1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2016 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
76 : bv %r0(%r21)
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
78
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
83 : bv %r0(%r21)
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
85
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : ldsid (%r21),%r1
92 : mtsp %r1,%sr0
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
95
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
101 : ldsid (%r21),%r1
102 : mtsp %r1,%sr0
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
105
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
112 : nop
113 : ldw -24(%sp),%rp ; restore the original rp
114 : ldsid (%rp),%r1
115 : mtsp %r1,%sr0
116 : be,n 0(%sr0,%rp) ; inter-space return. */
117
118
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
121
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
125
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
128
129 bfd_hash_table "btab"
130 bfd_hash_entry "bh"
131
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
134
135 elf32_hppa_dyn_reloc_entry "hdh"
136
137 Always remember to use GNU Coding Style. */
138
139 #define PLT_ENTRY_SIZE 8
140 #define GOT_ENTRY_SIZE 4
141 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
142
143 static const bfd_byte plt_stub[] =
144 {
145 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
146 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
147 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
148 #define PLT_STUB_ENTRY (3*4)
149 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
150 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
151 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
152 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
153 };
154
155 /* Section name for stubs is the associated section name plus this
156 string. */
157 #define STUB_SUFFIX ".stub"
158
159 /* We don't need to copy certain PC- or GP-relative dynamic relocs
160 into a shared object's dynamic section. All the relocs of the
161 limited class we are interested in, are absolute. */
162 #ifndef RELATIVE_DYNRELOCS
163 #define RELATIVE_DYNRELOCS 0
164 #define IS_ABSOLUTE_RELOC(r_type) 1
165 #endif
166
167 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
168 copying dynamic variables from a shared lib into an app's dynbss
169 section, and instead use a dynamic relocation to point into the
170 shared lib. */
171 #define ELIMINATE_COPY_RELOCS 1
172
173 enum elf32_hppa_stub_type
174 {
175 hppa_stub_long_branch,
176 hppa_stub_long_branch_shared,
177 hppa_stub_import,
178 hppa_stub_import_shared,
179 hppa_stub_export,
180 hppa_stub_none
181 };
182
183 struct elf32_hppa_stub_hash_entry
184 {
185 /* Base hash table entry structure. */
186 struct bfd_hash_entry bh_root;
187
188 /* The stub section. */
189 asection *stub_sec;
190
191 /* Offset within stub_sec of the beginning of this stub. */
192 bfd_vma stub_offset;
193
194 /* Given the symbol's value and its section we can determine its final
195 value when building the stubs (so the stub knows where to jump. */
196 bfd_vma target_value;
197 asection *target_section;
198
199 enum elf32_hppa_stub_type stub_type;
200
201 /* The symbol table entry, if any, that this was derived from. */
202 struct elf32_hppa_link_hash_entry *hh;
203
204 /* Where this stub is being called from, or, in the case of combined
205 stub sections, the first input section in the group. */
206 asection *id_sec;
207 };
208
209 struct elf32_hppa_link_hash_entry
210 {
211 struct elf_link_hash_entry eh;
212
213 /* A pointer to the most recently used stub hash entry against this
214 symbol. */
215 struct elf32_hppa_stub_hash_entry *hsh_cache;
216
217 /* Used to count relocations for delayed sizing of relocation
218 sections. */
219 struct elf32_hppa_dyn_reloc_entry
220 {
221 /* Next relocation in the chain. */
222 struct elf32_hppa_dyn_reloc_entry *hdh_next;
223
224 /* The input section of the reloc. */
225 asection *sec;
226
227 /* Number of relocs copied in this section. */
228 bfd_size_type count;
229
230 #if RELATIVE_DYNRELOCS
231 /* Number of relative relocs copied for the input section. */
232 bfd_size_type relative_count;
233 #endif
234 } *dyn_relocs;
235
236 enum
237 {
238 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
239 } tls_type;
240
241 /* Set if this symbol is used by a plabel reloc. */
242 unsigned int plabel:1;
243 };
244
245 struct elf32_hppa_link_hash_table
246 {
247 /* The main hash table. */
248 struct elf_link_hash_table etab;
249
250 /* The stub hash table. */
251 struct bfd_hash_table bstab;
252
253 /* Linker stub bfd. */
254 bfd *stub_bfd;
255
256 /* Linker call-backs. */
257 asection * (*add_stub_section) (const char *, asection *);
258 void (*layout_sections_again) (void);
259
260 /* Array to keep track of which stub sections have been created, and
261 information on stub grouping. */
262 struct map_stub
263 {
264 /* This is the section to which stubs in the group will be
265 attached. */
266 asection *link_sec;
267 /* The stub section. */
268 asection *stub_sec;
269 } *stub_group;
270
271 /* Assorted information used by elf32_hppa_size_stubs. */
272 unsigned int bfd_count;
273 unsigned int top_index;
274 asection **input_list;
275 Elf_Internal_Sym **all_local_syms;
276
277 /* Short-cuts to get to dynamic linker sections. */
278 asection *sgot;
279 asection *srelgot;
280 asection *splt;
281 asection *srelplt;
282 asection *sdynbss;
283 asection *srelbss;
284
285 /* Used during a final link to store the base of the text and data
286 segments so that we can perform SEGREL relocations. */
287 bfd_vma text_segment_base;
288 bfd_vma data_segment_base;
289
290 /* Whether we support multiple sub-spaces for shared libs. */
291 unsigned int multi_subspace:1;
292
293 /* Flags set when various size branches are detected. Used to
294 select suitable defaults for the stub group size. */
295 unsigned int has_12bit_branch:1;
296 unsigned int has_17bit_branch:1;
297 unsigned int has_22bit_branch:1;
298
299 /* Set if we need a .plt stub to support lazy dynamic linking. */
300 unsigned int need_plt_stub:1;
301
302 /* Small local sym cache. */
303 struct sym_cache sym_cache;
304
305 /* Data for LDM relocations. */
306 union
307 {
308 bfd_signed_vma refcount;
309 bfd_vma offset;
310 } tls_ldm_got;
311 };
312
313 /* Various hash macros and functions. */
314 #define hppa_link_hash_table(p) \
315 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
316 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
317
318 #define hppa_elf_hash_entry(ent) \
319 ((struct elf32_hppa_link_hash_entry *)(ent))
320
321 #define hppa_stub_hash_entry(ent) \
322 ((struct elf32_hppa_stub_hash_entry *)(ent))
323
324 #define hppa_stub_hash_lookup(table, string, create, copy) \
325 ((struct elf32_hppa_stub_hash_entry *) \
326 bfd_hash_lookup ((table), (string), (create), (copy)))
327
328 #define hppa_elf_local_got_tls_type(abfd) \
329 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
330
331 #define hh_name(hh) \
332 (hh ? hh->eh.root.root.string : "<undef>")
333
334 #define eh_name(eh) \
335 (eh ? eh->root.root.string : "<undef>")
336
337 /* Assorted hash table functions. */
338
339 /* Initialize an entry in the stub hash table. */
340
341 static struct bfd_hash_entry *
stub_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)342 stub_hash_newfunc (struct bfd_hash_entry *entry,
343 struct bfd_hash_table *table,
344 const char *string)
345 {
346 /* Allocate the structure if it has not already been allocated by a
347 subclass. */
348 if (entry == NULL)
349 {
350 entry = bfd_hash_allocate (table,
351 sizeof (struct elf32_hppa_stub_hash_entry));
352 if (entry == NULL)
353 return entry;
354 }
355
356 /* Call the allocation method of the superclass. */
357 entry = bfd_hash_newfunc (entry, table, string);
358 if (entry != NULL)
359 {
360 struct elf32_hppa_stub_hash_entry *hsh;
361
362 /* Initialize the local fields. */
363 hsh = hppa_stub_hash_entry (entry);
364 hsh->stub_sec = NULL;
365 hsh->stub_offset = 0;
366 hsh->target_value = 0;
367 hsh->target_section = NULL;
368 hsh->stub_type = hppa_stub_long_branch;
369 hsh->hh = NULL;
370 hsh->id_sec = NULL;
371 }
372
373 return entry;
374 }
375
376 /* Initialize an entry in the link hash table. */
377
378 static struct bfd_hash_entry *
hppa_link_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)379 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
380 struct bfd_hash_table *table,
381 const char *string)
382 {
383 /* Allocate the structure if it has not already been allocated by a
384 subclass. */
385 if (entry == NULL)
386 {
387 entry = bfd_hash_allocate (table,
388 sizeof (struct elf32_hppa_link_hash_entry));
389 if (entry == NULL)
390 return entry;
391 }
392
393 /* Call the allocation method of the superclass. */
394 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
395 if (entry != NULL)
396 {
397 struct elf32_hppa_link_hash_entry *hh;
398
399 /* Initialize the local fields. */
400 hh = hppa_elf_hash_entry (entry);
401 hh->hsh_cache = NULL;
402 hh->dyn_relocs = NULL;
403 hh->plabel = 0;
404 hh->tls_type = GOT_UNKNOWN;
405 }
406
407 return entry;
408 }
409
410 /* Free the derived linker hash table. */
411
412 static void
elf32_hppa_link_hash_table_free(bfd * obfd)413 elf32_hppa_link_hash_table_free (bfd *obfd)
414 {
415 struct elf32_hppa_link_hash_table *htab
416 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
417
418 bfd_hash_table_free (&htab->bstab);
419 _bfd_elf_link_hash_table_free (obfd);
420 }
421
422 /* Create the derived linker hash table. The PA ELF port uses the derived
423 hash table to keep information specific to the PA ELF linker (without
424 using static variables). */
425
426 static struct bfd_link_hash_table *
elf32_hppa_link_hash_table_create(bfd * abfd)427 elf32_hppa_link_hash_table_create (bfd *abfd)
428 {
429 struct elf32_hppa_link_hash_table *htab;
430 bfd_size_type amt = sizeof (*htab);
431
432 htab = bfd_zmalloc (amt);
433 if (htab == NULL)
434 return NULL;
435
436 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
437 sizeof (struct elf32_hppa_link_hash_entry),
438 HPPA32_ELF_DATA))
439 {
440 free (htab);
441 return NULL;
442 }
443
444 /* Init the stub hash table too. */
445 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
446 sizeof (struct elf32_hppa_stub_hash_entry)))
447 {
448 _bfd_elf_link_hash_table_free (abfd);
449 return NULL;
450 }
451 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
452
453 htab->text_segment_base = (bfd_vma) -1;
454 htab->data_segment_base = (bfd_vma) -1;
455 return &htab->etab.root;
456 }
457
458 /* Initialize the linker stubs BFD so that we can use it for linker
459 created dynamic sections. */
460
461 void
elf32_hppa_init_stub_bfd(bfd * abfd,struct bfd_link_info * info)462 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
463 {
464 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
465
466 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
467 htab->etab.dynobj = abfd;
468 }
469
470 /* Build a name for an entry in the stub hash table. */
471
472 static char *
hppa_stub_name(const asection * input_section,const asection * sym_sec,const struct elf32_hppa_link_hash_entry * hh,const Elf_Internal_Rela * rela)473 hppa_stub_name (const asection *input_section,
474 const asection *sym_sec,
475 const struct elf32_hppa_link_hash_entry *hh,
476 const Elf_Internal_Rela *rela)
477 {
478 char *stub_name;
479 bfd_size_type len;
480
481 if (hh)
482 {
483 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
484 stub_name = bfd_malloc (len);
485 if (stub_name != NULL)
486 sprintf (stub_name, "%08x_%s+%x",
487 input_section->id & 0xffffffff,
488 hh_name (hh),
489 (int) rela->r_addend & 0xffffffff);
490 }
491 else
492 {
493 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
494 stub_name = bfd_malloc (len);
495 if (stub_name != NULL)
496 sprintf (stub_name, "%08x_%x:%x+%x",
497 input_section->id & 0xffffffff,
498 sym_sec->id & 0xffffffff,
499 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
500 (int) rela->r_addend & 0xffffffff);
501 }
502 return stub_name;
503 }
504
505 /* Look up an entry in the stub hash. Stub entries are cached because
506 creating the stub name takes a bit of time. */
507
508 static struct elf32_hppa_stub_hash_entry *
hppa_get_stub_entry(const asection * input_section,const asection * sym_sec,struct elf32_hppa_link_hash_entry * hh,const Elf_Internal_Rela * rela,struct elf32_hppa_link_hash_table * htab)509 hppa_get_stub_entry (const asection *input_section,
510 const asection *sym_sec,
511 struct elf32_hppa_link_hash_entry *hh,
512 const Elf_Internal_Rela *rela,
513 struct elf32_hppa_link_hash_table *htab)
514 {
515 struct elf32_hppa_stub_hash_entry *hsh_entry;
516 const asection *id_sec;
517
518 /* If this input section is part of a group of sections sharing one
519 stub section, then use the id of the first section in the group.
520 Stub names need to include a section id, as there may well be
521 more than one stub used to reach say, printf, and we need to
522 distinguish between them. */
523 id_sec = htab->stub_group[input_section->id].link_sec;
524
525 if (hh != NULL && hh->hsh_cache != NULL
526 && hh->hsh_cache->hh == hh
527 && hh->hsh_cache->id_sec == id_sec)
528 {
529 hsh_entry = hh->hsh_cache;
530 }
531 else
532 {
533 char *stub_name;
534
535 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
536 if (stub_name == NULL)
537 return NULL;
538
539 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
540 stub_name, FALSE, FALSE);
541 if (hh != NULL)
542 hh->hsh_cache = hsh_entry;
543
544 free (stub_name);
545 }
546
547 return hsh_entry;
548 }
549
550 /* Add a new stub entry to the stub hash. Not all fields of the new
551 stub entry are initialised. */
552
553 static struct elf32_hppa_stub_hash_entry *
hppa_add_stub(const char * stub_name,asection * section,struct elf32_hppa_link_hash_table * htab)554 hppa_add_stub (const char *stub_name,
555 asection *section,
556 struct elf32_hppa_link_hash_table *htab)
557 {
558 asection *link_sec;
559 asection *stub_sec;
560 struct elf32_hppa_stub_hash_entry *hsh;
561
562 link_sec = htab->stub_group[section->id].link_sec;
563 stub_sec = htab->stub_group[section->id].stub_sec;
564 if (stub_sec == NULL)
565 {
566 stub_sec = htab->stub_group[link_sec->id].stub_sec;
567 if (stub_sec == NULL)
568 {
569 size_t namelen;
570 bfd_size_type len;
571 char *s_name;
572
573 namelen = strlen (link_sec->name);
574 len = namelen + sizeof (STUB_SUFFIX);
575 s_name = bfd_alloc (htab->stub_bfd, len);
576 if (s_name == NULL)
577 return NULL;
578
579 memcpy (s_name, link_sec->name, namelen);
580 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
581 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
582 if (stub_sec == NULL)
583 return NULL;
584 htab->stub_group[link_sec->id].stub_sec = stub_sec;
585 }
586 htab->stub_group[section->id].stub_sec = stub_sec;
587 }
588
589 /* Enter this entry into the linker stub hash table. */
590 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
591 TRUE, FALSE);
592 if (hsh == NULL)
593 {
594 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
595 section->owner,
596 stub_name);
597 return NULL;
598 }
599
600 hsh->stub_sec = stub_sec;
601 hsh->stub_offset = 0;
602 hsh->id_sec = link_sec;
603 return hsh;
604 }
605
606 /* Determine the type of stub needed, if any, for a call. */
607
608 static enum elf32_hppa_stub_type
hppa_type_of_stub(asection * input_sec,const Elf_Internal_Rela * rela,struct elf32_hppa_link_hash_entry * hh,bfd_vma destination,struct bfd_link_info * info)609 hppa_type_of_stub (asection *input_sec,
610 const Elf_Internal_Rela *rela,
611 struct elf32_hppa_link_hash_entry *hh,
612 bfd_vma destination,
613 struct bfd_link_info *info)
614 {
615 bfd_vma location;
616 bfd_vma branch_offset;
617 bfd_vma max_branch_offset;
618 unsigned int r_type;
619
620 if (hh != NULL
621 && hh->eh.plt.offset != (bfd_vma) -1
622 && hh->eh.dynindx != -1
623 && !hh->plabel
624 && (bfd_link_pic (info)
625 || !hh->eh.def_regular
626 || hh->eh.root.type == bfd_link_hash_defweak))
627 {
628 /* We need an import stub. Decide between hppa_stub_import
629 and hppa_stub_import_shared later. */
630 return hppa_stub_import;
631 }
632
633 /* Determine where the call point is. */
634 location = (input_sec->output_offset
635 + input_sec->output_section->vma
636 + rela->r_offset);
637
638 branch_offset = destination - location - 8;
639 r_type = ELF32_R_TYPE (rela->r_info);
640
641 /* Determine if a long branch stub is needed. parisc branch offsets
642 are relative to the second instruction past the branch, ie. +8
643 bytes on from the branch instruction location. The offset is
644 signed and counts in units of 4 bytes. */
645 if (r_type == (unsigned int) R_PARISC_PCREL17F)
646 max_branch_offset = (1 << (17 - 1)) << 2;
647
648 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
649 max_branch_offset = (1 << (12 - 1)) << 2;
650
651 else /* R_PARISC_PCREL22F. */
652 max_branch_offset = (1 << (22 - 1)) << 2;
653
654 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
655 return hppa_stub_long_branch;
656
657 return hppa_stub_none;
658 }
659
660 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
661 IN_ARG contains the link info pointer. */
662
663 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
664 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
665
666 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
667 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
668 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
669
670 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
671 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
672 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
673 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
674
675 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
676 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
677
678 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
679 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
680 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
681 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
682
683 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
684 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
685 #define NOP 0x08000240 /* nop */
686 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
687 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
688 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
689
690 #ifndef R19_STUBS
691 #define R19_STUBS 1
692 #endif
693
694 #if R19_STUBS
695 #define LDW_R1_DLT LDW_R1_R19
696 #else
697 #define LDW_R1_DLT LDW_R1_DP
698 #endif
699
700 static bfd_boolean
hppa_build_one_stub(struct bfd_hash_entry * bh,void * in_arg)701 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
702 {
703 struct elf32_hppa_stub_hash_entry *hsh;
704 struct bfd_link_info *info;
705 struct elf32_hppa_link_hash_table *htab;
706 asection *stub_sec;
707 bfd *stub_bfd;
708 bfd_byte *loc;
709 bfd_vma sym_value;
710 bfd_vma insn;
711 bfd_vma off;
712 int val;
713 int size;
714
715 /* Massage our args to the form they really have. */
716 hsh = hppa_stub_hash_entry (bh);
717 info = (struct bfd_link_info *)in_arg;
718
719 htab = hppa_link_hash_table (info);
720 if (htab == NULL)
721 return FALSE;
722
723 stub_sec = hsh->stub_sec;
724
725 /* Make a note of the offset within the stubs for this entry. */
726 hsh->stub_offset = stub_sec->size;
727 loc = stub_sec->contents + hsh->stub_offset;
728
729 stub_bfd = stub_sec->owner;
730
731 switch (hsh->stub_type)
732 {
733 case hppa_stub_long_branch:
734 /* Create the long branch. A long branch is formed with "ldil"
735 loading the upper bits of the target address into a register,
736 then branching with "be" which adds in the lower bits.
737 The "be" has its delay slot nullified. */
738 sym_value = (hsh->target_value
739 + hsh->target_section->output_offset
740 + hsh->target_section->output_section->vma);
741
742 val = hppa_field_adjust (sym_value, 0, e_lrsel);
743 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
744 bfd_put_32 (stub_bfd, insn, loc);
745
746 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
747 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
748 bfd_put_32 (stub_bfd, insn, loc + 4);
749
750 size = 8;
751 break;
752
753 case hppa_stub_long_branch_shared:
754 /* Branches are relative. This is where we are going to. */
755 sym_value = (hsh->target_value
756 + hsh->target_section->output_offset
757 + hsh->target_section->output_section->vma);
758
759 /* And this is where we are coming from, more or less. */
760 sym_value -= (hsh->stub_offset
761 + stub_sec->output_offset
762 + stub_sec->output_section->vma);
763
764 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
765 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
766 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
767 bfd_put_32 (stub_bfd, insn, loc + 4);
768
769 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
770 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
771 bfd_put_32 (stub_bfd, insn, loc + 8);
772 size = 12;
773 break;
774
775 case hppa_stub_import:
776 case hppa_stub_import_shared:
777 off = hsh->hh->eh.plt.offset;
778 if (off >= (bfd_vma) -2)
779 abort ();
780
781 off &= ~ (bfd_vma) 1;
782 sym_value = (off
783 + htab->splt->output_offset
784 + htab->splt->output_section->vma
785 - elf_gp (htab->splt->output_section->owner));
786
787 insn = ADDIL_DP;
788 #if R19_STUBS
789 if (hsh->stub_type == hppa_stub_import_shared)
790 insn = ADDIL_R19;
791 #endif
792 val = hppa_field_adjust (sym_value, 0, e_lrsel),
793 insn = hppa_rebuild_insn ((int) insn, val, 21);
794 bfd_put_32 (stub_bfd, insn, loc);
795
796 /* It is critical to use lrsel/rrsel here because we are using
797 two different offsets (+0 and +4) from sym_value. If we use
798 lsel/rsel then with unfortunate sym_values we will round
799 sym_value+4 up to the next 2k block leading to a mis-match
800 between the lsel and rsel value. */
801 val = hppa_field_adjust (sym_value, 0, e_rrsel);
802 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
803 bfd_put_32 (stub_bfd, insn, loc + 4);
804
805 if (htab->multi_subspace)
806 {
807 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
808 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
809 bfd_put_32 (stub_bfd, insn, loc + 8);
810
811 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
812 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
813 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
814 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
815
816 size = 28;
817 }
818 else
819 {
820 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
821 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
822 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
823 bfd_put_32 (stub_bfd, insn, loc + 12);
824
825 size = 16;
826 }
827
828 break;
829
830 case hppa_stub_export:
831 /* Branches are relative. This is where we are going to. */
832 sym_value = (hsh->target_value
833 + hsh->target_section->output_offset
834 + hsh->target_section->output_section->vma);
835
836 /* And this is where we are coming from. */
837 sym_value -= (hsh->stub_offset
838 + stub_sec->output_offset
839 + stub_sec->output_section->vma);
840
841 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
842 && (!htab->has_22bit_branch
843 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
844 {
845 (*_bfd_error_handler)
846 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
847 hsh->target_section->owner,
848 stub_sec,
849 (long) hsh->stub_offset,
850 hsh->bh_root.string);
851 bfd_set_error (bfd_error_bad_value);
852 return FALSE;
853 }
854
855 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
856 if (!htab->has_22bit_branch)
857 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
858 else
859 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
860 bfd_put_32 (stub_bfd, insn, loc);
861
862 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
863 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
864 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
865 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
866 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
867
868 /* Point the function symbol at the stub. */
869 hsh->hh->eh.root.u.def.section = stub_sec;
870 hsh->hh->eh.root.u.def.value = stub_sec->size;
871
872 size = 24;
873 break;
874
875 default:
876 BFD_FAIL ();
877 return FALSE;
878 }
879
880 stub_sec->size += size;
881 return TRUE;
882 }
883
884 #undef LDIL_R1
885 #undef BE_SR4_R1
886 #undef BL_R1
887 #undef ADDIL_R1
888 #undef DEPI_R1
889 #undef LDW_R1_R21
890 #undef LDW_R1_DLT
891 #undef LDW_R1_R19
892 #undef ADDIL_R19
893 #undef LDW_R1_DP
894 #undef LDSID_R21_R1
895 #undef MTSP_R1
896 #undef BE_SR0_R21
897 #undef STW_RP
898 #undef BV_R0_R21
899 #undef BL_RP
900 #undef NOP
901 #undef LDW_RP
902 #undef LDSID_RP_R1
903 #undef BE_SR0_RP
904
905 /* As above, but don't actually build the stub. Just bump offset so
906 we know stub section sizes. */
907
908 static bfd_boolean
hppa_size_one_stub(struct bfd_hash_entry * bh,void * in_arg)909 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
910 {
911 struct elf32_hppa_stub_hash_entry *hsh;
912 struct elf32_hppa_link_hash_table *htab;
913 int size;
914
915 /* Massage our args to the form they really have. */
916 hsh = hppa_stub_hash_entry (bh);
917 htab = in_arg;
918
919 if (hsh->stub_type == hppa_stub_long_branch)
920 size = 8;
921 else if (hsh->stub_type == hppa_stub_long_branch_shared)
922 size = 12;
923 else if (hsh->stub_type == hppa_stub_export)
924 size = 24;
925 else /* hppa_stub_import or hppa_stub_import_shared. */
926 {
927 if (htab->multi_subspace)
928 size = 28;
929 else
930 size = 16;
931 }
932
933 hsh->stub_sec->size += size;
934 return TRUE;
935 }
936
937 /* Return nonzero if ABFD represents an HPPA ELF32 file.
938 Additionally we set the default architecture and machine. */
939
940 static bfd_boolean
elf32_hppa_object_p(bfd * abfd)941 elf32_hppa_object_p (bfd *abfd)
942 {
943 Elf_Internal_Ehdr * i_ehdrp;
944 unsigned int flags;
945
946 i_ehdrp = elf_elfheader (abfd);
947 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
948 {
949 /* GCC on hppa-linux produces binaries with OSABI=GNU,
950 but the kernel produces corefiles with OSABI=SysV. */
951 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
952 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
953 return FALSE;
954 }
955 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
956 {
957 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
958 but the kernel produces corefiles with OSABI=SysV. */
959 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
960 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
961 return FALSE;
962 }
963 else
964 {
965 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
966 return FALSE;
967 }
968
969 flags = i_ehdrp->e_flags;
970 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
971 {
972 case EFA_PARISC_1_0:
973 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
974 case EFA_PARISC_1_1:
975 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
976 case EFA_PARISC_2_0:
977 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
978 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
979 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
980 }
981 return TRUE;
982 }
983
984 /* Create the .plt and .got sections, and set up our hash table
985 short-cuts to various dynamic sections. */
986
987 static bfd_boolean
elf32_hppa_create_dynamic_sections(bfd * abfd,struct bfd_link_info * info)988 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
989 {
990 struct elf32_hppa_link_hash_table *htab;
991 struct elf_link_hash_entry *eh;
992
993 /* Don't try to create the .plt and .got twice. */
994 htab = hppa_link_hash_table (info);
995 if (htab == NULL)
996 return FALSE;
997 if (htab->splt != NULL)
998 return TRUE;
999
1000 /* Call the generic code to do most of the work. */
1001 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1002 return FALSE;
1003
1004 htab->splt = bfd_get_linker_section (abfd, ".plt");
1005 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
1006
1007 htab->sgot = bfd_get_linker_section (abfd, ".got");
1008 htab->srelgot = bfd_get_linker_section (abfd, ".rela.got");
1009
1010 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
1011 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
1012
1013 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1014 application, because __canonicalize_funcptr_for_compare needs it. */
1015 eh = elf_hash_table (info)->hgot;
1016 eh->forced_local = 0;
1017 eh->other = STV_DEFAULT;
1018 return bfd_elf_link_record_dynamic_symbol (info, eh);
1019 }
1020
1021 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1022
1023 static void
elf32_hppa_copy_indirect_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * eh_dir,struct elf_link_hash_entry * eh_ind)1024 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1025 struct elf_link_hash_entry *eh_dir,
1026 struct elf_link_hash_entry *eh_ind)
1027 {
1028 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1029
1030 hh_dir = hppa_elf_hash_entry (eh_dir);
1031 hh_ind = hppa_elf_hash_entry (eh_ind);
1032
1033 if (hh_ind->dyn_relocs != NULL)
1034 {
1035 if (hh_dir->dyn_relocs != NULL)
1036 {
1037 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1038 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1039
1040 /* Add reloc counts against the indirect sym to the direct sym
1041 list. Merge any entries against the same section. */
1042 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1043 {
1044 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1045
1046 for (hdh_q = hh_dir->dyn_relocs;
1047 hdh_q != NULL;
1048 hdh_q = hdh_q->hdh_next)
1049 if (hdh_q->sec == hdh_p->sec)
1050 {
1051 #if RELATIVE_DYNRELOCS
1052 hdh_q->relative_count += hdh_p->relative_count;
1053 #endif
1054 hdh_q->count += hdh_p->count;
1055 *hdh_pp = hdh_p->hdh_next;
1056 break;
1057 }
1058 if (hdh_q == NULL)
1059 hdh_pp = &hdh_p->hdh_next;
1060 }
1061 *hdh_pp = hh_dir->dyn_relocs;
1062 }
1063
1064 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1065 hh_ind->dyn_relocs = NULL;
1066 }
1067
1068 if (ELIMINATE_COPY_RELOCS
1069 && eh_ind->root.type != bfd_link_hash_indirect
1070 && eh_dir->dynamic_adjusted)
1071 {
1072 /* If called to transfer flags for a weakdef during processing
1073 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1074 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1075 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1076 eh_dir->ref_regular |= eh_ind->ref_regular;
1077 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1078 eh_dir->needs_plt |= eh_ind->needs_plt;
1079 }
1080 else
1081 {
1082 if (eh_ind->root.type == bfd_link_hash_indirect
1083 && eh_dir->got.refcount <= 0)
1084 {
1085 hh_dir->tls_type = hh_ind->tls_type;
1086 hh_ind->tls_type = GOT_UNKNOWN;
1087 }
1088
1089 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1090 }
1091 }
1092
1093 static int
elf32_hppa_optimized_tls_reloc(struct bfd_link_info * info ATTRIBUTE_UNUSED,int r_type,int is_local ATTRIBUTE_UNUSED)1094 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1095 int r_type, int is_local ATTRIBUTE_UNUSED)
1096 {
1097 /* For now we don't support linker optimizations. */
1098 return r_type;
1099 }
1100
1101 /* Return a pointer to the local GOT, PLT and TLS reference counts
1102 for ABFD. Returns NULL if the storage allocation fails. */
1103
1104 static bfd_signed_vma *
hppa32_elf_local_refcounts(bfd * abfd)1105 hppa32_elf_local_refcounts (bfd *abfd)
1106 {
1107 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1108 bfd_signed_vma *local_refcounts;
1109
1110 local_refcounts = elf_local_got_refcounts (abfd);
1111 if (local_refcounts == NULL)
1112 {
1113 bfd_size_type size;
1114
1115 /* Allocate space for local GOT and PLT reference
1116 counts. Done this way to save polluting elf_obj_tdata
1117 with another target specific pointer. */
1118 size = symtab_hdr->sh_info;
1119 size *= 2 * sizeof (bfd_signed_vma);
1120 /* Add in space to store the local GOT TLS types. */
1121 size += symtab_hdr->sh_info;
1122 local_refcounts = bfd_zalloc (abfd, size);
1123 if (local_refcounts == NULL)
1124 return NULL;
1125 elf_local_got_refcounts (abfd) = local_refcounts;
1126 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1127 symtab_hdr->sh_info);
1128 }
1129 return local_refcounts;
1130 }
1131
1132
1133 /* Look through the relocs for a section during the first phase, and
1134 calculate needed space in the global offset table, procedure linkage
1135 table, and dynamic reloc sections. At this point we haven't
1136 necessarily read all the input files. */
1137
1138 static bfd_boolean
elf32_hppa_check_relocs(bfd * abfd,struct bfd_link_info * info,asection * sec,const Elf_Internal_Rela * relocs)1139 elf32_hppa_check_relocs (bfd *abfd,
1140 struct bfd_link_info *info,
1141 asection *sec,
1142 const Elf_Internal_Rela *relocs)
1143 {
1144 Elf_Internal_Shdr *symtab_hdr;
1145 struct elf_link_hash_entry **eh_syms;
1146 const Elf_Internal_Rela *rela;
1147 const Elf_Internal_Rela *rela_end;
1148 struct elf32_hppa_link_hash_table *htab;
1149 asection *sreloc;
1150 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1151
1152 if (bfd_link_relocatable (info))
1153 return TRUE;
1154
1155 htab = hppa_link_hash_table (info);
1156 if (htab == NULL)
1157 return FALSE;
1158 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1159 eh_syms = elf_sym_hashes (abfd);
1160 sreloc = NULL;
1161
1162 rela_end = relocs + sec->reloc_count;
1163 for (rela = relocs; rela < rela_end; rela++)
1164 {
1165 enum {
1166 NEED_GOT = 1,
1167 NEED_PLT = 2,
1168 NEED_DYNREL = 4,
1169 PLT_PLABEL = 8
1170 };
1171
1172 unsigned int r_symndx, r_type;
1173 struct elf32_hppa_link_hash_entry *hh;
1174 int need_entry = 0;
1175
1176 r_symndx = ELF32_R_SYM (rela->r_info);
1177
1178 if (r_symndx < symtab_hdr->sh_info)
1179 hh = NULL;
1180 else
1181 {
1182 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1183 while (hh->eh.root.type == bfd_link_hash_indirect
1184 || hh->eh.root.type == bfd_link_hash_warning)
1185 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1186
1187 /* PR15323, ref flags aren't set for references in the same
1188 object. */
1189 hh->eh.root.non_ir_ref = 1;
1190 }
1191
1192 r_type = ELF32_R_TYPE (rela->r_info);
1193 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1194
1195 switch (r_type)
1196 {
1197 case R_PARISC_DLTIND14F:
1198 case R_PARISC_DLTIND14R:
1199 case R_PARISC_DLTIND21L:
1200 /* This symbol requires a global offset table entry. */
1201 need_entry = NEED_GOT;
1202 break;
1203
1204 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1205 case R_PARISC_PLABEL21L:
1206 case R_PARISC_PLABEL32:
1207 /* If the addend is non-zero, we break badly. */
1208 if (rela->r_addend != 0)
1209 abort ();
1210
1211 /* If we are creating a shared library, then we need to
1212 create a PLT entry for all PLABELs, because PLABELs with
1213 local symbols may be passed via a pointer to another
1214 object. Additionally, output a dynamic relocation
1215 pointing to the PLT entry.
1216
1217 For executables, the original 32-bit ABI allowed two
1218 different styles of PLABELs (function pointers): For
1219 global functions, the PLABEL word points into the .plt
1220 two bytes past a (function address, gp) pair, and for
1221 local functions the PLABEL points directly at the
1222 function. The magic +2 for the first type allows us to
1223 differentiate between the two. As you can imagine, this
1224 is a real pain when it comes to generating code to call
1225 functions indirectly or to compare function pointers.
1226 We avoid the mess by always pointing a PLABEL into the
1227 .plt, even for local functions. */
1228 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1229 break;
1230
1231 case R_PARISC_PCREL12F:
1232 htab->has_12bit_branch = 1;
1233 goto branch_common;
1234
1235 case R_PARISC_PCREL17C:
1236 case R_PARISC_PCREL17F:
1237 htab->has_17bit_branch = 1;
1238 goto branch_common;
1239
1240 case R_PARISC_PCREL22F:
1241 htab->has_22bit_branch = 1;
1242 branch_common:
1243 /* Function calls might need to go through the .plt, and
1244 might require long branch stubs. */
1245 if (hh == NULL)
1246 {
1247 /* We know local syms won't need a .plt entry, and if
1248 they need a long branch stub we can't guarantee that
1249 we can reach the stub. So just flag an error later
1250 if we're doing a shared link and find we need a long
1251 branch stub. */
1252 continue;
1253 }
1254 else
1255 {
1256 /* Global symbols will need a .plt entry if they remain
1257 global, and in most cases won't need a long branch
1258 stub. Unfortunately, we have to cater for the case
1259 where a symbol is forced local by versioning, or due
1260 to symbolic linking, and we lose the .plt entry. */
1261 need_entry = NEED_PLT;
1262 if (hh->eh.type == STT_PARISC_MILLI)
1263 need_entry = 0;
1264 }
1265 break;
1266
1267 case R_PARISC_SEGBASE: /* Used to set segment base. */
1268 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1269 case R_PARISC_PCREL14F: /* PC relative load/store. */
1270 case R_PARISC_PCREL14R:
1271 case R_PARISC_PCREL17R: /* External branches. */
1272 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1273 case R_PARISC_PCREL32:
1274 /* We don't need to propagate the relocation if linking a
1275 shared object since these are section relative. */
1276 continue;
1277
1278 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1279 case R_PARISC_DPREL14R:
1280 case R_PARISC_DPREL21L:
1281 if (bfd_link_pic (info))
1282 {
1283 (*_bfd_error_handler)
1284 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1285 abfd,
1286 elf_hppa_howto_table[r_type].name);
1287 bfd_set_error (bfd_error_bad_value);
1288 return FALSE;
1289 }
1290 /* Fall through. */
1291
1292 case R_PARISC_DIR17F: /* Used for external branches. */
1293 case R_PARISC_DIR17R:
1294 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1295 case R_PARISC_DIR14R:
1296 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1297 case R_PARISC_DIR32: /* .word relocs. */
1298 /* We may want to output a dynamic relocation later. */
1299 need_entry = NEED_DYNREL;
1300 break;
1301
1302 /* This relocation describes the C++ object vtable hierarchy.
1303 Reconstruct it for later use during GC. */
1304 case R_PARISC_GNU_VTINHERIT:
1305 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1306 return FALSE;
1307 continue;
1308
1309 /* This relocation describes which C++ vtable entries are actually
1310 used. Record for later use during GC. */
1311 case R_PARISC_GNU_VTENTRY:
1312 BFD_ASSERT (hh != NULL);
1313 if (hh != NULL
1314 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1315 return FALSE;
1316 continue;
1317
1318 case R_PARISC_TLS_GD21L:
1319 case R_PARISC_TLS_GD14R:
1320 case R_PARISC_TLS_LDM21L:
1321 case R_PARISC_TLS_LDM14R:
1322 need_entry = NEED_GOT;
1323 break;
1324
1325 case R_PARISC_TLS_IE21L:
1326 case R_PARISC_TLS_IE14R:
1327 if (bfd_link_pic (info))
1328 info->flags |= DF_STATIC_TLS;
1329 need_entry = NEED_GOT;
1330 break;
1331
1332 default:
1333 continue;
1334 }
1335
1336 /* Now carry out our orders. */
1337 if (need_entry & NEED_GOT)
1338 {
1339 switch (r_type)
1340 {
1341 default:
1342 tls_type = GOT_NORMAL;
1343 break;
1344 case R_PARISC_TLS_GD21L:
1345 case R_PARISC_TLS_GD14R:
1346 tls_type |= GOT_TLS_GD;
1347 break;
1348 case R_PARISC_TLS_LDM21L:
1349 case R_PARISC_TLS_LDM14R:
1350 tls_type |= GOT_TLS_LDM;
1351 break;
1352 case R_PARISC_TLS_IE21L:
1353 case R_PARISC_TLS_IE14R:
1354 tls_type |= GOT_TLS_IE;
1355 break;
1356 }
1357
1358 /* Allocate space for a GOT entry, as well as a dynamic
1359 relocation for this entry. */
1360 if (htab->sgot == NULL)
1361 {
1362 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1363 return FALSE;
1364 }
1365
1366 if (r_type == R_PARISC_TLS_LDM21L
1367 || r_type == R_PARISC_TLS_LDM14R)
1368 htab->tls_ldm_got.refcount += 1;
1369 else
1370 {
1371 if (hh != NULL)
1372 {
1373 hh->eh.got.refcount += 1;
1374 old_tls_type = hh->tls_type;
1375 }
1376 else
1377 {
1378 bfd_signed_vma *local_got_refcounts;
1379
1380 /* This is a global offset table entry for a local symbol. */
1381 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1382 if (local_got_refcounts == NULL)
1383 return FALSE;
1384 local_got_refcounts[r_symndx] += 1;
1385
1386 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1387 }
1388
1389 tls_type |= old_tls_type;
1390
1391 if (old_tls_type != tls_type)
1392 {
1393 if (hh != NULL)
1394 hh->tls_type = tls_type;
1395 else
1396 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1397 }
1398
1399 }
1400 }
1401
1402 if (need_entry & NEED_PLT)
1403 {
1404 /* If we are creating a shared library, and this is a reloc
1405 against a weak symbol or a global symbol in a dynamic
1406 object, then we will be creating an import stub and a
1407 .plt entry for the symbol. Similarly, on a normal link
1408 to symbols defined in a dynamic object we'll need the
1409 import stub and a .plt entry. We don't know yet whether
1410 the symbol is defined or not, so make an entry anyway and
1411 clean up later in adjust_dynamic_symbol. */
1412 if ((sec->flags & SEC_ALLOC) != 0)
1413 {
1414 if (hh != NULL)
1415 {
1416 hh->eh.needs_plt = 1;
1417 hh->eh.plt.refcount += 1;
1418
1419 /* If this .plt entry is for a plabel, mark it so
1420 that adjust_dynamic_symbol will keep the entry
1421 even if it appears to be local. */
1422 if (need_entry & PLT_PLABEL)
1423 hh->plabel = 1;
1424 }
1425 else if (need_entry & PLT_PLABEL)
1426 {
1427 bfd_signed_vma *local_got_refcounts;
1428 bfd_signed_vma *local_plt_refcounts;
1429
1430 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1431 if (local_got_refcounts == NULL)
1432 return FALSE;
1433 local_plt_refcounts = (local_got_refcounts
1434 + symtab_hdr->sh_info);
1435 local_plt_refcounts[r_symndx] += 1;
1436 }
1437 }
1438 }
1439
1440 if (need_entry & NEED_DYNREL)
1441 {
1442 /* Flag this symbol as having a non-got, non-plt reference
1443 so that we generate copy relocs if it turns out to be
1444 dynamic. */
1445 if (hh != NULL && !bfd_link_pic (info))
1446 hh->eh.non_got_ref = 1;
1447
1448 /* If we are creating a shared library then we need to copy
1449 the reloc into the shared library. However, if we are
1450 linking with -Bsymbolic, we need only copy absolute
1451 relocs or relocs against symbols that are not defined in
1452 an object we are including in the link. PC- or DP- or
1453 DLT-relative relocs against any local sym or global sym
1454 with DEF_REGULAR set, can be discarded. At this point we
1455 have not seen all the input files, so it is possible that
1456 DEF_REGULAR is not set now but will be set later (it is
1457 never cleared). We account for that possibility below by
1458 storing information in the dyn_relocs field of the
1459 hash table entry.
1460
1461 A similar situation to the -Bsymbolic case occurs when
1462 creating shared libraries and symbol visibility changes
1463 render the symbol local.
1464
1465 As it turns out, all the relocs we will be creating here
1466 are absolute, so we cannot remove them on -Bsymbolic
1467 links or visibility changes anyway. A STUB_REL reloc
1468 is absolute too, as in that case it is the reloc in the
1469 stub we will be creating, rather than copying the PCREL
1470 reloc in the branch.
1471
1472 If on the other hand, we are creating an executable, we
1473 may need to keep relocations for symbols satisfied by a
1474 dynamic library if we manage to avoid copy relocs for the
1475 symbol. */
1476 if ((bfd_link_pic (info)
1477 && (sec->flags & SEC_ALLOC) != 0
1478 && (IS_ABSOLUTE_RELOC (r_type)
1479 || (hh != NULL
1480 && (!SYMBOLIC_BIND (info, &hh->eh)
1481 || hh->eh.root.type == bfd_link_hash_defweak
1482 || !hh->eh.def_regular))))
1483 || (ELIMINATE_COPY_RELOCS
1484 && !bfd_link_pic (info)
1485 && (sec->flags & SEC_ALLOC) != 0
1486 && hh != NULL
1487 && (hh->eh.root.type == bfd_link_hash_defweak
1488 || !hh->eh.def_regular)))
1489 {
1490 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1491 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1492
1493 /* Create a reloc section in dynobj and make room for
1494 this reloc. */
1495 if (sreloc == NULL)
1496 {
1497 sreloc = _bfd_elf_make_dynamic_reloc_section
1498 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1499
1500 if (sreloc == NULL)
1501 {
1502 bfd_set_error (bfd_error_bad_value);
1503 return FALSE;
1504 }
1505 }
1506
1507 /* If this is a global symbol, we count the number of
1508 relocations we need for this symbol. */
1509 if (hh != NULL)
1510 {
1511 hdh_head = &hh->dyn_relocs;
1512 }
1513 else
1514 {
1515 /* Track dynamic relocs needed for local syms too.
1516 We really need local syms available to do this
1517 easily. Oh well. */
1518 asection *sr;
1519 void *vpp;
1520 Elf_Internal_Sym *isym;
1521
1522 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1523 abfd, r_symndx);
1524 if (isym == NULL)
1525 return FALSE;
1526
1527 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1528 if (sr == NULL)
1529 sr = sec;
1530
1531 vpp = &elf_section_data (sr)->local_dynrel;
1532 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1533 }
1534
1535 hdh_p = *hdh_head;
1536 if (hdh_p == NULL || hdh_p->sec != sec)
1537 {
1538 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1539 if (hdh_p == NULL)
1540 return FALSE;
1541 hdh_p->hdh_next = *hdh_head;
1542 *hdh_head = hdh_p;
1543 hdh_p->sec = sec;
1544 hdh_p->count = 0;
1545 #if RELATIVE_DYNRELOCS
1546 hdh_p->relative_count = 0;
1547 #endif
1548 }
1549
1550 hdh_p->count += 1;
1551 #if RELATIVE_DYNRELOCS
1552 if (!IS_ABSOLUTE_RELOC (rtype))
1553 hdh_p->relative_count += 1;
1554 #endif
1555 }
1556 }
1557 }
1558
1559 return TRUE;
1560 }
1561
1562 /* Return the section that should be marked against garbage collection
1563 for a given relocation. */
1564
1565 static asection *
elf32_hppa_gc_mark_hook(asection * sec,struct bfd_link_info * info,Elf_Internal_Rela * rela,struct elf_link_hash_entry * hh,Elf_Internal_Sym * sym)1566 elf32_hppa_gc_mark_hook (asection *sec,
1567 struct bfd_link_info *info,
1568 Elf_Internal_Rela *rela,
1569 struct elf_link_hash_entry *hh,
1570 Elf_Internal_Sym *sym)
1571 {
1572 if (hh != NULL)
1573 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1574 {
1575 case R_PARISC_GNU_VTINHERIT:
1576 case R_PARISC_GNU_VTENTRY:
1577 return NULL;
1578 }
1579
1580 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1581 }
1582
1583 /* Update the got and plt entry reference counts for the section being
1584 removed. */
1585
1586 static bfd_boolean
elf32_hppa_gc_sweep_hook(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED,asection * sec,const Elf_Internal_Rela * relocs)1587 elf32_hppa_gc_sweep_hook (bfd *abfd,
1588 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1589 asection *sec,
1590 const Elf_Internal_Rela *relocs)
1591 {
1592 Elf_Internal_Shdr *symtab_hdr;
1593 struct elf_link_hash_entry **eh_syms;
1594 bfd_signed_vma *local_got_refcounts;
1595 bfd_signed_vma *local_plt_refcounts;
1596 const Elf_Internal_Rela *rela, *relend;
1597 struct elf32_hppa_link_hash_table *htab;
1598
1599 if (bfd_link_relocatable (info))
1600 return TRUE;
1601
1602 htab = hppa_link_hash_table (info);
1603 if (htab == NULL)
1604 return FALSE;
1605
1606 elf_section_data (sec)->local_dynrel = NULL;
1607
1608 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1609 eh_syms = elf_sym_hashes (abfd);
1610 local_got_refcounts = elf_local_got_refcounts (abfd);
1611 local_plt_refcounts = local_got_refcounts;
1612 if (local_plt_refcounts != NULL)
1613 local_plt_refcounts += symtab_hdr->sh_info;
1614
1615 relend = relocs + sec->reloc_count;
1616 for (rela = relocs; rela < relend; rela++)
1617 {
1618 unsigned long r_symndx;
1619 unsigned int r_type;
1620 struct elf_link_hash_entry *eh = NULL;
1621
1622 r_symndx = ELF32_R_SYM (rela->r_info);
1623 if (r_symndx >= symtab_hdr->sh_info)
1624 {
1625 struct elf32_hppa_link_hash_entry *hh;
1626 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1627 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1628
1629 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1630 while (eh->root.type == bfd_link_hash_indirect
1631 || eh->root.type == bfd_link_hash_warning)
1632 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1633 hh = hppa_elf_hash_entry (eh);
1634
1635 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1636 if (hdh_p->sec == sec)
1637 {
1638 /* Everything must go for SEC. */
1639 *hdh_pp = hdh_p->hdh_next;
1640 break;
1641 }
1642 }
1643
1644 r_type = ELF32_R_TYPE (rela->r_info);
1645 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1646
1647 switch (r_type)
1648 {
1649 case R_PARISC_DLTIND14F:
1650 case R_PARISC_DLTIND14R:
1651 case R_PARISC_DLTIND21L:
1652 case R_PARISC_TLS_GD21L:
1653 case R_PARISC_TLS_GD14R:
1654 case R_PARISC_TLS_IE21L:
1655 case R_PARISC_TLS_IE14R:
1656 if (eh != NULL)
1657 {
1658 if (eh->got.refcount > 0)
1659 eh->got.refcount -= 1;
1660 }
1661 else if (local_got_refcounts != NULL)
1662 {
1663 if (local_got_refcounts[r_symndx] > 0)
1664 local_got_refcounts[r_symndx] -= 1;
1665 }
1666 break;
1667
1668 case R_PARISC_TLS_LDM21L:
1669 case R_PARISC_TLS_LDM14R:
1670 htab->tls_ldm_got.refcount -= 1;
1671 break;
1672
1673 case R_PARISC_PCREL12F:
1674 case R_PARISC_PCREL17C:
1675 case R_PARISC_PCREL17F:
1676 case R_PARISC_PCREL22F:
1677 if (eh != NULL)
1678 {
1679 if (eh->plt.refcount > 0)
1680 eh->plt.refcount -= 1;
1681 }
1682 break;
1683
1684 case R_PARISC_PLABEL14R:
1685 case R_PARISC_PLABEL21L:
1686 case R_PARISC_PLABEL32:
1687 if (eh != NULL)
1688 {
1689 if (eh->plt.refcount > 0)
1690 eh->plt.refcount -= 1;
1691 }
1692 else if (local_plt_refcounts != NULL)
1693 {
1694 if (local_plt_refcounts[r_symndx] > 0)
1695 local_plt_refcounts[r_symndx] -= 1;
1696 }
1697 break;
1698
1699 default:
1700 break;
1701 }
1702 }
1703
1704 return TRUE;
1705 }
1706
1707 /* Support for core dump NOTE sections. */
1708
1709 static bfd_boolean
elf32_hppa_grok_prstatus(bfd * abfd,Elf_Internal_Note * note)1710 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1711 {
1712 int offset;
1713 size_t size;
1714
1715 switch (note->descsz)
1716 {
1717 default:
1718 return FALSE;
1719
1720 case 396: /* Linux/hppa */
1721 /* pr_cursig */
1722 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1723
1724 /* pr_pid */
1725 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1726
1727 /* pr_reg */
1728 offset = 72;
1729 size = 320;
1730
1731 break;
1732 }
1733
1734 /* Make a ".reg/999" section. */
1735 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1736 size, note->descpos + offset);
1737 }
1738
1739 static bfd_boolean
elf32_hppa_grok_psinfo(bfd * abfd,Elf_Internal_Note * note)1740 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1741 {
1742 switch (note->descsz)
1743 {
1744 default:
1745 return FALSE;
1746
1747 case 124: /* Linux/hppa elf_prpsinfo. */
1748 elf_tdata (abfd)->core->program
1749 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1750 elf_tdata (abfd)->core->command
1751 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1752 }
1753
1754 /* Note that for some reason, a spurious space is tacked
1755 onto the end of the args in some (at least one anyway)
1756 implementations, so strip it off if it exists. */
1757 {
1758 char *command = elf_tdata (abfd)->core->command;
1759 int n = strlen (command);
1760
1761 if (0 < n && command[n - 1] == ' ')
1762 command[n - 1] = '\0';
1763 }
1764
1765 return TRUE;
1766 }
1767
1768 /* Our own version of hide_symbol, so that we can keep plt entries for
1769 plabels. */
1770
1771 static void
elf32_hppa_hide_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * eh,bfd_boolean force_local)1772 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1773 struct elf_link_hash_entry *eh,
1774 bfd_boolean force_local)
1775 {
1776 if (force_local)
1777 {
1778 eh->forced_local = 1;
1779 if (eh->dynindx != -1)
1780 {
1781 eh->dynindx = -1;
1782 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1783 eh->dynstr_index);
1784 }
1785
1786 /* PR 16082: Remove version information from hidden symbol. */
1787 eh->verinfo.verdef = NULL;
1788 eh->verinfo.vertree = NULL;
1789 }
1790
1791 /* STT_GNU_IFUNC symbol must go through PLT. */
1792 if (! hppa_elf_hash_entry (eh)->plabel
1793 && eh->type != STT_GNU_IFUNC)
1794 {
1795 eh->needs_plt = 0;
1796 eh->plt = elf_hash_table (info)->init_plt_offset;
1797 }
1798 }
1799
1800 /* Adjust a symbol defined by a dynamic object and referenced by a
1801 regular object. The current definition is in some section of the
1802 dynamic object, but we're not including those sections. We have to
1803 change the definition to something the rest of the link can
1804 understand. */
1805
1806 static bfd_boolean
elf32_hppa_adjust_dynamic_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * eh)1807 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1808 struct elf_link_hash_entry *eh)
1809 {
1810 struct elf32_hppa_link_hash_table *htab;
1811 asection *sec;
1812
1813 /* If this is a function, put it in the procedure linkage table. We
1814 will fill in the contents of the procedure linkage table later. */
1815 if (eh->type == STT_FUNC
1816 || eh->needs_plt)
1817 {
1818 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1819 The refcounts are not reliable when it has been hidden since
1820 hide_symbol can be called before the plabel flag is set. */
1821 if (hppa_elf_hash_entry (eh)->plabel
1822 && eh->plt.refcount <= 0)
1823 eh->plt.refcount = 1;
1824
1825 if (eh->plt.refcount <= 0
1826 || (eh->def_regular
1827 && eh->root.type != bfd_link_hash_defweak
1828 && ! hppa_elf_hash_entry (eh)->plabel
1829 && (!bfd_link_pic (info) || SYMBOLIC_BIND (info, eh))))
1830 {
1831 /* The .plt entry is not needed when:
1832 a) Garbage collection has removed all references to the
1833 symbol, or
1834 b) We know for certain the symbol is defined in this
1835 object, and it's not a weak definition, nor is the symbol
1836 used by a plabel relocation. Either this object is the
1837 application or we are doing a shared symbolic link. */
1838
1839 eh->plt.offset = (bfd_vma) -1;
1840 eh->needs_plt = 0;
1841 }
1842
1843 return TRUE;
1844 }
1845 else
1846 eh->plt.offset = (bfd_vma) -1;
1847
1848 /* If this is a weak symbol, and there is a real definition, the
1849 processor independent code will have arranged for us to see the
1850 real definition first, and we can just use the same value. */
1851 if (eh->u.weakdef != NULL)
1852 {
1853 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1854 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1855 abort ();
1856 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1857 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1858 if (ELIMINATE_COPY_RELOCS)
1859 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1860 return TRUE;
1861 }
1862
1863 /* This is a reference to a symbol defined by a dynamic object which
1864 is not a function. */
1865
1866 /* If we are creating a shared library, we must presume that the
1867 only references to the symbol are via the global offset table.
1868 For such cases we need not do anything here; the relocations will
1869 be handled correctly by relocate_section. */
1870 if (bfd_link_pic (info))
1871 return TRUE;
1872
1873 /* If there are no references to this symbol that do not use the
1874 GOT, we don't need to generate a copy reloc. */
1875 if (!eh->non_got_ref)
1876 return TRUE;
1877
1878 if (ELIMINATE_COPY_RELOCS)
1879 {
1880 struct elf32_hppa_link_hash_entry *hh;
1881 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1882
1883 hh = hppa_elf_hash_entry (eh);
1884 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1885 {
1886 sec = hdh_p->sec->output_section;
1887 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1888 break;
1889 }
1890
1891 /* If we didn't find any dynamic relocs in read-only sections, then
1892 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1893 if (hdh_p == NULL)
1894 {
1895 eh->non_got_ref = 0;
1896 return TRUE;
1897 }
1898 }
1899
1900 /* We must allocate the symbol in our .dynbss section, which will
1901 become part of the .bss section of the executable. There will be
1902 an entry for this symbol in the .dynsym section. The dynamic
1903 object will contain position independent code, so all references
1904 from the dynamic object to this symbol will go through the global
1905 offset table. The dynamic linker will use the .dynsym entry to
1906 determine the address it must put in the global offset table, so
1907 both the dynamic object and the regular object will refer to the
1908 same memory location for the variable. */
1909
1910 htab = hppa_link_hash_table (info);
1911 if (htab == NULL)
1912 return FALSE;
1913
1914 /* We must generate a COPY reloc to tell the dynamic linker to
1915 copy the initial value out of the dynamic object and into the
1916 runtime process image. */
1917 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1918 {
1919 htab->srelbss->size += sizeof (Elf32_External_Rela);
1920 eh->needs_copy = 1;
1921 }
1922
1923 sec = htab->sdynbss;
1924
1925 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1926 }
1927
1928 /* Allocate space in the .plt for entries that won't have relocations.
1929 ie. plabel entries. */
1930
1931 static bfd_boolean
allocate_plt_static(struct elf_link_hash_entry * eh,void * inf)1932 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1933 {
1934 struct bfd_link_info *info;
1935 struct elf32_hppa_link_hash_table *htab;
1936 struct elf32_hppa_link_hash_entry *hh;
1937 asection *sec;
1938
1939 if (eh->root.type == bfd_link_hash_indirect)
1940 return TRUE;
1941
1942 info = (struct bfd_link_info *) inf;
1943 hh = hppa_elf_hash_entry (eh);
1944 htab = hppa_link_hash_table (info);
1945 if (htab == NULL)
1946 return FALSE;
1947
1948 if (htab->etab.dynamic_sections_created
1949 && eh->plt.refcount > 0)
1950 {
1951 /* Make sure this symbol is output as a dynamic symbol.
1952 Undefined weak syms won't yet be marked as dynamic. */
1953 if (eh->dynindx == -1
1954 && !eh->forced_local
1955 && eh->type != STT_PARISC_MILLI)
1956 {
1957 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1958 return FALSE;
1959 }
1960
1961 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1962 {
1963 /* Allocate these later. From this point on, h->plabel
1964 means that the plt entry is only used by a plabel.
1965 We'll be using a normal plt entry for this symbol, so
1966 clear the plabel indicator. */
1967
1968 hh->plabel = 0;
1969 }
1970 else if (hh->plabel)
1971 {
1972 /* Make an entry in the .plt section for plabel references
1973 that won't have a .plt entry for other reasons. */
1974 sec = htab->splt;
1975 eh->plt.offset = sec->size;
1976 sec->size += PLT_ENTRY_SIZE;
1977 }
1978 else
1979 {
1980 /* No .plt entry needed. */
1981 eh->plt.offset = (bfd_vma) -1;
1982 eh->needs_plt = 0;
1983 }
1984 }
1985 else
1986 {
1987 eh->plt.offset = (bfd_vma) -1;
1988 eh->needs_plt = 0;
1989 }
1990
1991 return TRUE;
1992 }
1993
1994 /* Allocate space in .plt, .got and associated reloc sections for
1995 global syms. */
1996
1997 static bfd_boolean
allocate_dynrelocs(struct elf_link_hash_entry * eh,void * inf)1998 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1999 {
2000 struct bfd_link_info *info;
2001 struct elf32_hppa_link_hash_table *htab;
2002 asection *sec;
2003 struct elf32_hppa_link_hash_entry *hh;
2004 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2005
2006 if (eh->root.type == bfd_link_hash_indirect)
2007 return TRUE;
2008
2009 info = inf;
2010 htab = hppa_link_hash_table (info);
2011 if (htab == NULL)
2012 return FALSE;
2013
2014 hh = hppa_elf_hash_entry (eh);
2015
2016 if (htab->etab.dynamic_sections_created
2017 && eh->plt.offset != (bfd_vma) -1
2018 && !hh->plabel
2019 && eh->plt.refcount > 0)
2020 {
2021 /* Make an entry in the .plt section. */
2022 sec = htab->splt;
2023 eh->plt.offset = sec->size;
2024 sec->size += PLT_ENTRY_SIZE;
2025
2026 /* We also need to make an entry in the .rela.plt section. */
2027 htab->srelplt->size += sizeof (Elf32_External_Rela);
2028 htab->need_plt_stub = 1;
2029 }
2030
2031 if (eh->got.refcount > 0)
2032 {
2033 /* Make sure this symbol is output as a dynamic symbol.
2034 Undefined weak syms won't yet be marked as dynamic. */
2035 if (eh->dynindx == -1
2036 && !eh->forced_local
2037 && eh->type != STT_PARISC_MILLI)
2038 {
2039 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2040 return FALSE;
2041 }
2042
2043 sec = htab->sgot;
2044 eh->got.offset = sec->size;
2045 sec->size += GOT_ENTRY_SIZE;
2046 /* R_PARISC_TLS_GD* needs two GOT entries */
2047 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2048 sec->size += GOT_ENTRY_SIZE * 2;
2049 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2050 sec->size += GOT_ENTRY_SIZE;
2051 if (htab->etab.dynamic_sections_created
2052 && (bfd_link_pic (info)
2053 || (eh->dynindx != -1
2054 && !eh->forced_local)))
2055 {
2056 htab->srelgot->size += sizeof (Elf32_External_Rela);
2057 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2058 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2059 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2060 htab->srelgot->size += sizeof (Elf32_External_Rela);
2061 }
2062 }
2063 else
2064 eh->got.offset = (bfd_vma) -1;
2065
2066 if (hh->dyn_relocs == NULL)
2067 return TRUE;
2068
2069 /* If this is a -Bsymbolic shared link, then we need to discard all
2070 space allocated for dynamic pc-relative relocs against symbols
2071 defined in a regular object. For the normal shared case, discard
2072 space for relocs that have become local due to symbol visibility
2073 changes. */
2074 if (bfd_link_pic (info))
2075 {
2076 #if RELATIVE_DYNRELOCS
2077 if (SYMBOL_CALLS_LOCAL (info, eh))
2078 {
2079 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2080
2081 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2082 {
2083 hdh_p->count -= hdh_p->relative_count;
2084 hdh_p->relative_count = 0;
2085 if (hdh_p->count == 0)
2086 *hdh_pp = hdh_p->hdh_next;
2087 else
2088 hdh_pp = &hdh_p->hdh_next;
2089 }
2090 }
2091 #endif
2092
2093 /* Also discard relocs on undefined weak syms with non-default
2094 visibility. */
2095 if (hh->dyn_relocs != NULL
2096 && eh->root.type == bfd_link_hash_undefweak)
2097 {
2098 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2099 hh->dyn_relocs = NULL;
2100
2101 /* Make sure undefined weak symbols are output as a dynamic
2102 symbol in PIEs. */
2103 else if (eh->dynindx == -1
2104 && !eh->forced_local)
2105 {
2106 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2107 return FALSE;
2108 }
2109 }
2110 }
2111 else
2112 {
2113 /* For the non-shared case, discard space for relocs against
2114 symbols which turn out to need copy relocs or are not
2115 dynamic. */
2116
2117 if (!eh->non_got_ref
2118 && ((ELIMINATE_COPY_RELOCS
2119 && eh->def_dynamic
2120 && !eh->def_regular)
2121 || (htab->etab.dynamic_sections_created
2122 && (eh->root.type == bfd_link_hash_undefweak
2123 || eh->root.type == bfd_link_hash_undefined))))
2124 {
2125 /* Make sure this symbol is output as a dynamic symbol.
2126 Undefined weak syms won't yet be marked as dynamic. */
2127 if (eh->dynindx == -1
2128 && !eh->forced_local
2129 && eh->type != STT_PARISC_MILLI)
2130 {
2131 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2132 return FALSE;
2133 }
2134
2135 /* If that succeeded, we know we'll be keeping all the
2136 relocs. */
2137 if (eh->dynindx != -1)
2138 goto keep;
2139 }
2140
2141 hh->dyn_relocs = NULL;
2142 return TRUE;
2143
2144 keep: ;
2145 }
2146
2147 /* Finally, allocate space. */
2148 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2149 {
2150 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2151 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2152 }
2153
2154 return TRUE;
2155 }
2156
2157 /* This function is called via elf_link_hash_traverse to force
2158 millicode symbols local so they do not end up as globals in the
2159 dynamic symbol table. We ought to be able to do this in
2160 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2161 for all dynamic symbols. Arguably, this is a bug in
2162 elf_adjust_dynamic_symbol. */
2163
2164 static bfd_boolean
clobber_millicode_symbols(struct elf_link_hash_entry * eh,struct bfd_link_info * info)2165 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2166 struct bfd_link_info *info)
2167 {
2168 if (eh->type == STT_PARISC_MILLI
2169 && !eh->forced_local)
2170 {
2171 elf32_hppa_hide_symbol (info, eh, TRUE);
2172 }
2173 return TRUE;
2174 }
2175
2176 /* Find any dynamic relocs that apply to read-only sections. */
2177
2178 static bfd_boolean
readonly_dynrelocs(struct elf_link_hash_entry * eh,void * inf)2179 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2180 {
2181 struct elf32_hppa_link_hash_entry *hh;
2182 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2183
2184 hh = hppa_elf_hash_entry (eh);
2185 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2186 {
2187 asection *sec = hdh_p->sec->output_section;
2188
2189 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2190 {
2191 struct bfd_link_info *info = inf;
2192
2193 info->flags |= DF_TEXTREL;
2194
2195 /* Not an error, just cut short the traversal. */
2196 return FALSE;
2197 }
2198 }
2199 return TRUE;
2200 }
2201
2202 /* Set the sizes of the dynamic sections. */
2203
2204 static bfd_boolean
elf32_hppa_size_dynamic_sections(bfd * output_bfd ATTRIBUTE_UNUSED,struct bfd_link_info * info)2205 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2206 struct bfd_link_info *info)
2207 {
2208 struct elf32_hppa_link_hash_table *htab;
2209 bfd *dynobj;
2210 bfd *ibfd;
2211 asection *sec;
2212 bfd_boolean relocs;
2213
2214 htab = hppa_link_hash_table (info);
2215 if (htab == NULL)
2216 return FALSE;
2217
2218 dynobj = htab->etab.dynobj;
2219 if (dynobj == NULL)
2220 abort ();
2221
2222 if (htab->etab.dynamic_sections_created)
2223 {
2224 /* Set the contents of the .interp section to the interpreter. */
2225 if (bfd_link_executable (info) && !info->nointerp)
2226 {
2227 sec = bfd_get_linker_section (dynobj, ".interp");
2228 if (sec == NULL)
2229 abort ();
2230 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2231 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2232 }
2233
2234 /* Force millicode symbols local. */
2235 elf_link_hash_traverse (&htab->etab,
2236 clobber_millicode_symbols,
2237 info);
2238 }
2239
2240 /* Set up .got and .plt offsets for local syms, and space for local
2241 dynamic relocs. */
2242 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2243 {
2244 bfd_signed_vma *local_got;
2245 bfd_signed_vma *end_local_got;
2246 bfd_signed_vma *local_plt;
2247 bfd_signed_vma *end_local_plt;
2248 bfd_size_type locsymcount;
2249 Elf_Internal_Shdr *symtab_hdr;
2250 asection *srel;
2251 char *local_tls_type;
2252
2253 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2254 continue;
2255
2256 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2257 {
2258 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2259
2260 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2261 elf_section_data (sec)->local_dynrel);
2262 hdh_p != NULL;
2263 hdh_p = hdh_p->hdh_next)
2264 {
2265 if (!bfd_is_abs_section (hdh_p->sec)
2266 && bfd_is_abs_section (hdh_p->sec->output_section))
2267 {
2268 /* Input section has been discarded, either because
2269 it is a copy of a linkonce section or due to
2270 linker script /DISCARD/, so we'll be discarding
2271 the relocs too. */
2272 }
2273 else if (hdh_p->count != 0)
2274 {
2275 srel = elf_section_data (hdh_p->sec)->sreloc;
2276 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2277 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2278 info->flags |= DF_TEXTREL;
2279 }
2280 }
2281 }
2282
2283 local_got = elf_local_got_refcounts (ibfd);
2284 if (!local_got)
2285 continue;
2286
2287 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2288 locsymcount = symtab_hdr->sh_info;
2289 end_local_got = local_got + locsymcount;
2290 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2291 sec = htab->sgot;
2292 srel = htab->srelgot;
2293 for (; local_got < end_local_got; ++local_got)
2294 {
2295 if (*local_got > 0)
2296 {
2297 *local_got = sec->size;
2298 sec->size += GOT_ENTRY_SIZE;
2299 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2300 sec->size += 2 * GOT_ENTRY_SIZE;
2301 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2302 sec->size += GOT_ENTRY_SIZE;
2303 if (bfd_link_pic (info))
2304 {
2305 srel->size += sizeof (Elf32_External_Rela);
2306 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2307 srel->size += 2 * sizeof (Elf32_External_Rela);
2308 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2309 srel->size += sizeof (Elf32_External_Rela);
2310 }
2311 }
2312 else
2313 *local_got = (bfd_vma) -1;
2314
2315 ++local_tls_type;
2316 }
2317
2318 local_plt = end_local_got;
2319 end_local_plt = local_plt + locsymcount;
2320 if (! htab->etab.dynamic_sections_created)
2321 {
2322 /* Won't be used, but be safe. */
2323 for (; local_plt < end_local_plt; ++local_plt)
2324 *local_plt = (bfd_vma) -1;
2325 }
2326 else
2327 {
2328 sec = htab->splt;
2329 srel = htab->srelplt;
2330 for (; local_plt < end_local_plt; ++local_plt)
2331 {
2332 if (*local_plt > 0)
2333 {
2334 *local_plt = sec->size;
2335 sec->size += PLT_ENTRY_SIZE;
2336 if (bfd_link_pic (info))
2337 srel->size += sizeof (Elf32_External_Rela);
2338 }
2339 else
2340 *local_plt = (bfd_vma) -1;
2341 }
2342 }
2343 }
2344
2345 if (htab->tls_ldm_got.refcount > 0)
2346 {
2347 /* Allocate 2 got entries and 1 dynamic reloc for
2348 R_PARISC_TLS_DTPMOD32 relocs. */
2349 htab->tls_ldm_got.offset = htab->sgot->size;
2350 htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2351 htab->srelgot->size += sizeof (Elf32_External_Rela);
2352 }
2353 else
2354 htab->tls_ldm_got.offset = -1;
2355
2356 /* Do all the .plt entries without relocs first. The dynamic linker
2357 uses the last .plt reloc to find the end of the .plt (and hence
2358 the start of the .got) for lazy linking. */
2359 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2360
2361 /* Allocate global sym .plt and .got entries, and space for global
2362 sym dynamic relocs. */
2363 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2364
2365 /* The check_relocs and adjust_dynamic_symbol entry points have
2366 determined the sizes of the various dynamic sections. Allocate
2367 memory for them. */
2368 relocs = FALSE;
2369 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2370 {
2371 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2372 continue;
2373
2374 if (sec == htab->splt)
2375 {
2376 if (htab->need_plt_stub)
2377 {
2378 /* Make space for the plt stub at the end of the .plt
2379 section. We want this stub right at the end, up
2380 against the .got section. */
2381 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2382 int pltalign = bfd_section_alignment (dynobj, sec);
2383 bfd_size_type mask;
2384
2385 if (gotalign > pltalign)
2386 (void) bfd_set_section_alignment (dynobj, sec, gotalign);
2387 mask = ((bfd_size_type) 1 << gotalign) - 1;
2388 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2389 }
2390 }
2391 else if (sec == htab->sgot
2392 || sec == htab->sdynbss)
2393 ;
2394 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2395 {
2396 if (sec->size != 0)
2397 {
2398 /* Remember whether there are any reloc sections other
2399 than .rela.plt. */
2400 if (sec != htab->srelplt)
2401 relocs = TRUE;
2402
2403 /* We use the reloc_count field as a counter if we need
2404 to copy relocs into the output file. */
2405 sec->reloc_count = 0;
2406 }
2407 }
2408 else
2409 {
2410 /* It's not one of our sections, so don't allocate space. */
2411 continue;
2412 }
2413
2414 if (sec->size == 0)
2415 {
2416 /* If we don't need this section, strip it from the
2417 output file. This is mostly to handle .rela.bss and
2418 .rela.plt. We must create both sections in
2419 create_dynamic_sections, because they must be created
2420 before the linker maps input sections to output
2421 sections. The linker does that before
2422 adjust_dynamic_symbol is called, and it is that
2423 function which decides whether anything needs to go
2424 into these sections. */
2425 sec->flags |= SEC_EXCLUDE;
2426 continue;
2427 }
2428
2429 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2430 continue;
2431
2432 /* Allocate memory for the section contents. Zero it, because
2433 we may not fill in all the reloc sections. */
2434 sec->contents = bfd_zalloc (dynobj, sec->size);
2435 if (sec->contents == NULL)
2436 return FALSE;
2437 }
2438
2439 if (htab->etab.dynamic_sections_created)
2440 {
2441 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2442 actually has nothing to do with the PLT, it is how we
2443 communicate the LTP value of a load module to the dynamic
2444 linker. */
2445 #define add_dynamic_entry(TAG, VAL) \
2446 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2447
2448 if (!add_dynamic_entry (DT_PLTGOT, 0))
2449 return FALSE;
2450
2451 /* Add some entries to the .dynamic section. We fill in the
2452 values later, in elf32_hppa_finish_dynamic_sections, but we
2453 must add the entries now so that we get the correct size for
2454 the .dynamic section. The DT_DEBUG entry is filled in by the
2455 dynamic linker and used by the debugger. */
2456 if (bfd_link_executable (info))
2457 {
2458 if (!add_dynamic_entry (DT_DEBUG, 0))
2459 return FALSE;
2460 }
2461
2462 if (htab->srelplt->size != 0)
2463 {
2464 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2465 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2466 || !add_dynamic_entry (DT_JMPREL, 0))
2467 return FALSE;
2468 }
2469
2470 if (relocs)
2471 {
2472 if (!add_dynamic_entry (DT_RELA, 0)
2473 || !add_dynamic_entry (DT_RELASZ, 0)
2474 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2475 return FALSE;
2476
2477 /* If any dynamic relocs apply to a read-only section,
2478 then we need a DT_TEXTREL entry. */
2479 if ((info->flags & DF_TEXTREL) == 0)
2480 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2481
2482 if ((info->flags & DF_TEXTREL) != 0)
2483 {
2484 if (!add_dynamic_entry (DT_TEXTREL, 0))
2485 return FALSE;
2486 }
2487 }
2488 }
2489 #undef add_dynamic_entry
2490
2491 return TRUE;
2492 }
2493
2494 /* External entry points for sizing and building linker stubs. */
2495
2496 /* Set up various things so that we can make a list of input sections
2497 for each output section included in the link. Returns -1 on error,
2498 0 when no stubs will be needed, and 1 on success. */
2499
2500 int
elf32_hppa_setup_section_lists(bfd * output_bfd,struct bfd_link_info * info)2501 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2502 {
2503 bfd *input_bfd;
2504 unsigned int bfd_count;
2505 unsigned int top_id, top_index;
2506 asection *section;
2507 asection **input_list, **list;
2508 bfd_size_type amt;
2509 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2510
2511 if (htab == NULL)
2512 return -1;
2513
2514 /* Count the number of input BFDs and find the top input section id. */
2515 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2516 input_bfd != NULL;
2517 input_bfd = input_bfd->link.next)
2518 {
2519 bfd_count += 1;
2520 for (section = input_bfd->sections;
2521 section != NULL;
2522 section = section->next)
2523 {
2524 if (top_id < section->id)
2525 top_id = section->id;
2526 }
2527 }
2528 htab->bfd_count = bfd_count;
2529
2530 amt = sizeof (struct map_stub) * (top_id + 1);
2531 htab->stub_group = bfd_zmalloc (amt);
2532 if (htab->stub_group == NULL)
2533 return -1;
2534
2535 /* We can't use output_bfd->section_count here to find the top output
2536 section index as some sections may have been removed, and
2537 strip_excluded_output_sections doesn't renumber the indices. */
2538 for (section = output_bfd->sections, top_index = 0;
2539 section != NULL;
2540 section = section->next)
2541 {
2542 if (top_index < section->index)
2543 top_index = section->index;
2544 }
2545
2546 htab->top_index = top_index;
2547 amt = sizeof (asection *) * (top_index + 1);
2548 input_list = bfd_malloc (amt);
2549 htab->input_list = input_list;
2550 if (input_list == NULL)
2551 return -1;
2552
2553 /* For sections we aren't interested in, mark their entries with a
2554 value we can check later. */
2555 list = input_list + top_index;
2556 do
2557 *list = bfd_abs_section_ptr;
2558 while (list-- != input_list);
2559
2560 for (section = output_bfd->sections;
2561 section != NULL;
2562 section = section->next)
2563 {
2564 if ((section->flags & SEC_CODE) != 0)
2565 input_list[section->index] = NULL;
2566 }
2567
2568 return 1;
2569 }
2570
2571 /* The linker repeatedly calls this function for each input section,
2572 in the order that input sections are linked into output sections.
2573 Build lists of input sections to determine groupings between which
2574 we may insert linker stubs. */
2575
2576 void
elf32_hppa_next_input_section(struct bfd_link_info * info,asection * isec)2577 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2578 {
2579 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2580
2581 if (htab == NULL)
2582 return;
2583
2584 if (isec->output_section->index <= htab->top_index)
2585 {
2586 asection **list = htab->input_list + isec->output_section->index;
2587 if (*list != bfd_abs_section_ptr)
2588 {
2589 /* Steal the link_sec pointer for our list. */
2590 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2591 /* This happens to make the list in reverse order,
2592 which is what we want. */
2593 PREV_SEC (isec) = *list;
2594 *list = isec;
2595 }
2596 }
2597 }
2598
2599 /* See whether we can group stub sections together. Grouping stub
2600 sections may result in fewer stubs. More importantly, we need to
2601 put all .init* and .fini* stubs at the beginning of the .init or
2602 .fini output sections respectively, because glibc splits the
2603 _init and _fini functions into multiple parts. Putting a stub in
2604 the middle of a function is not a good idea. */
2605
2606 static void
group_sections(struct elf32_hppa_link_hash_table * htab,bfd_size_type stub_group_size,bfd_boolean stubs_always_before_branch)2607 group_sections (struct elf32_hppa_link_hash_table *htab,
2608 bfd_size_type stub_group_size,
2609 bfd_boolean stubs_always_before_branch)
2610 {
2611 asection **list = htab->input_list + htab->top_index;
2612 do
2613 {
2614 asection *tail = *list;
2615 if (tail == bfd_abs_section_ptr)
2616 continue;
2617 while (tail != NULL)
2618 {
2619 asection *curr;
2620 asection *prev;
2621 bfd_size_type total;
2622 bfd_boolean big_sec;
2623
2624 curr = tail;
2625 total = tail->size;
2626 big_sec = total >= stub_group_size;
2627
2628 while ((prev = PREV_SEC (curr)) != NULL
2629 && ((total += curr->output_offset - prev->output_offset)
2630 < stub_group_size))
2631 curr = prev;
2632
2633 /* OK, the size from the start of CURR to the end is less
2634 than 240000 bytes and thus can be handled by one stub
2635 section. (or the tail section is itself larger than
2636 240000 bytes, in which case we may be toast.)
2637 We should really be keeping track of the total size of
2638 stubs added here, as stubs contribute to the final output
2639 section size. That's a little tricky, and this way will
2640 only break if stubs added total more than 22144 bytes, or
2641 2768 long branch stubs. It seems unlikely for more than
2642 2768 different functions to be called, especially from
2643 code only 240000 bytes long. This limit used to be
2644 250000, but c++ code tends to generate lots of little
2645 functions, and sometimes violated the assumption. */
2646 do
2647 {
2648 prev = PREV_SEC (tail);
2649 /* Set up this stub group. */
2650 htab->stub_group[tail->id].link_sec = curr;
2651 }
2652 while (tail != curr && (tail = prev) != NULL);
2653
2654 /* But wait, there's more! Input sections up to 240000
2655 bytes before the stub section can be handled by it too.
2656 Don't do this if we have a really large section after the
2657 stubs, as adding more stubs increases the chance that
2658 branches may not reach into the stub section. */
2659 if (!stubs_always_before_branch && !big_sec)
2660 {
2661 total = 0;
2662 while (prev != NULL
2663 && ((total += tail->output_offset - prev->output_offset)
2664 < stub_group_size))
2665 {
2666 tail = prev;
2667 prev = PREV_SEC (tail);
2668 htab->stub_group[tail->id].link_sec = curr;
2669 }
2670 }
2671 tail = prev;
2672 }
2673 }
2674 while (list-- != htab->input_list);
2675 free (htab->input_list);
2676 #undef PREV_SEC
2677 }
2678
2679 /* Read in all local syms for all input bfds, and create hash entries
2680 for export stubs if we are building a multi-subspace shared lib.
2681 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2682
2683 static int
get_local_syms(bfd * output_bfd,bfd * input_bfd,struct bfd_link_info * info)2684 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2685 {
2686 unsigned int bfd_indx;
2687 Elf_Internal_Sym *local_syms, **all_local_syms;
2688 int stub_changed = 0;
2689 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2690
2691 if (htab == NULL)
2692 return -1;
2693
2694 /* We want to read in symbol extension records only once. To do this
2695 we need to read in the local symbols in parallel and save them for
2696 later use; so hold pointers to the local symbols in an array. */
2697 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2698 all_local_syms = bfd_zmalloc (amt);
2699 htab->all_local_syms = all_local_syms;
2700 if (all_local_syms == NULL)
2701 return -1;
2702
2703 /* Walk over all the input BFDs, swapping in local symbols.
2704 If we are creating a shared library, create hash entries for the
2705 export stubs. */
2706 for (bfd_indx = 0;
2707 input_bfd != NULL;
2708 input_bfd = input_bfd->link.next, bfd_indx++)
2709 {
2710 Elf_Internal_Shdr *symtab_hdr;
2711
2712 /* We'll need the symbol table in a second. */
2713 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2714 if (symtab_hdr->sh_info == 0)
2715 continue;
2716
2717 /* We need an array of the local symbols attached to the input bfd. */
2718 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2719 if (local_syms == NULL)
2720 {
2721 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2722 symtab_hdr->sh_info, 0,
2723 NULL, NULL, NULL);
2724 /* Cache them for elf_link_input_bfd. */
2725 symtab_hdr->contents = (unsigned char *) local_syms;
2726 }
2727 if (local_syms == NULL)
2728 return -1;
2729
2730 all_local_syms[bfd_indx] = local_syms;
2731
2732 if (bfd_link_pic (info) && htab->multi_subspace)
2733 {
2734 struct elf_link_hash_entry **eh_syms;
2735 struct elf_link_hash_entry **eh_symend;
2736 unsigned int symcount;
2737
2738 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2739 - symtab_hdr->sh_info);
2740 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2741 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2742
2743 /* Look through the global syms for functions; We need to
2744 build export stubs for all globally visible functions. */
2745 for (; eh_syms < eh_symend; eh_syms++)
2746 {
2747 struct elf32_hppa_link_hash_entry *hh;
2748
2749 hh = hppa_elf_hash_entry (*eh_syms);
2750
2751 while (hh->eh.root.type == bfd_link_hash_indirect
2752 || hh->eh.root.type == bfd_link_hash_warning)
2753 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2754
2755 /* At this point in the link, undefined syms have been
2756 resolved, so we need to check that the symbol was
2757 defined in this BFD. */
2758 if ((hh->eh.root.type == bfd_link_hash_defined
2759 || hh->eh.root.type == bfd_link_hash_defweak)
2760 && hh->eh.type == STT_FUNC
2761 && hh->eh.root.u.def.section->output_section != NULL
2762 && (hh->eh.root.u.def.section->output_section->owner
2763 == output_bfd)
2764 && hh->eh.root.u.def.section->owner == input_bfd
2765 && hh->eh.def_regular
2766 && !hh->eh.forced_local
2767 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2768 {
2769 asection *sec;
2770 const char *stub_name;
2771 struct elf32_hppa_stub_hash_entry *hsh;
2772
2773 sec = hh->eh.root.u.def.section;
2774 stub_name = hh_name (hh);
2775 hsh = hppa_stub_hash_lookup (&htab->bstab,
2776 stub_name,
2777 FALSE, FALSE);
2778 if (hsh == NULL)
2779 {
2780 hsh = hppa_add_stub (stub_name, sec, htab);
2781 if (!hsh)
2782 return -1;
2783
2784 hsh->target_value = hh->eh.root.u.def.value;
2785 hsh->target_section = hh->eh.root.u.def.section;
2786 hsh->stub_type = hppa_stub_export;
2787 hsh->hh = hh;
2788 stub_changed = 1;
2789 }
2790 else
2791 {
2792 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2793 input_bfd,
2794 stub_name);
2795 }
2796 }
2797 }
2798 }
2799 }
2800
2801 return stub_changed;
2802 }
2803
2804 /* Determine and set the size of the stub section for a final link.
2805
2806 The basic idea here is to examine all the relocations looking for
2807 PC-relative calls to a target that is unreachable with a "bl"
2808 instruction. */
2809
2810 bfd_boolean
elf32_hppa_size_stubs(bfd * output_bfd,bfd * stub_bfd,struct bfd_link_info * info,bfd_boolean multi_subspace,bfd_signed_vma group_size,asection * (* add_stub_section)(const char *,asection *),void (* layout_sections_again)(void))2811 elf32_hppa_size_stubs
2812 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2813 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2814 asection * (*add_stub_section) (const char *, asection *),
2815 void (*layout_sections_again) (void))
2816 {
2817 bfd_size_type stub_group_size;
2818 bfd_boolean stubs_always_before_branch;
2819 bfd_boolean stub_changed;
2820 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2821
2822 if (htab == NULL)
2823 return FALSE;
2824
2825 /* Stash our params away. */
2826 htab->stub_bfd = stub_bfd;
2827 htab->multi_subspace = multi_subspace;
2828 htab->add_stub_section = add_stub_section;
2829 htab->layout_sections_again = layout_sections_again;
2830 stubs_always_before_branch = group_size < 0;
2831 if (group_size < 0)
2832 stub_group_size = -group_size;
2833 else
2834 stub_group_size = group_size;
2835 if (stub_group_size == 1)
2836 {
2837 /* Default values. */
2838 if (stubs_always_before_branch)
2839 {
2840 stub_group_size = 7680000;
2841 if (htab->has_17bit_branch || htab->multi_subspace)
2842 stub_group_size = 240000;
2843 if (htab->has_12bit_branch)
2844 stub_group_size = 7500;
2845 }
2846 else
2847 {
2848 stub_group_size = 6971392;
2849 if (htab->has_17bit_branch || htab->multi_subspace)
2850 stub_group_size = 217856;
2851 if (htab->has_12bit_branch)
2852 stub_group_size = 6808;
2853 }
2854 }
2855
2856 group_sections (htab, stub_group_size, stubs_always_before_branch);
2857
2858 switch (get_local_syms (output_bfd, info->input_bfds, info))
2859 {
2860 default:
2861 if (htab->all_local_syms)
2862 goto error_ret_free_local;
2863 return FALSE;
2864
2865 case 0:
2866 stub_changed = FALSE;
2867 break;
2868
2869 case 1:
2870 stub_changed = TRUE;
2871 break;
2872 }
2873
2874 while (1)
2875 {
2876 bfd *input_bfd;
2877 unsigned int bfd_indx;
2878 asection *stub_sec;
2879
2880 for (input_bfd = info->input_bfds, bfd_indx = 0;
2881 input_bfd != NULL;
2882 input_bfd = input_bfd->link.next, bfd_indx++)
2883 {
2884 Elf_Internal_Shdr *symtab_hdr;
2885 asection *section;
2886 Elf_Internal_Sym *local_syms;
2887
2888 /* We'll need the symbol table in a second. */
2889 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2890 if (symtab_hdr->sh_info == 0)
2891 continue;
2892
2893 local_syms = htab->all_local_syms[bfd_indx];
2894
2895 /* Walk over each section attached to the input bfd. */
2896 for (section = input_bfd->sections;
2897 section != NULL;
2898 section = section->next)
2899 {
2900 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2901
2902 /* If there aren't any relocs, then there's nothing more
2903 to do. */
2904 if ((section->flags & SEC_RELOC) == 0
2905 || section->reloc_count == 0)
2906 continue;
2907
2908 /* If this section is a link-once section that will be
2909 discarded, then don't create any stubs. */
2910 if (section->output_section == NULL
2911 || section->output_section->owner != output_bfd)
2912 continue;
2913
2914 /* Get the relocs. */
2915 internal_relocs
2916 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2917 info->keep_memory);
2918 if (internal_relocs == NULL)
2919 goto error_ret_free_local;
2920
2921 /* Now examine each relocation. */
2922 irela = internal_relocs;
2923 irelaend = irela + section->reloc_count;
2924 for (; irela < irelaend; irela++)
2925 {
2926 unsigned int r_type, r_indx;
2927 enum elf32_hppa_stub_type stub_type;
2928 struct elf32_hppa_stub_hash_entry *hsh;
2929 asection *sym_sec;
2930 bfd_vma sym_value;
2931 bfd_vma destination;
2932 struct elf32_hppa_link_hash_entry *hh;
2933 char *stub_name;
2934 const asection *id_sec;
2935
2936 r_type = ELF32_R_TYPE (irela->r_info);
2937 r_indx = ELF32_R_SYM (irela->r_info);
2938
2939 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2940 {
2941 bfd_set_error (bfd_error_bad_value);
2942 error_ret_free_internal:
2943 if (elf_section_data (section)->relocs == NULL)
2944 free (internal_relocs);
2945 goto error_ret_free_local;
2946 }
2947
2948 /* Only look for stubs on call instructions. */
2949 if (r_type != (unsigned int) R_PARISC_PCREL12F
2950 && r_type != (unsigned int) R_PARISC_PCREL17F
2951 && r_type != (unsigned int) R_PARISC_PCREL22F)
2952 continue;
2953
2954 /* Now determine the call target, its name, value,
2955 section. */
2956 sym_sec = NULL;
2957 sym_value = 0;
2958 destination = 0;
2959 hh = NULL;
2960 if (r_indx < symtab_hdr->sh_info)
2961 {
2962 /* It's a local symbol. */
2963 Elf_Internal_Sym *sym;
2964 Elf_Internal_Shdr *hdr;
2965 unsigned int shndx;
2966
2967 sym = local_syms + r_indx;
2968 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2969 sym_value = sym->st_value;
2970 shndx = sym->st_shndx;
2971 if (shndx < elf_numsections (input_bfd))
2972 {
2973 hdr = elf_elfsections (input_bfd)[shndx];
2974 sym_sec = hdr->bfd_section;
2975 destination = (sym_value + irela->r_addend
2976 + sym_sec->output_offset
2977 + sym_sec->output_section->vma);
2978 }
2979 }
2980 else
2981 {
2982 /* It's an external symbol. */
2983 int e_indx;
2984
2985 e_indx = r_indx - symtab_hdr->sh_info;
2986 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2987
2988 while (hh->eh.root.type == bfd_link_hash_indirect
2989 || hh->eh.root.type == bfd_link_hash_warning)
2990 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2991
2992 if (hh->eh.root.type == bfd_link_hash_defined
2993 || hh->eh.root.type == bfd_link_hash_defweak)
2994 {
2995 sym_sec = hh->eh.root.u.def.section;
2996 sym_value = hh->eh.root.u.def.value;
2997 if (sym_sec->output_section != NULL)
2998 destination = (sym_value + irela->r_addend
2999 + sym_sec->output_offset
3000 + sym_sec->output_section->vma);
3001 }
3002 else if (hh->eh.root.type == bfd_link_hash_undefweak)
3003 {
3004 if (! bfd_link_pic (info))
3005 continue;
3006 }
3007 else if (hh->eh.root.type == bfd_link_hash_undefined)
3008 {
3009 if (! (info->unresolved_syms_in_objects == RM_IGNORE
3010 && (ELF_ST_VISIBILITY (hh->eh.other)
3011 == STV_DEFAULT)
3012 && hh->eh.type != STT_PARISC_MILLI))
3013 continue;
3014 }
3015 else
3016 {
3017 bfd_set_error (bfd_error_bad_value);
3018 goto error_ret_free_internal;
3019 }
3020 }
3021
3022 /* Determine what (if any) linker stub is needed. */
3023 stub_type = hppa_type_of_stub (section, irela, hh,
3024 destination, info);
3025 if (stub_type == hppa_stub_none)
3026 continue;
3027
3028 /* Support for grouping stub sections. */
3029 id_sec = htab->stub_group[section->id].link_sec;
3030
3031 /* Get the name of this stub. */
3032 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3033 if (!stub_name)
3034 goto error_ret_free_internal;
3035
3036 hsh = hppa_stub_hash_lookup (&htab->bstab,
3037 stub_name,
3038 FALSE, FALSE);
3039 if (hsh != NULL)
3040 {
3041 /* The proper stub has already been created. */
3042 free (stub_name);
3043 continue;
3044 }
3045
3046 hsh = hppa_add_stub (stub_name, section, htab);
3047 if (hsh == NULL)
3048 {
3049 free (stub_name);
3050 goto error_ret_free_internal;
3051 }
3052
3053 hsh->target_value = sym_value;
3054 hsh->target_section = sym_sec;
3055 hsh->stub_type = stub_type;
3056 if (bfd_link_pic (info))
3057 {
3058 if (stub_type == hppa_stub_import)
3059 hsh->stub_type = hppa_stub_import_shared;
3060 else if (stub_type == hppa_stub_long_branch)
3061 hsh->stub_type = hppa_stub_long_branch_shared;
3062 }
3063 hsh->hh = hh;
3064 stub_changed = TRUE;
3065 }
3066
3067 /* We're done with the internal relocs, free them. */
3068 if (elf_section_data (section)->relocs == NULL)
3069 free (internal_relocs);
3070 }
3071 }
3072
3073 if (!stub_changed)
3074 break;
3075
3076 /* OK, we've added some stubs. Find out the new size of the
3077 stub sections. */
3078 for (stub_sec = htab->stub_bfd->sections;
3079 stub_sec != NULL;
3080 stub_sec = stub_sec->next)
3081 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
3082 stub_sec->size = 0;
3083
3084 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3085
3086 /* Ask the linker to do its stuff. */
3087 (*htab->layout_sections_again) ();
3088 stub_changed = FALSE;
3089 }
3090
3091 free (htab->all_local_syms);
3092 return TRUE;
3093
3094 error_ret_free_local:
3095 free (htab->all_local_syms);
3096 return FALSE;
3097 }
3098
3099 /* For a final link, this function is called after we have sized the
3100 stubs to provide a value for __gp. */
3101
3102 bfd_boolean
elf32_hppa_set_gp(bfd * abfd,struct bfd_link_info * info)3103 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3104 {
3105 struct bfd_link_hash_entry *h;
3106 asection *sec = NULL;
3107 bfd_vma gp_val = 0;
3108 struct elf32_hppa_link_hash_table *htab;
3109
3110 htab = hppa_link_hash_table (info);
3111 if (htab == NULL)
3112 return FALSE;
3113
3114 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3115
3116 if (h != NULL
3117 && (h->type == bfd_link_hash_defined
3118 || h->type == bfd_link_hash_defweak))
3119 {
3120 gp_val = h->u.def.value;
3121 sec = h->u.def.section;
3122 }
3123 else
3124 {
3125 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3126 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3127
3128 /* Choose to point our LTP at, in this order, one of .plt, .got,
3129 or .data, if these sections exist. In the case of choosing
3130 .plt try to make the LTP ideal for addressing anywhere in the
3131 .plt or .got with a 14 bit signed offset. Typically, the end
3132 of the .plt is the start of the .got, so choose .plt + 0x2000
3133 if either the .plt or .got is larger than 0x2000. If both
3134 the .plt and .got are smaller than 0x2000, choose the end of
3135 the .plt section. */
3136 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3137 ? NULL : splt;
3138 if (sec != NULL)
3139 {
3140 gp_val = sec->size;
3141 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3142 {
3143 gp_val = 0x2000;
3144 }
3145 }
3146 else
3147 {
3148 sec = sgot;
3149 if (sec != NULL)
3150 {
3151 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3152 {
3153 /* We know we don't have a .plt. If .got is large,
3154 offset our LTP. */
3155 if (sec->size > 0x2000)
3156 gp_val = 0x2000;
3157 }
3158 }
3159 else
3160 {
3161 /* No .plt or .got. Who cares what the LTP is? */
3162 sec = bfd_get_section_by_name (abfd, ".data");
3163 }
3164 }
3165
3166 if (h != NULL)
3167 {
3168 h->type = bfd_link_hash_defined;
3169 h->u.def.value = gp_val;
3170 if (sec != NULL)
3171 h->u.def.section = sec;
3172 else
3173 h->u.def.section = bfd_abs_section_ptr;
3174 }
3175 }
3176
3177 if (sec != NULL && sec->output_section != NULL)
3178 gp_val += sec->output_section->vma + sec->output_offset;
3179
3180 elf_gp (abfd) = gp_val;
3181 return TRUE;
3182 }
3183
3184 /* Build all the stubs associated with the current output file. The
3185 stubs are kept in a hash table attached to the main linker hash
3186 table. We also set up the .plt entries for statically linked PIC
3187 functions here. This function is called via hppaelf_finish in the
3188 linker. */
3189
3190 bfd_boolean
elf32_hppa_build_stubs(struct bfd_link_info * info)3191 elf32_hppa_build_stubs (struct bfd_link_info *info)
3192 {
3193 asection *stub_sec;
3194 struct bfd_hash_table *table;
3195 struct elf32_hppa_link_hash_table *htab;
3196
3197 htab = hppa_link_hash_table (info);
3198 if (htab == NULL)
3199 return FALSE;
3200
3201 for (stub_sec = htab->stub_bfd->sections;
3202 stub_sec != NULL;
3203 stub_sec = stub_sec->next)
3204 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3205 && stub_sec->size != 0)
3206 {
3207 /* Allocate memory to hold the linker stubs. */
3208 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3209 if (stub_sec->contents == NULL)
3210 return FALSE;
3211 stub_sec->size = 0;
3212 }
3213
3214 /* Build the stubs as directed by the stub hash table. */
3215 table = &htab->bstab;
3216 bfd_hash_traverse (table, hppa_build_one_stub, info);
3217
3218 return TRUE;
3219 }
3220
3221 /* Return the base vma address which should be subtracted from the real
3222 address when resolving a dtpoff relocation.
3223 This is PT_TLS segment p_vaddr. */
3224
3225 static bfd_vma
dtpoff_base(struct bfd_link_info * info)3226 dtpoff_base (struct bfd_link_info *info)
3227 {
3228 /* If tls_sec is NULL, we should have signalled an error already. */
3229 if (elf_hash_table (info)->tls_sec == NULL)
3230 return 0;
3231 return elf_hash_table (info)->tls_sec->vma;
3232 }
3233
3234 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3235
3236 static bfd_vma
tpoff(struct bfd_link_info * info,bfd_vma address)3237 tpoff (struct bfd_link_info *info, bfd_vma address)
3238 {
3239 struct elf_link_hash_table *htab = elf_hash_table (info);
3240
3241 /* If tls_sec is NULL, we should have signalled an error already. */
3242 if (htab->tls_sec == NULL)
3243 return 0;
3244 /* hppa TLS ABI is variant I and static TLS block start just after
3245 tcbhead structure which has 2 pointer fields. */
3246 return (address - htab->tls_sec->vma
3247 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3248 }
3249
3250 /* Perform a final link. */
3251
3252 static bfd_boolean
elf32_hppa_final_link(bfd * abfd,struct bfd_link_info * info)3253 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3254 {
3255 struct stat buf;
3256
3257 /* Invoke the regular ELF linker to do all the work. */
3258 if (!bfd_elf_final_link (abfd, info))
3259 return FALSE;
3260
3261 /* If we're producing a final executable, sort the contents of the
3262 unwind section. */
3263 if (bfd_link_relocatable (info))
3264 return TRUE;
3265
3266 /* Do not attempt to sort non-regular files. This is here
3267 especially for configure scripts and kernel builds which run
3268 tests with "ld [...] -o /dev/null". */
3269 if (stat (abfd->filename, &buf) != 0
3270 || !S_ISREG(buf.st_mode))
3271 return TRUE;
3272
3273 return elf_hppa_sort_unwind (abfd);
3274 }
3275
3276 /* Record the lowest address for the data and text segments. */
3277
3278 static void
hppa_record_segment_addr(bfd * abfd,asection * section,void * data)3279 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3280 {
3281 struct elf32_hppa_link_hash_table *htab;
3282
3283 htab = (struct elf32_hppa_link_hash_table*) data;
3284 if (htab == NULL)
3285 return;
3286
3287 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3288 {
3289 bfd_vma value;
3290 Elf_Internal_Phdr *p;
3291
3292 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3293 BFD_ASSERT (p != NULL);
3294 value = p->p_vaddr;
3295
3296 if ((section->flags & SEC_READONLY) != 0)
3297 {
3298 if (value < htab->text_segment_base)
3299 htab->text_segment_base = value;
3300 }
3301 else
3302 {
3303 if (value < htab->data_segment_base)
3304 htab->data_segment_base = value;
3305 }
3306 }
3307 }
3308
3309 /* Perform a relocation as part of a final link. */
3310
3311 static bfd_reloc_status_type
final_link_relocate(asection * input_section,bfd_byte * contents,const Elf_Internal_Rela * rela,bfd_vma value,struct elf32_hppa_link_hash_table * htab,asection * sym_sec,struct elf32_hppa_link_hash_entry * hh,struct bfd_link_info * info)3312 final_link_relocate (asection *input_section,
3313 bfd_byte *contents,
3314 const Elf_Internal_Rela *rela,
3315 bfd_vma value,
3316 struct elf32_hppa_link_hash_table *htab,
3317 asection *sym_sec,
3318 struct elf32_hppa_link_hash_entry *hh,
3319 struct bfd_link_info *info)
3320 {
3321 int insn;
3322 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3323 unsigned int orig_r_type = r_type;
3324 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3325 int r_format = howto->bitsize;
3326 enum hppa_reloc_field_selector_type_alt r_field;
3327 bfd *input_bfd = input_section->owner;
3328 bfd_vma offset = rela->r_offset;
3329 bfd_vma max_branch_offset = 0;
3330 bfd_byte *hit_data = contents + offset;
3331 bfd_signed_vma addend = rela->r_addend;
3332 bfd_vma location;
3333 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3334 int val;
3335
3336 if (r_type == R_PARISC_NONE)
3337 return bfd_reloc_ok;
3338
3339 insn = bfd_get_32 (input_bfd, hit_data);
3340
3341 /* Find out where we are and where we're going. */
3342 location = (offset +
3343 input_section->output_offset +
3344 input_section->output_section->vma);
3345
3346 /* If we are not building a shared library, convert DLTIND relocs to
3347 DPREL relocs. */
3348 if (!bfd_link_pic (info))
3349 {
3350 switch (r_type)
3351 {
3352 case R_PARISC_DLTIND21L:
3353 case R_PARISC_TLS_GD21L:
3354 case R_PARISC_TLS_LDM21L:
3355 case R_PARISC_TLS_IE21L:
3356 r_type = R_PARISC_DPREL21L;
3357 break;
3358
3359 case R_PARISC_DLTIND14R:
3360 case R_PARISC_TLS_GD14R:
3361 case R_PARISC_TLS_LDM14R:
3362 case R_PARISC_TLS_IE14R:
3363 r_type = R_PARISC_DPREL14R;
3364 break;
3365
3366 case R_PARISC_DLTIND14F:
3367 r_type = R_PARISC_DPREL14F;
3368 break;
3369 }
3370 }
3371
3372 switch (r_type)
3373 {
3374 case R_PARISC_PCREL12F:
3375 case R_PARISC_PCREL17F:
3376 case R_PARISC_PCREL22F:
3377 /* If this call should go via the plt, find the import stub in
3378 the stub hash. */
3379 if (sym_sec == NULL
3380 || sym_sec->output_section == NULL
3381 || (hh != NULL
3382 && hh->eh.plt.offset != (bfd_vma) -1
3383 && hh->eh.dynindx != -1
3384 && !hh->plabel
3385 && (bfd_link_pic (info)
3386 || !hh->eh.def_regular
3387 || hh->eh.root.type == bfd_link_hash_defweak)))
3388 {
3389 hsh = hppa_get_stub_entry (input_section, sym_sec,
3390 hh, rela, htab);
3391 if (hsh != NULL)
3392 {
3393 value = (hsh->stub_offset
3394 + hsh->stub_sec->output_offset
3395 + hsh->stub_sec->output_section->vma);
3396 addend = 0;
3397 }
3398 else if (sym_sec == NULL && hh != NULL
3399 && hh->eh.root.type == bfd_link_hash_undefweak)
3400 {
3401 /* It's OK if undefined weak. Calls to undefined weak
3402 symbols behave as if the "called" function
3403 immediately returns. We can thus call to a weak
3404 function without first checking whether the function
3405 is defined. */
3406 value = location;
3407 addend = 8;
3408 }
3409 else
3410 return bfd_reloc_undefined;
3411 }
3412 /* Fall thru. */
3413
3414 case R_PARISC_PCREL21L:
3415 case R_PARISC_PCREL17C:
3416 case R_PARISC_PCREL17R:
3417 case R_PARISC_PCREL14R:
3418 case R_PARISC_PCREL14F:
3419 case R_PARISC_PCREL32:
3420 /* Make it a pc relative offset. */
3421 value -= location;
3422 addend -= 8;
3423 break;
3424
3425 case R_PARISC_DPREL21L:
3426 case R_PARISC_DPREL14R:
3427 case R_PARISC_DPREL14F:
3428 /* Convert instructions that use the linkage table pointer (r19) to
3429 instructions that use the global data pointer (dp). This is the
3430 most efficient way of using PIC code in an incomplete executable,
3431 but the user must follow the standard runtime conventions for
3432 accessing data for this to work. */
3433 if (orig_r_type != r_type)
3434 {
3435 if (r_type == R_PARISC_DPREL21L)
3436 {
3437 /* GCC sometimes uses a register other than r19 for the
3438 operation, so we must convert any addil instruction
3439 that uses this relocation. */
3440 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3441 insn = ADDIL_DP;
3442 else
3443 /* We must have a ldil instruction. It's too hard to find
3444 and convert the associated add instruction, so issue an
3445 error. */
3446 (*_bfd_error_handler)
3447 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3448 input_bfd,
3449 input_section,
3450 (long) offset,
3451 howto->name,
3452 insn);
3453 }
3454 else if (r_type == R_PARISC_DPREL14F)
3455 {
3456 /* This must be a format 1 load/store. Change the base
3457 register to dp. */
3458 insn = (insn & 0xfc1ffff) | (27 << 21);
3459 }
3460 }
3461
3462 /* For all the DP relative relocations, we need to examine the symbol's
3463 section. If it has no section or if it's a code section, then
3464 "data pointer relative" makes no sense. In that case we don't
3465 adjust the "value", and for 21 bit addil instructions, we change the
3466 source addend register from %dp to %r0. This situation commonly
3467 arises for undefined weak symbols and when a variable's "constness"
3468 is declared differently from the way the variable is defined. For
3469 instance: "extern int foo" with foo defined as "const int foo". */
3470 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3471 {
3472 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3473 == (((int) OP_ADDIL << 26) | (27 << 21)))
3474 {
3475 insn &= ~ (0x1f << 21);
3476 }
3477 /* Now try to make things easy for the dynamic linker. */
3478
3479 break;
3480 }
3481 /* Fall thru. */
3482
3483 case R_PARISC_DLTIND21L:
3484 case R_PARISC_DLTIND14R:
3485 case R_PARISC_DLTIND14F:
3486 case R_PARISC_TLS_GD21L:
3487 case R_PARISC_TLS_LDM21L:
3488 case R_PARISC_TLS_IE21L:
3489 case R_PARISC_TLS_GD14R:
3490 case R_PARISC_TLS_LDM14R:
3491 case R_PARISC_TLS_IE14R:
3492 value -= elf_gp (input_section->output_section->owner);
3493 break;
3494
3495 case R_PARISC_SEGREL32:
3496 if ((sym_sec->flags & SEC_CODE) != 0)
3497 value -= htab->text_segment_base;
3498 else
3499 value -= htab->data_segment_base;
3500 break;
3501
3502 default:
3503 break;
3504 }
3505
3506 switch (r_type)
3507 {
3508 case R_PARISC_DIR32:
3509 case R_PARISC_DIR14F:
3510 case R_PARISC_DIR17F:
3511 case R_PARISC_PCREL17C:
3512 case R_PARISC_PCREL14F:
3513 case R_PARISC_PCREL32:
3514 case R_PARISC_DPREL14F:
3515 case R_PARISC_PLABEL32:
3516 case R_PARISC_DLTIND14F:
3517 case R_PARISC_SEGBASE:
3518 case R_PARISC_SEGREL32:
3519 case R_PARISC_TLS_DTPMOD32:
3520 case R_PARISC_TLS_DTPOFF32:
3521 case R_PARISC_TLS_TPREL32:
3522 r_field = e_fsel;
3523 break;
3524
3525 case R_PARISC_DLTIND21L:
3526 case R_PARISC_PCREL21L:
3527 case R_PARISC_PLABEL21L:
3528 r_field = e_lsel;
3529 break;
3530
3531 case R_PARISC_DIR21L:
3532 case R_PARISC_DPREL21L:
3533 case R_PARISC_TLS_GD21L:
3534 case R_PARISC_TLS_LDM21L:
3535 case R_PARISC_TLS_LDO21L:
3536 case R_PARISC_TLS_IE21L:
3537 case R_PARISC_TLS_LE21L:
3538 r_field = e_lrsel;
3539 break;
3540
3541 case R_PARISC_PCREL17R:
3542 case R_PARISC_PCREL14R:
3543 case R_PARISC_PLABEL14R:
3544 case R_PARISC_DLTIND14R:
3545 r_field = e_rsel;
3546 break;
3547
3548 case R_PARISC_DIR17R:
3549 case R_PARISC_DIR14R:
3550 case R_PARISC_DPREL14R:
3551 case R_PARISC_TLS_GD14R:
3552 case R_PARISC_TLS_LDM14R:
3553 case R_PARISC_TLS_LDO14R:
3554 case R_PARISC_TLS_IE14R:
3555 case R_PARISC_TLS_LE14R:
3556 r_field = e_rrsel;
3557 break;
3558
3559 case R_PARISC_PCREL12F:
3560 case R_PARISC_PCREL17F:
3561 case R_PARISC_PCREL22F:
3562 r_field = e_fsel;
3563
3564 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3565 {
3566 max_branch_offset = (1 << (17-1)) << 2;
3567 }
3568 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3569 {
3570 max_branch_offset = (1 << (12-1)) << 2;
3571 }
3572 else
3573 {
3574 max_branch_offset = (1 << (22-1)) << 2;
3575 }
3576
3577 /* sym_sec is NULL on undefined weak syms or when shared on
3578 undefined syms. We've already checked for a stub for the
3579 shared undefined case. */
3580 if (sym_sec == NULL)
3581 break;
3582
3583 /* If the branch is out of reach, then redirect the
3584 call to the local stub for this function. */
3585 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3586 {
3587 hsh = hppa_get_stub_entry (input_section, sym_sec,
3588 hh, rela, htab);
3589 if (hsh == NULL)
3590 return bfd_reloc_undefined;
3591
3592 /* Munge up the value and addend so that we call the stub
3593 rather than the procedure directly. */
3594 value = (hsh->stub_offset
3595 + hsh->stub_sec->output_offset
3596 + hsh->stub_sec->output_section->vma
3597 - location);
3598 addend = -8;
3599 }
3600 break;
3601
3602 /* Something we don't know how to handle. */
3603 default:
3604 return bfd_reloc_notsupported;
3605 }
3606
3607 /* Make sure we can reach the stub. */
3608 if (max_branch_offset != 0
3609 && value + addend + max_branch_offset >= 2*max_branch_offset)
3610 {
3611 (*_bfd_error_handler)
3612 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3613 input_bfd,
3614 input_section,
3615 (long) offset,
3616 hsh->bh_root.string);
3617 bfd_set_error (bfd_error_bad_value);
3618 return bfd_reloc_notsupported;
3619 }
3620
3621 val = hppa_field_adjust (value, addend, r_field);
3622
3623 switch (r_type)
3624 {
3625 case R_PARISC_PCREL12F:
3626 case R_PARISC_PCREL17C:
3627 case R_PARISC_PCREL17F:
3628 case R_PARISC_PCREL17R:
3629 case R_PARISC_PCREL22F:
3630 case R_PARISC_DIR17F:
3631 case R_PARISC_DIR17R:
3632 /* This is a branch. Divide the offset by four.
3633 Note that we need to decide whether it's a branch or
3634 otherwise by inspecting the reloc. Inspecting insn won't
3635 work as insn might be from a .word directive. */
3636 val >>= 2;
3637 break;
3638
3639 default:
3640 break;
3641 }
3642
3643 insn = hppa_rebuild_insn (insn, val, r_format);
3644
3645 /* Update the instruction word. */
3646 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3647 return bfd_reloc_ok;
3648 }
3649
3650 /* Relocate an HPPA ELF section. */
3651
3652 static bfd_boolean
elf32_hppa_relocate_section(bfd * output_bfd,struct bfd_link_info * info,bfd * input_bfd,asection * input_section,bfd_byte * contents,Elf_Internal_Rela * relocs,Elf_Internal_Sym * local_syms,asection ** local_sections)3653 elf32_hppa_relocate_section (bfd *output_bfd,
3654 struct bfd_link_info *info,
3655 bfd *input_bfd,
3656 asection *input_section,
3657 bfd_byte *contents,
3658 Elf_Internal_Rela *relocs,
3659 Elf_Internal_Sym *local_syms,
3660 asection **local_sections)
3661 {
3662 bfd_vma *local_got_offsets;
3663 struct elf32_hppa_link_hash_table *htab;
3664 Elf_Internal_Shdr *symtab_hdr;
3665 Elf_Internal_Rela *rela;
3666 Elf_Internal_Rela *relend;
3667
3668 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3669
3670 htab = hppa_link_hash_table (info);
3671 if (htab == NULL)
3672 return FALSE;
3673
3674 local_got_offsets = elf_local_got_offsets (input_bfd);
3675
3676 rela = relocs;
3677 relend = relocs + input_section->reloc_count;
3678 for (; rela < relend; rela++)
3679 {
3680 unsigned int r_type;
3681 reloc_howto_type *howto;
3682 unsigned int r_symndx;
3683 struct elf32_hppa_link_hash_entry *hh;
3684 Elf_Internal_Sym *sym;
3685 asection *sym_sec;
3686 bfd_vma relocation;
3687 bfd_reloc_status_type rstatus;
3688 const char *sym_name;
3689 bfd_boolean plabel;
3690 bfd_boolean warned_undef;
3691
3692 r_type = ELF32_R_TYPE (rela->r_info);
3693 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3694 {
3695 bfd_set_error (bfd_error_bad_value);
3696 return FALSE;
3697 }
3698 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3699 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3700 continue;
3701
3702 r_symndx = ELF32_R_SYM (rela->r_info);
3703 hh = NULL;
3704 sym = NULL;
3705 sym_sec = NULL;
3706 warned_undef = FALSE;
3707 if (r_symndx < symtab_hdr->sh_info)
3708 {
3709 /* This is a local symbol, h defaults to NULL. */
3710 sym = local_syms + r_symndx;
3711 sym_sec = local_sections[r_symndx];
3712 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3713 }
3714 else
3715 {
3716 struct elf_link_hash_entry *eh;
3717 bfd_boolean unresolved_reloc, ignored;
3718 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3719
3720 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3721 r_symndx, symtab_hdr, sym_hashes,
3722 eh, sym_sec, relocation,
3723 unresolved_reloc, warned_undef,
3724 ignored);
3725
3726 if (!bfd_link_relocatable (info)
3727 && relocation == 0
3728 && eh->root.type != bfd_link_hash_defined
3729 && eh->root.type != bfd_link_hash_defweak
3730 && eh->root.type != bfd_link_hash_undefweak)
3731 {
3732 if (info->unresolved_syms_in_objects == RM_IGNORE
3733 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3734 && eh->type == STT_PARISC_MILLI)
3735 {
3736 (*info->callbacks->undefined_symbol)
3737 (info, eh_name (eh), input_bfd,
3738 input_section, rela->r_offset, FALSE);
3739 warned_undef = TRUE;
3740 }
3741 }
3742 hh = hppa_elf_hash_entry (eh);
3743 }
3744
3745 if (sym_sec != NULL && discarded_section (sym_sec))
3746 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3747 rela, 1, relend,
3748 elf_hppa_howto_table + r_type, 0,
3749 contents);
3750
3751 if (bfd_link_relocatable (info))
3752 continue;
3753
3754 /* Do any required modifications to the relocation value, and
3755 determine what types of dynamic info we need to output, if
3756 any. */
3757 plabel = 0;
3758 switch (r_type)
3759 {
3760 case R_PARISC_DLTIND14F:
3761 case R_PARISC_DLTIND14R:
3762 case R_PARISC_DLTIND21L:
3763 {
3764 bfd_vma off;
3765 bfd_boolean do_got = 0;
3766
3767 /* Relocation is to the entry for this symbol in the
3768 global offset table. */
3769 if (hh != NULL)
3770 {
3771 bfd_boolean dyn;
3772
3773 off = hh->eh.got.offset;
3774 dyn = htab->etab.dynamic_sections_created;
3775 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3776 bfd_link_pic (info),
3777 &hh->eh))
3778 {
3779 /* If we aren't going to call finish_dynamic_symbol,
3780 then we need to handle initialisation of the .got
3781 entry and create needed relocs here. Since the
3782 offset must always be a multiple of 4, we use the
3783 least significant bit to record whether we have
3784 initialised it already. */
3785 if ((off & 1) != 0)
3786 off &= ~1;
3787 else
3788 {
3789 hh->eh.got.offset |= 1;
3790 do_got = 1;
3791 }
3792 }
3793 }
3794 else
3795 {
3796 /* Local symbol case. */
3797 if (local_got_offsets == NULL)
3798 abort ();
3799
3800 off = local_got_offsets[r_symndx];
3801
3802 /* The offset must always be a multiple of 4. We use
3803 the least significant bit to record whether we have
3804 already generated the necessary reloc. */
3805 if ((off & 1) != 0)
3806 off &= ~1;
3807 else
3808 {
3809 local_got_offsets[r_symndx] |= 1;
3810 do_got = 1;
3811 }
3812 }
3813
3814 if (do_got)
3815 {
3816 if (bfd_link_pic (info))
3817 {
3818 /* Output a dynamic relocation for this GOT entry.
3819 In this case it is relative to the base of the
3820 object because the symbol index is zero. */
3821 Elf_Internal_Rela outrel;
3822 bfd_byte *loc;
3823 asection *sec = htab->srelgot;
3824
3825 outrel.r_offset = (off
3826 + htab->sgot->output_offset
3827 + htab->sgot->output_section->vma);
3828 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3829 outrel.r_addend = relocation;
3830 loc = sec->contents;
3831 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3832 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3833 }
3834 else
3835 bfd_put_32 (output_bfd, relocation,
3836 htab->sgot->contents + off);
3837 }
3838
3839 if (off >= (bfd_vma) -2)
3840 abort ();
3841
3842 /* Add the base of the GOT to the relocation value. */
3843 relocation = (off
3844 + htab->sgot->output_offset
3845 + htab->sgot->output_section->vma);
3846 }
3847 break;
3848
3849 case R_PARISC_SEGREL32:
3850 /* If this is the first SEGREL relocation, then initialize
3851 the segment base values. */
3852 if (htab->text_segment_base == (bfd_vma) -1)
3853 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3854 break;
3855
3856 case R_PARISC_PLABEL14R:
3857 case R_PARISC_PLABEL21L:
3858 case R_PARISC_PLABEL32:
3859 if (htab->etab.dynamic_sections_created)
3860 {
3861 bfd_vma off;
3862 bfd_boolean do_plt = 0;
3863 /* If we have a global symbol with a PLT slot, then
3864 redirect this relocation to it. */
3865 if (hh != NULL)
3866 {
3867 off = hh->eh.plt.offset;
3868 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3869 bfd_link_pic (info),
3870 &hh->eh))
3871 {
3872 /* In a non-shared link, adjust_dynamic_symbols
3873 isn't called for symbols forced local. We
3874 need to write out the plt entry here. */
3875 if ((off & 1) != 0)
3876 off &= ~1;
3877 else
3878 {
3879 hh->eh.plt.offset |= 1;
3880 do_plt = 1;
3881 }
3882 }
3883 }
3884 else
3885 {
3886 bfd_vma *local_plt_offsets;
3887
3888 if (local_got_offsets == NULL)
3889 abort ();
3890
3891 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3892 off = local_plt_offsets[r_symndx];
3893
3894 /* As for the local .got entry case, we use the last
3895 bit to record whether we've already initialised
3896 this local .plt entry. */
3897 if ((off & 1) != 0)
3898 off &= ~1;
3899 else
3900 {
3901 local_plt_offsets[r_symndx] |= 1;
3902 do_plt = 1;
3903 }
3904 }
3905
3906 if (do_plt)
3907 {
3908 if (bfd_link_pic (info))
3909 {
3910 /* Output a dynamic IPLT relocation for this
3911 PLT entry. */
3912 Elf_Internal_Rela outrel;
3913 bfd_byte *loc;
3914 asection *s = htab->srelplt;
3915
3916 outrel.r_offset = (off
3917 + htab->splt->output_offset
3918 + htab->splt->output_section->vma);
3919 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3920 outrel.r_addend = relocation;
3921 loc = s->contents;
3922 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3923 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3924 }
3925 else
3926 {
3927 bfd_put_32 (output_bfd,
3928 relocation,
3929 htab->splt->contents + off);
3930 bfd_put_32 (output_bfd,
3931 elf_gp (htab->splt->output_section->owner),
3932 htab->splt->contents + off + 4);
3933 }
3934 }
3935
3936 if (off >= (bfd_vma) -2)
3937 abort ();
3938
3939 /* PLABELs contain function pointers. Relocation is to
3940 the entry for the function in the .plt. The magic +2
3941 offset signals to $$dyncall that the function pointer
3942 is in the .plt and thus has a gp pointer too.
3943 Exception: Undefined PLABELs should have a value of
3944 zero. */
3945 if (hh == NULL
3946 || (hh->eh.root.type != bfd_link_hash_undefweak
3947 && hh->eh.root.type != bfd_link_hash_undefined))
3948 {
3949 relocation = (off
3950 + htab->splt->output_offset
3951 + htab->splt->output_section->vma
3952 + 2);
3953 }
3954 plabel = 1;
3955 }
3956 /* Fall through and possibly emit a dynamic relocation. */
3957
3958 case R_PARISC_DIR17F:
3959 case R_PARISC_DIR17R:
3960 case R_PARISC_DIR14F:
3961 case R_PARISC_DIR14R:
3962 case R_PARISC_DIR21L:
3963 case R_PARISC_DPREL14F:
3964 case R_PARISC_DPREL14R:
3965 case R_PARISC_DPREL21L:
3966 case R_PARISC_DIR32:
3967 if ((input_section->flags & SEC_ALLOC) == 0)
3968 break;
3969
3970 /* The reloc types handled here and this conditional
3971 expression must match the code in ..check_relocs and
3972 allocate_dynrelocs. ie. We need exactly the same condition
3973 as in ..check_relocs, with some extra conditions (dynindx
3974 test in this case) to cater for relocs removed by
3975 allocate_dynrelocs. If you squint, the non-shared test
3976 here does indeed match the one in ..check_relocs, the
3977 difference being that here we test DEF_DYNAMIC as well as
3978 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3979 which is why we can't use just that test here.
3980 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3981 there all files have not been loaded. */
3982 if ((bfd_link_pic (info)
3983 && (hh == NULL
3984 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3985 || hh->eh.root.type != bfd_link_hash_undefweak)
3986 && (IS_ABSOLUTE_RELOC (r_type)
3987 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3988 || (!bfd_link_pic (info)
3989 && hh != NULL
3990 && hh->eh.dynindx != -1
3991 && !hh->eh.non_got_ref
3992 && ((ELIMINATE_COPY_RELOCS
3993 && hh->eh.def_dynamic
3994 && !hh->eh.def_regular)
3995 || hh->eh.root.type == bfd_link_hash_undefweak
3996 || hh->eh.root.type == bfd_link_hash_undefined)))
3997 {
3998 Elf_Internal_Rela outrel;
3999 bfd_boolean skip;
4000 asection *sreloc;
4001 bfd_byte *loc;
4002
4003 /* When generating a shared object, these relocations
4004 are copied into the output file to be resolved at run
4005 time. */
4006
4007 outrel.r_addend = rela->r_addend;
4008 outrel.r_offset =
4009 _bfd_elf_section_offset (output_bfd, info, input_section,
4010 rela->r_offset);
4011 skip = (outrel.r_offset == (bfd_vma) -1
4012 || outrel.r_offset == (bfd_vma) -2);
4013 outrel.r_offset += (input_section->output_offset
4014 + input_section->output_section->vma);
4015
4016 if (skip)
4017 {
4018 memset (&outrel, 0, sizeof (outrel));
4019 }
4020 else if (hh != NULL
4021 && hh->eh.dynindx != -1
4022 && (plabel
4023 || !IS_ABSOLUTE_RELOC (r_type)
4024 || !bfd_link_pic (info)
4025 || !SYMBOLIC_BIND (info, &hh->eh)
4026 || !hh->eh.def_regular))
4027 {
4028 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
4029 }
4030 else /* It's a local symbol, or one marked to become local. */
4031 {
4032 int indx = 0;
4033
4034 /* Add the absolute offset of the symbol. */
4035 outrel.r_addend += relocation;
4036
4037 /* Global plabels need to be processed by the
4038 dynamic linker so that functions have at most one
4039 fptr. For this reason, we need to differentiate
4040 between global and local plabels, which we do by
4041 providing the function symbol for a global plabel
4042 reloc, and no symbol for local plabels. */
4043 if (! plabel
4044 && sym_sec != NULL
4045 && sym_sec->output_section != NULL
4046 && ! bfd_is_abs_section (sym_sec))
4047 {
4048 asection *osec;
4049
4050 osec = sym_sec->output_section;
4051 indx = elf_section_data (osec)->dynindx;
4052 if (indx == 0)
4053 {
4054 osec = htab->etab.text_index_section;
4055 indx = elf_section_data (osec)->dynindx;
4056 }
4057 BFD_ASSERT (indx != 0);
4058
4059 /* We are turning this relocation into one
4060 against a section symbol, so subtract out the
4061 output section's address but not the offset
4062 of the input section in the output section. */
4063 outrel.r_addend -= osec->vma;
4064 }
4065
4066 outrel.r_info = ELF32_R_INFO (indx, r_type);
4067 }
4068 sreloc = elf_section_data (input_section)->sreloc;
4069 if (sreloc == NULL)
4070 abort ();
4071
4072 loc = sreloc->contents;
4073 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4074 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4075 }
4076 break;
4077
4078 case R_PARISC_TLS_LDM21L:
4079 case R_PARISC_TLS_LDM14R:
4080 {
4081 bfd_vma off;
4082
4083 off = htab->tls_ldm_got.offset;
4084 if (off & 1)
4085 off &= ~1;
4086 else
4087 {
4088 Elf_Internal_Rela outrel;
4089 bfd_byte *loc;
4090
4091 outrel.r_offset = (off
4092 + htab->sgot->output_section->vma
4093 + htab->sgot->output_offset);
4094 outrel.r_addend = 0;
4095 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4096 loc = htab->srelgot->contents;
4097 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4098
4099 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4100 htab->tls_ldm_got.offset |= 1;
4101 }
4102
4103 /* Add the base of the GOT to the relocation value. */
4104 relocation = (off
4105 + htab->sgot->output_offset
4106 + htab->sgot->output_section->vma);
4107
4108 break;
4109 }
4110
4111 case R_PARISC_TLS_LDO21L:
4112 case R_PARISC_TLS_LDO14R:
4113 relocation -= dtpoff_base (info);
4114 break;
4115
4116 case R_PARISC_TLS_GD21L:
4117 case R_PARISC_TLS_GD14R:
4118 case R_PARISC_TLS_IE21L:
4119 case R_PARISC_TLS_IE14R:
4120 {
4121 bfd_vma off;
4122 int indx;
4123 char tls_type;
4124
4125 indx = 0;
4126 if (hh != NULL)
4127 {
4128 bfd_boolean dyn;
4129 dyn = htab->etab.dynamic_sections_created;
4130
4131 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
4132 bfd_link_pic (info),
4133 &hh->eh)
4134 && (!bfd_link_pic (info)
4135 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4136 {
4137 indx = hh->eh.dynindx;
4138 }
4139 off = hh->eh.got.offset;
4140 tls_type = hh->tls_type;
4141 }
4142 else
4143 {
4144 off = local_got_offsets[r_symndx];
4145 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4146 }
4147
4148 if (tls_type == GOT_UNKNOWN)
4149 abort ();
4150
4151 if ((off & 1) != 0)
4152 off &= ~1;
4153 else
4154 {
4155 bfd_boolean need_relocs = FALSE;
4156 Elf_Internal_Rela outrel;
4157 bfd_byte *loc = NULL;
4158 int cur_off = off;
4159
4160 /* The GOT entries have not been initialized yet. Do it
4161 now, and emit any relocations. If both an IE GOT and a
4162 GD GOT are necessary, we emit the GD first. */
4163
4164 if ((bfd_link_pic (info) || indx != 0)
4165 && (hh == NULL
4166 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4167 || hh->eh.root.type != bfd_link_hash_undefweak))
4168 {
4169 need_relocs = TRUE;
4170 loc = htab->srelgot->contents;
4171 /* FIXME (CAO): Should this be reloc_count++ ? */
4172 loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4173 }
4174
4175 if (tls_type & GOT_TLS_GD)
4176 {
4177 if (need_relocs)
4178 {
4179 outrel.r_offset = (cur_off
4180 + htab->sgot->output_section->vma
4181 + htab->sgot->output_offset);
4182 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4183 outrel.r_addend = 0;
4184 bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4185 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4186 htab->srelgot->reloc_count++;
4187 loc += sizeof (Elf32_External_Rela);
4188
4189 if (indx == 0)
4190 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4191 htab->sgot->contents + cur_off + 4);
4192 else
4193 {
4194 bfd_put_32 (output_bfd, 0,
4195 htab->sgot->contents + cur_off + 4);
4196 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4197 outrel.r_offset += 4;
4198 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4199 htab->srelgot->reloc_count++;
4200 loc += sizeof (Elf32_External_Rela);
4201 }
4202 }
4203 else
4204 {
4205 /* If we are not emitting relocations for a
4206 general dynamic reference, then we must be in a
4207 static link or an executable link with the
4208 symbol binding locally. Mark it as belonging
4209 to module 1, the executable. */
4210 bfd_put_32 (output_bfd, 1,
4211 htab->sgot->contents + cur_off);
4212 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4213 htab->sgot->contents + cur_off + 4);
4214 }
4215
4216
4217 cur_off += 8;
4218 }
4219
4220 if (tls_type & GOT_TLS_IE)
4221 {
4222 if (need_relocs)
4223 {
4224 outrel.r_offset = (cur_off
4225 + htab->sgot->output_section->vma
4226 + htab->sgot->output_offset);
4227 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4228
4229 if (indx == 0)
4230 outrel.r_addend = relocation - dtpoff_base (info);
4231 else
4232 outrel.r_addend = 0;
4233
4234 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4235 htab->srelgot->reloc_count++;
4236 loc += sizeof (Elf32_External_Rela);
4237 }
4238 else
4239 bfd_put_32 (output_bfd, tpoff (info, relocation),
4240 htab->sgot->contents + cur_off);
4241
4242 cur_off += 4;
4243 }
4244
4245 if (hh != NULL)
4246 hh->eh.got.offset |= 1;
4247 else
4248 local_got_offsets[r_symndx] |= 1;
4249 }
4250
4251 if ((tls_type & GOT_TLS_GD)
4252 && r_type != R_PARISC_TLS_GD21L
4253 && r_type != R_PARISC_TLS_GD14R)
4254 off += 2 * GOT_ENTRY_SIZE;
4255
4256 /* Add the base of the GOT to the relocation value. */
4257 relocation = (off
4258 + htab->sgot->output_offset
4259 + htab->sgot->output_section->vma);
4260
4261 break;
4262 }
4263
4264 case R_PARISC_TLS_LE21L:
4265 case R_PARISC_TLS_LE14R:
4266 {
4267 relocation = tpoff (info, relocation);
4268 break;
4269 }
4270 break;
4271
4272 default:
4273 break;
4274 }
4275
4276 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4277 htab, sym_sec, hh, info);
4278
4279 if (rstatus == bfd_reloc_ok)
4280 continue;
4281
4282 if (hh != NULL)
4283 sym_name = hh_name (hh);
4284 else
4285 {
4286 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4287 symtab_hdr->sh_link,
4288 sym->st_name);
4289 if (sym_name == NULL)
4290 return FALSE;
4291 if (*sym_name == '\0')
4292 sym_name = bfd_section_name (input_bfd, sym_sec);
4293 }
4294
4295 howto = elf_hppa_howto_table + r_type;
4296
4297 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4298 {
4299 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4300 {
4301 (*_bfd_error_handler)
4302 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4303 input_bfd,
4304 input_section,
4305 (long) rela->r_offset,
4306 howto->name,
4307 sym_name);
4308 bfd_set_error (bfd_error_bad_value);
4309 return FALSE;
4310 }
4311 }
4312 else
4313 (*info->callbacks->reloc_overflow)
4314 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4315 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4316 }
4317
4318 return TRUE;
4319 }
4320
4321 /* Finish up dynamic symbol handling. We set the contents of various
4322 dynamic sections here. */
4323
4324 static bfd_boolean
elf32_hppa_finish_dynamic_symbol(bfd * output_bfd,struct bfd_link_info * info,struct elf_link_hash_entry * eh,Elf_Internal_Sym * sym)4325 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4326 struct bfd_link_info *info,
4327 struct elf_link_hash_entry *eh,
4328 Elf_Internal_Sym *sym)
4329 {
4330 struct elf32_hppa_link_hash_table *htab;
4331 Elf_Internal_Rela rela;
4332 bfd_byte *loc;
4333
4334 htab = hppa_link_hash_table (info);
4335 if (htab == NULL)
4336 return FALSE;
4337
4338 if (eh->plt.offset != (bfd_vma) -1)
4339 {
4340 bfd_vma value;
4341
4342 if (eh->plt.offset & 1)
4343 abort ();
4344
4345 /* This symbol has an entry in the procedure linkage table. Set
4346 it up.
4347
4348 The format of a plt entry is
4349 <funcaddr>
4350 <__gp>
4351 */
4352 value = 0;
4353 if (eh->root.type == bfd_link_hash_defined
4354 || eh->root.type == bfd_link_hash_defweak)
4355 {
4356 value = eh->root.u.def.value;
4357 if (eh->root.u.def.section->output_section != NULL)
4358 value += (eh->root.u.def.section->output_offset
4359 + eh->root.u.def.section->output_section->vma);
4360 }
4361
4362 /* Create a dynamic IPLT relocation for this entry. */
4363 rela.r_offset = (eh->plt.offset
4364 + htab->splt->output_offset
4365 + htab->splt->output_section->vma);
4366 if (eh->dynindx != -1)
4367 {
4368 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4369 rela.r_addend = 0;
4370 }
4371 else
4372 {
4373 /* This symbol has been marked to become local, and is
4374 used by a plabel so must be kept in the .plt. */
4375 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4376 rela.r_addend = value;
4377 }
4378
4379 loc = htab->srelplt->contents;
4380 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4381 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4382
4383 if (!eh->def_regular)
4384 {
4385 /* Mark the symbol as undefined, rather than as defined in
4386 the .plt section. Leave the value alone. */
4387 sym->st_shndx = SHN_UNDEF;
4388 }
4389 }
4390
4391 if (eh->got.offset != (bfd_vma) -1
4392 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4393 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4394 {
4395 /* This symbol has an entry in the global offset table. Set it
4396 up. */
4397
4398 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4399 + htab->sgot->output_offset
4400 + htab->sgot->output_section->vma);
4401
4402 /* If this is a -Bsymbolic link and the symbol is defined
4403 locally or was forced to be local because of a version file,
4404 we just want to emit a RELATIVE reloc. The entry in the
4405 global offset table will already have been initialized in the
4406 relocate_section function. */
4407 if (bfd_link_pic (info)
4408 && (SYMBOLIC_BIND (info, eh) || eh->dynindx == -1)
4409 && eh->def_regular)
4410 {
4411 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4412 rela.r_addend = (eh->root.u.def.value
4413 + eh->root.u.def.section->output_offset
4414 + eh->root.u.def.section->output_section->vma);
4415 }
4416 else
4417 {
4418 if ((eh->got.offset & 1) != 0)
4419 abort ();
4420
4421 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4422 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4423 rela.r_addend = 0;
4424 }
4425
4426 loc = htab->srelgot->contents;
4427 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4428 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4429 }
4430
4431 if (eh->needs_copy)
4432 {
4433 asection *sec;
4434
4435 /* This symbol needs a copy reloc. Set it up. */
4436
4437 if (! (eh->dynindx != -1
4438 && (eh->root.type == bfd_link_hash_defined
4439 || eh->root.type == bfd_link_hash_defweak)))
4440 abort ();
4441
4442 sec = htab->srelbss;
4443
4444 rela.r_offset = (eh->root.u.def.value
4445 + eh->root.u.def.section->output_offset
4446 + eh->root.u.def.section->output_section->vma);
4447 rela.r_addend = 0;
4448 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4449 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4450 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4451 }
4452
4453 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4454 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4455 {
4456 sym->st_shndx = SHN_ABS;
4457 }
4458
4459 return TRUE;
4460 }
4461
4462 /* Used to decide how to sort relocs in an optimal manner for the
4463 dynamic linker, before writing them out. */
4464
4465 static enum elf_reloc_type_class
elf32_hppa_reloc_type_class(const struct bfd_link_info * info ATTRIBUTE_UNUSED,const asection * rel_sec ATTRIBUTE_UNUSED,const Elf_Internal_Rela * rela)4466 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4467 const asection *rel_sec ATTRIBUTE_UNUSED,
4468 const Elf_Internal_Rela *rela)
4469 {
4470 /* Handle TLS relocs first; we don't want them to be marked
4471 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4472 check below. */
4473 switch ((int) ELF32_R_TYPE (rela->r_info))
4474 {
4475 case R_PARISC_TLS_DTPMOD32:
4476 case R_PARISC_TLS_DTPOFF32:
4477 case R_PARISC_TLS_TPREL32:
4478 return reloc_class_normal;
4479 }
4480
4481 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4482 return reloc_class_relative;
4483
4484 switch ((int) ELF32_R_TYPE (rela->r_info))
4485 {
4486 case R_PARISC_IPLT:
4487 return reloc_class_plt;
4488 case R_PARISC_COPY:
4489 return reloc_class_copy;
4490 default:
4491 return reloc_class_normal;
4492 }
4493 }
4494
4495 /* Finish up the dynamic sections. */
4496
4497 static bfd_boolean
elf32_hppa_finish_dynamic_sections(bfd * output_bfd,struct bfd_link_info * info)4498 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4499 struct bfd_link_info *info)
4500 {
4501 bfd *dynobj;
4502 struct elf32_hppa_link_hash_table *htab;
4503 asection *sdyn;
4504 asection * sgot;
4505
4506 htab = hppa_link_hash_table (info);
4507 if (htab == NULL)
4508 return FALSE;
4509
4510 dynobj = htab->etab.dynobj;
4511
4512 sgot = htab->sgot;
4513 /* A broken linker script might have discarded the dynamic sections.
4514 Catch this here so that we do not seg-fault later on. */
4515 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4516 return FALSE;
4517
4518 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4519
4520 if (htab->etab.dynamic_sections_created)
4521 {
4522 Elf32_External_Dyn *dyncon, *dynconend;
4523
4524 if (sdyn == NULL)
4525 abort ();
4526
4527 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4528 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4529 for (; dyncon < dynconend; dyncon++)
4530 {
4531 Elf_Internal_Dyn dyn;
4532 asection *s;
4533
4534 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4535
4536 switch (dyn.d_tag)
4537 {
4538 default:
4539 continue;
4540
4541 case DT_PLTGOT:
4542 /* Use PLTGOT to set the GOT register. */
4543 dyn.d_un.d_ptr = elf_gp (output_bfd);
4544 break;
4545
4546 case DT_JMPREL:
4547 s = htab->srelplt;
4548 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4549 break;
4550
4551 case DT_PLTRELSZ:
4552 s = htab->srelplt;
4553 dyn.d_un.d_val = s->size;
4554 break;
4555
4556 case DT_RELASZ:
4557 /* Don't count procedure linkage table relocs in the
4558 overall reloc count. */
4559 s = htab->srelplt;
4560 if (s == NULL)
4561 continue;
4562 dyn.d_un.d_val -= s->size;
4563 break;
4564
4565 case DT_RELA:
4566 /* We may not be using the standard ELF linker script.
4567 If .rela.plt is the first .rela section, we adjust
4568 DT_RELA to not include it. */
4569 s = htab->srelplt;
4570 if (s == NULL)
4571 continue;
4572 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4573 continue;
4574 dyn.d_un.d_ptr += s->size;
4575 break;
4576 }
4577
4578 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4579 }
4580 }
4581
4582 if (sgot != NULL && sgot->size != 0)
4583 {
4584 /* Fill in the first entry in the global offset table.
4585 We use it to point to our dynamic section, if we have one. */
4586 bfd_put_32 (output_bfd,
4587 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4588 sgot->contents);
4589
4590 /* The second entry is reserved for use by the dynamic linker. */
4591 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4592
4593 /* Set .got entry size. */
4594 elf_section_data (sgot->output_section)
4595 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4596 }
4597
4598 if (htab->splt != NULL && htab->splt->size != 0)
4599 {
4600 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4601 plt stubs and as such the section does not hold a table of fixed-size
4602 entries. */
4603 elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize = 0;
4604
4605 if (htab->need_plt_stub)
4606 {
4607 /* Set up the .plt stub. */
4608 memcpy (htab->splt->contents
4609 + htab->splt->size - sizeof (plt_stub),
4610 plt_stub, sizeof (plt_stub));
4611
4612 if ((htab->splt->output_offset
4613 + htab->splt->output_section->vma
4614 + htab->splt->size)
4615 != (sgot->output_offset
4616 + sgot->output_section->vma))
4617 {
4618 (*_bfd_error_handler)
4619 (_(".got section not immediately after .plt section"));
4620 return FALSE;
4621 }
4622 }
4623 }
4624
4625 return TRUE;
4626 }
4627
4628 /* Called when writing out an object file to decide the type of a
4629 symbol. */
4630 static int
elf32_hppa_elf_get_symbol_type(Elf_Internal_Sym * elf_sym,int type)4631 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4632 {
4633 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4634 return STT_PARISC_MILLI;
4635 else
4636 return type;
4637 }
4638
4639 /* Misc BFD support code. */
4640 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4641 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4642 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4643 #define elf_info_to_howto elf_hppa_info_to_howto
4644 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4645
4646 /* Stuff for the BFD linker. */
4647 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4648 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4649 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4650 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4651 #define elf_backend_check_relocs elf32_hppa_check_relocs
4652 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4653 #define elf_backend_fake_sections elf_hppa_fake_sections
4654 #define elf_backend_relocate_section elf32_hppa_relocate_section
4655 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4656 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4657 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4658 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4659 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4660 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4661 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4662 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4663 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4664 #define elf_backend_object_p elf32_hppa_object_p
4665 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4666 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4667 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4668 #define elf_backend_action_discarded elf_hppa_action_discarded
4669
4670 #define elf_backend_can_gc_sections 1
4671 #define elf_backend_can_refcount 1
4672 #define elf_backend_plt_alignment 2
4673 #define elf_backend_want_got_plt 0
4674 #define elf_backend_plt_readonly 0
4675 #define elf_backend_want_plt_sym 0
4676 #define elf_backend_got_header_size 8
4677 #define elf_backend_rela_normal 1
4678
4679 #define TARGET_BIG_SYM hppa_elf32_vec
4680 #define TARGET_BIG_NAME "elf32-hppa"
4681 #define ELF_ARCH bfd_arch_hppa
4682 #define ELF_TARGET_ID HPPA32_ELF_DATA
4683 #define ELF_MACHINE_CODE EM_PARISC
4684 #define ELF_MAXPAGESIZE 0x1000
4685 #define ELF_OSABI ELFOSABI_HPUX
4686 #define elf32_bed elf32_hppa_hpux_bed
4687
4688 #include "elf32-target.h"
4689
4690 #undef TARGET_BIG_SYM
4691 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4692 #undef TARGET_BIG_NAME
4693 #define TARGET_BIG_NAME "elf32-hppa-linux"
4694 #undef ELF_OSABI
4695 #define ELF_OSABI ELFOSABI_GNU
4696 #undef elf32_bed
4697 #define elf32_bed elf32_hppa_linux_bed
4698
4699 #include "elf32-target.h"
4700
4701 #undef TARGET_BIG_SYM
4702 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4703 #undef TARGET_BIG_NAME
4704 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4705 #undef ELF_OSABI
4706 #define ELF_OSABI ELFOSABI_NETBSD
4707 #undef elf32_bed
4708 #define elf32_bed elf32_hppa_netbsd_bed
4709
4710 #include "elf32-target.h"
4711