT_ELF)
2492     load_seg = NULL;
2493 
2494   if (load_seg_unusable_for_headers(target))
2495     {
2496       load_seg = NULL;
2497       phdr_seg = NULL;
2498     }
2499 
2500   gold_assert(phdr_seg == NULL
2501 	      || load_seg != NULL
2502 	      || this->script_options_->saw_sections_clause());
2503 
2504   // If the address of the load segment we found has been set by
2505   // --section-start rather than by a script, then adjust the VMA and
2506   // LMA downward if possible to include the file and section headers.
2507   uint64_t header_gap = 0;
2508   if (load_seg != NULL
2509       && load_seg->are_addresses_set()
2510       && !this->script_options_->saw_sections_clause()
2511       && !parameters->options().relocatable())
2512     {
2513       file_header->finalize_data_size();
2514       segment_headers->finalize_data_size();
2515       size_t sizeof_headers = (file_header->data_size()
2516 			       + segment_headers->data_size());
2517       const uint64_t abi_pagesize = target->abi_pagesize();
2518       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2519       hdr_paddr &= ~(abi_pagesize - 1);
2520       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2521       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2522 	load_seg = NULL;
2523       else
2524 	{
2525 	  load_seg->set_addresses(load_seg->vaddr() - subtract,
2526 				  load_seg->paddr() - subtract);
2527 	  header_gap = subtract - sizeof_headers;
2528 	}
2529     }
2530 
2531   // Lay out the segment headers.
2532   if (!parameters->options().relocatable())
2533     {
2534       gold_assert(segment_headers != NULL);
2535       if (header_gap != 0 && load_seg != NULL)
2536 	{
2537 	  Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2538 	  load_seg->add_initial_output_data(z);
2539 	}
2540       if (load_seg != NULL)
2541 	load_seg->add_initial_output_data(segment_headers);
2542       if (phdr_seg != NULL)
2543 	phdr_seg->add_initial_output_data(segment_headers);
2544     }
2545 
2546   // Lay out the file header.
2547   if (load_seg != NULL)
2548     load_seg->add_initial_output_data(file_header);
2549 
2550   if (this->script_options_->saw_phdrs_clause()
2551       && !parameters->options().relocatable())
2552     {
2553       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2554       // clause in a linker script.
2555       Script_sections* ss = this->script_options_->script_sections();
2556       ss->put_headers_in_phdrs(file_header, segment_headers);
2557     }
2558 
2559   // We set the output section indexes in set_segment_offsets and
2560   // set_section_indexes.
2561   *pshndx = 1;
2562 
2563   // Set the file offsets of all the segments, and all the sections
2564   // they contain.
2565   off_t off;
2566   if (!parameters->options().relocatable())
2567     off = this->set_segment_offsets(target, load_seg, pshndx);
2568   else
2569     off = this->set_relocatable_section_offsets(file_header, pshndx);
2570 
2571    // Verify that the dummy relaxation does not change anything.
2572   if (is_debugging_enabled(DEBUG_RELAXATION))
2573     {
2574       if (pass == 0)
2575 	this->relaxation_debug_check_->read_sections(this->section_list_);
2576       else
2577 	this->relaxation_debug_check_->verify_sections(this->section_list_);
2578     }
2579 
2580   *pload_seg = load_seg;
2581   return off;
2582 }
2583 
2584 // Search the list of patterns and find the postion of the given section
2585 // name in the output section.  If the section name matches a glob
2586 // pattern and a non-glob name, then the non-glob position takes
2587 // precedence.  Return 0 if no match is found.
2588 
2589 unsigned int
find_section_order_index(const std::string & section_name)2590 Layout::find_section_order_index(const std::string& section_name)
2591 {
2592   Unordered_map<std::string, unsigned int>::iterator map_it;
2593   map_it = this->input_section_position_.find(section_name);
2594   if (map_it != this->input_section_position_.end())
2595     return map_it->second;
2596 
2597   // Absolute match failed.  Linear search the glob patterns.
2598   std::vector<std::string>::iterator it;
2599   for (it = this->input_section_glob_.begin();
2600        it != this->input_section_glob_.end();
2601        ++it)
2602     {
2603        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2604 	 {
2605 	   map_it = this->input_section_position_.find(*it);
2606 	   gold_assert(map_it != this->input_section_position_.end());
2607 	   return map_it->second;
2608 	 }
2609     }
2610   return 0;
2611 }
2612 
2613 // Read the sequence of input sections from the file specified with
2614 // option --section-ordering-file.
2615 
2616 void
read_layout_from_file()2617 Layout::read_layout_from_file()
2618 {
2619   const char* filename = parameters->options().section_ordering_file();
2620   std::ifstream in;
2621   std::string line;
2622 
2623   in.open(filename);
2624   if (!in)
2625     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2626 	       filename, strerror(errno));
2627 
2628   std::getline(in, line);   // this chops off the trailing \n, if any
2629   unsigned int position = 1;
2630   this->set_section_ordering_specified();
2631 
2632   while (in)
2633     {
2634       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2635 	line.resize(line.length() - 1);
2636       // Ignore comments, beginning with '#'
2637       if (line[0] == '#')
2638 	{
2639 	  std::getline(in, line);
2640 	  continue;
2641 	}
2642       this->input_section_position_[line] = position;
2643       // Store all glob patterns in a vector.
2644       if (is_wildcard_string(line.c_str()))
2645 	this->input_section_glob_.push_back(line);
2646       position++;
2647       std::getline(in, line);
2648     }
2649 }
2650 
2651 // Finalize the layout.  When this is called, we have created all the
2652 // output sections and all the output segments which are based on
2653 // input sections.  We have several things to do, and we have to do
2654 // them in the right order, so that we get the right results correctly
2655 // and efficiently.
2656 
2657 // 1) Finalize the list of output segments and create the segment
2658 // table header.
2659 
2660 // 2) Finalize the dynamic symbol table and associated sections.
2661 
2662 // 3) Determine the final file offset of all the output segments.
2663 
2664 // 4) Determine the final file offset of all the SHF_ALLOC output
2665 // sections.
2666 
2667 // 5) Create the symbol table sections and the section name table
2668 // section.
2669 
2670 // 6) Finalize the symbol table: set symbol values to their final
2671 // value and make a final determination of which symbols are going
2672 // into the output symbol table.
2673 
2674 // 7) Create the section table header.
2675 
2676 // 8) Determine the final file offset of all the output sections which
2677 // are not SHF_ALLOC, including the section table header.
2678 
2679 // 9) Finalize the ELF file header.
2680 
2681 // This function returns the size of the output file.
2682 
2683 off_t
finalize(const Input_objects * input_objects,Symbol_table * symtab,Target * target,const Task * task)2684 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2685 		 Target* target, const Task* task)
2686 {
2687   target->finalize_sections(this, input_objects, symtab);
2688 
2689   this->count_local_symbols(task, input_objects);
2690 
2691   this->link_stabs_sections();
2692 
2693   Output_segment* phdr_seg = NULL;
2694   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2695     {
2696       // There was a dynamic object in the link.  We need to create
2697       // some information for the dynamic linker.
2698 
2699       // Create the PT_PHDR segment which will hold the program
2700       // headers.
2701       if (!this->script_options_->saw_phdrs_clause())
2702 	phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2703 
2704       // Create the dynamic symbol table, including the hash table.
2705       Output_section* dynstr;
2706       std::vector<Symbol*> dynamic_symbols;
2707       unsigned int local_dynamic_count;
2708       Versions versions(*this->script_options()->version_script_info(),
2709 			&this->dynpool_);
2710       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2711 				  &local_dynamic_count, &dynamic_symbols,
2712 				  &versions);
2713 
2714       // Create the .interp section to hold the name of the
2715       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2716       // if we saw a .interp section in an input file.
2717       if ((!parameters->options().shared()
2718 	   || parameters->options().dynamic_linker() != NULL)
2719 	  && this->interp_segment_ == NULL)
2720 	this->create_interp(target);
2721 
2722       // Finish the .dynamic section to hold the dynamic data, and put
2723       // it in a PT_DYNAMIC segment.
2724       this->finish_dynamic_section(input_objects, symtab);
2725 
2726       // We should have added everything we need to the dynamic string
2727       // table.
2728       this->dynpool_.set_string_offsets();
2729 
2730       // Create the version sections.  We can't do this until the
2731       // dynamic string table is complete.
2732       this->create_version_sections(&versions, symtab, local_dynamic_count,
2733 				    dynamic_symbols, dynstr);
2734 
2735       // Set the size of the _DYNAMIC symbol.  We can't do this until
2736       // after we call create_version_sections.
2737       this->set_dynamic_symbol_size(symtab);
2738     }
2739 
2740   // Create segment headers.
2741   Output_segment_headers* segment_headers =
2742     (parameters->options().relocatable()
2743      ? NULL
2744      : new Output_segment_headers(this->segment_list_));
2745 
2746   // Lay out the file header.
2747   Output_file_header* file_header = new Output_file_header(target, symtab,
2748 							   segment_headers);
2749 
2750   this->special_output_list_.push_back(file_header);
2751   if (segment_headers != NULL)
2752     this->special_output_list_.push_back(segment_headers);
2753 
2754   // Find approriate places for orphan output sections if we are using
2755   // a linker script.
2756   if (this->script_options_->saw_sections_clause())
2757     this->place_orphan_sections_in_script();
2758 
2759   Output_segment* load_seg;
2760   off_t off;
2761   unsigned int shndx;
2762   int pass = 0;
2763 
2764   // Take a snapshot of the section layout as needed.
2765   if (target->may_relax())
2766     this->prepare_for_relaxation();
2767 
2768   // Run the relaxation loop to lay out sections.
2769   do
2770     {
2771       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2772 				       phdr_seg, segment_headers, file_header,
2773 				       &shndx);
2774       pass++;
2775     }
2776   while (target->may_relax()
2777 	 && target->relax(pass, input_objects, symtab, this, task));
2778 
2779   // Check if data segment size is less than the safe value with PIE links.
2780   if (parameters->options().pie() && target->max_pie_data_segment_size())
2781     {
2782       Segment_list::const_iterator p;
2783       uint64_t re_vaddr = 0, re_memsz = 0, rw_vaddr = 0, rw_memsz = 0;
2784       uint64_t data_seg_size = 0;
2785       for (p = this->segment_list_.begin();
2786 	   p != this->segment_list_.end();
2787 	   ++p)
2788 	{
2789 	  // With -Wl,--rosegment, note the end addr of "R E" segment.
2790 	  if (parameters->options().rosegment()
2791 	      && (*p)->type() == elfcpp::PT_LOAD
2792 	      && ((*p)->flags() & elfcpp::PF_X) != 0
2793 	      && ((*p)->flags() & elfcpp::PF_R) != 0)
2794 	    {
2795 	      re_vaddr = (*p)->vaddr();
2796 	      re_memsz = (*p)->memsz();
2797 	      continue;
2798 	    }
2799 	  if ((*p)->type() == elfcpp::PT_LOAD
2800 	      && ((*p)->flags() & elfcpp::PF_W) != 0
2801 	      && ((*p)->flags() & elfcpp::PF_R) != 0)
2802 	    {
2803 	      rw_vaddr = (*p)->vaddr();
2804 	      rw_memsz = (*p)->memsz();
2805 	      break;
2806 	    }
2807 	}
2808 
2809       // With -Wl,--rosegment, report data segment size as delta of end of
2810       // "RW" segment and end of "R E" segment.  Otherwise, data segment
2811       // size is just the memsz of "RW" segment.
2812       if (parameters->options().rosegment())
2813         data_seg_size = (rw_vaddr + rw_memsz) - (re_vaddr + re_memsz);
2814       else
2815         data_seg_size = rw_memsz;
2816 
2817       if (data_seg_size >= target->max_pie_data_segment_size())
2818 	gold_warning(
2819 	  _("Unsafe PIE data segment size (%" PRIu64 " > %" PRIu64 "). "
2820 	    "For kernels with CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE enabled, "
2821 	    "load_elf_binary() attempts to map a PIE binary into an address "
2822 	    "range immediately below mm->mmap_base. The first PT_LOAD segment "
2823 	    "is mapped below mm->mmap_base, the subsequent PT_LOAD segment(s) "
2824 	    "end up being mapped above mm->mmap_base into the area that is "
2825 	    "supposed to be the \"gap\" between the stack and the binary. Since"
2826 	    " the size of the \"gap\" on x86_64 is only guaranteed to be 128MB "
2827 	    "this means that binaries with large data segments > 128MB can end "
2828 	    "up mapping part of their data segment over their stack resulting "
2829 	    "in corruption of the stack. Any PIE binary with a data segment > "
2830 	    "128MB is vulnerable to this. It is suggested to turn off PIE."),
2831 	  data_seg_size,
2832 	  target->max_pie_data_segment_size());
2833     }
2834 
2835   // If there is a load segment that contains the file and program headers,
2836   // provide a symbol __ehdr_start pointing there.
2837   // A program can use this to examine itself robustly.
2838   Symbol *ehdr_start = symtab->lookup("__ehdr_start");
2839   if (ehdr_start != NULL && ehdr_start->is_predefined())
2840     {
2841       if (load_seg != NULL)
2842 	ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
2843       else
2844 	ehdr_start->set_undefined();
2845     }
2846 
2847   // Set the file offsets of all the non-data sections we've seen so
2848   // far which don't have to wait for the input sections.  We need
2849   // this in order to finalize local symbols in non-allocated
2850   // sections.
2851   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2852 
2853   // Set the section indexes of all unallocated sections seen so far,
2854   // in case any of them are somehow referenced by a symbol.
2855   shndx = this->set_section_indexes(shndx);
2856 
2857   // Create the symbol table sections.
2858   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2859   if (!parameters->doing_static_link())
2860     this->assign_local_dynsym_offsets(input_objects);
2861 
2862   // Process any symbol assignments from a linker script.  This must
2863   // be called after the symbol table has been finalized.
2864   this->script_options_->finalize_symbols(symtab, this);
2865 
2866   // Create the incremental inputs sections.
2867   if (this->incremental_inputs_)
2868     {
2869       this->incremental_inputs_->finalize();
2870       this->create_incremental_info_sections(symtab);
2871     }
2872 
2873   // Create the .shstrtab section.
2874   Output_section* shstrtab_section = this->create_shstrtab();
2875 
2876   // Set the file offsets of the rest of the non-data sections which
2877   // don't have to wait for the input sections.
2878   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2879 
2880   // Now that all sections have been created, set the section indexes
2881   // for any sections which haven't been done yet.
2882   shndx = this->set_section_indexes(shndx);
2883 
2884   // Create the section table header.
2885   this->create_shdrs(shstrtab_section, &off);
2886 
2887   // If there are no sections which require postprocessing, we can
2888   // handle the section names now, and avoid a resize later.
2889   if (!this->any_postprocessing_sections_)
2890     {
2891       off = this->set_section_offsets(off,
2892 				      POSTPROCESSING_SECTIONS_PASS);
2893       off =
2894 	  this->set_section_offsets(off,
2895 				    STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2896     }
2897 
2898   file_header->set_section_info(this->section_headers_, shstrtab_section);
2899 
2900   // Now we know exactly where everything goes in the output file
2901   // (except for non-allocated sections which require postprocessing).
2902   Output_data::layout_complete();
2903 
2904   this->output_file_size_ = off;
2905 
2906   return off;
2907 }
2908 
2909 // Create a note header following the format defined in the ELF ABI.
2910 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2911 // of the section to create, DESCSZ is the size of the descriptor.
2912 // ALLOCATE is true if the section should be allocated in memory.
2913 // This returns the new note section.  It sets *TRAILING_PADDING to
2914 // the number of trailing zero bytes required.
2915 
2916 Output_section*
create_note(const char * name,int note_type,const char * section_name,size_t descsz,bool allocate,size_t * trailing_padding)2917 Layout::create_note(const char* name, int note_type,
2918 		    const char* section_name, size_t descsz,
2919 		    bool allocate, size_t* trailing_padding)
2920 {
2921   // Authorities all agree that the values in a .note field should
2922   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2923   // they differ on what the alignment is for 64-bit binaries.
2924   // The GABI says unambiguously they take 8-byte alignment:
2925   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2926   // Other documentation says alignment should always be 4 bytes:
2927   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2928   // GNU ld and GNU readelf both support the latter (at least as of
2929   // version 2.16.91), and glibc always generates the latter for
2930   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2931   // here.
2932 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2933   const int size = parameters->target().get_size();
2934 #else
2935   const int size = 32;
2936 #endif
2937 
2938   // The contents of the .note section.
2939   size_t namesz = strlen(name) + 1;
2940   size_t aligned_namesz = align_address(namesz, size / 8);
2941   size_t aligned_descsz = align_address(descsz, size / 8);
2942 
2943   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2944 
2945   unsigned char* buffer = new unsigned char[notehdrsz];
2946   memset(buffer, 0, notehdrsz);
2947 
2948   bool is_big_endian = parameters->target().is_big_endian();
2949 
2950   if (size == 32)
2951     {
2952       if (!is_big_endian)
2953 	{
2954 	  elfcpp::Swap<32, false>::writeval(buffer, namesz);
2955 	  elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2956 	  elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2957 	}
2958       else
2959 	{
2960 	  elfcpp::Swap<32, true>::writeval(buffer, namesz);
2961 	  elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2962 	  elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2963 	}
2964     }
2965   else if (size == 64)
2966     {
2967       if (!is_big_endian)
2968 	{
2969 	  elfcpp::Swap<64, false>::writeval(buffer, namesz);
2970 	  elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2971 	  elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2972 	}
2973       else
2974 	{
2975 	  elfcpp::Swap<64, true>::writeval(buffer, namesz);
2976 	  elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2977 	  elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2978 	}
2979     }
2980   else
2981     gold_unreachable();
2982 
2983   memcpy(buffer + 3 * (size / 8), name, namesz);
2984 
2985   elfcpp::Elf_Xword flags = 0;
2986   Output_section_order order = ORDER_INVALID;
2987   if (allocate)
2988     {
2989       flags = elfcpp::SHF_ALLOC;
2990       order = ORDER_RO_NOTE;
2991     }
2992   Output_section* os = this->choose_output_section(NULL, section_name,
2993 						   elfcpp::SHT_NOTE,
2994 						   flags, false, order, false);
2995   if (os == NULL)
2996     return NULL;
2997 
2998   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2999 							   size / 8,
3000 							   "** note header");
3001   os->add_output_section_data(posd);
3002 
3003   *trailing_padding = aligned_descsz - descsz;
3004 
3005   return os;
3006 }
3007 
3008 // For an executable or shared library, create a note to record the
3009 // version of gold used to create the binary.
3010 
3011 void
create_gold_note()3012 Layout::create_gold_note()
3013 {
3014   if (parameters->options().relocatable()
3015       || parameters->incremental_update())
3016     return;
3017 
3018   std::string desc = std::string("gold ") + gold::get_version_string();
3019 
3020   size_t trailing_padding;
3021   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
3022 					 ".note.gnu.gold-version", desc.size(),
3023 					 false, &trailing_padding);
3024   if (os == NULL)
3025     return;
3026 
3027   Output_section_data* posd = new Output_data_const(desc, 4);
3028   os->add_output_section_data(posd);
3029 
3030   if (trailing_padding > 0)
3031     {
3032       posd = new Output_data_zero_fill(trailing_padding, 0);
3033       os->add_output_section_data(posd);
3034     }
3035 }
3036 
3037 // Record whether the stack should be executable.  This can be set
3038 // from the command line using the -z execstack or -z noexecstack
3039 // options.  Otherwise, if any input file has a .note.GNU-stack
3040 // section with the SHF_EXECINSTR flag set, the stack should be
3041 // executable.  Otherwise, if at least one input file a
3042 // .note.GNU-stack section, and some input file has no .note.GNU-stack
3043 // section, we use the target default for whether the stack should be
3044 // executable.  If -z stack-size was used to set a p_memsz value for
3045 // PT_GNU_STACK, we generate the segment regardless.  Otherwise, we
3046 // don't generate a stack note.  When generating a object file, we
3047 // create a .note.GNU-stack section with the appropriate marking.
3048 // When generating an executable or shared library, we create a
3049 // PT_GNU_STACK segment.
3050 
3051 void
create_stack_segment()3052 Layout::create_stack_segment()
3053 {
3054   bool is_stack_executable;
3055   if (parameters->options().is_execstack_set())
3056     {
3057       is_stack_executable = parameters->options().is_stack_executable();
3058       if (!is_stack_executable
3059 	  && this->input_requires_executable_stack_
3060 	  && parameters->options().warn_execstack())
3061 	gold_warning(_("one or more inputs require executable stack, "
3062 		       "but -z noexecstack was given"));
3063     }
3064   else if (!this->input_with_gnu_stack_note_
3065 	   && (!parameters->options().user_set_stack_size()
3066 	       || parameters->options().relocatable()))
3067     return;
3068   else
3069     {
3070       if (this->input_requires_executable_stack_)
3071 	is_stack_executable = true;
3072       else if (this->input_without_gnu_stack_note_)
3073 	is_stack_executable =
3074 	  parameters->target().is_default_stack_executable();
3075       else
3076 	is_stack_executable = false;
3077     }
3078 
3079   if (parameters->options().relocatable())
3080     {
3081       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3082       elfcpp::Elf_Xword flags = 0;
3083       if (is_stack_executable)
3084 	flags |= elfcpp::SHF_EXECINSTR;
3085       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3086 				ORDER_INVALID, false);
3087     }
3088   else
3089     {
3090       if (this->script_options_->saw_phdrs_clause())
3091 	return;
3092       int flags = elfcpp::PF_R | elfcpp::PF_W;
3093       if (is_stack_executable)
3094 	flags |= elfcpp::PF_X;
3095       Output_segment* seg =
3096 	this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3097       seg->set_size(parameters->options().stack_size());
3098       // BFD lets targets override this default alignment, but the only
3099       // targets that do so are ones that Gold does not support so far.
3100       seg->set_minimum_p_align(16);
3101     }
3102 }
3103 
3104 // If --build-id was used, set up the build ID note.
3105 
3106 void
create_build_id()3107 Layout::create_build_id()
3108 {
3109   if (!parameters->options().user_set_build_id())
3110     return;
3111 
3112   const char* style = parameters->options().build_id();
3113   if (strcmp(style, "none") == 0)
3114     return;
3115 
3116   // Set DESCSZ to the size of the note descriptor.  When possible,
3117   // set DESC to the note descriptor contents.
3118   size_t descsz;
3119   std::string desc;
3120   if (strcmp(style, "md5") == 0)
3121     descsz = 128 / 8;
3122   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3123     descsz = 160 / 8;
3124   else if (strcmp(style, "uuid") == 0)
3125     {
3126       const size_t uuidsz = 128 / 8;
3127 
3128       char buffer[uuidsz];
3129       memset(buffer, 0, uuidsz);
3130 
3131       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3132       if (descriptor < 0)
3133 	gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3134 		   strerror(errno));
3135       else
3136 	{
3137 	  ssize_t got = ::read(descriptor, buffer, uuidsz);
3138 	  release_descriptor(descriptor, true);
3139 	  if (got < 0)
3140 	    gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3141 	  else if (static_cast<size_t>(got) != uuidsz)
3142 	    gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3143 		       uuidsz, got);
3144 	}
3145 
3146       desc.assign(buffer, uuidsz);
3147       descsz = uuidsz;
3148     }
3149   else if (strncmp(style, "0x", 2) == 0)
3150     {
3151       hex_init();
3152       const char* p = style + 2;
3153       while (*p != '\0')
3154 	{
3155 	  if (hex_p(p[0]) && hex_p(p[1]))
3156 	    {
3157 	      char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3158 	      desc += c;
3159 	      p += 2;
3160 	    }
3161 	  else if (*p == '-' || *p == ':')
3162 	    ++p;
3163 	  else
3164 	    gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3165 		       style);
3166 	}
3167       descsz = desc.size();
3168     }
3169   else
3170     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3171 
3172   // Create the note.
3173   size_t trailing_padding;
3174   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3175 					 ".note.gnu.build-id", descsz, true,
3176 					 &trailing_padding);
3177   if (os == NULL)
3178     return;
3179 
3180   if (!desc.empty())
3181     {
3182       // We know the value already, so we fill it in now.
3183       gold_assert(desc.size() == descsz);
3184 
3185       Output_section_data* posd = new Output_data_const(desc, 4);
3186       os->add_output_section_data(posd);
3187 
3188       if (trailing_padding != 0)
3189 	{
3190 	  posd = new Output_data_zero_fill(trailing_padding, 0);
3191 	  os->add_output_section_data(posd);
3192 	}
3193     }
3194   else
3195     {
3196       // We need to compute a checksum after we have completed the
3197       // link.
3198       gold_assert(trailing_padding == 0);
3199       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3200       os->add_output_section_data(this->build_id_note_);
3201     }
3202 }
3203 
3204 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3205 // field of the former should point to the latter.  I'm not sure who
3206 // started this, but the GNU linker does it, and some tools depend
3207 // upon it.
3208 
3209 void
link_stabs_sections()3210 Layout::link_stabs_sections()
3211 {
3212   if (!this->have_stabstr_section_)
3213     return;
3214 
3215   for (Section_list::iterator p = this->section_list_.begin();
3216        p != this->section_list_.end();
3217        ++p)
3218     {
3219       if ((*p)->type() != elfcpp::SHT_STRTAB)
3220 	continue;
3221 
3222       const char* name = (*p)->name();
3223       if (strncmp(name, ".stab", 5) != 0)
3224 	continue;
3225 
3226       size_t len = strlen(name);
3227       if (strcmp(name + len - 3, "str") != 0)
3228 	continue;
3229 
3230       std::string stab_name(name, len - 3);
3231       Output_section* stab_sec;
3232       stab_sec = this->find_output_section(stab_name.c_str());
3233       if (stab_sec != NULL)
3234 	stab_sec->set_link_section(*p);
3235     }
3236 }
3237 
3238 // Create .gnu_incremental_inputs and related sections needed
3239 // for the next run of incremental linking to check what has changed.
3240 
3241 void
create_incremental_info_sections(Symbol_table * symtab)3242 Layout::create_incremental_info_sections(Symbol_table* symtab)
3243 {
3244   Incremental_inputs* incr = this->incremental_inputs_;
3245 
3246   gold_assert(incr != NULL);
3247 
3248   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3249   incr->create_data_sections(symtab);
3250 
3251   // Add the .gnu_incremental_inputs section.
3252   const char* incremental_inputs_name =
3253     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3254   Output_section* incremental_inputs_os =
3255     this->make_output_section(incremental_inputs_name,
3256 			      elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3257 			      ORDER_INVALID, false);
3258   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3259 
3260   // Add the .gnu_incremental_symtab section.
3261   const char* incremental_symtab_name =
3262     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3263   Output_section* incremental_symtab_os =
3264     this->make_output_section(incremental_symtab_name,
3265 			      elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3266 			      ORDER_INVALID, false);
3267   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3268   incremental_symtab_os->set_entsize(4);
3269 
3270   // Add the .gnu_incremental_relocs section.
3271   const char* incremental_relocs_name =
3272     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3273   Output_section* incremental_relocs_os =
3274     this->make_output_section(incremental_relocs_name,
3275 			      elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3276 			      ORDER_INVALID, false);
3277   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3278   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3279 
3280   // Add the .gnu_incremental_got_plt section.
3281   const char* incremental_got_plt_name =
3282     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3283   Output_section* incremental_got_plt_os =
3284     this->make_output_section(incremental_got_plt_name,
3285 			      elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3286 			      ORDER_INVALID, false);
3287   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3288 
3289   // Add the .gnu_incremental_strtab section.
3290   const char* incremental_strtab_name =
3291     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3292   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3293 							elfcpp::SHT_STRTAB, 0,
3294 							ORDER_INVALID, false);
3295   Output_data_strtab* strtab_data =
3296       new Output_data_strtab(incr->get_stringpool());
3297   incremental_strtab_os->add_output_section_data(strtab_data);
3298 
3299   incremental_inputs_os->set_after_input_sections();
3300   incremental_symtab_os->set_after_input_sections();
3301   incremental_relocs_os->set_after_input_sections();
3302   incremental_got_plt_os->set_after_input_sections();
3303 
3304   incremental_inputs_os->set_link_section(incremental_strtab_os);
3305   incremental_symtab_os->set_link_section(incremental_inputs_os);
3306   incremental_relocs_os->set_link_section(incremental_inputs_os);
3307   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3308 }
3309 
3310 // Return whether SEG1 should be before SEG2 in the output file.  This
3311 // is based entirely on the segment type and flags.  When this is
3312 // called the segment addresses have normally not yet been set.
3313 
3314 bool
segment_precedes(const Output_segment * seg1,const Output_segment * seg2)3315 Layout::segment_precedes(const Output_segment* seg1,
3316 			 const Output_segment* seg2)
3317 {
3318   elfcpp::Elf_Word type1 = seg1->type();
3319   elfcpp::Elf_Word type2 = seg2->type();
3320 
3321   // The single PT_PHDR segment is required to precede any loadable
3322   // segment.  We simply make it always first.
3323   if (type1 == elfcpp::PT_PHDR)
3324     {
3325       gold_assert(type2 != elfcpp::PT_PHDR);
3326       return true;
3327     }
3328   if (type2 == elfcpp::PT_PHDR)
3329     return false;
3330 
3331   // The single PT_INTERP segment is required to precede any loadable
3332   // segment.  We simply make it always second.
3333   if (type1 == elfcpp::PT_INTERP)
3334     {
3335       gold_assert(type2 != elfcpp::PT_INTERP);
3336       return true;
3337     }
3338   if (type2 == elfcpp::PT_INTERP)
3339     return false;
3340 
3341   // We then put PT_LOAD segments before any other segments.
3342   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3343     return true;
3344   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3345     return false;
3346 
3347   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3348   // segment, because that is where the dynamic linker expects to find
3349   // it (this is just for efficiency; other positions would also work
3350   // correctly).
3351   if (type1 == elfcpp::PT_TLS
3352       && type2 != elfcpp::PT_TLS
3353       && type2 != elfcpp::PT_GNU_RELRO)
3354     return false;
3355   if (type2 == elfcpp::PT_TLS
3356       && type1 != elfcpp::PT_TLS
3357       && type1 != elfcpp::PT_GNU_RELRO)
3358     return true;
3359 
3360   // We put the PT_GNU_RELRO segment last, because that is where the
3361   // dynamic linker expects to find it (as with PT_TLS, this is just
3362   // for efficiency).
3363   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3364     return false;
3365   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3366     return true;
3367 
3368   const elfcpp::Elf_Word flags1 = seg1->flags();
3369   const elfcpp::Elf_Word flags2 = seg2->flags();
3370 
3371   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3372   // by the numeric segment type and flags values.  There should not
3373   // be more than one segment with the same type and flags, except
3374   // when a linker script specifies such.
3375   if (type1 != elfcpp::PT_LOAD)
3376     {
3377       if (type1 != type2)
3378 	return type1 < type2;
3379       gold_assert(flags1 != flags2
3380 		  || this->script_options_->saw_phdrs_clause());
3381       return flags1 < flags2;
3382     }
3383 
3384   // If the addresses are set already, sort by load address.
3385   if (seg1->are_addresses_set())
3386     {
3387       if (!seg2->are_addresses_set())
3388 	return true;
3389 
3390       unsigned int section_count1 = seg1->output_section_count();
3391       unsigned int section_count2 = seg2->output_section_count();
3392       if (section_count1 == 0 && section_count2 > 0)
3393 	return true;
3394       if (section_count1 > 0 && section_count2 == 0)
3395 	return false;
3396 
3397       uint64_t paddr1 =	(seg1->are_addresses_set()
3398 			 ? seg1->paddr()
3399 			 : seg1->first_section_load_address());
3400       uint64_t paddr2 =	(seg2->are_addresses_set()
3401 			 ? seg2->paddr()
3402 			 : seg2->first_section_load_address());
3403 
3404       if (paddr1 != paddr2)
3405 	return paddr1 < paddr2;
3406     }
3407   else if (seg2->are_addresses_set())
3408     return false;
3409 
3410   // A segment which holds large data comes after a segment which does
3411   // not hold large data.
3412   if (seg1->is_large_data_segment())
3413     {
3414       if (!seg2->is_large_data_segment())
3415 	return false;
3416     }
3417   else if (seg2->is_large_data_segment())
3418     return true;
3419 
3420   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3421   // segments come before writable segments.  Then writable segments
3422   // with data come before writable segments without data.  Then
3423   // executable segments come before non-executable segments.  Then
3424   // the unlikely case of a non-readable segment comes before the
3425   // normal case of a readable segment.  If there are multiple
3426   // segments with the same type and flags, we require that the
3427   // address be set, and we sort by virtual address and then physical
3428   // address.
3429   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3430     return (flags1 & elfcpp::PF_W) == 0;
3431   if ((flags1 & elfcpp::PF_W) != 0
3432       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3433     return seg1->has_any_data_sections();
3434   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3435     return (flags1 & elfcpp::PF_X) != 0;
3436   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3437     return (flags1 & elfcpp::PF_R) == 0;
3438 
3439   // We shouldn't get here--we shouldn't create segments which we
3440   // can't distinguish.  Unless of course we are using a weird linker
3441   // script or overlapping --section-start options.  We could also get
3442   // here if plugins want unique segments for subsets of sections.
3443   gold_assert(this->script_options_->saw_phdrs_clause()
3444 	      || parameters->options().any_section_start()
3445 	      || this->is_unique_segment_for_sections_specified());
3446   return false;
3447 }
3448 
3449 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3450 
3451 static off_t
align_file_offset(off_t off,uint64_t addr,uint64_t abi_pagesize)3452 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3453 {
3454   uint64_t unsigned_off = off;
3455   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3456 			  | (addr & (abi_pagesize - 1)));
3457   if (aligned_off < unsigned_off)
3458     aligned_off += abi_pagesize;
3459   return aligned_off;
3460 }
3461 
3462 // On targets where the text segment contains only executable code,
3463 // a non-executable segment is never the text segment.
3464 
3465 static inline bool
is_text_segment(const Target * target,const Output_segment * seg)3466 is_text_segment(const Target* target, const Output_segment* seg)
3467 {
3468   elfcpp::Elf_Xword flags = seg->flags();
3469   if ((flags & elfcpp::PF_W) != 0)
3470     return false;
3471   if ((flags & elfcpp::PF_X) == 0)
3472     return !target->isolate_execinstr();
3473   return true;
3474 }
3475 
3476 // Set the file offsets of all the segments, and all the sections they
3477 // contain.  They have all been created.  LOAD_SEG must be be laid out
3478 // first.  Return the offset of the data to follow.
3479 
3480 off_t
set_segment_offsets(const Target * target,Output_segment * load_seg,unsigned int * pshndx)3481 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3482 			    unsigned int* pshndx)
3483 {
3484   // Sort them into the final order.  We use a stable sort so that we
3485   // don't randomize the order of indistinguishable segments created
3486   // by linker scripts.
3487   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3488 		   Layout::Compare_segments(this));
3489 
3490   // Find the PT_LOAD segments, and set their addresses and offsets
3491   // and their section's addresses and offsets.
3492   uint64_t start_addr;
3493   if (parameters->options().user_set_Ttext())
3494     start_addr = parameters->options().Ttext();
3495   else if (parameters->options().output_is_position_independent())
3496     start_addr = 0;
3497   else
3498     start_addr = target->default_text_segment_address();
3499 
3500   uint64_t addr = start_addr;
3501   off_t off = 0;
3502 
3503   // If LOAD_SEG is NULL, then the file header and segment headers
3504   // will not be loadable.  But they still need to be at offset 0 in
3505   // the file.  Set their offsets now.
3506   if (load_seg == NULL)
3507     {
3508       for (Data_list::iterator p = this->special_output_list_.begin();
3509 	   p != this->special_output_list_.end();
3510 	   ++p)
3511 	{
3512 	  off = align_address(off, (*p)->addralign());
3513 	  (*p)->set_address_and_file_offset(0, off);
3514 	  off += (*p)->data_size();
3515 	}
3516     }
3517 
3518   unsigned int increase_relro = this->increase_relro_;
3519   if (this->script_options_->saw_sections_clause())
3520     increase_relro = 0;
3521 
3522   const bool check_sections = parameters->options().check_sections();
3523   Output_segment* last_load_segment = NULL;
3524 
3525   unsigned int shndx_begin = *pshndx;
3526   unsigned int shndx_load_seg = *pshndx;
3527 
3528   for (Segment_list::iterator p = this->segment_list_.begin();
3529        p != this->segment_list_.end();
3530        ++p)
3531     {
3532       if ((*p)->type() == elfcpp::PT_LOAD)
3533 	{
3534 	  if (target->isolate_execinstr())
3535 	    {
3536 	      // When we hit the segment that should contain the
3537 	      // file headers, reset the file offset so we place
3538 	      // it and subsequent segments appropriately.
3539 	      // We'll fix up the preceding segments below.
3540 	      if (load_seg == *p)
3541 		{
3542 		  if (off == 0)
3543 		    load_seg = NULL;
3544 		  else
3545 		    {
3546 		      off = 0;
3547 		      shndx_load_seg = *pshndx;
3548 		    }
3549 		}
3550 	    }
3551 	  else
3552 	    {
3553 	      // Verify that the file headers fall into the first segment.
3554 	      if (load_seg != NULL && load_seg != *p)
3555 		gold_unreachable();
3556 	      load_seg = NULL;
3557 	    }
3558 
3559 	  bool are_addresses_set = (*p)->are_addresses_set();
3560 	  if (are_addresses_set)
3561 	    {
3562 	      // When it comes to setting file offsets, we care about
3563 	      // the physical address.
3564 	      addr = (*p)->paddr();
3565 	    }
3566 	  else if (parameters->options().user_set_Ttext()
3567 		   && (parameters->options().omagic()
3568 		       || is_text_segment(target, *p)))
3569 	    {
3570 	      are_addresses_set = true;
3571 	    }
3572 	  else if (parameters->options().user_set_Trodata_segment()
3573 		   && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3574 	    {
3575 	      addr = parameters->options().Trodata_segment();
3576 	      are_addresses_set = true;
3577 	    }
3578 	  else if (parameters->options().user_set_Tdata()
3579 		   && ((*p)->flags() & elfcpp::PF_W) != 0
3580 		   && (!parameters->options().user_set_Tbss()
3581 		       || (*p)->has_any_data_sections()))
3582 	    {
3583 	      addr = parameters->options().Tdata();
3584 	      are_addresses_set = true;
3585 	    }
3586 	  else if (parameters->options().user_set_Tbss()
3587 		   && ((*p)->flags() & elfcpp::PF_W) != 0
3588 		   && !(*p)->has_any_data_sections())
3589 	    {
3590 	      addr = parameters->options().Tbss();
3591 	      are_addresses_set = true;
3592 	    }
3593 
3594 	  uint64_t orig_addr = addr;
3595 	  uint64_t orig_off = off;
3596 
3597 	  uint64_t aligned_addr = 0;
3598 	  uint64_t abi_pagesize = target->abi_pagesize();
3599 	  uint64_t common_pagesize = target->common_pagesize();
3600 
3601 	  if (!parameters->options().nmagic()
3602 	      && !parameters->options().omagic())
3603 	    (*p)->set_minimum_p_align(abi_pagesize);
3604 
3605 	  if (!are_addresses_set)
3606 	    {
3607 	      // Skip the address forward one page, maintaining the same
3608 	      // position within the page.  This lets us store both segments
3609 	      // overlapping on a single page in the file, but the loader will
3610 	      // put them on different pages in memory. We will revisit this
3611 	      // decision once we know the size of the segment.
3612 
3613 	      uint64_t max_align = (*p)->maximum_alignment();
3614 	      if (max_align > abi_pagesize)
3615 		addr = align_address(addr, max_align);
3616 	      aligned_addr = addr;
3617 
3618 	      if (load_seg == *p)
3619 		{
3620 		  // This is the segment that will contain the file
3621 		  // headers, so its offset will have to be exactly zero.
3622 		  gold_assert(orig_off == 0);
3623 
3624 		  // If the target wants a fixed minimum distance from the
3625 		  // text segment to the read-only segment, move up now.
3626 		  uint64_t min_addr =
3627 		    start_addr + (parameters->options().user_set_rosegment_gap()
3628 				  ? parameters->options().rosegment_gap()
3629 				  : target->rosegment_gap());
3630 		  if (addr < min_addr)
3631 		    addr = min_addr;
3632 
3633 		  // But this is not the first segment!  To make its
3634 		  // address congruent with its offset, that address better
3635 		  // be aligned to the ABI-mandated page size.
3636 		  addr = align_address(addr, abi_pagesize);
3637 		  aligned_addr = addr;
3638 		}
3639 	      else
3640 		{
3641 		  if ((addr & (abi_pagesize - 1)) != 0)
3642 		    addr = addr + abi_pagesize;
3643 
3644 		  off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3645 		}
3646 	    }
3647 
3648 	  if (!parameters->options().nmagic()
3649 	      && !parameters->options().omagic())
3650 	    {
3651 	      // Here we are also taking care of the case when
3652 	      // the maximum segment alignment is larger than the page size.
3653 	      off = align_file_offset(off, addr,
3654 				      std::max(abi_pagesize,
3655 					       (*p)->maximum_alignment()));
3656 	    }
3657 	  else
3658 	    {
3659 	      // This is -N or -n with a section script which prevents
3660 	      // us from using a load segment.  We need to ensure that
3661 	      // the file offset is aligned to the alignment of the
3662 	      // segment.  This is because the linker script
3663 	      // implicitly assumed a zero offset.  If we don't align
3664 	      // here, then the alignment of the sections in the
3665 	      // linker script may not match the alignment of the
3666 	      // sections in the set_section_addresses call below,
3667 	      // causing an error about dot moving backward.
3668 	      off = align_address(off, (*p)->maximum_alignment());
3669 	    }
3670 
3671 	  unsigned int shndx_hold = *pshndx;
3672 	  bool has_relro = false;
3673 	  uint64_t new_addr = (*p)->set_section_addresses(target, this,
3674 							  false, addr,
3675 							  &increase_relro,
3676 							  &has_relro,
3677 							  &off, pshndx);
3678 
3679 	  // Now that we know the size of this segment, we may be able
3680 	  // to save a page in memory, at the cost of wasting some
3681 	  // file space, by instead aligning to the start of a new
3682 	  // page.  Here we use the real machine page size rather than
3683 	  // the ABI mandated page size.  If the segment has been
3684 	  // aligned so that the relro data ends at a page boundary,
3685 	  // we do not try to realign it.
3686 
3687 	  if (!are_addresses_set
3688 	      && !has_relro
3689 	      && aligned_addr != addr
3690 	      && !parameters->incremental())
3691 	    {
3692 	      uint64_t first_off = (common_pagesize
3693 				    - (aligned_addr
3694 				       & (common_pagesize - 1)));
3695 	      uint64_t last_off = new_addr & (common_pagesize - 1);
3696 	      if (first_off > 0
3697 		  && last_off > 0
3698 		  && ((aligned_addr & ~ (common_pagesize - 1))
3699 		      != (new_addr & ~ (common_pagesize - 1)))
3700 		  && first_off + last_off <= common_pagesize)
3701 		{
3702 		  *pshndx = shndx_hold;
3703 		  addr = align_address(aligned_addr, common_pagesize);
3704 		  addr = align_address(addr, (*p)->maximum_alignment());
3705 		  if ((addr & (abi_pagesize - 1)) != 0)
3706 		    addr = addr + abi_pagesize;
3707 		  off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3708 		  off = align_file_offset(off, addr, abi_pagesize);
3709 
3710 		  increase_relro = this->increase_relro_;
3711 		  if (this->script_options_->saw_sections_clause())
3712 		    increase_relro = 0;
3713 		  has_relro = false;
3714 
3715 		  new_addr = (*p)->set_section_addresses(target, this,
3716 							 true, addr,
3717 							 &increase_relro,
3718 							 &has_relro,
3719 							 &off, pshndx);
3720 		}
3721 	    }
3722 
3723 	  addr = new_addr;
3724 
3725 	  // Implement --check-sections.  We know that the segments
3726 	  // are sorted by LMA.
3727 	  if (check_sections && last_load_segment != NULL)
3728 	    {
3729 	      gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3730 	      if (last_load_segment->paddr() + last_load_segment->memsz()
3731 		  > (*p)->paddr())
3732 		{
3733 		  unsigned long long lb1 = last_load_segment->paddr();
3734 		  unsigned long long le1 = lb1 + last_load_segment->memsz();
3735 		  unsigned long long lb2 = (*p)->paddr();
3736 		  unsigned long long le2 = lb2 + (*p)->memsz();
3737 		  gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3738 			       "[0x%llx -> 0x%llx]"),
3739 			     lb1, le1, lb2, le2);
3740 		}
3741 	    }
3742 	  last_load_segment = *p;
3743 	}
3744     }
3745 
3746   if (load_seg != NULL && target->isolate_execinstr())
3747     {
3748       // Process the early segments again, setting their file offsets
3749       // so they land after the segments starting at LOAD_SEG.
3750       off = align_file_offset(off, 0, target->abi_pagesize());
3751 
3752       this->reset_relax_output();
3753 
3754       for (Segment_list::iterator p = this->segment_list_.begin();
3755 	   *p != load_seg;
3756 	   ++p)
3757 	{
3758 	  if ((*p)->type() == elfcpp::PT_LOAD)
3759 	    {
3760 	      // We repeat the whole job of assigning addresses and
3761 	      // offsets, but we really only want to change the offsets and
3762 	      // must ensure that the addresses all come out the same as
3763 	      // they did the first time through.
3764 	      bool has_relro = false;
3765 	      const uint64_t old_addr = (*p)->vaddr();
3766 	      const uint64_t old_end = old_addr + (*p)->memsz();
3767 	      uint64_t new_addr = (*p)->set_section_addresses(target, this,
3768 							      true, old_addr,
3769 							      &increase_relro,
3770 							      &has_relro,
3771 							      &off,
3772 							      &shndx_begin);
3773 	      gold_assert(new_addr == old_end);
3774 	    }
3775 	}
3776 
3777       gold_assert(shndx_begin == shndx_load_seg);
3778     }
3779 
3780   // Handle the non-PT_LOAD segments, setting their offsets from their
3781   // section's offsets.
3782   for (Segment_list::iterator p = this->segment_list_.begin();
3783        p != this->segment_list_.end();
3784        ++p)
3785     {
3786       // PT_GNU_STACK was set up correctly when it was created.
3787       if ((*p)->type() != elfcpp::PT_LOAD
3788 	  && (*p)->type() != elfcpp::PT_GNU_STACK)
3789 	(*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3790 			 ? increase_relro
3791 			 : 0);
3792     }
3793 
3794   // Set the TLS offsets for each section in the PT_TLS segment.
3795   if (this->tls_segment_ != NULL)
3796     this->tls_segment_->set_tls_offsets();
3797 
3798   return off;
3799 }
3800 
3801 // Set the offsets of all the allocated sections when doing a
3802 // relocatable link.  This does the same jobs as set_segment_offsets,
3803 // only for a relocatable link.
3804 
3805 off_t
set_relocatable_section_offsets(Output_data * file_header,unsigned int * pshndx)3806 Layout::set_relocatable_section_offsets(Output_data* file_header,
3807 					unsigned int* pshndx)
3808 {
3809   off_t off = 0;
3810 
3811   file_header->set_address_and_file_offset(0, 0);
3812   off += file_header->data_size();
3813 
3814   for (Section_list::iterator p = this->section_list_.begin();
3815        p != this->section_list_.end();
3816        ++p)
3817     {
3818       // We skip unallocated sections here, except that group sections
3819       // have to come first.
3820       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3821 	  && (*p)->type() != elfcpp::SHT_GROUP)
3822 	continue;
3823 
3824       off = align_address(off, (*p)->addralign());
3825 
3826       // The linker script might have set the address.
3827       if (!(*p)->is_address_valid())
3828 	(*p)->set_address(0);
3829       (*p)->set_file_offset(off);
3830       (*p)->finalize_data_size();
3831       if ((*p)->type() != elfcpp::SHT_NOBITS)
3832 	off += (*p)->data_size();
3833 
3834       (*p)->set_out_shndx(*pshndx);
3835       ++*pshndx;
3836     }
3837 
3838   return off;
3839 }
3840 
3841 // Set the file offset of all the sections not associated with a
3842 // segment.
3843 
3844 off_t
set_section_offsets(off_t off,Layout::Section_offset_pass pass)3845 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3846 {
3847   off_t startoff = off;
3848   off_t maxoff = off;
3849 
3850   for (Section_list::iterator p = this->unattached_section_list_.begin();
3851        p != this->unattached_section_list_.end();
3852        ++p)
3853     {
3854       // The symtab section is handled in create_symtab_sections.
3855       if (*p == this->symtab_section_)
3856 	continue;
3857 
3858       // If we've already set the data size, don't set it again.
3859       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3860 	continue;
3861 
3862       if (pass == BEFORE_INPUT_SECTIONS_PASS
3863 	  && (*p)->requires_postprocessing())
3864 	{
3865 	  (*p)->create_postprocessing_buffer();
3866 	  this->any_postprocessing_sections_ = true;
3867 	}
3868 
3869       if (pass == BEFORE_INPUT_SECTIONS_PASS
3870 	  && (*p)->after_input_sections())
3871 	continue;
3872       else if (pass == POSTPROCESSING_SECTIONS_PASS
3873 	       && (!(*p)->after_input_sections()
3874 		   || (*p)->type() == elfcpp::SHT_STRTAB))
3875 	continue;
3876       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3877 	       && (!(*p)->after_input_sections()
3878 		   || (*p)->type() != elfcpp::SHT_STRTAB))
3879 	continue;
3880 
3881       if (!parameters->incremental_update())
3882 	{
3883 	  off = align_address(off, (*p)->addralign());
3884 	  (*p)->set_file_offset(off);
3885 	  (*p)->finalize_data_size();
3886 	}
3887       else
3888 	{
3889 	  // Incremental update: allocate file space from free list.
3890 	  (*p)->pre_finalize_data_size();
3891 	  off_t current_size = (*p)->current_data_size();
3892 	  off = this->allocate(current_size, (*p)->addralign(), startoff);
3893 	  if (off == -1)
3894 	    {
3895 	      if (is_debugging_enabled(DEBUG_INCREMENTAL))
3896 		this->free_list_.dump();
3897 	      gold_assert((*p)->output_section() != NULL);
3898 	      gold_fallback(_("out of patch space for section %s; "
3899 			      "relink with --incremental-full"),
3900 			    (*p)->output_section()->name());
3901 	    }
3902 	  (*p)->set_file_offset(off);
3903 	  (*p)->finalize_data_size();
3904 	  if ((*p)->data_size() > current_size)
3905 	    {
3906 	      gold_assert((*p)->output_section() != NULL);
3907 	      gold_fallback(_("%s: section changed size; "
3908 			      "relink with --incremental-full"),
3909 			    (*p)->output_section()->name());
3910 	    }
3911 	  gold_debug(DEBUG_INCREMENTAL,
3912 		     "set_section_offsets: %08lx %08lx %s",
3913 		     static_cast<long>(off),
3914 		     static_cast<long>((*p)->data_size()),
3915 		     ((*p)->output_section() != NULL
3916 		      ? (*p)->output_section()->name() : "(special)"));
3917 	}
3918 
3919       off += (*p)->data_size();
3920       if (off > maxoff)
3921 	maxoff = off;
3922 
3923       // At this point the name must be set.
3924       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3925 	this->namepool_.add((*p)->name(), false, NULL);
3926     }
3927   return maxoff;
3928 }
3929 
3930 // Set the section indexes of all the sections not associated with a
3931 // segment.
3932 
3933 unsigned int
set_section_indexes(unsigned int shndx)3934 Layout::set_section_indexes(unsigned int shndx)
3935 {
3936   for (Section_list::iterator p = this->unattached_section_list_.begin();
3937        p != this->unattached_section_list_.end();
3938        ++p)
3939     {
3940       if (!(*p)->has_out_shndx())
3941 	{
3942 	  (*p)->set_out_shndx(shndx);
3943 	  ++shndx;
3944 	}
3945     }
3946   return shndx;
3947 }
3948 
3949 // Set the section addresses according to the linker script.  This is
3950 // only called when we see a SECTIONS clause.  This returns the
3951 // program segment which should hold the file header and segment
3952 // headers, if any.  It will return NULL if they should not be in a
3953 // segment.
3954 
3955 Output_segment*
set_section_addresses_from_script(Symbol_table * symtab)3956 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3957 {
3958   Script_sections* ss = this->script_options_->script_sections();
3959   gold_assert(ss->saw_sections_clause());
3960   return this->script_options_->set_section_addresses(symtab, this);
3961 }
3962 
3963 // Place the orphan sections in the linker script.
3964 
3965 void
place_orphan_sections_in_script()3966 Layout::place_orphan_sections_in_script()
3967 {
3968   Script_sections* ss = this->script_options_->script_sections();
3969   gold_assert(ss->saw_sections_clause());
3970 
3971   // Place each orphaned output section in the script.
3972   for (Section_list::iterator p = this->section_list_.begin();
3973        p != this->section_list_.end();
3974        ++p)
3975     {
3976       if (!(*p)->found_in_sections_clause())
3977 	ss->place_orphan(*p);
3978     }
3979 }
3980 
3981 // Count the local symbols in the regular symbol table and the dynamic
3982 // symbol table, and build the respective string pools.
3983 
3984 void
count_local_symbols(const Task * task,const Input_objects * input_objects)3985 Layout::count_local_symbols(const Task* task,
3986 			    const Input_objects* input_objects)
3987 {
3988   // First, figure out an upper bound on the number of symbols we'll
3989   // be inserting into each pool.  This helps us create the pools with
3990   // the right size, to avoid unnecessary hashtable resizing.
3991   unsigned int symbol_count = 0;
3992   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3993        p != input_objects->relobj_end();
3994        ++p)
3995     symbol_count += (*p)->local_symbol_count();
3996 
3997   // Go from "upper bound" to "estimate."  We overcount for two
3998   // reasons: we double-count symbols that occur in more than one
3999   // object file, and we count symbols that are dropped from the
4000   // output.  Add it all together and assume we overcount by 100%.
4001   symbol_count /= 2;
4002 
4003   // We assume all symbols will go into both the sympool and dynpool.
4004   this->sympool_.reserve(symbol_count);
4005   this->dynpool_.reserve(symbol_count);
4006 
4007   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4008        p != input_objects->relobj_end();
4009        ++p)
4010     {
4011       Task_lock_obj<Object> tlo(task, *p);
4012       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
4013     }
4014 }
4015 
4016 // Create the symbol table sections.  Here we also set the final
4017 // values of the symbols.  At this point all the loadable sections are
4018 // fully laid out.  SHNUM is the number of sections so far.
4019 
4020 void
create_symtab_sections(const Input_objects * input_objects,Symbol_table * symtab,unsigned int shnum,off_t * poff)4021 Layout::create_symtab_sections(const Input_objects* input_objects,
4022 			       Symbol_table* symtab,
4023 			       unsigned int shnum,
4024 			       off_t* poff)
4025 {
4026   int symsize;
4027   unsigned int align;
4028   if (parameters->target().get_size() == 32)
4029     {
4030       symsize = elfcpp::Elf_sizes<32>::sym_size;
4031       align = 4;
4032     }
4033   else if (parameters->target().get_size() == 64)
4034     {
4035       symsize = elfcpp::Elf_sizes<64>::sym_size;
4036       align = 8;
4037     }
4038   else
4039     gold_unreachable();
4040 
4041   // Compute file offsets relative to the start of the symtab section.
4042   off_t off = 0;
4043 
4044   // Save space for the dummy symbol at the start of the section.  We
4045   // never bother to write this out--it will just be left as zero.
4046   off += symsize;
4047   unsigned int local_symbol_index = 1;
4048 
4049   // Add STT_SECTION symbols for each Output section which needs one.
4050   for (Section_list::iterator p = this->section_list_.begin();
4051        p != this->section_list_.end();
4052        ++p)
4053     {
4054       if (!(*p)->needs_symtab_index())
4055 	(*p)->set_symtab_index(-1U);
4056       else
4057 	{
4058 	  (*p)->set_symtab_index(local_symbol_index);
4059 	  ++local_symbol_index;
4060 	  off += symsize;
4061 	}
4062     }
4063 
4064   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4065        p != input_objects->relobj_end();
4066        ++p)
4067     {
4068       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4069 							off, symtab);
4070       off += (index - local_symbol_index) * symsize;
4071       local_symbol_index = index;
4072     }
4073 
4074   unsigned int local_symcount = local_symbol_index;
4075   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4076 
4077   off_t dynoff;
4078   size_t dyn_global_index;
4079   size_t dyncount;
4080   if (this->dynsym_section_ == NULL)
4081     {
4082       dynoff = 0;
4083       dyn_global_index = 0;
4084       dyncount = 0;
4085     }
4086   else
4087     {
4088       dyn_global_index = this->dynsym_section_->info();
4089       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
4090       dynoff = this->dynsym_section_->offset() + locsize;
4091       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4092       gold_assert(static_cast<off_t>(dyncount * symsize)
4093 		  == this->dynsym_section_->data_size() - locsize);
4094     }
4095 
4096   off_t global_off = off;
4097   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
4098 			 &this->sympool_, &local_symcount);
4099 
4100   if (!parameters->options().strip_all())
4101     {
4102       this->sympool_.set_string_offsets();
4103 
4104       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4105       Output_section* osymtab = this->make_output_section(symtab_name,
4106 							  elfcpp::SHT_SYMTAB,
4107 							  0, ORDER_INVALID,
4108 							  false);
4109       this->symtab_section_ = osymtab;
4110 
4111       Output_section_data* pos = new Output_data_fixed_space(off, align,
4112 							     "** symtab");
4113       osymtab->add_output_section_data(pos);
4114 
4115       // We generate a .symtab_shndx section if we have more than
4116       // SHN_LORESERVE sections.  Technically it is possible that we
4117       // don't need one, because it is possible that there are no
4118       // symbols in any of sections with indexes larger than
4119       // SHN_LORESERVE.  That is probably unusual, though, and it is
4120       // easier to always create one than to compute section indexes
4121       // twice (once here, once when writing out the symbols).
4122       if (shnum >= elfcpp::SHN_LORESERVE)
4123 	{
4124 	  const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4125 							       false, NULL);
4126 	  Output_section* osymtab_xindex =
4127 	    this->make_output_section(symtab_xindex_name,
4128 				      elfcpp::SHT_SYMTAB_SHNDX, 0,
4129 				      ORDER_INVALID, false);
4130 
4131 	  size_t symcount = off / symsize;
4132 	  this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4133 
4134 	  osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4135 
4136 	  osymtab_xindex->set_link_section(osymtab);
4137 	  osymtab_xindex->set_addralign(4);
4138 	  osymtab_xindex->set_entsize(4);
4139 
4140 	  osymtab_xindex->set_after_input_sections();
4141 
4142 	  // This tells the driver code to wait until the symbol table
4143 	  // has written out before writing out the postprocessing
4144 	  // sections, including the .symtab_shndx section.
4145 	  this->any_postprocessing_sections_ = true;
4146 	}
4147 
4148       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4149       Output_section* ostrtab = this->make_output_section(strtab_name,
4150 							  elfcpp::SHT_STRTAB,
4151 							  0, ORDER_INVALID,
4152 							  false);
4153 
4154       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4155       ostrtab->add_output_section_data(pstr);
4156 
4157       off_t symtab_off;
4158       if (!parameters->incremental_update())
4159 	symtab_off = align_address(*poff, align);
4160       else
4161 	{
4162 	  symtab_off = this->allocate(off, align, *poff);
4163 	  if (off == -1)
4164 	    gold_fallback(_("out of patch space for symbol table; "
4165 			    "relink with --incremental-full"));
4166 	  gold_debug(DEBUG_INCREMENTAL,
4167 		     "create_symtab_sections: %08lx %08lx .symtab",
4168 		     static_cast<long>(symtab_off),
4169 		     static_cast<long>(off));
4170 	}
4171 
4172       symtab->set_file_offset(symtab_off + global_off);
4173       osymtab->set_file_offset(symtab_off);
4174       osymtab->finalize_data_size();
4175       osymtab->set_link_section(ostrtab);
4176       osymtab->set_info(local_symcount);
4177       osymtab->set_entsize(symsize);
4178 
4179       if (symtab_off + off > *poff)
4180 	*poff = symtab_off + off;
4181     }
4182 }
4183 
4184 // Create the .shstrtab section, which holds the names of the
4185 // sections.  At the time this is called, we have created all the
4186 // output sections except .shstrtab itself.
4187 
4188 Output_section*
create_shstrtab()4189 Layout::create_shstrtab()
4190 {
4191   // FIXME: We don't need to create a .shstrtab section if we are
4192   // stripping everything.
4193 
4194   const char* name = this->namepool_.add(".shstrtab", false, NULL);
4195 
4196   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4197 						 ORDER_INVALID, false);
4198 
4199   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4200     {
4201       // We can't write out this section until we've set all the
4202       // section names, and we don't set the names of compressed
4203       // output sections until relocations are complete.  FIXME: With
4204       // the current names we use, this is unnecessary.
4205       os->set_after_input_sections();
4206     }
4207 
4208   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4209   os->add_output_section_data(posd);
4210 
4211   return os;
4212 }
4213 
4214 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
4215 // offset.
4216 
4217 void
create_shdrs(const Output_section * shstrtab_section,off_t * poff)4218 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4219 {
4220   Output_section_headers* oshdrs;
4221   oshdrs = new Output_section_headers(this,
4222 				      &this->segment_list_,
4223 				      &this->section_list_,
4224 				      &this->unattached_section_list_,
4225 				      &this->namepool_,
4226 				      shstrtab_section);
4227   off_t off;
4228   if (!parameters->incremental_update())
4229     off = align_address(*poff, oshdrs->addralign());
4230   else
4231     {
4232       oshdrs->pre_finalize_data_size();
4233       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4234       if (off == -1)
4235 	  gold_fallback(_("out of patch space for section header table; "
4236 			  "relink with --incremental-full"));
4237       gold_debug(DEBUG_INCREMENTAL,
4238 		 "create_shdrs: %08lx %08lx (section header table)",
4239 		 static_cast<long>(off),
4240 		 static_cast<long>(off + oshdrs->data_size()));
4241     }
4242   oshdrs->set_address_and_file_offset(0, off);
4243   off += oshdrs->data_size();
4244   if (off > *poff)
4245     *poff = off;
4246   this->section_headers_ = oshdrs;
4247 }
4248 
4249 // Count the allocated sections.
4250 
4251 size_t
allocated_output_section_count() const4252 Layout::allocated_output_section_count() const
4253 {
4254   size_t section_count = 0;
4255   for (Segment_list::const_iterator p = this->segment_list_.begin();
4256        p != this->segment_list_.end();
4257        ++p)
4258     section_count += (*p)->output_section_count();
4259   return section_count;
4260 }
4261 
4262 // Create the dynamic symbol table.
4263 
4264 void
create_dynamic_symtab(const Input_objects * input_objects,Symbol_table * symtab,Output_section ** pdynstr,unsigned int * plocal_dynamic_count,std::vector<Symbol * > * pdynamic_symbols,Versions * pversions)4265 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4266 			      Symbol_table* symtab,
4267 			      Output_section** pdynstr,
4268 			      unsigned int* plocal_dynamic_count,
4269 			      std::vector<Symbol*>* pdynamic_symbols,
4270 			      Versions* pversions)
4271 {
4272   // Count all the symbols in the dynamic symbol table, and set the
4273   // dynamic symbol indexes.
4274 
4275   // Skip symbol 0, which is always all zeroes.
4276   unsigned int index = 1;
4277 
4278   // Add STT_SECTION symbols for each Output section which needs one.
4279   for (Section_list::iterator p = this->section_list_.begin();
4280        p != this->section_list_.end();
4281        ++p)
4282     {
4283       if (!(*p)->needs_dynsym_index())
4284 	(*p)->set_dynsym_index(-1U);
4285       else
4286 	{
4287 	  (*p)->set_dynsym_index(index);
4288 	  ++index;
4289 	}
4290     }
4291 
4292   // Count the local symbols that need to go in the dynamic symbol table,
4293   // and set the dynamic symbol indexes.
4294   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4295        p != input_objects->relobj_end();
4296        ++p)
4297     {
4298       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4299       index = new_index;
4300     }
4301 
4302   unsigned int local_symcount = index;
4303   *plocal_dynamic_count = local_symcount;
4304 
4305   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
4306 				     &this->dynpool_, pversions);
4307 
4308   int symsize;
4309   unsigned int align;
4310   const int size = parameters->target().get_size();
4311   if (size == 32)
4312     {
4313       symsize = elfcpp::Elf_sizes<32>::sym_size;
4314       align = 4;
4315     }
4316   else if (size == 64)
4317     {
4318       symsize = elfcpp::Elf_sizes<64>::sym_size;
4319       align = 8;
4320     }
4321   else
4322     gold_unreachable();
4323 
4324   // Create the dynamic symbol table section.
4325 
4326   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4327 						       elfcpp::SHT_DYNSYM,
4328 						       elfcpp::SHF_ALLOC,
4329 						       false,
4330 						       ORDER_DYNAMIC_LINKER,
4331 						       false);
4332 
4333   // Check for NULL as a linker script may discard .dynsym.
4334   if (dynsym != NULL)
4335     {
4336       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4337 							       align,
4338 							       "** dynsym");
4339       dynsym->add_output_section_data(odata);
4340 
4341       dynsym->set_info(local_symcount);
4342       dynsym->set_entsize(symsize);
4343       dynsym->set_addralign(align);
4344 
4345       this->dynsym_section_ = dynsym;
4346     }
4347 
4348   Output_data_dynamic* const odyn = this->dynamic_data_;
4349   if (odyn != NULL)
4350     {
4351       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4352       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4353     }
4354 
4355   // If there are more than SHN_LORESERVE allocated sections, we
4356   // create a .dynsym_shndx section.  It is possible that we don't
4357   // need one, because it is possible that there are no dynamic
4358   // symbols in any of the sections with indexes larger than
4359   // SHN_LORESERVE.  This is probably unusual, though, and at this
4360   // time we don't know the actual section indexes so it is
4361   // inconvenient to check.
4362   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4363     {
4364       Output_section* dynsym_xindex =
4365 	this->choose_output_section(NULL, ".dynsym_shndx",
4366 				    elfcpp::SHT_SYMTAB_SHNDX,
4367 				    elfcpp::SHF_ALLOC,
4368 				    false, ORDER_DYNAMIC_LINKER, false);
4369 
4370       if (dynsym_xindex != NULL)
4371 	{
4372 	  this->dynsym_xindex_ = new Output_symtab_xindex(index);
4373 
4374 	  dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4375 
4376 	  dynsym_xindex->set_link_section(dynsym);
4377 	  dynsym_xindex->set_addralign(4);
4378 	  dynsym_xindex->set_entsize(4);
4379 
4380 	  dynsym_xindex->set_after_input_sections();
4381 
4382 	  // This tells the driver code to wait until the symbol table
4383 	  // has written out before writing out the postprocessing
4384 	  // sections, including the .dynsym_shndx section.
4385 	  this->any_postprocessing_sections_ = true;
4386 	}
4387     }
4388 
4389   // Create the dynamic string table section.
4390 
4391   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4392 						       elfcpp::SHT_STRTAB,
4393 						       elfcpp::SHF_ALLOC,
4394 						       false,
4395 						       ORDER_DYNAMIC_LINKER,
4396 						       false);
4397   *pdynstr = dynstr;
4398   if (dynstr != NULL)
4399     {
4400       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4401       dynstr->add_output_section_data(strdata);
4402 
4403       if (dynsym != NULL)
4404 	dynsym->set_link_section(dynstr);
4405       if (this->dynamic_section_ != NULL)
4406 	this->dynamic_section_->set_link_section(dynstr);
4407 
4408       if (odyn != NULL)
4409 	{
4410 	  odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4411 	  odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4412 	}
4413     }
4414 
4415   // Create the hash tables.  The Gnu-style hash table must be
4416   // built first, because it changes the order of the symbols
4417   // in the dynamic symbol table.
4418 
4419   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4420       || strcmp(parameters->options().hash_style(), "both") == 0)
4421     {
4422       unsigned char* phash;
4423       unsigned int hashlen;
4424       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4425 				    &phash, &hashlen);
4426 
4427       Output_section* hashsec =
4428 	this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4429 				    elfcpp::SHF_ALLOC, false,
4430 				    ORDER_DYNAMIC_LINKER, false);
4431 
4432       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4433 								   hashlen,
4434 								   align,
4435 								   "** hash");
4436       if (hashsec != NULL && hashdata != NULL)
4437 	hashsec->add_output_section_data(hashdata);
4438 
4439       if (hashsec != NULL)
4440 	{
4441 	  if (dynsym != NULL)
4442 	    hashsec->set_link_section(dynsym);
4443 
4444 	  // For a 64-bit target, the entries in .gnu.hash do not have
4445 	  // a uniform size, so we only set the entry size for a
4446 	  // 32-bit target.
4447 	  if (parameters->target().get_size() == 32)
4448 	    hashsec->set_entsize(4);
4449 
4450 	  if (odyn != NULL)
4451 	    odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4452 	}
4453     }
4454 
4455   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4456       || strcmp(parameters->options().hash_style(), "both") == 0)
4457     {
4458       unsigned char* phash;
4459       unsigned int hashlen;
4460       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4461 				    &phash, &hashlen);
4462 
4463       Output_section* hashsec =
4464 	this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4465 				    elfcpp::SHF_ALLOC, false,
4466 				    ORDER_DYNAMIC_LINKER, false);
4467 
4468       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4469 								   hashlen,
4470 								   align,
4471 								   "** hash");
4472       if (hashsec != NULL && hashdata != NULL)
4473 	hashsec->add_output_section_data(hashdata);
4474 
4475       if (hashsec != NULL)
4476 	{
4477 	  if (dynsym != NULL)
4478 	    hashsec->set_link_section(dynsym);
4479 	  hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4480 	}
4481 
4482       if (odyn != NULL)
4483 	odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4484     }
4485 }
4486 
4487 // Assign offsets to each local portion of the dynamic symbol table.
4488 
4489 void
assign_local_dynsym_offsets(const Input_objects * input_objects)4490 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4491 {
4492   Output_section* dynsym = this->dynsym_section_;
4493   if (dynsym == NULL)
4494     return;
4495 
4496   off_t off = dynsym->offset();
4497 
4498   // Skip the dummy symbol at the start of the section.
4499   off += dynsym->entsize();
4500 
4501   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4502        p != input_objects->relobj_end();
4503        ++p)
4504     {
4505       unsigned int count = (*p)->set_local_dynsym_offset(off);
4506       off += count * dynsym->entsize();
4507     }
4508 }
4509 
4510 // Create the version sections.
4511 
4512 void
create_version_sections(const Versions * versions,const Symbol_table * symtab,unsigned int local_symcount,const std::vector<Symbol * > & dynamic_symbols,const Output_section * dynstr)4513 Layout::create_version_sections(const Versions* versions,
4514 				const Symbol_table* symtab,
4515 				unsigned int local_symcount,
4516 				const std::vector<Symbol*>& dynamic_symbols,
4517 				const Output_section* dynstr)
4518 {
4519   if (!versions->any_defs() && !versions->any_needs())
4520     return;
4521 
4522   switch (parameters->size_and_endianness())
4523     {
4524 #ifdef HAVE_TARGET_32_LITTLE
4525     case Parameters::TARGET_32_LITTLE:
4526       this->sized_create_version_sections<32, false>(versions, symtab,
4527 						     local_symcount,
4528 						     dynamic_symbols, dynstr);
4529       break;
4530 #endif
4531 #ifdef HAVE_TARGET_32_BIG
4532     case Parameters::TARGET_32_BIG:
4533       this->sized_create_version_sections<32, true>(versions, symtab,
4534 						    local_symcount,
4535 						    dynamic_symbols, dynstr);
4536       break;
4537 #endif
4538 #ifdef HAVE_TARGET_64_LITTLE
4539     case Parameters::TARGET_64_LITTLE:
4540       this->sized_create_version_sections<64, false>(versions, symtab,
4541 						     local_symcount,
4542 						     dynamic_symbols, dynstr);
4543       break;
4544 #endif
4545 #ifdef HAVE_TARGET_64_BIG
4546     case Parameters::TARGET_64_BIG:
4547       this->sized_create_version_sections<64, true>(versions, symtab,
4548 						    local_symcount,
4549 						    dynamic_symbols, dynstr);
4550       break;
4551 #endif
4552     default:
4553       gold_unreachable();
4554     }
4555 }
4556 
4557 // Create the version sections, sized version.
4558 
4559 template<int size, bool big_endian>
4560 void
sized_create_version_sections(const Versions * versions,const Symbol_table * symtab,unsigned int local_symcount,const std::vector<Symbol * > & dynamic_symbols,const Output_section * dynstr)4561 Layout::sized_create_version_sections(
4562     const Versions* versions,
4563     const Symbol_table* symtab,
4564     unsigned int local_symcount,
4565     const std::vector<Symbol*>& dynamic_symbols,
4566     const Output_section* dynstr)
4567 {
4568   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4569 						     elfcpp::SHT_GNU_versym,
4570 						     elfcpp::SHF_ALLOC,
4571 						     false,
4572 						     ORDER_DYNAMIC_LINKER,
4573 						     false);
4574 
4575   // Check for NULL since a linker script may discard this section.
4576   if (vsec != NULL)
4577     {
4578       unsigned char* vbuf;
4579       unsigned int vsize;
4580       versions->symbol_section_contents<size, big_endian>(symtab,
4581 							  &this->dynpool_,
4582 							  local_symcount,
4583 							  dynamic_symbols,
4584 							  &vbuf, &vsize);
4585 
4586       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4587 								"** versions");
4588 
4589       vsec->add_output_section_data(vdata);
4590       vsec->set_entsize(2);
4591       vsec->set_link_section(this->dynsym_section_);
4592     }
4593 
4594   Output_data_dynamic* const odyn = this->dynamic_data_;
4595   if (odyn != NULL && vsec != NULL)
4596     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4597 
4598   if (versions->any_defs())
4599     {
4600       Output_section* vdsec;
4601       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4602 					  elfcpp::SHT_GNU_verdef,
4603 					  elfcpp::SHF_ALLOC,
4604 					  false, ORDER_DYNAMIC_LINKER, false);
4605 
4606       if (vdsec != NULL)
4607 	{
4608 	  unsigned char* vdbuf;
4609 	  unsigned int vdsize;
4610 	  unsigned int vdentries;
4611 	  versions->def_section_contents<size, big_endian>(&this->dynpool_,
4612 							   &vdbuf, &vdsize,
4613 							   &vdentries);
4614 
4615 	  Output_section_data* vddata =
4616 	    new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4617 
4618 	  vdsec->add_output_section_data(vddata);
4619 	  vdsec->set_link_section(dynstr);
4620 	  vdsec->set_info(vdentries);
4621 
4622 	  if (odyn != NULL)
4623 	    {
4624 	      odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4625 	      odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4626 	    }
4627 	}
4628     }
4629 
4630   if (versions->any_needs())
4631     {
4632       Output_section* vnsec;
4633       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4634 					  elfcpp::SHT_GNU_verneed,
4635 					  elfcpp::SHF_ALLOC,
4636 					  false, ORDER_DYNAMIC_LINKER, false);
4637 
4638       if (vnsec != NULL)
4639 	{
4640 	  unsigned char* vnbuf;
4641 	  unsigned int vnsize;
4642 	  unsigned int vnentries;
4643 	  versions->need_section_contents<size, big_endian>(&this->dynpool_,
4644 							    &vnbuf, &vnsize,
4645 							    &vnentries);
4646 
4647 	  Output_section_data* vndata =
4648 	    new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4649 
4650 	  vnsec->add_output_section_data(vndata);
4651 	  vnsec->set_link_section(dynstr);
4652 	  vnsec->set_info(vnentries);
4653 
4654 	  if (odyn != NULL)
4655 	    {
4656 	      odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4657 	      odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4658 	    }
4659 	}
4660     }
4661 }
4662 
4663 // Create the .interp section and PT_INTERP segment.
4664 
4665 void
create_interp(const Target * target)4666 Layout::create_interp(const Target* target)
4667 {
4668   gold_assert(this->interp_segment_ == NULL);
4669 
4670   const char* interp = parameters->options().dynamic_linker();
4671   if (interp == NULL)
4672     {
4673       interp = target->dynamic_linker();
4674       gold_assert(interp != NULL);
4675     }
4676 
4677   size_t len = strlen(interp) + 1;
4678 
4679   Output_section_data* odata = new Output_data_const(interp, len, 1);
4680 
4681   Output_section* osec = this->choose_output_section(NULL, ".interp",
4682 						     elfcpp::SHT_PROGBITS,
4683 						     elfcpp::SHF_ALLOC,
4684 						     false, ORDER_INTERP,
4685 						     false);
4686   if (osec != NULL)
4687     osec->add_output_section_data(odata);
4688 }
4689 
4690 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4691 // called by the target-specific code.  This does nothing if not doing
4692 // a dynamic link.
4693 
4694 // USE_REL is true for REL relocs rather than RELA relocs.
4695 
4696 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4697 
4698 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4699 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4700 // some targets have multiple reloc sections in PLT_REL.
4701 
4702 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4703 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4704 // section.
4705 
4706 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4707 // executable.
4708 
4709 void
add_target_dynamic_tags(bool use_rel,const Output_data * plt_got,const Output_data * plt_rel,const Output_data_reloc_generic * dyn_rel,bool add_debug,bool dynrel_includes_plt,const Output_data_reloc_generic * dyn_relr)4710 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4711 				const Output_data* plt_rel,
4712 				const Output_data_reloc_generic* dyn_rel,
4713 				bool add_debug, bool dynrel_includes_plt,
4714 				const Output_data_reloc_generic* dyn_relr)
4715 {
4716   Output_data_dynamic* odyn = this->dynamic_data_;
4717   if (odyn == NULL)
4718     return;
4719 
4720   if (plt_got != NULL && plt_got->output_section() != NULL)
4721     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4722 
4723   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4724     {
4725       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4726       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4727       odyn->add_constant(elfcpp::DT_PLTREL,
4728 			 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4729     }
4730 
4731   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
4732       || (dynrel_includes_plt
4733 	  && plt_rel != NULL
4734 	  && plt_rel->output_section() != NULL))
4735     {
4736       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
4737       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
4738       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4739 				(have_dyn_rel
4740 				 ? dyn_rel->output_section()
4741 				 : plt_rel->output_section()));
4742       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
4743       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
4744 	odyn->add_section_size(size_tag,
4745 			       dyn_rel->output_section(),
4746 			       plt_rel->output_section());
4747       else if (have_dyn_rel)
4748 	odyn->add_section_size(size_tag, dyn_rel->output_section());
4749       else
4750 	odyn->add_section_size(size_tag, plt_rel->output_section());
4751       const int size = parameters->target().get_size();
4752       elfcpp::DT rel_tag;
4753       int rel_size;
4754       if (use_rel)
4755 	{
4756 	  rel_tag = elfcpp::DT_RELENT;
4757 	  if (size == 32)
4758 	    rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4759 	  else if (size == 64)
4760 	    rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4761 	  else
4762 	    gold_unreachable();
4763 	}
4764       else
4765 	{
4766 	  rel_tag = elfcpp::DT_RELAENT;
4767 	  if (size == 32)
4768 	    rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4769 	  else if (size == 64)
4770 	    rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4771 	  else
4772 	    gold_unreachable();
4773 	}
4774       odyn->add_constant(rel_tag, rel_size);
4775 
4776       if (parameters->options().combreloc() && have_dyn_rel)
4777 	{
4778 	  size_t c = dyn_rel->relative_reloc_count();
4779 	  if (c > 0)
4780 	    odyn->add_constant((use_rel
4781 				? elfcpp::DT_RELCOUNT
4782 				: elfcpp::DT_RELACOUNT),
4783 			       c);
4784 	}
4785     }
4786 
4787   if (dyn_relr != NULL && dyn_relr->output_section() != NULL)
4788     {
4789       const int size = parameters->target().get_size();
4790       odyn->add_section_address(elfcpp::DT_RELR, dyn_relr->output_section());
4791       odyn->add_section_size(elfcpp::DT_RELRSZ, dyn_relr->output_section());
4792       odyn->add_constant(elfcpp::DT_RELRENT, size / 8);
4793       if (parameters->options().combreloc())
4794         odyn->add_constant(elfcpp::DT_RELRCOUNT,
4795 			   dyn_relr->relative_reloc_count());
4796     }
4797 
4798   if (add_debug && !parameters->options().shared())
4799     {
4800       // The value of the DT_DEBUG tag is filled in by the dynamic
4801       // linker at run time, and used by the debugger.
4802       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4803     }
4804 }
4805 
4806 void
add_target_specific_dynamic_tag(elfcpp::DT tag,unsigned int val)4807 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
4808 {
4809   Output_data_dynamic* odyn = this->dynamic_data_;
4810   if (odyn == NULL)
4811     return;
4812   odyn->add_constant(tag, val);
4813 }
4814 
4815 // Finish the .dynamic section and PT_DYNAMIC segment.
4816 
4817 void
finish_dynamic_section(const Input_objects * input_objects,const Symbol_table * symtab)4818 Layout::finish_dynamic_section(const Input_objects* input_objects,
4819 			       const Symbol_table* symtab)
4820 {
4821   if (!this->script_options_->saw_phdrs_clause()
4822       && this->dynamic_section_ != NULL)
4823     {
4824       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4825 						       (elfcpp::PF_R
4826 							| elfcpp::PF_W));
4827       oseg->add_output_section_to_nonload(this->dynamic_section_,
4828 					  elfcpp::PF_R | elfcpp::PF_W);
4829     }
4830 
4831   Output_data_dynamic* const odyn = this->dynamic_data_;
4832   if (odyn == NULL)
4833     return;
4834 
4835   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4836        p != input_objects->dynobj_end();
4837        ++p)
4838     {
4839       if (!(*p)->is_needed() && (*p)->as_needed())
4840 	{
4841 	  // This dynamic object was linked with --as-needed, but it
4842 	  // is not needed.
4843 	  continue;
4844 	}
4845 
4846       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4847     }
4848 
4849   if (parameters->options().shared())
4850     {
4851       const char* soname = parameters->options().soname();
4852       if (soname != NULL)
4853 	odyn->add_string(elfcpp::DT_SONAME, soname);
4854     }
4855 
4856   Symbol* sym = symtab->lookup(parameters->options().init());
4857   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4858     odyn->add_symbol(elfcpp::DT_INIT, sym);
4859 
4860   sym = symtab->lookup(parameters->options().fini());
4861   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4862     odyn->add_symbol(elfcpp::DT_FINI, sym);
4863 
4864   // Look for .init_array, .preinit_array and .fini_array by checking
4865   // section types.
4866   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4867       p != this->section_list_.end();
4868       ++p)
4869     switch((*p)->type())
4870       {
4871       case elfcpp::SHT_FINI_ARRAY:
4872 	odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4873 	odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4874 	break;
4875       case elfcpp::SHT_INIT_ARRAY:
4876 	odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4877 	odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4878 	break;
4879       case elfcpp::SHT_PREINIT_ARRAY:
4880 	odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4881 	odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4882 	break;
4883       default:
4884 	break;
4885       }
4886 
4887   // Add a DT_RPATH entry if needed.
4888   const General_options::Dir_list& rpath(parameters->options().rpath());
4889   if (!rpath.empty())
4890     {
4891       std::string rpath_val;
4892       for (General_options::Dir_list::const_iterator p = rpath.begin();
4893 	   p != rpath.end();
4894 	   ++p)
4895 	{
4896 	  if (rpath_val.empty())
4897 	    rpath_val = p->name();
4898 	  else
4899 	    {
4900 	      // Eliminate duplicates.
4901 	      General_options::Dir_list::const_iterator q;
4902 	      for (q = rpath.begin(); q != p; ++q)
4903 		if (q->name() == p->name())
4904 		  break;
4905 	      if (q == p)
4906 		{
4907 		  rpath_val += ':';
4908 		  rpath_val += p->name();
4909 		}
4910 	    }
4911 	}
4912 
4913       if (!parameters->options().enable_new_dtags())
4914 	odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4915       else
4916 	odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4917     }
4918 
4919   // Look for text segments that have dynamic relocations.
4920   bool have_textrel = false;
4921   if (!this->script_options_->saw_sections_clause())
4922     {
4923       for (Segment_list::const_iterator p = this->segment_list_.begin();
4924 	   p != this->segment_list_.end();
4925 	   ++p)
4926 	{
4927 	  if ((*p)->type() == elfcpp::PT_LOAD
4928 	      && ((*p)->flags() & elfcpp::PF_W) == 0
4929 	      && (*p)->has_dynamic_reloc())
4930 	    {
4931 	      have_textrel = true;
4932 	      break;
4933 	    }
4934 	}
4935     }
4936   else
4937     {
4938       // We don't know the section -> segment mapping, so we are
4939       // conservative and just look for readonly sections with
4940       // relocations.  If those sections wind up in writable segments,
4941       // then we have created an unnecessary DT_TEXTREL entry.
4942       for (Section_list::const_iterator p = this->section_list_.begin();
4943 	   p != this->section_list_.end();
4944 	   ++p)
4945 	{
4946 	  if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4947 	      && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4948 	      && (*p)->has_dynamic_reloc())
4949 	    {
4950 	      have_textrel = true;
4951 	      break;
4952 	    }
4953 	}
4954     }
4955 
4956   if (parameters->options().filter() != NULL)
4957     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4958   if (parameters->options().any_auxiliary())
4959     {
4960       for (options::String_set::const_iterator p =
4961 	     parameters->options().auxiliary_begin();
4962 	   p != parameters->options().auxiliary_end();
4963 	   ++p)
4964 	odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4965     }
4966 
4967   // Add a DT_FLAGS entry if necessary.
4968   unsigned int flags = 0;
4969   if (have_textrel)
4970     {
4971       // Add a DT_TEXTREL for compatibility with older loaders.
4972       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4973       flags |= elfcpp::DF_TEXTREL;
4974 
4975       if (parameters->options().text())
4976 	gold_error(_("read-only segment has dynamic relocations"));
4977       else if (parameters->options().warn_shared_textrel()
4978 	       && parameters->options().shared())
4979 	gold_warning(_("shared library text segment is not shareable"));
4980     }
4981   if (parameters->options().shared() && this->has_static_tls())
4982     flags |= elfcpp::DF_STATIC_TLS;
4983   if (parameters->options().origin())
4984     flags |= elfcpp::DF_ORIGIN;
4985   if (parameters->options().Bsymbolic()
4986       && !parameters->options().have_dynamic_list())
4987     {
4988       flags |= elfcpp::DF_SYMBOLIC;
4989       // Add DT_SYMBOLIC for compatibility with older loaders.
4990       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4991     }
4992   if (parameters->options().now())
4993     flags |= elfcpp::DF_BIND_NOW;
4994   if (flags != 0)
4995     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4996 
4997   flags = 0;
4998   if (parameters->options().global())
4999     flags |= elfcpp::DF_1_GLOBAL;
5000   if (parameters->options().initfirst())
5001     flags |= elfcpp::DF_1_INITFIRST;
5002   if (parameters->options().interpose())
5003     flags |= elfcpp::DF_1_INTERPOSE;
5004   if (parameters->options().loadfltr())
5005     flags |= elfcpp::DF_1_LOADFLTR;
5006   if (parameters->options().nodefaultlib())
5007     flags |= elfcpp::DF_1_NODEFLIB;
5008   if (parameters->options().nodelete())
5009     flags |= elfcpp::DF_1_NODELETE;
5010   if (parameters->options().nodlopen())
5011     flags |= elfcpp::DF_1_NOOPEN;
5012   if (parameters->options().nodump())
5013     flags |= elfcpp::DF_1_NODUMP;
5014   if (!parameters->options().shared())
5015     flags &= ~(elfcpp::DF_1_INITFIRST
5016 	       | elfcpp::DF_1_NODELETE
5017 	       | elfcpp::DF_1_NOOPEN);
5018   if (parameters->options().origin())
5019     flags |= elfcpp::DF_1_ORIGIN;
5020   if (parameters->options().now())
5021     flags |= elfcpp::DF_1_NOW;
5022   if (parameters->options().Bgroup())
5023     flags |= elfcpp::DF_1_GROUP;
5024   if (flags != 0)
5025     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
5026 }
5027 
5028 // Set the size of the _DYNAMIC symbol table to be the size of the
5029 // dynamic data.
5030 
5031 void
set_dynamic_symbol_size(const Symbol_table * symtab)5032 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
5033 {
5034   Output_data_dynamic* const odyn = this->dynamic_data_;
5035   if (odyn == NULL)
5036     return;
5037   odyn->finalize_data_size();
5038   if (this->dynamic_symbol_ == NULL)
5039     return;
5040   off_t data_size = odyn->data_size();
5041   const int size = parameters->target().get_size();
5042   if (size == 32)
5043     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5044   else if (size == 64)
5045     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5046   else
5047     gold_unreachable();
5048 }
5049 
5050 // The mapping of input section name prefixes to output section names.
5051 // In some cases one prefix is itself a prefix of another prefix; in
5052 // such a case the longer prefix must come first.  These prefixes are
5053 // based on the GNU linker default ELF linker script.
5054 
5055 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5056 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5057 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5058 {
5059   MAPPING_INIT(".text.", ".text"),
5060   MAPPING_INIT(".rodata.", ".rodata"),
5061   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5062   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5063   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5064   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5065   MAPPING_INIT(".data.", ".data"),
5066   MAPPING_INIT(".bss.", ".bss"),
5067   MAPPING_INIT(".tdata.", ".tdata"),
5068   MAPPING_INIT(".tbss.", ".tbss"),
5069   MAPPING_INIT(".init_array.", ".init_array"),
5070   MAPPING_INIT(".fini_array.", ".fini_array"),
5071   MAPPING_INIT(".sdata.", ".sdata"),
5072   MAPPING_INIT(".sbss.", ".sbss"),
5073   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5074   // differently depending on whether it is creating a shared library.
5075   MAPPING_INIT(".sdata2.", ".sdata"),
5076   MAPPING_INIT(".sbss2.", ".sbss"),
5077   MAPPING_INIT(".lrodata.", ".lrodata"),
5078   MAPPING_INIT(".ldata.", ".ldata"),
5079   MAPPING_INIT(".lbss.", ".lbss"),
5080   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5081   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5082   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5083   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5084   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5085   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5086   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5087   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5088   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5089   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5090   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5091   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5092   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5093   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5094   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5095   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5096   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5097   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5098   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5099   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5100   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5101   MAPPING_INIT("_function_patch_prologue.", "_function_patch_prologue"),
5102   MAPPING_INIT("_function_patch_epilogue.", "_function_patch_epilogue"),
5103 };
5104 #undef MAPPING_INIT
5105 #undef MAPPING_INIT_EXACT
5106 
5107 const int Layout::section_name_mapping_count =
5108   (sizeof(Layout::section_name_mapping)
5109    / sizeof(Layout::section_name_mapping[0]));
5110 
5111 // Choose the output section name to use given an input section name.
5112 // Set *PLEN to the length of the name.  *PLEN is initialized to the
5113 // length of NAME.
5114 
5115 const char*
output_section_name(const Relobj * relobj,const char * name,size_t * plen)5116 Layout::output_section_name(const Relobj* relobj, const char* name,
5117 			    size_t* plen)
5118 {
5119   // gcc 4.3 generates the following sorts of section names when it
5120   // needs a section name specific to a function:
5121   //   .text.FN
5122   //   .rodata.FN
5123   //   .sdata2.FN
5124   //   .data.FN
5125   //   .data.rel.FN
5126   //   .data.rel.local.FN
5127   //   .data.rel.ro.FN
5128   //   .data.rel.ro.local.FN
5129   //   .sdata.FN
5130   //   .bss.FN
5131   //   .sbss.FN
5132   //   .tdata.FN
5133   //   .tbss.FN
5134 
5135   // The GNU linker maps all of those to the part before the .FN,
5136   // except that .data.rel.local.FN is mapped to .data, and
5137   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
5138   // beginning with .data.rel.ro.local are grouped together.
5139 
5140   // For an anonymous namespace, the string FN can contain a '.'.
5141 
5142   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5143   // GNU linker maps to .rodata.
5144 
5145   // The .data.rel.ro sections are used with -z relro.  The sections
5146   // are recognized by name.  We use the same names that the GNU
5147   // linker does for these sections.
5148 
5149   // It is hard to handle this in a principled way, so we don't even
5150   // try.  We use a table of mappings.  If the input section name is
5151   // not found in the table, we simply use it as the output section
5152   // name.
5153 
5154   const Section_name_mapping* psnm = section_name_mapping;
5155   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
5156     {
5157       if (psnm->fromlen > 0)
5158 	{
5159 	  if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5160 	    {
5161 	      *plen = psnm->tolen;
5162 	      return psnm->to;
5163 	    }
5164 	}
5165       else
5166 	{
5167 	  if (strcmp(name, psnm->from) == 0)
5168 	    {
5169 	      *plen = psnm->tolen;
5170 	      return psnm->to;
5171 	    }
5172 	}
5173     }
5174 
5175   // As an additional complication, .ctors sections are output in
5176   // either .ctors or .init_array sections, and .dtors sections are
5177   // output in either .dtors or .fini_array sections.
5178   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5179     {
5180       if (parameters->options().ctors_in_init_array())
5181 	{
5182 	  *plen = 11;
5183 	  return name[1] == 'c' ? ".init_array" : ".fini_array";
5184 	}
5185       else
5186 	{
5187 	  *plen = 6;
5188 	  return name[1] == 'c' ? ".ctors" : ".dtors";
5189 	}
5190     }
5191   if (parameters->options().ctors_in_init_array()
5192       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5193     {
5194       // To make .init_array/.fini_array work with gcc we must exclude
5195       // .ctors and .dtors sections from the crtbegin and crtend
5196       // files.
5197       if (relobj == NULL
5198 	  || (!Layout::match_file_name(relobj, "crtbegin")
5199 	      && !Layout::match_file_name(relobj, "crtend")))
5200 	{
5201 	  *plen = 11;
5202 	  return name[1] == 'c' ? ".init_array" : ".fini_array";
5203 	}
5204     }
5205 
5206   return name;
5207 }
5208 
5209 // Return true if RELOBJ is an input file whose base name matches
5210 // FILE_NAME.  The base name must have an extension of ".o", and must
5211 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
5212 // to match crtbegin.o as well as crtbeginS.o without getting confused
5213 // by other possibilities.  Overall matching the file name this way is
5214 // a dreadful hack, but the GNU linker does it in order to better
5215 // support gcc, and we need to be compatible.
5216 
5217 bool
match_file_name(const Relobj * relobj,const char * match)5218 Layout::match_file_name(const Relobj* relobj, const char* match)
5219 {
5220   const std::string& file_name(relobj->name());
5221   const char* base_name = lbasename(file_name.c_str());
5222   size_t match_len = strlen(match);
5223   if (strncmp(base_name, match, match_len) != 0)
5224     return false;
5225   size_t base_len = strlen(base_name);
5226   if (base_len != match_len + 2 && base_len != match_len + 3)
5227     return false;
5228   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5229 }
5230 
5231 // Check if a comdat group or .gnu.linkonce section with the given
5232 // NAME is selected for the link.  If there is already a section,
5233 // *KEPT_SECTION is set to point to the existing section and the
5234 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5235 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5236 // *KEPT_SECTION is set to the internal copy and the function returns
5237 // true.
5238 
5239 bool
find_or_add_kept_section(const std::string & name,Relobj * object,unsigned int shndx,bool is_comdat,bool is_group_name,Kept_section ** kept_section)5240 Layout::find_or_add_kept_section(const std::string& name,
5241 				 Relobj* object,
5242 				 unsigned int shndx,
5243 				 bool is_comdat,
5244 				 bool is_group_name,
5245 				 Kept_section** kept_section)
5246 {
5247   // It's normal to see a couple of entries here, for the x86 thunk
5248   // sections.  If we see more than a few, we're linking a C++
5249   // program, and we resize to get more space to minimize rehashing.
5250   if (this->signatures_.size() > 4
5251       && !this->resized_signatures_)
5252     {
5253       reserve_unordered_map(&this->signatures_,
5254 			    this->number_of_input_files_ * 64);
5255       this->resized_signatures_ = true;
5256     }
5257 
5258   Kept_section candidate;
5259   std::pair<Signatures::iterator, bool> ins =
5260     this->signatures_.insert(std::make_pair(name, candidate));
5261 
5262   if (kept_section != NULL)
5263     *kept_section = &ins.first->second;
5264   if (ins.second)
5265     {
5266       // This is the first time we've seen this signature.
5267       ins.first->second.set_object(object);
5268       ins.first->second.set_shndx(shndx);
5269       if (is_comdat)
5270 	ins.first->second.set_is_comdat();
5271       if (is_group_name)
5272 	ins.first->second.set_is_group_name();
5273       return true;
5274     }
5275 
5276   // We have already seen this signature.
5277 
5278   if (ins.first->second.is_group_name())
5279     {
5280       // We've already seen a real section group with this signature.
5281       // If the kept group is from a plugin object, and we're in the
5282       // replacement phase, accept the new one as a replacement.
5283       if (ins.first->second.object() == NULL
5284 	  && parameters->options().plugins()->in_replacement_phase())
5285 	{
5286 	  ins.first->second.set_object(object);
5287 	  ins.first->second.set_shndx(shndx);
5288 	  return true;
5289 	}
5290       return false;
5291     }
5292   else if (is_group_name)
5293     {
5294       // This is a real section group, and we've already seen a
5295       // linkonce section with this signature.  Record that we've seen
5296       // a section group, and don't include this section group.
5297       ins.first->second.set_is_group_name();
5298       return false;
5299     }
5300   else
5301     {
5302       // We've already seen a linkonce section and this is a linkonce
5303       // section.  These don't block each other--this may be the same
5304       // symbol name with different section types.
5305       return true;
5306     }
5307 }
5308 
5309 // Store the allocated sections into the section list.
5310 
5311 void
get_allocated_sections(Section_list * section_list) const5312 Layout::get_allocated_sections(Section_list* section_list) const
5313 {
5314   for (Section_list::const_iterator p = this->section_list_.begin();
5315        p != this->section_list_.end();
5316        ++p)
5317     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5318       section_list->push_back(*p);
5319 }
5320 
5321 // Store the executable sections into the section list.
5322 
5323 void
get_executable_sections(Section_list * section_list) const5324 Layout::get_executable_sections(Section_list* section_list) const
5325 {
5326   for (Section_list::const_iterator p = this->section_list_.begin();
5327        p != this->section_list_.end();
5328        ++p)
5329     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5330 	== (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5331       section_list->push_back(*p);
5332 }
5333 
5334 // Create an output segment.
5335 
5336 Output_segment*
make_output_segment(elfcpp::Elf_Word type,elfcpp::Elf_Word flags)5337 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5338 {
5339   gold_assert(!parameters->options().relocatable());
5340   Output_segment* oseg = new Output_segment(type, flags);
5341   this->segment_list_.push_back(oseg);
5342 
5343   if (type == elfcpp::PT_TLS)
5344     this->tls_segment_ = oseg;
5345   else if (type == elfcpp::PT_GNU_RELRO)
5346     this->relro_segment_ = oseg;
5347   else if (type == elfcpp::PT_INTERP)
5348     this->interp_segment_ = oseg;
5349 
5350   return oseg;
5351 }
5352 
5353 // Return the file offset of the normal symbol table.
5354 
5355 off_t
symtab_section_offset() const5356 Layout::symtab_section_offset() const
5357 {
5358   if (this->symtab_section_ != NULL)
5359     return this->symtab_section_->offset();
5360   return 0;
5361 }
5362 
5363 // Return the section index of the normal symbol table.  It may have
5364 // been stripped by the -s/--strip-all option.
5365 
5366 unsigned int
symtab_section_shndx() const5367 Layout::symtab_section_shndx() const
5368 {
5369   if (this->symtab_section_ != NULL)
5370     return this->symtab_section_->out_shndx();
5371   return 0;
5372 }
5373 
5374 // Write out the Output_sections.  Most won't have anything to write,
5375 // since most of the data will come from input sections which are
5376 // handled elsewhere.  But some Output_sections do have Output_data.
5377 
5378 void
write_output_sections(Output_file * of) const5379 Layout::write_output_sections(Output_file* of) const
5380 {
5381   for (Section_list::const_iterator p = this->section_list_.begin();
5382        p != this->section_list_.end();
5383        ++p)
5384     {
5385       if (!(*p)->after_input_sections())
5386 	(*p)->write(of);
5387     }
5388 }
5389 
5390 // Write out data not associated with a section or the symbol table.
5391 
5392 void
write_data(const Symbol_table * symtab,Output_file * of) const5393 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5394 {
5395   if (!parameters->options().strip_all())
5396     {
5397       const Output_section* symtab_section = this->symtab_section_;
5398       for (Section_list::const_iterator p = this->section_list_.begin();
5399 	   p != this->section_list_.end();
5400 	   ++p)
5401 	{
5402 	  if ((*p)->needs_symtab_index())
5403 	    {
5404 	      gold_assert(symtab_section != NULL);
5405 	      unsigned int index = (*p)->symtab_index();
5406 	      gold_assert(index > 0 && index != -1U);
5407 	      off_t off = (symtab_section->offset()
5408 			   + index * symtab_section->entsize());
5409 	      symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5410 	    }
5411 	}
5412     }
5413 
5414   const Output_section* dynsym_section = this->dynsym_section_;
5415   for (Section_list::const_iterator p = this->section_list_.begin();
5416        p != this->section_list_.end();
5417        ++p)
5418     {
5419       if ((*p)->needs_dynsym_index())
5420 	{
5421 	  gold_assert(dynsym_section != NULL);
5422 	  unsigned int index = (*p)->dynsym_index();
5423 	  gold_assert(index > 0 && index != -1U);
5424 	  off_t off = (dynsym_section->offset()
5425 		       + index * dynsym_section->entsize());
5426 	  symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5427 	}
5428     }
5429 
5430   // Write out the Output_data which are not in an Output_section.
5431   for (Data_list::const_iterator p = this->special_output_list_.begin();
5432        p != this->special_output_list_.end();
5433        ++p)
5434     (*p)->write(of);
5435 
5436   // Write out the Output_data which are not in an Output_section
5437   // and are regenerated in each iteration of relaxation.
5438   for (Data_list::const_iterator p = this->relax_output_list_.begin();
5439        p != this->relax_output_list_.end();
5440        ++p)
5441     (*p)->write(of);
5442 }
5443 
5444 // Write out the Output_sections which can only be written after the
5445 // input sections are complete.
5446 
5447 void
write_sections_after_input_sections(Output_file * of)5448 Layout::write_sections_after_input_sections(Output_file* of)
5449 {
5450   // Determine the final section offsets, and thus the final output
5451   // file size.  Note we finalize the .shstrab last, to allow the
5452   // after_input_section sections to modify their section-names before
5453   // writing.
5454   if (this->any_postprocessing_sections_)
5455     {
5456       off_t off = this->output_file_size_;
5457       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5458 
5459       // Now that we've finalized the names, we can finalize the shstrab.
5460       off =
5461 	this->set_section_offsets(off,
5462 				  STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5463 
5464       if (off > this->output_file_size_)
5465 	{
5466 	  of->resize(off);
5467 	  this->output_file_size_ = off;
5468 	}
5469     }
5470 
5471   for (Section_list::const_iterator p = this->section_list_.begin();
5472        p != this->section_list_.end();
5473        ++p)
5474     {
5475       if ((*p)->after_input_sections())
5476 	(*p)->write(of);
5477     }
5478 
5479   this->section_headers_->write(of);
5480 }
5481 
5482 // If a tree-style build ID was requested, the parallel part of that computation
5483 // is already done, and the final hash-of-hashes is computed here.  For other
5484 // types of build IDs, all the work is done here.
5485 
5486 void
write_build_id(Output_file * of,unsigned char * array_of_hashes,size_t size_of_hashes) const5487 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5488 		       size_t size_of_hashes) const
5489 {
5490   if (this->build_id_note_ == NULL)
5491     return;
5492 
5493   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5494 					  this->build_id_note_->data_size());
5495 
5496   if (array_of_hashes == NULL)
5497     {
5498       const size_t output_file_size = this->output_file_size();
5499       const unsigned char* iv = of->get_input_view(0, output_file_size);
5500       const char* style = parameters->options().build_id();
5501 
5502       // If we get here with style == "tree" then the output must be
5503       // too small for chunking, and we use SHA-1 in that case.
5504       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5505 	sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5506       else if (strcmp(style, "md5") == 0)
5507 	md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5508       else
5509 	gold_unreachable();
5510 
5511       of->free_input_view(0, output_file_size, iv);
5512     }
5513   else
5514     {
5515       // Non-overlapping substrings of the output file have been hashed.
5516       // Compute SHA-1 hash of the hashes.
5517       sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5518 		  size_of_hashes, ov);
5519       delete[] array_of_hashes;
5520     }
5521 
5522   of->write_output_view(this->build_id_note_->offset(),
5523 			this->build_id_note_->data_size(),
5524 			ov);
5525 }
5526 
5527 // Write out a binary file.  This is called after the link is
5528 // complete.  IN is the temporary output file we used to generate the
5529 // ELF code.  We simply walk through the segments, read them from
5530 // their file offset in IN, and write them to their load address in
5531 // the output file.  FIXME: with a bit more work, we could support
5532 // S-records and/or Intel hex format here.
5533 
5534 void
write_binary(Output_file * in) const5535 Layout::write_binary(Output_file* in) const
5536 {
5537   gold_assert(parameters->options().oformat_enum()
5538 	      == General_options::OBJECT_FORMAT_BINARY);
5539 
5540   // Get the size of the binary file.
5541   uint64_t max_load_address = 0;
5542   for (Segment_list::const_iterator p = this->segment_list_.begin();
5543        p != this->segment_list_.end();
5544        ++p)
5545     {
5546       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5547 	{
5548 	  uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5549 	  if (max_paddr > max_load_address)
5550 	    max_load_address = max_paddr;
5551 	}
5552     }
5553 
5554   Output_file out(parameters->options().output_file_name());
5555   out.open(max_load_address);
5556 
5557   for (Segment_list::const_iterator p = this->segment_list_.begin();
5558        p != this->segment_list_.end();
5559        ++p)
5560     {
5561       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5562 	{
5563 	  const unsigned char* vin = in->get_input_view((*p)->offset(),
5564 							(*p)->filesz());
5565 	  unsigned char* vout = out.get_output_view((*p)->paddr(),
5566 						    (*p)->filesz());
5567 	  memcpy(vout, vin, (*p)->filesz());
5568 	  out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5569 	  in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5570 	}
5571     }
5572 
5573   out.close();
5574 }
5575 
5576 // Print the output sections to the map file.
5577 
5578 void
print_to_mapfile(Mapfile * mapfile) const5579 Layout::print_to_mapfile(Mapfile* mapfile) const
5580 {
5581   for (Segment_list::const_iterator p = this->segment_list_.begin();
5582        p != this->segment_list_.end();
5583        ++p)
5584     (*p)->print_sections_to_mapfile(mapfile);
5585   for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5586        p != this->unattached_section_list_.end();
5587        ++p)
5588     (*p)->print_to_mapfile(mapfile);
5589 }
5590 
5591 // Print statistical information to stderr.  This is used for --stats.
5592 
5593 void
print_stats() const5594 Layout::print_stats() const
5595 {
5596   this->namepool_.print_stats("section name pool");
5597   this->sympool_.print_stats("output symbol name pool");
5598   this->dynpool_.print_stats("dynamic name pool");
5599 
5600   for (Section_list::const_iterator p = this->section_list_.begin();
5601        p != this->section_list_.end();
5602        ++p)
5603     (*p)->print_merge_stats();
5604 }
5605 
5606 // Write_sections_task methods.
5607 
5608 // We can always run this task.
5609 
5610 Task_token*
is_runnable()5611 Write_sections_task::is_runnable()
5612 {
5613   return NULL;
5614 }
5615 
5616 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5617 // when finished.
5618 
5619 void
locks(Task_locker * tl)5620 Write_sections_task::locks(Task_locker* tl)
5621 {
5622   tl->add(this, this->output_sections_blocker_);
5623   if (this->input_sections_blocker_ != NULL)
5624     tl->add(this, this->input_sections_blocker_);
5625   tl->add(this, this->final_blocker_);
5626 }
5627 
5628 // Run the task--write out the data.
5629 
5630 void
run(Workqueue *)5631 Write_sections_task::run(Workqueue*)
5632 {
5633   this->layout_->write_output_sections(this->of_);
5634 }
5635 
5636 // Write_data_task methods.
5637 
5638 // We can always run this task.
5639 
5640 Task_token*
is_runnable()5641 Write_data_task::is_runnable()
5642 {
5643   return NULL;
5644 }
5645 
5646 // We need to unlock FINAL_BLOCKER when finished.
5647 
5648 void
locks(Task_locker * tl)5649 Write_data_task::locks(Task_locker* tl)
5650 {
5651   tl->add(this, this->final_blocker_);
5652 }
5653 
5654 // Run the task--write out the data.
5655 
5656 void
run(Workqueue *)5657 Write_data_task::run(Workqueue*)
5658 {
5659   this->layout_->write_data(this->symtab_, this->of_);
5660 }
5661 
5662 // Write_symbols_task methods.
5663 
5664 // We can always run this task.
5665 
5666 Task_token*
is_runnable()5667 Write_symbols_task::is_runnable()
5668 {
5669   return NULL;
5670 }
5671 
5672 // We need to unlock FINAL_BLOCKER when finished.
5673 
5674 void
locks(Task_locker * tl)5675 Write_symbols_task::locks(Task_locker* tl)
5676 {
5677   tl->add(this, this->final_blocker_);
5678 }
5679 
5680 // Run the task--write out the symbols.
5681 
5682 void
run(Workqueue *)5683 Write_symbols_task::run(Workqueue*)
5684 {
5685   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5686 			       this->layout_->symtab_xindex(),
5687 			       this->layout_->dynsym_xindex(), this->of_);
5688 }
5689 
5690 // Write_after_input_sections_task methods.
5691 
5692 // We can only run this task after the input sections have completed.
5693 
5694 Task_token*
is_runnable()5695 Write_after_input_sections_task::is_runnable()
5696 {
5697   if (this->input_sections_blocker_->is_blocked())
5698     return this->input_sections_blocker_;
5699   return NULL;
5700 }
5701 
5702 // We need to unlock FINAL_BLOCKER when finished.
5703 
5704 void
locks(Task_locker * tl)5705 Write_after_input_sections_task::locks(Task_locker* tl)
5706 {
5707   tl->add(this, this->final_blocker_);
5708 }
5709 
5710 // Run the task.
5711 
5712 void
run(Workqueue *)5713 Write_after_input_sections_task::run(Workqueue*)
5714 {
5715   this->layout_->write_sections_after_input_sections(this->of_);
5716 }
5717 
5718 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
5719 // or as a "tree" where each chunk of the string is hashed and then those
5720 // hashes are put into a (much smaller) string which is hashed with sha1.
5721 // We compute a checksum over the entire file because that is simplest.
5722 
5723 void
run(Workqueue * workqueue,const Task *)5724 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
5725 {
5726   Task_token* post_hash_tasks_blocker = new Task_token(true);
5727   const Layout* layout = this->layout_;
5728   Output_file* of = this->of_;
5729   const size_t filesize = (layout->output_file_size() <= 0 ? 0
5730 			   : static_cast<size_t>(layout->output_file_size()));
5731   unsigned char* array_of_hashes = NULL;
5732   size_t size_of_hashes = 0;
5733 
5734   if (strcmp(this->options_->build_id(), "tree") == 0
5735       && this->options_->build_id_chunk_size_for_treehash() > 0
5736       && filesize > 0
5737       && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
5738     {
5739       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
5740       const size_t chunk_size =
5741 	  this->options_->build_id_chunk_size_for_treehash();
5742       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
5743       post_hash_tasks_blocker->add_blockers(num_hashes);
5744       size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
5745       array_of_hashes = new unsigned char[size_of_hashes];
5746       unsigned char *dst = array_of_hashes;
5747       for (size_t i = 0, src_offset = 0; i < num_hashes;
5748 	   i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
5749 	{
5750 	  size_t size = std::min(chunk_size, filesize - src_offset);
5751 	  workqueue->queue(new Hash_task(of,
5752 					 src_offset,
5753 					 size,
5754 					 dst,
5755 					 post_hash_tasks_blocker));
5756 	}
5757     }
5758 
5759   // Queue the final task to write the build id and close the output file.
5760   workqueue->queue(new Task_function(new Close_task_runner(this->options_,
5761 							   layout,
5762 							   of,
5763 							   array_of_hashes,
5764 							   size_of_hashes),
5765 				     post_hash_tasks_blocker,
5766 				     "Task_function Close_task_runner"));
5767 }
5768 
5769 // Close_task_runner methods.
5770 
5771 // Finish up the build ID computation, if necessary, and write a binary file,
5772 // if necessary.  Then close the output file.
5773 
5774 void
run(Workqueue *,const Task *)5775 Close_task_runner::run(Workqueue*, const Task*)
5776 {
5777   // At this point the multi-threaded part of the build ID computation,
5778   // if any, is done.  See Build_id_task_runner.
5779   this->layout_->write_build_id(this->of_, this->array_of_hashes_,
5780 				this->size_of_hashes_);
5781 
5782   // If we've been asked to create a binary file, we do so here.
5783   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5784     this->layout_->write_binary(this->of_);
5785 
5786   this->of_->close();
5787 }
5788 
5789 // Instantiate the templates we need.  We could use the configure
5790 // script to restrict this to only the ones for implemented targets.
5791 
5792 #ifdef HAVE_TARGET_32_LITTLE
5793 template
5794 Output_section*
5795 Layout::init_fixed_output_section<32, false>(
5796     const char* name,
5797     elfcpp::Shdr<32, false>& shdr);
5798 #endif
5799 
5800 #ifdef HAVE_TARGET_32_BIG
5801 template
5802 Output_section*
5803 Layout::init_fixed_output_section<32, true>(
5804     const char* name,
5805     elfcpp::Shdr<32, true>& shdr);
5806 #endif
5807 
5808 #ifdef HAVE_TARGET_64_LITTLE
5809 template
5810 Output_section*
5811 Layout::init_fixed_output_section<64, false>(
5812     const char* name,
5813     elfcpp::Shdr<64, false>& shdr);
5814 #endif
5815 
5816 #ifdef HAVE_TARGET_64_BIG
5817 template
5818 Output_section*
5819 Layout::init_fixed_output_section<64, true>(
5820     const char* name,
5821     elfcpp::Shdr<64, true>& shdr);
5822 #endif
5823 
5824 #ifdef HAVE_TARGET_32_LITTLE
5825 template
5826 Output_section*
5827 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5828 			  unsigned int shndx,
5829 			  const char* name,
5830 			  const elfcpp::Shdr<32, false>& shdr,
5831 			  unsigned int, unsigned int, off_t*);
5832 #endif
5833 
5834 #ifdef HAVE_TARGET_32_BIG
5835 template
5836 Output_section*
5837 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5838 			 unsigned int shndx,
5839 			 const char* name,
5840 			 const elfcpp::Shdr<32, true>& shdr,
5841 			 unsigned int, unsigned int, off_t*);
5842 #endif
5843 
5844 #ifdef HAVE_TARGET_64_LITTLE
5845 template
5846 Output_section*
5847 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5848 			  unsigned int shndx,
5849 			  const char* name,
5850 			  const elfcpp::Shdr<64, false>& shdr,
5851 			  unsigned int, unsigned int, off_t*);
5852 #endif
5853 
5854 #ifdef HAVE_TARGET_64_BIG
5855 template
5856 Output_section*
5857 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5858 			 unsigned int shndx,
5859 			 const char* name,
5860 			 const elfcpp::Shdr<64, true>& shdr,
5861 			 unsigned int, unsigned int, off_t*);
5862 #endif
5863 
5864 #ifdef HAVE_TARGET_32_LITTLE
5865 template
5866 Output_section*
5867 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5868 				unsigned int reloc_shndx,
5869 				const elfcpp::Shdr<32, false>& shdr,
5870 				Output_section* data_section,
5871 				Relocatable_relocs* rr);
5872 #endif
5873 
5874 #ifdef HAVE_TARGET_32_BIG
5875 template
5876 Output_section*
5877 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5878 			       unsigned int reloc_shndx,
5879 			       const elfcpp::Shdr<32, true>& shdr,
5880 			       Output_section* data_section,
5881 			       Relocatable_relocs* rr);
5882 #endif
5883 
5884 #ifdef HAVE_TARGET_64_LITTLE
5885 template
5886 Output_section*
5887 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5888 				unsigned int reloc_shndx,
5889 				const elfcpp::Shdr<64, false>& shdr,
5890 				Output_section* data_section,
5891 				Relocatable_relocs* rr);
5892 #endif
5893 
5894 #ifdef HAVE_TARGET_64_BIG
5895 template
5896 Output_section*
5897 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5898 			       unsigned int reloc_shndx,
5899 			       const elfcpp::Shdr<64, true>& shdr,
5900 			       Output_section* data_section,
5901 			       Relocatable_relocs* rr);
5902 #endif
5903 
5904 #ifdef HAVE_TARGET_32_LITTLE
5905 template
5906 void
5907 Layout::layout_group<32, false>(Symbol_table* symtab,
5908 				Sized_relobj_file<32, false>* object,
5909 				unsigned int,
5910 				const char* group_section_name,
5911 				const char* signature,
5912 				const elfcpp::Shdr<32, false>& shdr,
5913 				elfcpp::Elf_Word flags,
5914 				std::vector<unsigned int>* shndxes);
5915 #endif
5916 
5917 #ifdef HAVE_TARGET_32_BIG
5918 template
5919 void
5920 Layout::layout_group<32, true>(Symbol_table* symtab,
5921 			       Sized_relobj_file<32, true>* object,
5922 			       unsigned int,
5923 			       const char* group_section_name,
5924 			       const char* signature,
5925 			       const elfcpp::Shdr<32, true>& shdr,
5926 			       elfcpp::Elf_Word flags,
5927 			       std::vector<unsigned int>* shndxes);
5928 #endif
5929 
5930 #ifdef HAVE_TARGET_64_LITTLE
5931 template
5932 void
5933 Layout::layout_group<64, false>(Symbol_table* symtab,
5934 				Sized_relobj_file<64, false>* object,
5935 				unsigned int,
5936 				const char* group_section_name,
5937 				const char* signature,
5938 				const elfcpp::Shdr<64, false>& shdr,
5939 				elfcpp::Elf_Word flags,
5940 				std::vector<unsigned int>* shndxes);
5941 #endif
5942 
5943 #ifdef HAVE_TARGET_64_BIG
5944 template
5945 void
5946 Layout::layout_group<64, true>(Symbol_table* symtab,
5947 			       Sized_relobj_file<64, true>* object,
5948 			       unsigned int,
5949 			       const char* group_section_name,
5950 			       const char* signature,
5951 			       const elfcpp::Shdr<64, true>& shdr,
5952 			       elfcpp::Elf_Word flags,
5953 			       std::vector<unsigned int>* shndxes);
5954 #endif
5955 
5956 #ifdef HAVE_TARGET_32_LITTLE
5957 template
5958 Output_section*
5959 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5960 				   const unsigned char* symbols,
5961 				   off_t symbols_size,
5962 				   const unsigned char* symbol_names,
5963 				   off_t symbol_names_size,
5964 				   unsigned int shndx,
5965 				   const elfcpp::Shdr<32, false>& shdr,
5966 				   unsigned int reloc_shndx,
5967 				   unsigned int reloc_type,
5968 				   off_t* off);
5969 #endif
5970 
5971 #ifdef HAVE_TARGET_32_BIG
5972 template
5973 Output_section*
5974 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5975 				  const unsigned char* symbols,
5976 				  off_t symbols_size,
5977 				  const unsigned char* symbol_names,
5978 				  off_t symbol_names_size,
5979 				  unsigned int shndx,
5980 				  const elfcpp::Shdr<32, true>& shdr,
5981 				  unsigned int reloc_shndx,
5982 				  unsigned int reloc_type,
5983 				  off_t* off);
5984 #endif
5985 
5986 #ifdef HAVE_TARGET_64_LITTLE
5987 template
5988 Output_section*
5989 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5990 				   const unsigned char* symbols,
5991 				   off_t symbols_size,
5992 				   const unsigned char* symbol_names,
5993 				   off_t symbol_names_size,
5994 				   unsigned int shndx,
5995 				   const elfcpp::Shdr<64, false>& shdr,
5996 				   unsigned int reloc_shndx,
5997 				   unsigned int reloc_type,
5998 				   off_t* off);
5999 #endif
6000 
6001 #ifdef HAVE_TARGET_64_BIG
6002 template
6003 Output_section*
6004 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
6005 				  const unsigned char* symbols,
6006 				  off_t symbols_size,
6007 				  const unsigned char* symbol_names,
6008 				  off_t symbol_names_size,
6009 				  unsigned int shndx,
6010 				  const elfcpp::Shdr<64, true>& shdr,
6011 				  unsigned int reloc_shndx,
6012 				  unsigned int reloc_type,
6013 				  off_t* off);
6014 #endif
6015 
6016 #ifdef HAVE_TARGET_32_LITTLE
6017 template
6018 void
6019 Layout::add_to_gdb_index(bool is_type_unit,
6020 			 Sized_relobj<32, false>* object,
6021 			 const unsigned char* symbols,
6022 			 off_t symbols_size,
6023 			 unsigned int shndx,
6024 			 unsigned int reloc_shndx,
6025 			 unsigned int reloc_type);
6026 #endif
6027 
6028 #ifdef HAVE_TARGET_32_BIG
6029 template
6030 void
6031 Layout::add_to_gdb_index(bool is_type_unit,
6032 			 Sized_relobj<32, true>* object,
6033 			 const unsigned char* symbols,
6034 			 off_t symbols_size,
6035 			 unsigned int shndx,
6036 			 unsigned int reloc_shndx,
6037 			 unsigned int reloc_type);
6038 #endif
6039 
6040 #ifdef HAVE_TARGET_64_LITTLE
6041 template
6042 void
6043 Layout::add_to_gdb_index(bool is_type_unit,
6044 			 Sized_relobj<64, false>* object,
6045 			 const unsigned char* symbols,
6046 			 off_t symbols_size,
6047 			 unsigned int shndx,
6048 			 unsigned int reloc_shndx,
6049 			 unsigned int reloc_type);
6050 #endif
6051 
6052 #ifdef HAVE_TARGET_64_BIG
6053 template
6054 void
6055 Layout::add_to_gdb_index(bool is_type_unit,
6056 			 Sized_relobj<64, true>* object,
6057 			 const unsigned char* symbols,
6058 			 off_t symbols_size,
6059 			 unsigned int shndx,
6060 			 unsigned int reloc_shndx,
6061 			 unsigned int reloc_type);
6062 #endif
6063 
6064 } // End namespace gold.
6065