1 /* BFD back-end for HP PA-RISC ELF files.
2    Copyright (C) 1990-2016 Free Software Foundation, Inc.
3 
4    Original code by
5 	Center for Software Science
6 	Department of Computer Science
7 	University of Utah
8    Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9    Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10    TLS support written by Randolph Chung <tausq@debian.org>
11 
12    This file is part of BFD, the Binary File Descriptor library.
13 
14    This program is free software; you can redistribute it and/or modify
15    it under the terms of the GNU General Public License as published by
16    the Free Software Foundation; either version 3 of the License, or
17    (at your option) any later version.
18 
19    This program is distributed in the hope that it will be useful,
20    but WITHOUT ANY WARRANTY; without even the implied warranty of
21    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22    GNU General Public License for more details.
23 
24    You should have received a copy of the GNU General Public License
25    along with this program; if not, write to the Free Software
26    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27    MA 02110-1301, USA.  */
28 
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE		32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39 
40 /* In order to gain some understanding of code in this file without
41    knowing all the intricate details of the linker, note the
42    following:
43 
44    Functions named elf32_hppa_* are called by external routines, other
45    functions are only called locally.  elf32_hppa_* functions appear
46    in this file more or less in the order in which they are called
47    from external routines.  eg. elf32_hppa_check_relocs is called
48    early in the link process, elf32_hppa_finish_dynamic_sections is
49    one of the last functions.  */
50 
51 /* We use two hash tables to hold information for linking PA ELF objects.
52 
53    The first is the elf32_hppa_link_hash_table which is derived
54    from the standard ELF linker hash table.  We use this as a place to
55    attach other hash tables and static information.
56 
57    The second is the stub hash table which is derived from the
58    base BFD hash table.  The stub hash table holds the information
59    necessary to build the linker stubs during a link.
60 
61    There are a number of different stubs generated by the linker.
62 
63    Long branch stub:
64    :		ldil LR'X,%r1
65    :		be,n RR'X(%sr4,%r1)
66 
67    PIC long branch stub:
68    :		b,l .+8,%r1
69    :		addil LR'X - ($PIC_pcrel$0 - 4),%r1
70    :		be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71 
72    Import stub to call shared library routine from normal object file
73    (single sub-space version)
74    :		addil LR'lt_ptr+ltoff,%dp	; get procedure entry point
75    :		ldw RR'lt_ptr+ltoff(%r1),%r21
76    :		bv %r0(%r21)
77    :		ldw RR'lt_ptr+ltoff+4(%r1),%r19	; get new dlt value.
78 
79    Import stub to call shared library routine from shared library
80    (single sub-space version)
81    :		addil LR'ltoff,%r19		; get procedure entry point
82    :		ldw RR'ltoff(%r1),%r21
83    :		bv %r0(%r21)
84    :		ldw RR'ltoff+4(%r1),%r19	; get new dlt value.
85 
86    Import stub to call shared library routine from normal object file
87    (multiple sub-space support)
88    :		addil LR'lt_ptr+ltoff,%dp	; get procedure entry point
89    :		ldw RR'lt_ptr+ltoff(%r1),%r21
90    :		ldw RR'lt_ptr+ltoff+4(%r1),%r19	; get new dlt value.
91    :		ldsid (%r21),%r1
92    :		mtsp %r1,%sr0
93    :		be 0(%sr0,%r21)			; branch to target
94    :		stw %rp,-24(%sp)		; save rp
95 
96    Import stub to call shared library routine from shared library
97    (multiple sub-space support)
98    :		addil LR'ltoff,%r19		; get procedure entry point
99    :		ldw RR'ltoff(%r1),%r21
100    :		ldw RR'ltoff+4(%r1),%r19	; get new dlt value.
101    :		ldsid (%r21),%r1
102    :		mtsp %r1,%sr0
103    :		be 0(%sr0,%r21)			; branch to target
104    :		stw %rp,-24(%sp)		; save rp
105 
106    Export stub to return from shared lib routine (multiple sub-space support)
107    One of these is created for each exported procedure in a shared
108    library (and stored in the shared lib).  Shared lib routines are
109    called via the first instruction in the export stub so that we can
110    do an inter-space return.  Not required for single sub-space.
111    :		bl,n X,%rp			; trap the return
112    :		nop
113    :		ldw -24(%sp),%rp		; restore the original rp
114    :		ldsid (%rp),%r1
115    :		mtsp %r1,%sr0
116    :		be,n 0(%sr0,%rp)		; inter-space return.  */
117 
118 
119 /* Variable names follow a coding style.
120    Please follow this (Apps Hungarian) style:
121 
122    Structure/Variable         		Prefix
123    elf_link_hash_table			"etab"
124    elf_link_hash_entry			"eh"
125 
126    elf32_hppa_link_hash_table		"htab"
127    elf32_hppa_link_hash_entry		"hh"
128 
129    bfd_hash_table			"btab"
130    bfd_hash_entry			"bh"
131 
132    bfd_hash_table containing stubs	"bstab"
133    elf32_hppa_stub_hash_entry		"hsh"
134 
135    elf32_hppa_dyn_reloc_entry		"hdh"
136 
137    Always remember to use GNU Coding Style. */
138 
139 #define PLT_ENTRY_SIZE 8
140 #define GOT_ENTRY_SIZE 4
141 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
142 
143 static const bfd_byte plt_stub[] =
144 {
145   0x0e, 0x80, 0x10, 0x96,  /* 1: ldw	0(%r20),%r22		*/
146   0xea, 0xc0, 0xc0, 0x00,  /*    bv	%r0(%r22)		*/
147   0x0e, 0x88, 0x10, 0x95,  /*    ldw	4(%r20),%r21		*/
148 #define PLT_STUB_ENTRY (3*4)
149   0xea, 0x9f, 0x1f, 0xdd,  /*    b,l	1b,%r20			*/
150   0xd6, 0x80, 0x1c, 0x1e,  /*    depi	0,31,2,%r20		*/
151   0x00, 0xc0, 0xff, 0xee,  /* 9: .word	fixup_func		*/
152   0xde, 0xad, 0xbe, 0xef   /*    .word	fixup_ltp		*/
153 };
154 
155 /* Section name for stubs is the associated section name plus this
156    string.  */
157 #define STUB_SUFFIX ".stub"
158 
159 /* We don't need to copy certain PC- or GP-relative dynamic relocs
160    into a shared object's dynamic section.  All the relocs of the
161    limited class we are interested in, are absolute.  */
162 #ifndef RELATIVE_DYNRELOCS
163 #define RELATIVE_DYNRELOCS 0
164 #define IS_ABSOLUTE_RELOC(r_type) 1
165 #endif
166 
167 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
168    copying dynamic variables from a shared lib into an app's dynbss
169    section, and instead use a dynamic relocation to point into the
170    shared lib.  */
171 #define ELIMINATE_COPY_RELOCS 1
172 
173 enum elf32_hppa_stub_type
174 {
175   hppa_stub_long_branch,
176   hppa_stub_long_branch_shared,
177   hppa_stub_import,
178   hppa_stub_import_shared,
179   hppa_stub_export,
180   hppa_stub_none
181 };
182 
183 struct elf32_hppa_stub_hash_entry
184 {
185   /* Base hash table entry structure.  */
186   struct bfd_hash_entry bh_root;
187 
188   /* The stub section.  */
189   asection *stub_sec;
190 
191   /* Offset within stub_sec of the beginning of this stub.  */
192   bfd_vma stub_offset;
193 
194   /* Given the symbol's value and its section we can determine its final
195      value when building the stubs (so the stub knows where to jump.  */
196   bfd_vma target_value;
197   asection *target_section;
198 
199   enum elf32_hppa_stub_type stub_type;
200 
201   /* The symbol table entry, if any, that this was derived from.  */
202   struct elf32_hppa_link_hash_entry *hh;
203 
204   /* Where this stub is being called from, or, in the case of combined
205      stub sections, the first input section in the group.  */
206   asection *id_sec;
207 };
208 
209 struct elf32_hppa_link_hash_entry
210 {
211   struct elf_link_hash_entry eh;
212 
213   /* A pointer to the most recently used stub hash entry against this
214      symbol.  */
215   struct elf32_hppa_stub_hash_entry *hsh_cache;
216 
217   /* Used to count relocations for delayed sizing of relocation
218      sections.  */
219   struct elf32_hppa_dyn_reloc_entry
220   {
221     /* Next relocation in the chain.  */
222     struct elf32_hppa_dyn_reloc_entry *hdh_next;
223 
224     /* The input section of the reloc.  */
225     asection *sec;
226 
227     /* Number of relocs copied in this section.  */
228     bfd_size_type count;
229 
230 #if RELATIVE_DYNRELOCS
231   /* Number of relative relocs copied for the input section.  */
232     bfd_size_type relative_count;
233 #endif
234   } *dyn_relocs;
235 
236   enum
237   {
238     GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
239   } tls_type;
240 
241   /* Set if this symbol is used by a plabel reloc.  */
242   unsigned int plabel:1;
243 };
244 
245 struct elf32_hppa_link_hash_table
246 {
247   /* The main hash table.  */
248   struct elf_link_hash_table etab;
249 
250   /* The stub hash table.  */
251   struct bfd_hash_table bstab;
252 
253   /* Linker stub bfd.  */
254   bfd *stub_bfd;
255 
256   /* Linker call-backs.  */
257   asection * (*add_stub_section) (const char *, asection *);
258   void (*layout_sections_again) (void);
259 
260   /* Array to keep track of which stub sections have been created, and
261      information on stub grouping.  */
262   struct map_stub
263   {
264     /* This is the section to which stubs in the group will be
265        attached.  */
266     asection *link_sec;
267     /* The stub section.  */
268     asection *stub_sec;
269   } *stub_group;
270 
271   /* Assorted information used by elf32_hppa_size_stubs.  */
272   unsigned int bfd_count;
273   unsigned int top_index;
274   asection **input_list;
275   Elf_Internal_Sym **all_local_syms;
276 
277   /* Short-cuts to get to dynamic linker sections.  */
278   asection *sgot;
279   asection *srelgot;
280   asection *splt;
281   asection *srelplt;
282   asection *sdynbss;
283   asection *srelbss;
284 
285   /* Used during a final link to store the base of the text and data
286      segments so that we can perform SEGREL relocations.  */
287   bfd_vma text_segment_base;
288   bfd_vma data_segment_base;
289 
290   /* Whether we support multiple sub-spaces for shared libs.  */
291   unsigned int multi_subspace:1;
292 
293   /* Flags set when various size branches are detected.  Used to
294      select suitable defaults for the stub group size.  */
295   unsigned int has_12bit_branch:1;
296   unsigned int has_17bit_branch:1;
297   unsigned int has_22bit_branch:1;
298 
299   /* Set if we need a .plt stub to support lazy dynamic linking.  */
300   unsigned int need_plt_stub:1;
301 
302   /* Small local sym cache.  */
303   struct sym_cache sym_cache;
304 
305   /* Data for LDM relocations.  */
306   union
307   {
308     bfd_signed_vma refcount;
309     bfd_vma offset;
310   } tls_ldm_got;
311 };
312 
313 /* Various hash macros and functions.  */
314 #define hppa_link_hash_table(p) \
315   (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
316   == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
317 
318 #define hppa_elf_hash_entry(ent) \
319   ((struct elf32_hppa_link_hash_entry *)(ent))
320 
321 #define hppa_stub_hash_entry(ent) \
322   ((struct elf32_hppa_stub_hash_entry *)(ent))
323 
324 #define hppa_stub_hash_lookup(table, string, create, copy) \
325   ((struct elf32_hppa_stub_hash_entry *) \
326    bfd_hash_lookup ((table), (string), (create), (copy)))
327 
328 #define hppa_elf_local_got_tls_type(abfd) \
329   ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
330 
331 #define hh_name(hh) \
332   (hh ? hh->eh.root.root.string : "<undef>")
333 
334 #define eh_name(eh) \
335   (eh ? eh->root.root.string : "<undef>")
336 
337 /* Assorted hash table functions.  */
338 
339 /* Initialize an entry in the stub hash table.  */
340 
341 static struct bfd_hash_entry *
stub_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)342 stub_hash_newfunc (struct bfd_hash_entry *entry,
343 		   struct bfd_hash_table *table,
344 		   const char *string)
345 {
346   /* Allocate the structure if it has not already been allocated by a
347      subclass.  */
348   if (entry == NULL)
349     {
350       entry = bfd_hash_allocate (table,
351 				 sizeof (struct elf32_hppa_stub_hash_entry));
352       if (entry == NULL)
353 	return entry;
354     }
355 
356   /* Call the allocation method of the superclass.  */
357   entry = bfd_hash_newfunc (entry, table, string);
358   if (entry != NULL)
359     {
360       struct elf32_hppa_stub_hash_entry *hsh;
361 
362       /* Initialize the local fields.  */
363       hsh = hppa_stub_hash_entry (entry);
364       hsh->stub_sec = NULL;
365       hsh->stub_offset = 0;
366       hsh->target_value = 0;
367       hsh->target_section = NULL;
368       hsh->stub_type = hppa_stub_long_branch;
369       hsh->hh = NULL;
370       hsh->id_sec = NULL;
371     }
372 
373   return entry;
374 }
375 
376 /* Initialize an entry in the link hash table.  */
377 
378 static struct bfd_hash_entry *
hppa_link_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)379 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
380 			struct bfd_hash_table *table,
381 			const char *string)
382 {
383   /* Allocate the structure if it has not already been allocated by a
384      subclass.  */
385   if (entry == NULL)
386     {
387       entry = bfd_hash_allocate (table,
388 				 sizeof (struct elf32_hppa_link_hash_entry));
389       if (entry == NULL)
390 	return entry;
391     }
392 
393   /* Call the allocation method of the superclass.  */
394   entry = _bfd_elf_link_hash_newfunc (entry, table, string);
395   if (entry != NULL)
396     {
397       struct elf32_hppa_link_hash_entry *hh;
398 
399       /* Initialize the local fields.  */
400       hh = hppa_elf_hash_entry (entry);
401       hh->hsh_cache = NULL;
402       hh->dyn_relocs = NULL;
403       hh->plabel = 0;
404       hh->tls_type = GOT_UNKNOWN;
405     }
406 
407   return entry;
408 }
409 
410 /* Free the derived linker hash table.  */
411 
412 static void
elf32_hppa_link_hash_table_free(bfd * obfd)413 elf32_hppa_link_hash_table_free (bfd *obfd)
414 {
415   struct elf32_hppa_link_hash_table *htab
416     = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
417 
418   bfd_hash_table_free (&htab->bstab);
419   _bfd_elf_link_hash_table_free (obfd);
420 }
421 
422 /* Create the derived linker hash table.  The PA ELF port uses the derived
423    hash table to keep information specific to the PA ELF linker (without
424    using static variables).  */
425 
426 static struct bfd_link_hash_table *
elf32_hppa_link_hash_table_create(bfd * abfd)427 elf32_hppa_link_hash_table_create (bfd *abfd)
428 {
429   struct elf32_hppa_link_hash_table *htab;
430   bfd_size_type amt = sizeof (*htab);
431 
432   htab = bfd_zmalloc (amt);
433   if (htab == NULL)
434     return NULL;
435 
436   if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
437 				      sizeof (struct elf32_hppa_link_hash_entry),
438 				      HPPA32_ELF_DATA))
439     {
440       free (htab);
441       return NULL;
442     }
443 
444   /* Init the stub hash table too.  */
445   if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
446 			    sizeof (struct elf32_hppa_stub_hash_entry)))
447     {
448       _bfd_elf_link_hash_table_free (abfd);
449       return NULL;
450     }
451   htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
452 
453   htab->text_segment_base = (bfd_vma) -1;
454   htab->data_segment_base = (bfd_vma) -1;
455   return &htab->etab.root;
456 }
457 
458 /* Initialize the linker stubs BFD so that we can use it for linker
459    created dynamic sections.  */
460 
461 void
elf32_hppa_init_stub_bfd(bfd * abfd,struct bfd_link_info * info)462 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
463 {
464   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
465 
466   elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
467   htab->etab.dynobj = abfd;
468 }
469 
470 /* Build a name for an entry in the stub hash table.  */
471 
472 static char *
hppa_stub_name(const asection * input_section,const asection * sym_sec,const struct elf32_hppa_link_hash_entry * hh,const Elf_Internal_Rela * rela)473 hppa_stub_name (const asection *input_section,
474 		const asection *sym_sec,
475 		const struct elf32_hppa_link_hash_entry *hh,
476 		const Elf_Internal_Rela *rela)
477 {
478   char *stub_name;
479   bfd_size_type len;
480 
481   if (hh)
482     {
483       len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
484       stub_name = bfd_malloc (len);
485       if (stub_name != NULL)
486 	sprintf (stub_name, "%08x_%s+%x",
487 		 input_section->id & 0xffffffff,
488 		 hh_name (hh),
489 		 (int) rela->r_addend & 0xffffffff);
490     }
491   else
492     {
493       len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
494       stub_name = bfd_malloc (len);
495       if (stub_name != NULL)
496 	sprintf (stub_name, "%08x_%x:%x+%x",
497 		 input_section->id & 0xffffffff,
498 		 sym_sec->id & 0xffffffff,
499 		 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
500 		 (int) rela->r_addend & 0xffffffff);
501     }
502   return stub_name;
503 }
504 
505 /* Look up an entry in the stub hash.  Stub entries are cached because
506    creating the stub name takes a bit of time.  */
507 
508 static struct elf32_hppa_stub_hash_entry *
hppa_get_stub_entry(const asection * input_section,const asection * sym_sec,struct elf32_hppa_link_hash_entry * hh,const Elf_Internal_Rela * rela,struct elf32_hppa_link_hash_table * htab)509 hppa_get_stub_entry (const asection *input_section,
510 		     const asection *sym_sec,
511 		     struct elf32_hppa_link_hash_entry *hh,
512 		     const Elf_Internal_Rela *rela,
513 		     struct elf32_hppa_link_hash_table *htab)
514 {
515   struct elf32_hppa_stub_hash_entry *hsh_entry;
516   const asection *id_sec;
517 
518   /* If this input section is part of a group of sections sharing one
519      stub section, then use the id of the first section in the group.
520      Stub names need to include a section id, as there may well be
521      more than one stub used to reach say, printf, and we need to
522      distinguish between them.  */
523   id_sec = htab->stub_group[input_section->id].link_sec;
524 
525   if (hh != NULL && hh->hsh_cache != NULL
526       && hh->hsh_cache->hh == hh
527       && hh->hsh_cache->id_sec == id_sec)
528     {
529       hsh_entry = hh->hsh_cache;
530     }
531   else
532     {
533       char *stub_name;
534 
535       stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
536       if (stub_name == NULL)
537 	return NULL;
538 
539       hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
540 					  stub_name, FALSE, FALSE);
541       if (hh != NULL)
542 	hh->hsh_cache = hsh_entry;
543 
544       free (stub_name);
545     }
546 
547   return hsh_entry;
548 }
549 
550 /* Add a new stub entry to the stub hash.  Not all fields of the new
551    stub entry are initialised.  */
552 
553 static struct elf32_hppa_stub_hash_entry *
hppa_add_stub(const char * stub_name,asection * section,struct elf32_hppa_link_hash_table * htab)554 hppa_add_stub (const char *stub_name,
555 	       asection *section,
556 	       struct elf32_hppa_link_hash_table *htab)
557 {
558   asection *link_sec;
559   asection *stub_sec;
560   struct elf32_hppa_stub_hash_entry *hsh;
561 
562   link_sec = htab->stub_group[section->id].link_sec;
563   stub_sec = htab->stub_group[section->id].stub_sec;
564   if (stub_sec == NULL)
565     {
566       stub_sec = htab->stub_group[link_sec->id].stub_sec;
567       if (stub_sec == NULL)
568 	{
569 	  size_t namelen;
570 	  bfd_size_type len;
571 	  char *s_name;
572 
573 	  namelen = strlen (link_sec->name);
574 	  len = namelen + sizeof (STUB_SUFFIX);
575 	  s_name = bfd_alloc (htab->stub_bfd, len);
576 	  if (s_name == NULL)
577 	    return NULL;
578 
579 	  memcpy (s_name, link_sec->name, namelen);
580 	  memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
581 	  stub_sec = (*htab->add_stub_section) (s_name, link_sec);
582 	  if (stub_sec == NULL)
583 	    return NULL;
584 	  htab->stub_group[link_sec->id].stub_sec = stub_sec;
585 	}
586       htab->stub_group[section->id].stub_sec = stub_sec;
587     }
588 
589   /* Enter this entry into the linker stub hash table.  */
590   hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
591 				      TRUE, FALSE);
592   if (hsh == NULL)
593     {
594       (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
595 			     section->owner,
596 			     stub_name);
597       return NULL;
598     }
599 
600   hsh->stub_sec = stub_sec;
601   hsh->stub_offset = 0;
602   hsh->id_sec = link_sec;
603   return hsh;
604 }
605 
606 /* Determine the type of stub needed, if any, for a call.  */
607 
608 static enum elf32_hppa_stub_type
hppa_type_of_stub(asection * input_sec,const Elf_Internal_Rela * rela,struct elf32_hppa_link_hash_entry * hh,bfd_vma destination,struct bfd_link_info * info)609 hppa_type_of_stub (asection *input_sec,
610 		   const Elf_Internal_Rela *rela,
611 		   struct elf32_hppa_link_hash_entry *hh,
612 		   bfd_vma destination,
613 		   struct bfd_link_info *info)
614 {
615   bfd_vma location;
616   bfd_vma branch_offset;
617   bfd_vma max_branch_offset;
618   unsigned int r_type;
619 
620   if (hh != NULL
621       && hh->eh.plt.offset != (bfd_vma) -1
622       && hh->eh.dynindx != -1
623       && !hh->plabel
624       && (bfd_link_pic (info)
625 	  || !hh->eh.def_regular
626 	  || hh->eh.root.type == bfd_link_hash_defweak))
627     {
628       /* We need an import stub.  Decide between hppa_stub_import
629 	 and hppa_stub_import_shared later.  */
630       return hppa_stub_import;
631     }
632 
633   /* Determine where the call point is.  */
634   location = (input_sec->output_offset
635 	      + input_sec->output_section->vma
636 	      + rela->r_offset);
637 
638   branch_offset = destination - location - 8;
639   r_type = ELF32_R_TYPE (rela->r_info);
640 
641   /* Determine if a long branch stub is needed.  parisc branch offsets
642      are relative to the second instruction past the branch, ie. +8
643      bytes on from the branch instruction location.  The offset is
644      signed and counts in units of 4 bytes.  */
645   if (r_type == (unsigned int) R_PARISC_PCREL17F)
646     max_branch_offset = (1 << (17 - 1)) << 2;
647 
648   else if (r_type == (unsigned int) R_PARISC_PCREL12F)
649     max_branch_offset = (1 << (12 - 1)) << 2;
650 
651   else /* R_PARISC_PCREL22F.  */
652     max_branch_offset = (1 << (22 - 1)) << 2;
653 
654   if (branch_offset + max_branch_offset >= 2*max_branch_offset)
655     return hppa_stub_long_branch;
656 
657   return hppa_stub_none;
658 }
659 
660 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
661    IN_ARG contains the link info pointer.  */
662 
663 #define LDIL_R1		0x20200000	/* ldil  LR'XXX,%r1		*/
664 #define BE_SR4_R1	0xe0202002	/* be,n  RR'XXX(%sr4,%r1)	*/
665 
666 #define BL_R1		0xe8200000	/* b,l   .+8,%r1		*/
667 #define ADDIL_R1	0x28200000	/* addil LR'XXX,%r1,%r1		*/
668 #define DEPI_R1		0xd4201c1e	/* depi  0,31,2,%r1		*/
669 
670 #define ADDIL_DP	0x2b600000	/* addil LR'XXX,%dp,%r1		*/
671 #define LDW_R1_R21	0x48350000	/* ldw   RR'XXX(%sr0,%r1),%r21	*/
672 #define BV_R0_R21	0xeaa0c000	/* bv    %r0(%r21)		*/
673 #define LDW_R1_R19	0x48330000	/* ldw   RR'XXX(%sr0,%r1),%r19	*/
674 
675 #define ADDIL_R19	0x2a600000	/* addil LR'XXX,%r19,%r1	*/
676 #define LDW_R1_DP	0x483b0000	/* ldw   RR'XXX(%sr0,%r1),%dp	*/
677 
678 #define LDSID_R21_R1	0x02a010a1	/* ldsid (%sr0,%r21),%r1	*/
679 #define MTSP_R1		0x00011820	/* mtsp  %r1,%sr0		*/
680 #define BE_SR0_R21	0xe2a00000	/* be    0(%sr0,%r21)		*/
681 #define STW_RP		0x6bc23fd1	/* stw   %rp,-24(%sr0,%sp)	*/
682 
683 #define BL22_RP		0xe800a002	/* b,l,n XXX,%rp		*/
684 #define BL_RP		0xe8400002	/* b,l,n XXX,%rp		*/
685 #define NOP		0x08000240	/* nop				*/
686 #define LDW_RP		0x4bc23fd1	/* ldw   -24(%sr0,%sp),%rp	*/
687 #define LDSID_RP_R1	0x004010a1	/* ldsid (%sr0,%rp),%r1		*/
688 #define BE_SR0_RP	0xe0400002	/* be,n  0(%sr0,%rp)		*/
689 
690 #ifndef R19_STUBS
691 #define R19_STUBS 1
692 #endif
693 
694 #if R19_STUBS
695 #define LDW_R1_DLT	LDW_R1_R19
696 #else
697 #define LDW_R1_DLT	LDW_R1_DP
698 #endif
699 
700 static bfd_boolean
hppa_build_one_stub(struct bfd_hash_entry * bh,void * in_arg)701 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
702 {
703   struct elf32_hppa_stub_hash_entry *hsh;
704   struct bfd_link_info *info;
705   struct elf32_hppa_link_hash_table *htab;
706   asection *stub_sec;
707   bfd *stub_bfd;
708   bfd_byte *loc;
709   bfd_vma sym_value;
710   bfd_vma insn;
711   bfd_vma off;
712   int val;
713   int size;
714 
715   /* Massage our args to the form they really have.  */
716   hsh = hppa_stub_hash_entry (bh);
717   info = (struct bfd_link_info *)in_arg;
718 
719   htab = hppa_link_hash_table (info);
720   if (htab == NULL)
721     return FALSE;
722 
723   stub_sec = hsh->stub_sec;
724 
725   /* Make a note of the offset within the stubs for this entry.  */
726   hsh->stub_offset = stub_sec->size;
727   loc = stub_sec->contents + hsh->stub_offset;
728 
729   stub_bfd = stub_sec->owner;
730 
731   switch (hsh->stub_type)
732     {
733     case hppa_stub_long_branch:
734       /* Create the long branch.  A long branch is formed with "ldil"
735 	 loading the upper bits of the target address into a register,
736 	 then branching with "be" which adds in the lower bits.
737 	 The "be" has its delay slot nullified.  */
738       sym_value = (hsh->target_value
739 		   + hsh->target_section->output_offset
740 		   + hsh->target_section->output_section->vma);
741 
742       val = hppa_field_adjust (sym_value, 0, e_lrsel);
743       insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
744       bfd_put_32 (stub_bfd, insn, loc);
745 
746       val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
747       insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
748       bfd_put_32 (stub_bfd, insn, loc + 4);
749 
750       size = 8;
751       break;
752 
753     case hppa_stub_long_branch_shared:
754       /* Branches are relative.  This is where we are going to.  */
755       sym_value = (hsh->target_value
756 		   + hsh->target_section->output_offset
757 		   + hsh->target_section->output_section->vma);
758 
759       /* And this is where we are coming from, more or less.  */
760       sym_value -= (hsh->stub_offset
761 		    + stub_sec->output_offset
762 		    + stub_sec->output_section->vma);
763 
764       bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
765       val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
766       insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
767       bfd_put_32 (stub_bfd, insn, loc + 4);
768 
769       val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
770       insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
771       bfd_put_32 (stub_bfd, insn, loc + 8);
772       size = 12;
773       break;
774 
775     case hppa_stub_import:
776     case hppa_stub_import_shared:
777       off = hsh->hh->eh.plt.offset;
778       if (off >= (bfd_vma) -2)
779 	abort ();
780 
781       off &= ~ (bfd_vma) 1;
782       sym_value = (off
783 		   + htab->splt->output_offset
784 		   + htab->splt->output_section->vma
785 		   - elf_gp (htab->splt->output_section->owner));
786 
787       insn = ADDIL_DP;
788 #if R19_STUBS
789       if (hsh->stub_type == hppa_stub_import_shared)
790 	insn = ADDIL_R19;
791 #endif
792       val = hppa_field_adjust (sym_value, 0, e_lrsel),
793       insn = hppa_rebuild_insn ((int) insn, val, 21);
794       bfd_put_32 (stub_bfd, insn, loc);
795 
796       /* It is critical to use lrsel/rrsel here because we are using
797 	 two different offsets (+0 and +4) from sym_value.  If we use
798 	 lsel/rsel then with unfortunate sym_values we will round
799 	 sym_value+4 up to the next 2k block leading to a mis-match
800 	 between the lsel and rsel value.  */
801       val = hppa_field_adjust (sym_value, 0, e_rrsel);
802       insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
803       bfd_put_32 (stub_bfd, insn, loc + 4);
804 
805       if (htab->multi_subspace)
806 	{
807 	  val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
808 	  insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
809 	  bfd_put_32 (stub_bfd, insn, loc + 8);
810 
811 	  bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
812 	  bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1,      loc + 16);
813 	  bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21,   loc + 20);
814 	  bfd_put_32 (stub_bfd, (bfd_vma) STW_RP,       loc + 24);
815 
816 	  size = 28;
817 	}
818       else
819 	{
820 	  bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
821 	  val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
822 	  insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
823 	  bfd_put_32 (stub_bfd, insn, loc + 12);
824 
825 	  size = 16;
826 	}
827 
828       break;
829 
830     case hppa_stub_export:
831       /* Branches are relative.  This is where we are going to.  */
832       sym_value = (hsh->target_value
833 		   + hsh->target_section->output_offset
834 		   + hsh->target_section->output_section->vma);
835 
836       /* And this is where we are coming from.  */
837       sym_value -= (hsh->stub_offset
838 		    + stub_sec->output_offset
839 		    + stub_sec->output_section->vma);
840 
841       if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
842 	  && (!htab->has_22bit_branch
843 	      || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
844 	{
845 	  (*_bfd_error_handler)
846 	    (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
847 	     hsh->target_section->owner,
848 	     stub_sec,
849 	     (long) hsh->stub_offset,
850 	     hsh->bh_root.string);
851 	  bfd_set_error (bfd_error_bad_value);
852 	  return FALSE;
853 	}
854 
855       val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
856       if (!htab->has_22bit_branch)
857 	insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
858       else
859 	insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
860       bfd_put_32 (stub_bfd, insn, loc);
861 
862       bfd_put_32 (stub_bfd, (bfd_vma) NOP,         loc + 4);
863       bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP,      loc + 8);
864       bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
865       bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1,     loc + 16);
866       bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP,   loc + 20);
867 
868       /* Point the function symbol at the stub.  */
869       hsh->hh->eh.root.u.def.section = stub_sec;
870       hsh->hh->eh.root.u.def.value = stub_sec->size;
871 
872       size = 24;
873       break;
874 
875     default:
876       BFD_FAIL ();
877       return FALSE;
878     }
879 
880   stub_sec->size += size;
881   return TRUE;
882 }
883 
884 #undef LDIL_R1
885 #undef BE_SR4_R1
886 #undef BL_R1
887 #undef ADDIL_R1
888 #undef DEPI_R1
889 #undef LDW_R1_R21
890 #undef LDW_R1_DLT
891 #undef LDW_R1_R19
892 #undef ADDIL_R19
893 #undef LDW_R1_DP
894 #undef LDSID_R21_R1
895 #undef MTSP_R1
896 #undef BE_SR0_R21
897 #undef STW_RP
898 #undef BV_R0_R21
899 #undef BL_RP
900 #undef NOP
901 #undef LDW_RP
902 #undef LDSID_RP_R1
903 #undef BE_SR0_RP
904 
905 /* As above, but don't actually build the stub.  Just bump offset so
906    we know stub section sizes.  */
907 
908 static bfd_boolean
hppa_size_one_stub(struct bfd_hash_entry * bh,void * in_arg)909 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
910 {
911   struct elf32_hppa_stub_hash_entry *hsh;
912   struct elf32_hppa_link_hash_table *htab;
913   int size;
914 
915   /* Massage our args to the form they really have.  */
916   hsh = hppa_stub_hash_entry (bh);
917   htab = in_arg;
918 
919   if (hsh->stub_type == hppa_stub_long_branch)
920     size = 8;
921   else if (hsh->stub_type == hppa_stub_long_branch_shared)
922     size = 12;
923   else if (hsh->stub_type == hppa_stub_export)
924     size = 24;
925   else /* hppa_stub_import or hppa_stub_import_shared.  */
926     {
927       if (htab->multi_subspace)
928 	size = 28;
929       else
930 	size = 16;
931     }
932 
933   hsh->stub_sec->size += size;
934   return TRUE;
935 }
936 
937 /* Return nonzero if ABFD represents an HPPA ELF32 file.
938    Additionally we set the default architecture and machine.  */
939 
940 static bfd_boolean
elf32_hppa_object_p(bfd * abfd)941 elf32_hppa_object_p (bfd *abfd)
942 {
943   Elf_Internal_Ehdr * i_ehdrp;
944   unsigned int flags;
945 
946   i_ehdrp = elf_elfheader (abfd);
947   if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
948     {
949       /* GCC on hppa-linux produces binaries with OSABI=GNU,
950 	 but the kernel produces corefiles with OSABI=SysV.  */
951       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
952 	  i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
953 	return FALSE;
954     }
955   else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
956     {
957       /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
958 	 but the kernel produces corefiles with OSABI=SysV.  */
959       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
960 	  i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
961 	return FALSE;
962     }
963   else
964     {
965       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
966 	return FALSE;
967     }
968 
969   flags = i_ehdrp->e_flags;
970   switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
971     {
972     case EFA_PARISC_1_0:
973       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
974     case EFA_PARISC_1_1:
975       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
976     case EFA_PARISC_2_0:
977       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
978     case EFA_PARISC_2_0 | EF_PARISC_WIDE:
979       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
980     }
981   return TRUE;
982 }
983 
984 /* Create the .plt and .got sections, and set up our hash table
985    short-cuts to various dynamic sections.  */
986 
987 static bfd_boolean
elf32_hppa_create_dynamic_sections(bfd * abfd,struct bfd_link_info * info)988 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
989 {
990   struct elf32_hppa_link_hash_table *htab;
991   struct elf_link_hash_entry *eh;
992 
993   /* Don't try to create the .plt and .got twice.  */
994   htab = hppa_link_hash_table (info);
995   if (htab == NULL)
996     return FALSE;
997   if (htab->splt != NULL)
998     return TRUE;
999 
1000   /* Call the generic code to do most of the work.  */
1001   if (! _bfd_elf_create_dynamic_sections (abfd, info))
1002     return FALSE;
1003 
1004   htab->splt = bfd_get_linker_section (abfd, ".plt");
1005   htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
1006 
1007   htab->sgot = bfd_get_linker_section (abfd, ".got");
1008   htab->srelgot = bfd_get_linker_section (abfd, ".rela.got");
1009 
1010   htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
1011   htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
1012 
1013   /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1014      application, because __canonicalize_funcptr_for_compare needs it.  */
1015   eh = elf_hash_table (info)->hgot;
1016   eh->forced_local = 0;
1017   eh->other = STV_DEFAULT;
1018   return bfd_elf_link_record_dynamic_symbol (info, eh);
1019 }
1020 
1021 /* Copy the extra info we tack onto an elf_link_hash_entry.  */
1022 
1023 static void
elf32_hppa_copy_indirect_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * eh_dir,struct elf_link_hash_entry * eh_ind)1024 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1025 				 struct elf_link_hash_entry *eh_dir,
1026 				 struct elf_link_hash_entry *eh_ind)
1027 {
1028   struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1029 
1030   hh_dir = hppa_elf_hash_entry (eh_dir);
1031   hh_ind = hppa_elf_hash_entry (eh_ind);
1032 
1033   if (hh_ind->dyn_relocs != NULL)
1034     {
1035       if (hh_dir->dyn_relocs != NULL)
1036 	{
1037 	  struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1038 	  struct elf32_hppa_dyn_reloc_entry *hdh_p;
1039 
1040 	  /* Add reloc counts against the indirect sym to the direct sym
1041 	     list.  Merge any entries against the same section.  */
1042 	  for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1043 	    {
1044 	      struct elf32_hppa_dyn_reloc_entry *hdh_q;
1045 
1046 	      for (hdh_q = hh_dir->dyn_relocs;
1047 		   hdh_q != NULL;
1048 		   hdh_q = hdh_q->hdh_next)
1049 		if (hdh_q->sec == hdh_p->sec)
1050 		  {
1051 #if RELATIVE_DYNRELOCS
1052 		    hdh_q->relative_count += hdh_p->relative_count;
1053 #endif
1054 		    hdh_q->count += hdh_p->count;
1055 		    *hdh_pp = hdh_p->hdh_next;
1056 		    break;
1057 		  }
1058 	      if (hdh_q == NULL)
1059 		hdh_pp = &hdh_p->hdh_next;
1060 	    }
1061 	  *hdh_pp = hh_dir->dyn_relocs;
1062 	}
1063 
1064       hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1065       hh_ind->dyn_relocs = NULL;
1066     }
1067 
1068   if (ELIMINATE_COPY_RELOCS
1069       && eh_ind->root.type != bfd_link_hash_indirect
1070       && eh_dir->dynamic_adjusted)
1071     {
1072       /* If called to transfer flags for a weakdef during processing
1073 	 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1074 	 We clear it ourselves for ELIMINATE_COPY_RELOCS.  */
1075       eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1076       eh_dir->ref_regular |= eh_ind->ref_regular;
1077       eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1078       eh_dir->needs_plt |= eh_ind->needs_plt;
1079     }
1080   else
1081     {
1082       if (eh_ind->root.type == bfd_link_hash_indirect
1083           && eh_dir->got.refcount <= 0)
1084         {
1085           hh_dir->tls_type = hh_ind->tls_type;
1086           hh_ind->tls_type = GOT_UNKNOWN;
1087         }
1088 
1089       _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1090     }
1091 }
1092 
1093 static int
elf32_hppa_optimized_tls_reloc(struct bfd_link_info * info ATTRIBUTE_UNUSED,int r_type,int is_local ATTRIBUTE_UNUSED)1094 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1095 				int r_type, int is_local ATTRIBUTE_UNUSED)
1096 {
1097   /* For now we don't support linker optimizations.  */
1098   return r_type;
1099 }
1100 
1101 /* Return a pointer to the local GOT, PLT and TLS reference counts
1102    for ABFD.  Returns NULL if the storage allocation fails.  */
1103 
1104 static bfd_signed_vma *
hppa32_elf_local_refcounts(bfd * abfd)1105 hppa32_elf_local_refcounts (bfd *abfd)
1106 {
1107   Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1108   bfd_signed_vma *local_refcounts;
1109 
1110   local_refcounts = elf_local_got_refcounts (abfd);
1111   if (local_refcounts == NULL)
1112     {
1113       bfd_size_type size;
1114 
1115       /* Allocate space for local GOT and PLT reference
1116 	 counts.  Done this way to save polluting elf_obj_tdata
1117 	 with another target specific pointer.  */
1118       size = symtab_hdr->sh_info;
1119       size *= 2 * sizeof (bfd_signed_vma);
1120       /* Add in space to store the local GOT TLS types.  */
1121       size += symtab_hdr->sh_info;
1122       local_refcounts = bfd_zalloc (abfd, size);
1123       if (local_refcounts == NULL)
1124 	return NULL;
1125       elf_local_got_refcounts (abfd) = local_refcounts;
1126       memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1127 	      symtab_hdr->sh_info);
1128     }
1129   return local_refcounts;
1130 }
1131 
1132 
1133 /* Look through the relocs for a section during the first phase, and
1134    calculate needed space in the global offset table, procedure linkage
1135    table, and dynamic reloc sections.  At this point we haven't
1136    necessarily read all the input files.  */
1137 
1138 static bfd_boolean
elf32_hppa_check_relocs(bfd * abfd,struct bfd_link_info * info,asection * sec,const Elf_Internal_Rela * relocs)1139 elf32_hppa_check_relocs (bfd *abfd,
1140 			 struct bfd_link_info *info,
1141 			 asection *sec,
1142 			 const Elf_Internal_Rela *relocs)
1143 {
1144   Elf_Internal_Shdr *symtab_hdr;
1145   struct elf_link_hash_entry **eh_syms;
1146   const Elf_Internal_Rela *rela;
1147   const Elf_Internal_Rela *rela_end;
1148   struct elf32_hppa_link_hash_table *htab;
1149   asection *sreloc;
1150   int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1151 
1152   if (bfd_link_relocatable (info))
1153     return TRUE;
1154 
1155   htab = hppa_link_hash_table (info);
1156   if (htab == NULL)
1157     return FALSE;
1158   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1159   eh_syms = elf_sym_hashes (abfd);
1160   sreloc = NULL;
1161 
1162   rela_end = relocs + sec->reloc_count;
1163   for (rela = relocs; rela < rela_end; rela++)
1164     {
1165       enum {
1166 	NEED_GOT = 1,
1167 	NEED_PLT = 2,
1168 	NEED_DYNREL = 4,
1169 	PLT_PLABEL = 8
1170       };
1171 
1172       unsigned int r_symndx, r_type;
1173       struct elf32_hppa_link_hash_entry *hh;
1174       int need_entry = 0;
1175 
1176       r_symndx = ELF32_R_SYM (rela->r_info);
1177 
1178       if (r_symndx < symtab_hdr->sh_info)
1179 	hh = NULL;
1180       else
1181 	{
1182 	  hh =  hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1183 	  while (hh->eh.root.type == bfd_link_hash_indirect
1184 		 || hh->eh.root.type == bfd_link_hash_warning)
1185 	    hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1186 
1187 	  /* PR15323, ref flags aren't set for references in the same
1188 	     object.  */
1189 	  hh->eh.root.non_ir_ref = 1;
1190 	}
1191 
1192       r_type = ELF32_R_TYPE (rela->r_info);
1193       r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1194 
1195       switch (r_type)
1196 	{
1197 	case R_PARISC_DLTIND14F:
1198 	case R_PARISC_DLTIND14R:
1199 	case R_PARISC_DLTIND21L:
1200 	  /* This symbol requires a global offset table entry.  */
1201 	  need_entry = NEED_GOT;
1202 	  break;
1203 
1204 	case R_PARISC_PLABEL14R: /* "Official" procedure labels.  */
1205 	case R_PARISC_PLABEL21L:
1206 	case R_PARISC_PLABEL32:
1207 	  /* If the addend is non-zero, we break badly.  */
1208 	  if (rela->r_addend != 0)
1209 	    abort ();
1210 
1211 	  /* If we are creating a shared library, then we need to
1212 	     create a PLT entry for all PLABELs, because PLABELs with
1213 	     local symbols may be passed via a pointer to another
1214 	     object.  Additionally, output a dynamic relocation
1215 	     pointing to the PLT entry.
1216 
1217 	     For executables, the original 32-bit ABI allowed two
1218 	     different styles of PLABELs (function pointers):  For
1219 	     global functions, the PLABEL word points into the .plt
1220 	     two bytes past a (function address, gp) pair, and for
1221 	     local functions the PLABEL points directly at the
1222 	     function.  The magic +2 for the first type allows us to
1223 	     differentiate between the two.  As you can imagine, this
1224 	     is a real pain when it comes to generating code to call
1225 	     functions indirectly or to compare function pointers.
1226 	     We avoid the mess by always pointing a PLABEL into the
1227 	     .plt, even for local functions.  */
1228 	  need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1229 	  break;
1230 
1231 	case R_PARISC_PCREL12F:
1232 	  htab->has_12bit_branch = 1;
1233 	  goto branch_common;
1234 
1235 	case R_PARISC_PCREL17C:
1236 	case R_PARISC_PCREL17F:
1237 	  htab->has_17bit_branch = 1;
1238 	  goto branch_common;
1239 
1240 	case R_PARISC_PCREL22F:
1241 	  htab->has_22bit_branch = 1;
1242 	branch_common:
1243 	  /* Function calls might need to go through the .plt, and
1244 	     might require long branch stubs.  */
1245 	  if (hh == NULL)
1246 	    {
1247 	      /* We know local syms won't need a .plt entry, and if
1248 		 they need a long branch stub we can't guarantee that
1249 		 we can reach the stub.  So just flag an error later
1250 		 if we're doing a shared link and find we need a long
1251 		 branch stub.  */
1252 	      continue;
1253 	    }
1254 	  else
1255 	    {
1256 	      /* Global symbols will need a .plt entry if they remain
1257 		 global, and in most cases won't need a long branch
1258 		 stub.  Unfortunately, we have to cater for the case
1259 		 where a symbol is forced local by versioning, or due
1260 		 to symbolic linking, and we lose the .plt entry.  */
1261 	      need_entry = NEED_PLT;
1262 	      if (hh->eh.type == STT_PARISC_MILLI)
1263 		need_entry = 0;
1264 	    }
1265 	  break;
1266 
1267 	case R_PARISC_SEGBASE:  /* Used to set segment base.  */
1268 	case R_PARISC_SEGREL32: /* Relative reloc, used for unwind.  */
1269 	case R_PARISC_PCREL14F: /* PC relative load/store.  */
1270 	case R_PARISC_PCREL14R:
1271 	case R_PARISC_PCREL17R: /* External branches.  */
1272 	case R_PARISC_PCREL21L: /* As above, and for load/store too.  */
1273 	case R_PARISC_PCREL32:
1274 	  /* We don't need to propagate the relocation if linking a
1275 	     shared object since these are section relative.  */
1276 	  continue;
1277 
1278 	case R_PARISC_DPREL14F: /* Used for gp rel data load/store.  */
1279 	case R_PARISC_DPREL14R:
1280 	case R_PARISC_DPREL21L:
1281 	  if (bfd_link_pic (info))
1282 	    {
1283 	      (*_bfd_error_handler)
1284 		(_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1285 		 abfd,
1286 		 elf_hppa_howto_table[r_type].name);
1287 	      bfd_set_error (bfd_error_bad_value);
1288 	      return FALSE;
1289 	    }
1290 	  /* Fall through.  */
1291 
1292 	case R_PARISC_DIR17F: /* Used for external branches.  */
1293 	case R_PARISC_DIR17R:
1294 	case R_PARISC_DIR14F: /* Used for load/store from absolute locn.  */
1295 	case R_PARISC_DIR14R:
1296 	case R_PARISC_DIR21L: /* As above, and for ext branches too.  */
1297 	case R_PARISC_DIR32: /* .word relocs.  */
1298 	  /* We may want to output a dynamic relocation later.  */
1299 	  need_entry = NEED_DYNREL;
1300 	  break;
1301 
1302 	  /* This relocation describes the C++ object vtable hierarchy.
1303 	     Reconstruct it for later use during GC.  */
1304 	case R_PARISC_GNU_VTINHERIT:
1305 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1306 	    return FALSE;
1307 	  continue;
1308 
1309 	  /* This relocation describes which C++ vtable entries are actually
1310 	     used.  Record for later use during GC.  */
1311 	case R_PARISC_GNU_VTENTRY:
1312 	  BFD_ASSERT (hh != NULL);
1313 	  if (hh != NULL
1314 	      && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1315 	    return FALSE;
1316 	  continue;
1317 
1318 	case R_PARISC_TLS_GD21L:
1319 	case R_PARISC_TLS_GD14R:
1320 	case R_PARISC_TLS_LDM21L:
1321 	case R_PARISC_TLS_LDM14R:
1322 	  need_entry = NEED_GOT;
1323 	  break;
1324 
1325 	case R_PARISC_TLS_IE21L:
1326 	case R_PARISC_TLS_IE14R:
1327 	  if (bfd_link_pic (info))
1328             info->flags |= DF_STATIC_TLS;
1329 	  need_entry = NEED_GOT;
1330 	  break;
1331 
1332 	default:
1333 	  continue;
1334 	}
1335 
1336       /* Now carry out our orders.  */
1337       if (need_entry & NEED_GOT)
1338 	{
1339 	  switch (r_type)
1340 	    {
1341 	    default:
1342 	      tls_type = GOT_NORMAL;
1343 	      break;
1344 	    case R_PARISC_TLS_GD21L:
1345 	    case R_PARISC_TLS_GD14R:
1346 	      tls_type |= GOT_TLS_GD;
1347 	      break;
1348 	    case R_PARISC_TLS_LDM21L:
1349 	    case R_PARISC_TLS_LDM14R:
1350 	      tls_type |= GOT_TLS_LDM;
1351 	      break;
1352 	    case R_PARISC_TLS_IE21L:
1353 	    case R_PARISC_TLS_IE14R:
1354 	      tls_type |= GOT_TLS_IE;
1355 	      break;
1356 	    }
1357 
1358 	  /* Allocate space for a GOT entry, as well as a dynamic
1359 	     relocation for this entry.  */
1360 	  if (htab->sgot == NULL)
1361 	    {
1362 	      if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1363 		return FALSE;
1364 	    }
1365 
1366 	  if (r_type == R_PARISC_TLS_LDM21L
1367 	      || r_type == R_PARISC_TLS_LDM14R)
1368 	    htab->tls_ldm_got.refcount += 1;
1369 	  else
1370 	    {
1371 	      if (hh != NULL)
1372 	        {
1373 	          hh->eh.got.refcount += 1;
1374 	          old_tls_type = hh->tls_type;
1375 	        }
1376 	      else
1377 	        {
1378 	          bfd_signed_vma *local_got_refcounts;
1379 
1380 	          /* This is a global offset table entry for a local symbol.  */
1381 	          local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1382 	          if (local_got_refcounts == NULL)
1383 		    return FALSE;
1384 	          local_got_refcounts[r_symndx] += 1;
1385 
1386 	          old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1387 	        }
1388 
1389 	      tls_type |= old_tls_type;
1390 
1391 	      if (old_tls_type != tls_type)
1392 	        {
1393 	          if (hh != NULL)
1394 		    hh->tls_type = tls_type;
1395 	          else
1396 		    hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1397 	        }
1398 
1399 	    }
1400 	}
1401 
1402       if (need_entry & NEED_PLT)
1403 	{
1404 	  /* If we are creating a shared library, and this is a reloc
1405 	     against a weak symbol or a global symbol in a dynamic
1406 	     object, then we will be creating an import stub and a
1407 	     .plt entry for the symbol.  Similarly, on a normal link
1408 	     to symbols defined in a dynamic object we'll need the
1409 	     import stub and a .plt entry.  We don't know yet whether
1410 	     the symbol is defined or not, so make an entry anyway and
1411 	     clean up later in adjust_dynamic_symbol.  */
1412 	  if ((sec->flags & SEC_ALLOC) != 0)
1413 	    {
1414 	      if (hh != NULL)
1415 		{
1416 		  hh->eh.needs_plt = 1;
1417 		  hh->eh.plt.refcount += 1;
1418 
1419 		  /* If this .plt entry is for a plabel, mark it so
1420 		     that adjust_dynamic_symbol will keep the entry
1421 		     even if it appears to be local.  */
1422 		  if (need_entry & PLT_PLABEL)
1423 		    hh->plabel = 1;
1424 		}
1425 	      else if (need_entry & PLT_PLABEL)
1426 		{
1427 		  bfd_signed_vma *local_got_refcounts;
1428 		  bfd_signed_vma *local_plt_refcounts;
1429 
1430 		  local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1431 		  if (local_got_refcounts == NULL)
1432 		    return FALSE;
1433 		  local_plt_refcounts = (local_got_refcounts
1434 					 + symtab_hdr->sh_info);
1435 		  local_plt_refcounts[r_symndx] += 1;
1436 		}
1437 	    }
1438 	}
1439 
1440       if (need_entry & NEED_DYNREL)
1441 	{
1442 	  /* Flag this symbol as having a non-got, non-plt reference
1443 	     so that we generate copy relocs if it turns out to be
1444 	     dynamic.  */
1445 	  if (hh != NULL && !bfd_link_pic (info))
1446 	    hh->eh.non_got_ref = 1;
1447 
1448 	  /* If we are creating a shared library then we need to copy
1449 	     the reloc into the shared library.  However, if we are
1450 	     linking with -Bsymbolic, we need only copy absolute
1451 	     relocs or relocs against symbols that are not defined in
1452 	     an object we are including in the link.  PC- or DP- or
1453 	     DLT-relative relocs against any local sym or global sym
1454 	     with DEF_REGULAR set, can be discarded.  At this point we
1455 	     have not seen all the input files, so it is possible that
1456 	     DEF_REGULAR is not set now but will be set later (it is
1457 	     never cleared).  We account for that possibility below by
1458 	     storing information in the dyn_relocs field of the
1459 	     hash table entry.
1460 
1461 	     A similar situation to the -Bsymbolic case occurs when
1462 	     creating shared libraries and symbol visibility changes
1463 	     render the symbol local.
1464 
1465 	     As it turns out, all the relocs we will be creating here
1466 	     are absolute, so we cannot remove them on -Bsymbolic
1467 	     links or visibility changes anyway.  A STUB_REL reloc
1468 	     is absolute too, as in that case it is the reloc in the
1469 	     stub we will be creating, rather than copying the PCREL
1470 	     reloc in the branch.
1471 
1472 	     If on the other hand, we are creating an executable, we
1473 	     may need to keep relocations for symbols satisfied by a
1474 	     dynamic library if we manage to avoid copy relocs for the
1475 	     symbol.  */
1476 	  if ((bfd_link_pic (info)
1477 	       && (sec->flags & SEC_ALLOC) != 0
1478 	       && (IS_ABSOLUTE_RELOC (r_type)
1479 		   || (hh != NULL
1480 		       && (!SYMBOLIC_BIND (info, &hh->eh)
1481 			   || hh->eh.root.type == bfd_link_hash_defweak
1482 			   || !hh->eh.def_regular))))
1483 	      || (ELIMINATE_COPY_RELOCS
1484 		  && !bfd_link_pic (info)
1485 		  && (sec->flags & SEC_ALLOC) != 0
1486 		  && hh != NULL
1487 		  && (hh->eh.root.type == bfd_link_hash_defweak
1488 		      || !hh->eh.def_regular)))
1489 	    {
1490 	      struct elf32_hppa_dyn_reloc_entry *hdh_p;
1491 	      struct elf32_hppa_dyn_reloc_entry **hdh_head;
1492 
1493 	      /* Create a reloc section in dynobj and make room for
1494 		 this reloc.  */
1495 	      if (sreloc == NULL)
1496 		{
1497 		  sreloc = _bfd_elf_make_dynamic_reloc_section
1498 		    (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1499 
1500 		  if (sreloc == NULL)
1501 		    {
1502 		      bfd_set_error (bfd_error_bad_value);
1503 		      return FALSE;
1504 		    }
1505 		}
1506 
1507 	      /* If this is a global symbol, we count the number of
1508 		 relocations we need for this symbol.  */
1509 	      if (hh != NULL)
1510 		{
1511 		  hdh_head = &hh->dyn_relocs;
1512 		}
1513 	      else
1514 		{
1515 		  /* Track dynamic relocs needed for local syms too.
1516 		     We really need local syms available to do this
1517 		     easily.  Oh well.  */
1518 		  asection *sr;
1519 		  void *vpp;
1520 		  Elf_Internal_Sym *isym;
1521 
1522 		  isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1523 						abfd, r_symndx);
1524 		  if (isym == NULL)
1525 		    return FALSE;
1526 
1527 		  sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1528 		  if (sr == NULL)
1529 		    sr = sec;
1530 
1531 		  vpp = &elf_section_data (sr)->local_dynrel;
1532 		  hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1533 		}
1534 
1535 	      hdh_p = *hdh_head;
1536 	      if (hdh_p == NULL || hdh_p->sec != sec)
1537 		{
1538 		  hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1539 		  if (hdh_p == NULL)
1540 		    return FALSE;
1541 		  hdh_p->hdh_next = *hdh_head;
1542 		  *hdh_head = hdh_p;
1543 		  hdh_p->sec = sec;
1544 		  hdh_p->count = 0;
1545 #if RELATIVE_DYNRELOCS
1546 		  hdh_p->relative_count = 0;
1547 #endif
1548 		}
1549 
1550 	      hdh_p->count += 1;
1551 #if RELATIVE_DYNRELOCS
1552 	      if (!IS_ABSOLUTE_RELOC (rtype))
1553 		hdh_p->relative_count += 1;
1554 #endif
1555 	    }
1556 	}
1557     }
1558 
1559   return TRUE;
1560 }
1561 
1562 /* Return the section that should be marked against garbage collection
1563    for a given relocation.  */
1564 
1565 static asection *
elf32_hppa_gc_mark_hook(asection * sec,struct bfd_link_info * info,Elf_Internal_Rela * rela,struct elf_link_hash_entry * hh,Elf_Internal_Sym * sym)1566 elf32_hppa_gc_mark_hook (asection *sec,
1567 			 struct bfd_link_info *info,
1568 			 Elf_Internal_Rela *rela,
1569 			 struct elf_link_hash_entry *hh,
1570 			 Elf_Internal_Sym *sym)
1571 {
1572   if (hh != NULL)
1573     switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1574       {
1575       case R_PARISC_GNU_VTINHERIT:
1576       case R_PARISC_GNU_VTENTRY:
1577 	return NULL;
1578       }
1579 
1580   return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1581 }
1582 
1583 /* Update the got and plt entry reference counts for the section being
1584    removed.  */
1585 
1586 static bfd_boolean
elf32_hppa_gc_sweep_hook(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED,asection * sec,const Elf_Internal_Rela * relocs)1587 elf32_hppa_gc_sweep_hook (bfd *abfd,
1588 			  struct bfd_link_info *info ATTRIBUTE_UNUSED,
1589 			  asection *sec,
1590 			  const Elf_Internal_Rela *relocs)
1591 {
1592   Elf_Internal_Shdr *symtab_hdr;
1593   struct elf_link_hash_entry **eh_syms;
1594   bfd_signed_vma *local_got_refcounts;
1595   bfd_signed_vma *local_plt_refcounts;
1596   const Elf_Internal_Rela *rela, *relend;
1597   struct elf32_hppa_link_hash_table *htab;
1598 
1599   if (bfd_link_relocatable (info))
1600     return TRUE;
1601 
1602   htab = hppa_link_hash_table (info);
1603   if (htab == NULL)
1604     return FALSE;
1605 
1606   elf_section_data (sec)->local_dynrel = NULL;
1607 
1608   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1609   eh_syms = elf_sym_hashes (abfd);
1610   local_got_refcounts = elf_local_got_refcounts (abfd);
1611   local_plt_refcounts = local_got_refcounts;
1612   if (local_plt_refcounts != NULL)
1613     local_plt_refcounts += symtab_hdr->sh_info;
1614 
1615   relend = relocs + sec->reloc_count;
1616   for (rela = relocs; rela < relend; rela++)
1617     {
1618       unsigned long r_symndx;
1619       unsigned int r_type;
1620       struct elf_link_hash_entry *eh = NULL;
1621 
1622       r_symndx = ELF32_R_SYM (rela->r_info);
1623       if (r_symndx >= symtab_hdr->sh_info)
1624 	{
1625 	  struct elf32_hppa_link_hash_entry *hh;
1626 	  struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1627 	  struct elf32_hppa_dyn_reloc_entry *hdh_p;
1628 
1629 	  eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1630 	  while (eh->root.type == bfd_link_hash_indirect
1631 		 || eh->root.type == bfd_link_hash_warning)
1632 	    eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1633 	  hh = hppa_elf_hash_entry (eh);
1634 
1635 	  for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1636 	    if (hdh_p->sec == sec)
1637 	      {
1638 		/* Everything must go for SEC.  */
1639 		*hdh_pp = hdh_p->hdh_next;
1640 		break;
1641 	      }
1642 	}
1643 
1644       r_type = ELF32_R_TYPE (rela->r_info);
1645       r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1646 
1647       switch (r_type)
1648 	{
1649 	case R_PARISC_DLTIND14F:
1650 	case R_PARISC_DLTIND14R:
1651 	case R_PARISC_DLTIND21L:
1652 	case R_PARISC_TLS_GD21L:
1653 	case R_PARISC_TLS_GD14R:
1654 	case R_PARISC_TLS_IE21L:
1655 	case R_PARISC_TLS_IE14R:
1656 	  if (eh != NULL)
1657 	    {
1658 	      if (eh->got.refcount > 0)
1659 		eh->got.refcount -= 1;
1660 	    }
1661 	  else if (local_got_refcounts != NULL)
1662 	    {
1663 	      if (local_got_refcounts[r_symndx] > 0)
1664 		local_got_refcounts[r_symndx] -= 1;
1665 	    }
1666 	  break;
1667 
1668 	case R_PARISC_TLS_LDM21L:
1669 	case R_PARISC_TLS_LDM14R:
1670 	  htab->tls_ldm_got.refcount -= 1;
1671 	  break;
1672 
1673 	case R_PARISC_PCREL12F:
1674 	case R_PARISC_PCREL17C:
1675 	case R_PARISC_PCREL17F:
1676 	case R_PARISC_PCREL22F:
1677 	  if (eh != NULL)
1678 	    {
1679 	      if (eh->plt.refcount > 0)
1680 		eh->plt.refcount -= 1;
1681 	    }
1682 	  break;
1683 
1684 	case R_PARISC_PLABEL14R:
1685 	case R_PARISC_PLABEL21L:
1686 	case R_PARISC_PLABEL32:
1687 	  if (eh != NULL)
1688 	    {
1689 	      if (eh->plt.refcount > 0)
1690 		eh->plt.refcount -= 1;
1691 	    }
1692 	  else if (local_plt_refcounts != NULL)
1693 	    {
1694 	      if (local_plt_refcounts[r_symndx] > 0)
1695 		local_plt_refcounts[r_symndx] -= 1;
1696 	    }
1697 	  break;
1698 
1699 	default:
1700 	  break;
1701 	}
1702     }
1703 
1704   return TRUE;
1705 }
1706 
1707 /* Support for core dump NOTE sections.  */
1708 
1709 static bfd_boolean
elf32_hppa_grok_prstatus(bfd * abfd,Elf_Internal_Note * note)1710 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1711 {
1712   int offset;
1713   size_t size;
1714 
1715   switch (note->descsz)
1716     {
1717       default:
1718 	return FALSE;
1719 
1720       case 396:		/* Linux/hppa */
1721 	/* pr_cursig */
1722 	elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1723 
1724 	/* pr_pid */
1725 	elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1726 
1727 	/* pr_reg */
1728 	offset = 72;
1729 	size = 320;
1730 
1731 	break;
1732     }
1733 
1734   /* Make a ".reg/999" section.  */
1735   return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1736 					  size, note->descpos + offset);
1737 }
1738 
1739 static bfd_boolean
elf32_hppa_grok_psinfo(bfd * abfd,Elf_Internal_Note * note)1740 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1741 {
1742   switch (note->descsz)
1743     {
1744       default:
1745 	return FALSE;
1746 
1747       case 124:		/* Linux/hppa elf_prpsinfo.  */
1748 	elf_tdata (abfd)->core->program
1749 	  = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1750 	elf_tdata (abfd)->core->command
1751 	  = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1752     }
1753 
1754   /* Note that for some reason, a spurious space is tacked
1755      onto the end of the args in some (at least one anyway)
1756      implementations, so strip it off if it exists.  */
1757   {
1758     char *command = elf_tdata (abfd)->core->command;
1759     int n = strlen (command);
1760 
1761     if (0 < n && command[n - 1] == ' ')
1762       command[n - 1] = '\0';
1763   }
1764 
1765   return TRUE;
1766 }
1767 
1768 /* Our own version of hide_symbol, so that we can keep plt entries for
1769    plabels.  */
1770 
1771 static void
elf32_hppa_hide_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * eh,bfd_boolean force_local)1772 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1773 			struct elf_link_hash_entry *eh,
1774 			bfd_boolean force_local)
1775 {
1776   if (force_local)
1777     {
1778       eh->forced_local = 1;
1779       if (eh->dynindx != -1)
1780 	{
1781 	  eh->dynindx = -1;
1782 	  _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1783 				  eh->dynstr_index);
1784 	}
1785 
1786       /* PR 16082: Remove version information from hidden symbol.  */
1787       eh->verinfo.verdef = NULL;
1788       eh->verinfo.vertree = NULL;
1789     }
1790 
1791   /* STT_GNU_IFUNC symbol must go through PLT.  */
1792   if (! hppa_elf_hash_entry (eh)->plabel
1793       && eh->type != STT_GNU_IFUNC)
1794     {
1795       eh->needs_plt = 0;
1796       eh->plt = elf_hash_table (info)->init_plt_offset;
1797     }
1798 }
1799 
1800 /* Adjust a symbol defined by a dynamic object and referenced by a
1801    regular object.  The current definition is in some section of the
1802    dynamic object, but we're not including those sections.  We have to
1803    change the definition to something the rest of the link can
1804    understand.  */
1805 
1806 static bfd_boolean
elf32_hppa_adjust_dynamic_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * eh)1807 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1808 				  struct elf_link_hash_entry *eh)
1809 {
1810   struct elf32_hppa_link_hash_table *htab;
1811   asection *sec;
1812 
1813   /* If this is a function, put it in the procedure linkage table.  We
1814      will fill in the contents of the procedure linkage table later.  */
1815   if (eh->type == STT_FUNC
1816       || eh->needs_plt)
1817     {
1818       /* If the symbol is used by a plabel, we must allocate a PLT slot.
1819 	 The refcounts are not reliable when it has been hidden since
1820 	 hide_symbol can be called before the plabel flag is set.  */
1821       if (hppa_elf_hash_entry (eh)->plabel
1822 	  && eh->plt.refcount <= 0)
1823 	eh->plt.refcount = 1;
1824 
1825       if (eh->plt.refcount <= 0
1826 	  || (eh->def_regular
1827 	      && eh->root.type != bfd_link_hash_defweak
1828 	      && ! hppa_elf_hash_entry (eh)->plabel
1829 	      && (!bfd_link_pic (info) || SYMBOLIC_BIND (info, eh))))
1830 	{
1831 	  /* The .plt entry is not needed when:
1832 	     a) Garbage collection has removed all references to the
1833 	     symbol, or
1834 	     b) We know for certain the symbol is defined in this
1835 	     object, and it's not a weak definition, nor is the symbol
1836 	     used by a plabel relocation.  Either this object is the
1837 	     application or we are doing a shared symbolic link.  */
1838 
1839 	  eh->plt.offset = (bfd_vma) -1;
1840 	  eh->needs_plt = 0;
1841 	}
1842 
1843       return TRUE;
1844     }
1845   else
1846     eh->plt.offset = (bfd_vma) -1;
1847 
1848   /* If this is a weak symbol, and there is a real definition, the
1849      processor independent code will have arranged for us to see the
1850      real definition first, and we can just use the same value.  */
1851   if (eh->u.weakdef != NULL)
1852     {
1853       if (eh->u.weakdef->root.type != bfd_link_hash_defined
1854 	  && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1855 	abort ();
1856       eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1857       eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1858       if (ELIMINATE_COPY_RELOCS)
1859 	eh->non_got_ref = eh->u.weakdef->non_got_ref;
1860       return TRUE;
1861     }
1862 
1863   /* This is a reference to a symbol defined by a dynamic object which
1864      is not a function.  */
1865 
1866   /* If we are creating a shared library, we must presume that the
1867      only references to the symbol are via the global offset table.
1868      For such cases we need not do anything here; the relocations will
1869      be handled correctly by relocate_section.  */
1870   if (bfd_link_pic (info))
1871     return TRUE;
1872 
1873   /* If there are no references to this symbol that do not use the
1874      GOT, we don't need to generate a copy reloc.  */
1875   if (!eh->non_got_ref)
1876     return TRUE;
1877 
1878   if (ELIMINATE_COPY_RELOCS)
1879     {
1880       struct elf32_hppa_link_hash_entry *hh;
1881       struct elf32_hppa_dyn_reloc_entry *hdh_p;
1882 
1883       hh = hppa_elf_hash_entry (eh);
1884       for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1885 	{
1886 	  sec = hdh_p->sec->output_section;
1887 	  if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1888 	    break;
1889 	}
1890 
1891       /* If we didn't find any dynamic relocs in read-only sections, then
1892 	 we'll be keeping the dynamic relocs and avoiding the copy reloc.  */
1893       if (hdh_p == NULL)
1894 	{
1895 	  eh->non_got_ref = 0;
1896 	  return TRUE;
1897 	}
1898     }
1899 
1900   /* We must allocate the symbol in our .dynbss section, which will
1901      become part of the .bss section of the executable.  There will be
1902      an entry for this symbol in the .dynsym section.  The dynamic
1903      object will contain position independent code, so all references
1904      from the dynamic object to this symbol will go through the global
1905      offset table.  The dynamic linker will use the .dynsym entry to
1906      determine the address it must put in the global offset table, so
1907      both the dynamic object and the regular object will refer to the
1908      same memory location for the variable.  */
1909 
1910   htab = hppa_link_hash_table (info);
1911   if (htab == NULL)
1912     return FALSE;
1913 
1914   /* We must generate a COPY reloc to tell the dynamic linker to
1915      copy the initial value out of the dynamic object and into the
1916      runtime process image.  */
1917   if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1918     {
1919       htab->srelbss->size += sizeof (Elf32_External_Rela);
1920       eh->needs_copy = 1;
1921     }
1922 
1923   sec = htab->sdynbss;
1924 
1925   return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1926 }
1927 
1928 /* Allocate space in the .plt for entries that won't have relocations.
1929    ie. plabel entries.  */
1930 
1931 static bfd_boolean
allocate_plt_static(struct elf_link_hash_entry * eh,void * inf)1932 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1933 {
1934   struct bfd_link_info *info;
1935   struct elf32_hppa_link_hash_table *htab;
1936   struct elf32_hppa_link_hash_entry *hh;
1937   asection *sec;
1938 
1939   if (eh->root.type == bfd_link_hash_indirect)
1940     return TRUE;
1941 
1942   info = (struct bfd_link_info *) inf;
1943   hh = hppa_elf_hash_entry (eh);
1944   htab = hppa_link_hash_table (info);
1945   if (htab == NULL)
1946     return FALSE;
1947 
1948   if (htab->etab.dynamic_sections_created
1949       && eh->plt.refcount > 0)
1950     {
1951       /* Make sure this symbol is output as a dynamic symbol.
1952 	 Undefined weak syms won't yet be marked as dynamic.  */
1953       if (eh->dynindx == -1
1954 	  && !eh->forced_local
1955 	  && eh->type != STT_PARISC_MILLI)
1956 	{
1957 	  if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1958 	    return FALSE;
1959 	}
1960 
1961       if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1962 	{
1963 	  /* Allocate these later.  From this point on, h->plabel
1964 	     means that the plt entry is only used by a plabel.
1965 	     We'll be using a normal plt entry for this symbol, so
1966 	     clear the plabel indicator.  */
1967 
1968 	  hh->plabel = 0;
1969 	}
1970       else if (hh->plabel)
1971 	{
1972 	  /* Make an entry in the .plt section for plabel references
1973 	     that won't have a .plt entry for other reasons.  */
1974 	  sec = htab->splt;
1975 	  eh->plt.offset = sec->size;
1976 	  sec->size += PLT_ENTRY_SIZE;
1977 	}
1978       else
1979 	{
1980 	  /* No .plt entry needed.  */
1981 	  eh->plt.offset = (bfd_vma) -1;
1982 	  eh->needs_plt = 0;
1983 	}
1984     }
1985   else
1986     {
1987       eh->plt.offset = (bfd_vma) -1;
1988       eh->needs_plt = 0;
1989     }
1990 
1991   return TRUE;
1992 }
1993 
1994 /* Allocate space in .plt, .got and associated reloc sections for
1995    global syms.  */
1996 
1997 static bfd_boolean
allocate_dynrelocs(struct elf_link_hash_entry * eh,void * inf)1998 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1999 {
2000   struct bfd_link_info *info;
2001   struct elf32_hppa_link_hash_table *htab;
2002   asection *sec;
2003   struct elf32_hppa_link_hash_entry *hh;
2004   struct elf32_hppa_dyn_reloc_entry *hdh_p;
2005 
2006   if (eh->root.type == bfd_link_hash_indirect)
2007     return TRUE;
2008 
2009   info = inf;
2010   htab = hppa_link_hash_table (info);
2011   if (htab == NULL)
2012     return FALSE;
2013 
2014   hh = hppa_elf_hash_entry (eh);
2015 
2016   if (htab->etab.dynamic_sections_created
2017       && eh->plt.offset != (bfd_vma) -1
2018       && !hh->plabel
2019       && eh->plt.refcount > 0)
2020     {
2021       /* Make an entry in the .plt section.  */
2022       sec = htab->splt;
2023       eh->plt.offset = sec->size;
2024       sec->size += PLT_ENTRY_SIZE;
2025 
2026       /* We also need to make an entry in the .rela.plt section.  */
2027       htab->srelplt->size += sizeof (Elf32_External_Rela);
2028       htab->need_plt_stub = 1;
2029     }
2030 
2031   if (eh->got.refcount > 0)
2032     {
2033       /* Make sure this symbol is output as a dynamic symbol.
2034 	 Undefined weak syms won't yet be marked as dynamic.  */
2035       if (eh->dynindx == -1
2036 	  && !eh->forced_local
2037 	  && eh->type != STT_PARISC_MILLI)
2038 	{
2039 	  if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2040 	    return FALSE;
2041 	}
2042 
2043       sec = htab->sgot;
2044       eh->got.offset = sec->size;
2045       sec->size += GOT_ENTRY_SIZE;
2046       /* R_PARISC_TLS_GD* needs two GOT entries */
2047       if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2048       	sec->size += GOT_ENTRY_SIZE * 2;
2049       else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2050       	sec->size += GOT_ENTRY_SIZE;
2051       if (htab->etab.dynamic_sections_created
2052 	  && (bfd_link_pic (info)
2053 	      || (eh->dynindx != -1
2054 		  && !eh->forced_local)))
2055 	{
2056 	  htab->srelgot->size += sizeof (Elf32_External_Rela);
2057 	  if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2058 	    htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2059 	  else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2060 	    htab->srelgot->size += sizeof (Elf32_External_Rela);
2061 	}
2062     }
2063   else
2064     eh->got.offset = (bfd_vma) -1;
2065 
2066   if (hh->dyn_relocs == NULL)
2067     return TRUE;
2068 
2069   /* If this is a -Bsymbolic shared link, then we need to discard all
2070      space allocated for dynamic pc-relative relocs against symbols
2071      defined in a regular object.  For the normal shared case, discard
2072      space for relocs that have become local due to symbol visibility
2073      changes.  */
2074   if (bfd_link_pic (info))
2075     {
2076 #if RELATIVE_DYNRELOCS
2077       if (SYMBOL_CALLS_LOCAL (info, eh))
2078 	{
2079 	  struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2080 
2081 	  for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2082 	    {
2083 	      hdh_p->count -= hdh_p->relative_count;
2084 	      hdh_p->relative_count = 0;
2085 	      if (hdh_p->count == 0)
2086 		*hdh_pp = hdh_p->hdh_next;
2087 	      else
2088 		hdh_pp = &hdh_p->hdh_next;
2089 	    }
2090 	}
2091 #endif
2092 
2093       /* Also discard relocs on undefined weak syms with non-default
2094 	 visibility.  */
2095       if (hh->dyn_relocs != NULL
2096 	  && eh->root.type == bfd_link_hash_undefweak)
2097 	{
2098 	  if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2099 	    hh->dyn_relocs = NULL;
2100 
2101 	  /* Make sure undefined weak symbols are output as a dynamic
2102 	     symbol in PIEs.  */
2103 	  else if (eh->dynindx == -1
2104 		   && !eh->forced_local)
2105 	    {
2106 	      if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2107 		return FALSE;
2108 	    }
2109 	}
2110     }
2111   else
2112     {
2113       /* For the non-shared case, discard space for relocs against
2114 	 symbols which turn out to need copy relocs or are not
2115 	 dynamic.  */
2116 
2117       if (!eh->non_got_ref
2118 	  && ((ELIMINATE_COPY_RELOCS
2119 	       && eh->def_dynamic
2120 	       && !eh->def_regular)
2121 	       || (htab->etab.dynamic_sections_created
2122 		   && (eh->root.type == bfd_link_hash_undefweak
2123 		       || eh->root.type == bfd_link_hash_undefined))))
2124 	{
2125 	  /* Make sure this symbol is output as a dynamic symbol.
2126 	     Undefined weak syms won't yet be marked as dynamic.  */
2127 	  if (eh->dynindx == -1
2128 	      && !eh->forced_local
2129 	      && eh->type != STT_PARISC_MILLI)
2130 	    {
2131 	      if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2132 		return FALSE;
2133 	    }
2134 
2135 	  /* If that succeeded, we know we'll be keeping all the
2136 	     relocs.  */
2137 	  if (eh->dynindx != -1)
2138 	    goto keep;
2139 	}
2140 
2141       hh->dyn_relocs = NULL;
2142       return TRUE;
2143 
2144     keep: ;
2145     }
2146 
2147   /* Finally, allocate space.  */
2148   for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2149     {
2150       asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2151       sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2152     }
2153 
2154   return TRUE;
2155 }
2156 
2157 /* This function is called via elf_link_hash_traverse to force
2158    millicode symbols local so they do not end up as globals in the
2159    dynamic symbol table.  We ought to be able to do this in
2160    adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2161    for all dynamic symbols.  Arguably, this is a bug in
2162    elf_adjust_dynamic_symbol.  */
2163 
2164 static bfd_boolean
clobber_millicode_symbols(struct elf_link_hash_entry * eh,struct bfd_link_info * info)2165 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2166 			   struct bfd_link_info *info)
2167 {
2168   if (eh->type == STT_PARISC_MILLI
2169       && !eh->forced_local)
2170     {
2171       elf32_hppa_hide_symbol (info, eh, TRUE);
2172     }
2173   return TRUE;
2174 }
2175 
2176 /* Find any dynamic relocs that apply to read-only sections.  */
2177 
2178 static bfd_boolean
readonly_dynrelocs(struct elf_link_hash_entry * eh,void * inf)2179 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2180 {
2181   struct elf32_hppa_link_hash_entry *hh;
2182   struct elf32_hppa_dyn_reloc_entry *hdh_p;
2183 
2184   hh = hppa_elf_hash_entry (eh);
2185   for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2186     {
2187       asection *sec = hdh_p->sec->output_section;
2188 
2189       if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2190 	{
2191 	  struct bfd_link_info *info = inf;
2192 
2193 	  info->flags |= DF_TEXTREL;
2194 
2195 	  /* Not an error, just cut short the traversal.  */
2196 	  return FALSE;
2197 	}
2198     }
2199   return TRUE;
2200 }
2201 
2202 /* Set the sizes of the dynamic sections.  */
2203 
2204 static bfd_boolean
elf32_hppa_size_dynamic_sections(bfd * output_bfd ATTRIBUTE_UNUSED,struct bfd_link_info * info)2205 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2206 				  struct bfd_link_info *info)
2207 {
2208   struct elf32_hppa_link_hash_table *htab;
2209   bfd *dynobj;
2210   bfd *ibfd;
2211   asection *sec;
2212   bfd_boolean relocs;
2213 
2214   htab = hppa_link_hash_table (info);
2215   if (htab == NULL)
2216     return FALSE;
2217 
2218   dynobj = htab->etab.dynobj;
2219   if (dynobj == NULL)
2220     abort ();
2221 
2222   if (htab->etab.dynamic_sections_created)
2223     {
2224       /* Set the contents of the .interp section to the interpreter.  */
2225       if (bfd_link_executable (info) && !info->nointerp)
2226 	{
2227 	  sec = bfd_get_linker_section (dynobj, ".interp");
2228 	  if (sec == NULL)
2229 	    abort ();
2230 	  sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2231 	  sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2232 	}
2233 
2234       /* Force millicode symbols local.  */
2235       elf_link_hash_traverse (&htab->etab,
2236 			      clobber_millicode_symbols,
2237 			      info);
2238     }
2239 
2240   /* Set up .got and .plt offsets for local syms, and space for local
2241      dynamic relocs.  */
2242   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2243     {
2244       bfd_signed_vma *local_got;
2245       bfd_signed_vma *end_local_got;
2246       bfd_signed_vma *local_plt;
2247       bfd_signed_vma *end_local_plt;
2248       bfd_size_type locsymcount;
2249       Elf_Internal_Shdr *symtab_hdr;
2250       asection *srel;
2251       char *local_tls_type;
2252 
2253       if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2254 	continue;
2255 
2256       for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2257 	{
2258 	  struct elf32_hppa_dyn_reloc_entry *hdh_p;
2259 
2260 	  for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2261 		    elf_section_data (sec)->local_dynrel);
2262 	       hdh_p != NULL;
2263 	       hdh_p = hdh_p->hdh_next)
2264 	    {
2265 	      if (!bfd_is_abs_section (hdh_p->sec)
2266 		  && bfd_is_abs_section (hdh_p->sec->output_section))
2267 		{
2268 		  /* Input section has been discarded, either because
2269 		     it is a copy of a linkonce section or due to
2270 		     linker script /DISCARD/, so we'll be discarding
2271 		     the relocs too.  */
2272 		}
2273 	      else if (hdh_p->count != 0)
2274 		{
2275 		  srel = elf_section_data (hdh_p->sec)->sreloc;
2276 		  srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2277 		  if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2278 		    info->flags |= DF_TEXTREL;
2279 		}
2280 	    }
2281 	}
2282 
2283       local_got = elf_local_got_refcounts (ibfd);
2284       if (!local_got)
2285 	continue;
2286 
2287       symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2288       locsymcount = symtab_hdr->sh_info;
2289       end_local_got = local_got + locsymcount;
2290       local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2291       sec = htab->sgot;
2292       srel = htab->srelgot;
2293       for (; local_got < end_local_got; ++local_got)
2294 	{
2295 	  if (*local_got > 0)
2296 	    {
2297 	      *local_got = sec->size;
2298 	      sec->size += GOT_ENTRY_SIZE;
2299 	      if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2300 		sec->size += 2 * GOT_ENTRY_SIZE;
2301 	      else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2302 		sec->size += GOT_ENTRY_SIZE;
2303 	      if (bfd_link_pic (info))
2304 	        {
2305 		  srel->size += sizeof (Elf32_External_Rela);
2306 		  if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2307 		    srel->size += 2 * sizeof (Elf32_External_Rela);
2308 		  else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2309 		    srel->size += sizeof (Elf32_External_Rela);
2310 	        }
2311 	    }
2312 	  else
2313 	    *local_got = (bfd_vma) -1;
2314 
2315 	  ++local_tls_type;
2316 	}
2317 
2318       local_plt = end_local_got;
2319       end_local_plt = local_plt + locsymcount;
2320       if (! htab->etab.dynamic_sections_created)
2321 	{
2322 	  /* Won't be used, but be safe.  */
2323 	  for (; local_plt < end_local_plt; ++local_plt)
2324 	    *local_plt = (bfd_vma) -1;
2325 	}
2326       else
2327 	{
2328 	  sec = htab->splt;
2329 	  srel = htab->srelplt;
2330 	  for (; local_plt < end_local_plt; ++local_plt)
2331 	    {
2332 	      if (*local_plt > 0)
2333 		{
2334 		  *local_plt = sec->size;
2335 		  sec->size += PLT_ENTRY_SIZE;
2336 		  if (bfd_link_pic (info))
2337 		    srel->size += sizeof (Elf32_External_Rela);
2338 		}
2339 	      else
2340 		*local_plt = (bfd_vma) -1;
2341 	    }
2342 	}
2343     }
2344 
2345   if (htab->tls_ldm_got.refcount > 0)
2346     {
2347       /* Allocate 2 got entries and 1 dynamic reloc for
2348          R_PARISC_TLS_DTPMOD32 relocs.  */
2349       htab->tls_ldm_got.offset = htab->sgot->size;
2350       htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2351       htab->srelgot->size += sizeof (Elf32_External_Rela);
2352     }
2353   else
2354     htab->tls_ldm_got.offset = -1;
2355 
2356   /* Do all the .plt entries without relocs first.  The dynamic linker
2357      uses the last .plt reloc to find the end of the .plt (and hence
2358      the start of the .got) for lazy linking.  */
2359   elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2360 
2361   /* Allocate global sym .plt and .got entries, and space for global
2362      sym dynamic relocs.  */
2363   elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2364 
2365   /* The check_relocs and adjust_dynamic_symbol entry points have
2366      determined the sizes of the various dynamic sections.  Allocate
2367      memory for them.  */
2368   relocs = FALSE;
2369   for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2370     {
2371       if ((sec->flags & SEC_LINKER_CREATED) == 0)
2372 	continue;
2373 
2374       if (sec == htab->splt)
2375 	{
2376 	  if (htab->need_plt_stub)
2377 	    {
2378 	      /* Make space for the plt stub at the end of the .plt
2379 		 section.  We want this stub right at the end, up
2380 		 against the .got section.  */
2381 	      int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2382 	      int pltalign = bfd_section_alignment (dynobj, sec);
2383 	      bfd_size_type mask;
2384 
2385 	      if (gotalign > pltalign)
2386 		(void) bfd_set_section_alignment (dynobj, sec, gotalign);
2387 	      mask = ((bfd_size_type) 1 << gotalign) - 1;
2388 	      sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2389 	    }
2390 	}
2391       else if (sec == htab->sgot
2392 	       || sec == htab->sdynbss)
2393 	;
2394       else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2395 	{
2396 	  if (sec->size != 0)
2397 	    {
2398 	      /* Remember whether there are any reloc sections other
2399 		 than .rela.plt.  */
2400 	      if (sec != htab->srelplt)
2401 		relocs = TRUE;
2402 
2403 	      /* We use the reloc_count field as a counter if we need
2404 		 to copy relocs into the output file.  */
2405 	      sec->reloc_count = 0;
2406 	    }
2407 	}
2408       else
2409 	{
2410 	  /* It's not one of our sections, so don't allocate space.  */
2411 	  continue;
2412 	}
2413 
2414       if (sec->size == 0)
2415 	{
2416 	  /* If we don't need this section, strip it from the
2417 	     output file.  This is mostly to handle .rela.bss and
2418 	     .rela.plt.  We must create both sections in
2419 	     create_dynamic_sections, because they must be created
2420 	     before the linker maps input sections to output
2421 	     sections.  The linker does that before
2422 	     adjust_dynamic_symbol is called, and it is that
2423 	     function which decides whether anything needs to go
2424 	     into these sections.  */
2425 	  sec->flags |= SEC_EXCLUDE;
2426 	  continue;
2427 	}
2428 
2429       if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2430 	continue;
2431 
2432       /* Allocate memory for the section contents.  Zero it, because
2433 	 we may not fill in all the reloc sections.  */
2434       sec->contents = bfd_zalloc (dynobj, sec->size);
2435       if (sec->contents == NULL)
2436 	return FALSE;
2437     }
2438 
2439   if (htab->etab.dynamic_sections_created)
2440     {
2441       /* Like IA-64 and HPPA64, always create a DT_PLTGOT.  It
2442 	 actually has nothing to do with the PLT, it is how we
2443 	 communicate the LTP value of a load module to the dynamic
2444 	 linker.  */
2445 #define add_dynamic_entry(TAG, VAL) \
2446   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2447 
2448       if (!add_dynamic_entry (DT_PLTGOT, 0))
2449 	return FALSE;
2450 
2451       /* Add some entries to the .dynamic section.  We fill in the
2452 	 values later, in elf32_hppa_finish_dynamic_sections, but we
2453 	 must add the entries now so that we get the correct size for
2454 	 the .dynamic section.  The DT_DEBUG entry is filled in by the
2455 	 dynamic linker and used by the debugger.  */
2456       if (bfd_link_executable (info))
2457 	{
2458 	  if (!add_dynamic_entry (DT_DEBUG, 0))
2459 	    return FALSE;
2460 	}
2461 
2462       if (htab->srelplt->size != 0)
2463 	{
2464 	  if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2465 	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2466 	      || !add_dynamic_entry (DT_JMPREL, 0))
2467 	    return FALSE;
2468 	}
2469 
2470       if (relocs)
2471 	{
2472 	  if (!add_dynamic_entry (DT_RELA, 0)
2473 	      || !add_dynamic_entry (DT_RELASZ, 0)
2474 	      || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2475 	    return FALSE;
2476 
2477 	  /* If any dynamic relocs apply to a read-only section,
2478 	     then we need a DT_TEXTREL entry.  */
2479 	  if ((info->flags & DF_TEXTREL) == 0)
2480 	    elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2481 
2482 	  if ((info->flags & DF_TEXTREL) != 0)
2483 	    {
2484 	      if (!add_dynamic_entry (DT_TEXTREL, 0))
2485 		return FALSE;
2486 	    }
2487 	}
2488     }
2489 #undef add_dynamic_entry
2490 
2491   return TRUE;
2492 }
2493 
2494 /* External entry points for sizing and building linker stubs.  */
2495 
2496 /* Set up various things so that we can make a list of input sections
2497    for each output section included in the link.  Returns -1 on error,
2498    0 when no stubs will be needed, and 1 on success.  */
2499 
2500 int
elf32_hppa_setup_section_lists(bfd * output_bfd,struct bfd_link_info * info)2501 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2502 {
2503   bfd *input_bfd;
2504   unsigned int bfd_count;
2505   unsigned int top_id, top_index;
2506   asection *section;
2507   asection **input_list, **list;
2508   bfd_size_type amt;
2509   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2510 
2511   if (htab == NULL)
2512     return -1;
2513 
2514   /* Count the number of input BFDs and find the top input section id.  */
2515   for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2516        input_bfd != NULL;
2517        input_bfd = input_bfd->link.next)
2518     {
2519       bfd_count += 1;
2520       for (section = input_bfd->sections;
2521 	   section != NULL;
2522 	   section = section->next)
2523 	{
2524 	  if (top_id < section->id)
2525 	    top_id = section->id;
2526 	}
2527     }
2528   htab->bfd_count = bfd_count;
2529 
2530   amt = sizeof (struct map_stub) * (top_id + 1);
2531   htab->stub_group = bfd_zmalloc (amt);
2532   if (htab->stub_group == NULL)
2533     return -1;
2534 
2535   /* We can't use output_bfd->section_count here to find the top output
2536      section index as some sections may have been removed, and
2537      strip_excluded_output_sections doesn't renumber the indices.  */
2538   for (section = output_bfd->sections, top_index = 0;
2539        section != NULL;
2540        section = section->next)
2541     {
2542       if (top_index < section->index)
2543 	top_index = section->index;
2544     }
2545 
2546   htab->top_index = top_index;
2547   amt = sizeof (asection *) * (top_index + 1);
2548   input_list = bfd_malloc (amt);
2549   htab->input_list = input_list;
2550   if (input_list == NULL)
2551     return -1;
2552 
2553   /* For sections we aren't interested in, mark their entries with a
2554      value we can check later.  */
2555   list = input_list + top_index;
2556   do
2557     *list = bfd_abs_section_ptr;
2558   while (list-- != input_list);
2559 
2560   for (section = output_bfd->sections;
2561        section != NULL;
2562        section = section->next)
2563     {
2564       if ((section->flags & SEC_CODE) != 0)
2565 	input_list[section->index] = NULL;
2566     }
2567 
2568   return 1;
2569 }
2570 
2571 /* The linker repeatedly calls this function for each input section,
2572    in the order that input sections are linked into output sections.
2573    Build lists of input sections to determine groupings between which
2574    we may insert linker stubs.  */
2575 
2576 void
elf32_hppa_next_input_section(struct bfd_link_info * info,asection * isec)2577 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2578 {
2579   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2580 
2581   if (htab == NULL)
2582     return;
2583 
2584   if (isec->output_section->index <= htab->top_index)
2585     {
2586       asection **list = htab->input_list + isec->output_section->index;
2587       if (*list != bfd_abs_section_ptr)
2588 	{
2589 	  /* Steal the link_sec pointer for our list.  */
2590 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2591 	  /* This happens to make the list in reverse order,
2592 	     which is what we want.  */
2593 	  PREV_SEC (isec) = *list;
2594 	  *list = isec;
2595 	}
2596     }
2597 }
2598 
2599 /* See whether we can group stub sections together.  Grouping stub
2600    sections may result in fewer stubs.  More importantly, we need to
2601    put all .init* and .fini* stubs at the beginning of the .init or
2602    .fini output sections respectively, because glibc splits the
2603    _init and _fini functions into multiple parts.  Putting a stub in
2604    the middle of a function is not a good idea.  */
2605 
2606 static void
group_sections(struct elf32_hppa_link_hash_table * htab,bfd_size_type stub_group_size,bfd_boolean stubs_always_before_branch)2607 group_sections (struct elf32_hppa_link_hash_table *htab,
2608 		bfd_size_type stub_group_size,
2609 		bfd_boolean stubs_always_before_branch)
2610 {
2611   asection **list = htab->input_list + htab->top_index;
2612   do
2613     {
2614       asection *tail = *list;
2615       if (tail == bfd_abs_section_ptr)
2616 	continue;
2617       while (tail != NULL)
2618 	{
2619 	  asection *curr;
2620 	  asection *prev;
2621 	  bfd_size_type total;
2622 	  bfd_boolean big_sec;
2623 
2624 	  curr = tail;
2625 	  total = tail->size;
2626 	  big_sec = total >= stub_group_size;
2627 
2628 	  while ((prev = PREV_SEC (curr)) != NULL
2629 		 && ((total += curr->output_offset - prev->output_offset)
2630 		     < stub_group_size))
2631 	    curr = prev;
2632 
2633 	  /* OK, the size from the start of CURR to the end is less
2634 	     than 240000 bytes and thus can be handled by one stub
2635 	     section.  (or the tail section is itself larger than
2636 	     240000 bytes, in which case we may be toast.)
2637 	     We should really be keeping track of the total size of
2638 	     stubs added here, as stubs contribute to the final output
2639 	     section size.  That's a little tricky, and this way will
2640 	     only break if stubs added total more than 22144 bytes, or
2641 	     2768 long branch stubs.  It seems unlikely for more than
2642 	     2768 different functions to be called, especially from
2643 	     code only 240000 bytes long.  This limit used to be
2644 	     250000, but c++ code tends to generate lots of little
2645 	     functions, and sometimes violated the assumption.  */
2646 	  do
2647 	    {
2648 	      prev = PREV_SEC (tail);
2649 	      /* Set up this stub group.  */
2650 	      htab->stub_group[tail->id].link_sec = curr;
2651 	    }
2652 	  while (tail != curr && (tail = prev) != NULL);
2653 
2654 	  /* But wait, there's more!  Input sections up to 240000
2655 	     bytes before the stub section can be handled by it too.
2656 	     Don't do this if we have a really large section after the
2657 	     stubs, as adding more stubs increases the chance that
2658 	     branches may not reach into the stub section.  */
2659 	  if (!stubs_always_before_branch && !big_sec)
2660 	    {
2661 	      total = 0;
2662 	      while (prev != NULL
2663 		     && ((total += tail->output_offset - prev->output_offset)
2664 			 < stub_group_size))
2665 		{
2666 		  tail = prev;
2667 		  prev = PREV_SEC (tail);
2668 		  htab->stub_group[tail->id].link_sec = curr;
2669 		}
2670 	    }
2671 	  tail = prev;
2672 	}
2673     }
2674   while (list-- != htab->input_list);
2675   free (htab->input_list);
2676 #undef PREV_SEC
2677 }
2678 
2679 /* Read in all local syms for all input bfds, and create hash entries
2680    for export stubs if we are building a multi-subspace shared lib.
2681    Returns -1 on error, 1 if export stubs created, 0 otherwise.  */
2682 
2683 static int
get_local_syms(bfd * output_bfd,bfd * input_bfd,struct bfd_link_info * info)2684 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2685 {
2686   unsigned int bfd_indx;
2687   Elf_Internal_Sym *local_syms, **all_local_syms;
2688   int stub_changed = 0;
2689   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2690 
2691   if (htab == NULL)
2692     return -1;
2693 
2694   /* We want to read in symbol extension records only once.  To do this
2695      we need to read in the local symbols in parallel and save them for
2696      later use; so hold pointers to the local symbols in an array.  */
2697   bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2698   all_local_syms = bfd_zmalloc (amt);
2699   htab->all_local_syms = all_local_syms;
2700   if (all_local_syms == NULL)
2701     return -1;
2702 
2703   /* Walk over all the input BFDs, swapping in local symbols.
2704      If we are creating a shared library, create hash entries for the
2705      export stubs.  */
2706   for (bfd_indx = 0;
2707        input_bfd != NULL;
2708        input_bfd = input_bfd->link.next, bfd_indx++)
2709     {
2710       Elf_Internal_Shdr *symtab_hdr;
2711 
2712       /* We'll need the symbol table in a second.  */
2713       symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2714       if (symtab_hdr->sh_info == 0)
2715 	continue;
2716 
2717       /* We need an array of the local symbols attached to the input bfd.  */
2718       local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2719       if (local_syms == NULL)
2720 	{
2721 	  local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2722 					     symtab_hdr->sh_info, 0,
2723 					     NULL, NULL, NULL);
2724 	  /* Cache them for elf_link_input_bfd.  */
2725 	  symtab_hdr->contents = (unsigned char *) local_syms;
2726 	}
2727       if (local_syms == NULL)
2728 	return -1;
2729 
2730       all_local_syms[bfd_indx] = local_syms;
2731 
2732       if (bfd_link_pic (info) && htab->multi_subspace)
2733 	{
2734 	  struct elf_link_hash_entry **eh_syms;
2735 	  struct elf_link_hash_entry **eh_symend;
2736 	  unsigned int symcount;
2737 
2738 	  symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2739 		      - symtab_hdr->sh_info);
2740 	  eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2741 	  eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2742 
2743 	  /* Look through the global syms for functions;  We need to
2744 	     build export stubs for all globally visible functions.  */
2745 	  for (; eh_syms < eh_symend; eh_syms++)
2746 	    {
2747 	      struct elf32_hppa_link_hash_entry *hh;
2748 
2749 	      hh = hppa_elf_hash_entry (*eh_syms);
2750 
2751 	      while (hh->eh.root.type == bfd_link_hash_indirect
2752 		     || hh->eh.root.type == bfd_link_hash_warning)
2753 		   hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2754 
2755 	      /* At this point in the link, undefined syms have been
2756 		 resolved, so we need to check that the symbol was
2757 		 defined in this BFD.  */
2758 	      if ((hh->eh.root.type == bfd_link_hash_defined
2759 		   || hh->eh.root.type == bfd_link_hash_defweak)
2760 		  && hh->eh.type == STT_FUNC
2761 		  && hh->eh.root.u.def.section->output_section != NULL
2762 		  && (hh->eh.root.u.def.section->output_section->owner
2763 		      == output_bfd)
2764 		  && hh->eh.root.u.def.section->owner == input_bfd
2765 		  && hh->eh.def_regular
2766 		  && !hh->eh.forced_local
2767 		  && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2768 		{
2769 		  asection *sec;
2770 		  const char *stub_name;
2771 		  struct elf32_hppa_stub_hash_entry *hsh;
2772 
2773 		  sec = hh->eh.root.u.def.section;
2774 		  stub_name = hh_name (hh);
2775 		  hsh = hppa_stub_hash_lookup (&htab->bstab,
2776 						      stub_name,
2777 						      FALSE, FALSE);
2778 		  if (hsh == NULL)
2779 		    {
2780 		      hsh = hppa_add_stub (stub_name, sec, htab);
2781 		      if (!hsh)
2782 			return -1;
2783 
2784 		      hsh->target_value = hh->eh.root.u.def.value;
2785 		      hsh->target_section = hh->eh.root.u.def.section;
2786 		      hsh->stub_type = hppa_stub_export;
2787 		      hsh->hh = hh;
2788 		      stub_changed = 1;
2789 		    }
2790 		  else
2791 		    {
2792 		      (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2793 					     input_bfd,
2794 					     stub_name);
2795 		    }
2796 		}
2797 	    }
2798 	}
2799     }
2800 
2801   return stub_changed;
2802 }
2803 
2804 /* Determine and set the size of the stub section for a final link.
2805 
2806    The basic idea here is to examine all the relocations looking for
2807    PC-relative calls to a target that is unreachable with a "bl"
2808    instruction.  */
2809 
2810 bfd_boolean
elf32_hppa_size_stubs(bfd * output_bfd,bfd * stub_bfd,struct bfd_link_info * info,bfd_boolean multi_subspace,bfd_signed_vma group_size,asection * (* add_stub_section)(const char *,asection *),void (* layout_sections_again)(void))2811 elf32_hppa_size_stubs
2812   (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2813    bfd_boolean multi_subspace, bfd_signed_vma group_size,
2814    asection * (*add_stub_section) (const char *, asection *),
2815    void (*layout_sections_again) (void))
2816 {
2817   bfd_size_type stub_group_size;
2818   bfd_boolean stubs_always_before_branch;
2819   bfd_boolean stub_changed;
2820   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2821 
2822   if (htab == NULL)
2823     return FALSE;
2824 
2825   /* Stash our params away.  */
2826   htab->stub_bfd = stub_bfd;
2827   htab->multi_subspace = multi_subspace;
2828   htab->add_stub_section = add_stub_section;
2829   htab->layout_sections_again = layout_sections_again;
2830   stubs_always_before_branch = group_size < 0;
2831   if (group_size < 0)
2832     stub_group_size = -group_size;
2833   else
2834     stub_group_size = group_size;
2835   if (stub_group_size == 1)
2836     {
2837       /* Default values.  */
2838       if (stubs_always_before_branch)
2839 	{
2840 	  stub_group_size = 7680000;
2841 	  if (htab->has_17bit_branch || htab->multi_subspace)
2842 	    stub_group_size = 240000;
2843 	  if (htab->has_12bit_branch)
2844 	    stub_group_size = 7500;
2845 	}
2846       else
2847 	{
2848 	  stub_group_size = 6971392;
2849 	  if (htab->has_17bit_branch || htab->multi_subspace)
2850 	    stub_group_size = 217856;
2851 	  if (htab->has_12bit_branch)
2852 	    stub_group_size = 6808;
2853 	}
2854     }
2855 
2856   group_sections (htab, stub_group_size, stubs_always_before_branch);
2857 
2858   switch (get_local_syms (output_bfd, info->input_bfds, info))
2859     {
2860     default:
2861       if (htab->all_local_syms)
2862 	goto error_ret_free_local;
2863       return FALSE;
2864 
2865     case 0:
2866       stub_changed = FALSE;
2867       break;
2868 
2869     case 1:
2870       stub_changed = TRUE;
2871       break;
2872     }
2873 
2874   while (1)
2875     {
2876       bfd *input_bfd;
2877       unsigned int bfd_indx;
2878       asection *stub_sec;
2879 
2880       for (input_bfd = info->input_bfds, bfd_indx = 0;
2881 	   input_bfd != NULL;
2882 	   input_bfd = input_bfd->link.next, bfd_indx++)
2883 	{
2884 	  Elf_Internal_Shdr *symtab_hdr;
2885 	  asection *section;
2886 	  Elf_Internal_Sym *local_syms;
2887 
2888 	  /* We'll need the symbol table in a second.  */
2889 	  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2890 	  if (symtab_hdr->sh_info == 0)
2891 	    continue;
2892 
2893 	  local_syms = htab->all_local_syms[bfd_indx];
2894 
2895 	  /* Walk over each section attached to the input bfd.  */
2896 	  for (section = input_bfd->sections;
2897 	       section != NULL;
2898 	       section = section->next)
2899 	    {
2900 	      Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2901 
2902 	      /* If there aren't any relocs, then there's nothing more
2903 		 to do.  */
2904 	      if ((section->flags & SEC_RELOC) == 0
2905 		  || section->reloc_count == 0)
2906 		continue;
2907 
2908 	      /* If this section is a link-once section that will be
2909 		 discarded, then don't create any stubs.  */
2910 	      if (section->output_section == NULL
2911 		  || section->output_section->owner != output_bfd)
2912 		continue;
2913 
2914 	      /* Get the relocs.  */
2915 	      internal_relocs
2916 		= _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2917 					     info->keep_memory);
2918 	      if (internal_relocs == NULL)
2919 		goto error_ret_free_local;
2920 
2921 	      /* Now examine each relocation.  */
2922 	      irela = internal_relocs;
2923 	      irelaend = irela + section->reloc_count;
2924 	      for (; irela < irelaend; irela++)
2925 		{
2926 		  unsigned int r_type, r_indx;
2927 		  enum elf32_hppa_stub_type stub_type;
2928 		  struct elf32_hppa_stub_hash_entry *hsh;
2929 		  asection *sym_sec;
2930 		  bfd_vma sym_value;
2931 		  bfd_vma destination;
2932 		  struct elf32_hppa_link_hash_entry *hh;
2933 		  char *stub_name;
2934 		  const asection *id_sec;
2935 
2936 		  r_type = ELF32_R_TYPE (irela->r_info);
2937 		  r_indx = ELF32_R_SYM (irela->r_info);
2938 
2939 		  if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2940 		    {
2941 		      bfd_set_error (bfd_error_bad_value);
2942 		    error_ret_free_internal:
2943 		      if (elf_section_data (section)->relocs == NULL)
2944 			free (internal_relocs);
2945 		      goto error_ret_free_local;
2946 		    }
2947 
2948 		  /* Only look for stubs on call instructions.  */
2949 		  if (r_type != (unsigned int) R_PARISC_PCREL12F
2950 		      && r_type != (unsigned int) R_PARISC_PCREL17F
2951 		      && r_type != (unsigned int) R_PARISC_PCREL22F)
2952 		    continue;
2953 
2954 		  /* Now determine the call target, its name, value,
2955 		     section.  */
2956 		  sym_sec = NULL;
2957 		  sym_value = 0;
2958 		  destination = 0;
2959 		  hh = NULL;
2960 		  if (r_indx < symtab_hdr->sh_info)
2961 		    {
2962 		      /* It's a local symbol.  */
2963 		      Elf_Internal_Sym *sym;
2964 		      Elf_Internal_Shdr *hdr;
2965 		      unsigned int shndx;
2966 
2967 		      sym = local_syms + r_indx;
2968 		      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2969 			sym_value = sym->st_value;
2970 		      shndx = sym->st_shndx;
2971 		      if (shndx < elf_numsections (input_bfd))
2972 			{
2973 			  hdr = elf_elfsections (input_bfd)[shndx];
2974 			  sym_sec = hdr->bfd_section;
2975 			  destination = (sym_value + irela->r_addend
2976 					 + sym_sec->output_offset
2977 					 + sym_sec->output_section->vma);
2978 			}
2979 		    }
2980 		  else
2981 		    {
2982 		      /* It's an external symbol.  */
2983 		      int e_indx;
2984 
2985 		      e_indx = r_indx - symtab_hdr->sh_info;
2986 		      hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2987 
2988 		      while (hh->eh.root.type == bfd_link_hash_indirect
2989 			     || hh->eh.root.type == bfd_link_hash_warning)
2990 			hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2991 
2992 		      if (hh->eh.root.type == bfd_link_hash_defined
2993 			  || hh->eh.root.type == bfd_link_hash_defweak)
2994 			{
2995 			  sym_sec = hh->eh.root.u.def.section;
2996 			  sym_value = hh->eh.root.u.def.value;
2997 			  if (sym_sec->output_section != NULL)
2998 			    destination = (sym_value + irela->r_addend
2999 					   + sym_sec->output_offset
3000 					   + sym_sec->output_section->vma);
3001 			}
3002 		      else if (hh->eh.root.type == bfd_link_hash_undefweak)
3003 			{
3004 			  if (! bfd_link_pic (info))
3005 			    continue;
3006 			}
3007 		      else if (hh->eh.root.type == bfd_link_hash_undefined)
3008 			{
3009 			  if (! (info->unresolved_syms_in_objects == RM_IGNORE
3010 				 && (ELF_ST_VISIBILITY (hh->eh.other)
3011 				     == STV_DEFAULT)
3012 				 && hh->eh.type != STT_PARISC_MILLI))
3013 			    continue;
3014 			}
3015 		      else
3016 			{
3017 			  bfd_set_error (bfd_error_bad_value);
3018 			  goto error_ret_free_internal;
3019 			}
3020 		    }
3021 
3022 		  /* Determine what (if any) linker stub is needed.  */
3023 		  stub_type = hppa_type_of_stub (section, irela, hh,
3024 						 destination, info);
3025 		  if (stub_type == hppa_stub_none)
3026 		    continue;
3027 
3028 		  /* Support for grouping stub sections.  */
3029 		  id_sec = htab->stub_group[section->id].link_sec;
3030 
3031 		  /* Get the name of this stub.  */
3032 		  stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3033 		  if (!stub_name)
3034 		    goto error_ret_free_internal;
3035 
3036 		  hsh = hppa_stub_hash_lookup (&htab->bstab,
3037 						      stub_name,
3038 						      FALSE, FALSE);
3039 		  if (hsh != NULL)
3040 		    {
3041 		      /* The proper stub has already been created.  */
3042 		      free (stub_name);
3043 		      continue;
3044 		    }
3045 
3046 		  hsh = hppa_add_stub (stub_name, section, htab);
3047 		  if (hsh == NULL)
3048 		    {
3049 		      free (stub_name);
3050 		      goto error_ret_free_internal;
3051 		    }
3052 
3053 		  hsh->target_value = sym_value;
3054 		  hsh->target_section = sym_sec;
3055 		  hsh->stub_type = stub_type;
3056 		  if (bfd_link_pic (info))
3057 		    {
3058 		      if (stub_type == hppa_stub_import)
3059 			hsh->stub_type = hppa_stub_import_shared;
3060 		      else if (stub_type == hppa_stub_long_branch)
3061 			hsh->stub_type = hppa_stub_long_branch_shared;
3062 		    }
3063 		  hsh->hh = hh;
3064 		  stub_changed = TRUE;
3065 		}
3066 
3067 	      /* We're done with the internal relocs, free them.  */
3068 	      if (elf_section_data (section)->relocs == NULL)
3069 		free (internal_relocs);
3070 	    }
3071 	}
3072 
3073       if (!stub_changed)
3074 	break;
3075 
3076       /* OK, we've added some stubs.  Find out the new size of the
3077 	 stub sections.  */
3078       for (stub_sec = htab->stub_bfd->sections;
3079 	   stub_sec != NULL;
3080 	   stub_sec = stub_sec->next)
3081 	if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
3082 	  stub_sec->size = 0;
3083 
3084       bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3085 
3086       /* Ask the linker to do its stuff.  */
3087       (*htab->layout_sections_again) ();
3088       stub_changed = FALSE;
3089     }
3090 
3091   free (htab->all_local_syms);
3092   return TRUE;
3093 
3094  error_ret_free_local:
3095   free (htab->all_local_syms);
3096   return FALSE;
3097 }
3098 
3099 /* For a final link, this function is called after we have sized the
3100    stubs to provide a value for __gp.  */
3101 
3102 bfd_boolean
elf32_hppa_set_gp(bfd * abfd,struct bfd_link_info * info)3103 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3104 {
3105   struct bfd_link_hash_entry *h;
3106   asection *sec = NULL;
3107   bfd_vma gp_val = 0;
3108   struct elf32_hppa_link_hash_table *htab;
3109 
3110   htab = hppa_link_hash_table (info);
3111   if (htab == NULL)
3112     return FALSE;
3113 
3114   h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3115 
3116   if (h != NULL
3117       && (h->type == bfd_link_hash_defined
3118 	  || h->type == bfd_link_hash_defweak))
3119     {
3120       gp_val = h->u.def.value;
3121       sec = h->u.def.section;
3122     }
3123   else
3124     {
3125       asection *splt = bfd_get_section_by_name (abfd, ".plt");
3126       asection *sgot = bfd_get_section_by_name (abfd, ".got");
3127 
3128       /* Choose to point our LTP at, in this order, one of .plt, .got,
3129 	 or .data, if these sections exist.  In the case of choosing
3130 	 .plt try to make the LTP ideal for addressing anywhere in the
3131 	 .plt or .got with a 14 bit signed offset.  Typically, the end
3132 	 of the .plt is the start of the .got, so choose .plt + 0x2000
3133 	 if either the .plt or .got is larger than 0x2000.  If both
3134 	 the .plt and .got are smaller than 0x2000, choose the end of
3135 	 the .plt section.  */
3136       sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3137 	  ? NULL : splt;
3138       if (sec != NULL)
3139 	{
3140 	  gp_val = sec->size;
3141 	  if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3142 	    {
3143 	      gp_val = 0x2000;
3144 	    }
3145 	}
3146       else
3147 	{
3148 	  sec = sgot;
3149 	  if (sec != NULL)
3150 	    {
3151 	      if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3152 		{
3153 	          /* We know we don't have a .plt.  If .got is large,
3154 		     offset our LTP.  */
3155 	          if (sec->size > 0x2000)
3156 		    gp_val = 0x2000;
3157 		}
3158 	    }
3159 	  else
3160 	    {
3161 	      /* No .plt or .got.  Who cares what the LTP is?  */
3162 	      sec = bfd_get_section_by_name (abfd, ".data");
3163 	    }
3164 	}
3165 
3166       if (h != NULL)
3167 	{
3168 	  h->type = bfd_link_hash_defined;
3169 	  h->u.def.value = gp_val;
3170 	  if (sec != NULL)
3171 	    h->u.def.section = sec;
3172 	  else
3173 	    h->u.def.section = bfd_abs_section_ptr;
3174 	}
3175     }
3176 
3177   if (sec != NULL && sec->output_section != NULL)
3178     gp_val += sec->output_section->vma + sec->output_offset;
3179 
3180   elf_gp (abfd) = gp_val;
3181   return TRUE;
3182 }
3183 
3184 /* Build all the stubs associated with the current output file.  The
3185    stubs are kept in a hash table attached to the main linker hash
3186    table.  We also set up the .plt entries for statically linked PIC
3187    functions here.  This function is called via hppaelf_finish in the
3188    linker.  */
3189 
3190 bfd_boolean
elf32_hppa_build_stubs(struct bfd_link_info * info)3191 elf32_hppa_build_stubs (struct bfd_link_info *info)
3192 {
3193   asection *stub_sec;
3194   struct bfd_hash_table *table;
3195   struct elf32_hppa_link_hash_table *htab;
3196 
3197   htab = hppa_link_hash_table (info);
3198   if (htab == NULL)
3199     return FALSE;
3200 
3201   for (stub_sec = htab->stub_bfd->sections;
3202        stub_sec != NULL;
3203        stub_sec = stub_sec->next)
3204     if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3205 	&& stub_sec->size != 0)
3206       {
3207 	/* Allocate memory to hold the linker stubs.  */
3208 	stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3209 	if (stub_sec->contents == NULL)
3210 	  return FALSE;
3211 	stub_sec->size = 0;
3212       }
3213 
3214   /* Build the stubs as directed by the stub hash table.  */
3215   table = &htab->bstab;
3216   bfd_hash_traverse (table, hppa_build_one_stub, info);
3217 
3218   return TRUE;
3219 }
3220 
3221 /* Return the base vma address which should be subtracted from the real
3222    address when resolving a dtpoff relocation.
3223    This is PT_TLS segment p_vaddr.  */
3224 
3225 static bfd_vma
dtpoff_base(struct bfd_link_info * info)3226 dtpoff_base (struct bfd_link_info *info)
3227 {
3228   /* If tls_sec is NULL, we should have signalled an error already.  */
3229   if (elf_hash_table (info)->tls_sec == NULL)
3230     return 0;
3231   return elf_hash_table (info)->tls_sec->vma;
3232 }
3233 
3234 /* Return the relocation value for R_PARISC_TLS_TPOFF*..  */
3235 
3236 static bfd_vma
tpoff(struct bfd_link_info * info,bfd_vma address)3237 tpoff (struct bfd_link_info *info, bfd_vma address)
3238 {
3239   struct elf_link_hash_table *htab = elf_hash_table (info);
3240 
3241   /* If tls_sec is NULL, we should have signalled an error already.  */
3242   if (htab->tls_sec == NULL)
3243     return 0;
3244   /* hppa TLS ABI is variant I and static TLS block start just after
3245      tcbhead structure which has 2 pointer fields.  */
3246   return (address - htab->tls_sec->vma
3247 	  + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3248 }
3249 
3250 /* Perform a final link.  */
3251 
3252 static bfd_boolean
elf32_hppa_final_link(bfd * abfd,struct bfd_link_info * info)3253 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3254 {
3255   struct stat buf;
3256 
3257   /* Invoke the regular ELF linker to do all the work.  */
3258   if (!bfd_elf_final_link (abfd, info))
3259     return FALSE;
3260 
3261   /* If we're producing a final executable, sort the contents of the
3262      unwind section.  */
3263   if (bfd_link_relocatable (info))
3264     return TRUE;
3265 
3266   /* Do not attempt to sort non-regular files.  This is here
3267      especially for configure scripts and kernel builds which run
3268      tests with "ld [...] -o /dev/null".  */
3269   if (stat (abfd->filename, &buf) != 0
3270       || !S_ISREG(buf.st_mode))
3271     return TRUE;
3272 
3273   return elf_hppa_sort_unwind (abfd);
3274 }
3275 
3276 /* Record the lowest address for the data and text segments.  */
3277 
3278 static void
hppa_record_segment_addr(bfd * abfd,asection * section,void * data)3279 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3280 {
3281   struct elf32_hppa_link_hash_table *htab;
3282 
3283   htab = (struct elf32_hppa_link_hash_table*) data;
3284   if (htab == NULL)
3285     return;
3286 
3287   if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3288     {
3289       bfd_vma value;
3290       Elf_Internal_Phdr *p;
3291 
3292       p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3293       BFD_ASSERT (p != NULL);
3294       value = p->p_vaddr;
3295 
3296       if ((section->flags & SEC_READONLY) != 0)
3297 	{
3298 	  if (value < htab->text_segment_base)
3299 	    htab->text_segment_base = value;
3300 	}
3301       else
3302 	{
3303 	  if (value < htab->data_segment_base)
3304 	    htab->data_segment_base = value;
3305 	}
3306     }
3307 }
3308 
3309 /* Perform a relocation as part of a final link.  */
3310 
3311 static bfd_reloc_status_type
final_link_relocate(asection * input_section,bfd_byte * contents,const Elf_Internal_Rela * rela,bfd_vma value,struct elf32_hppa_link_hash_table * htab,asection * sym_sec,struct elf32_hppa_link_hash_entry * hh,struct bfd_link_info * info)3312 final_link_relocate (asection *input_section,
3313 		     bfd_byte *contents,
3314 		     const Elf_Internal_Rela *rela,
3315 		     bfd_vma value,
3316 		     struct elf32_hppa_link_hash_table *htab,
3317 		     asection *sym_sec,
3318 		     struct elf32_hppa_link_hash_entry *hh,
3319 		     struct bfd_link_info *info)
3320 {
3321   int insn;
3322   unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3323   unsigned int orig_r_type = r_type;
3324   reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3325   int r_format = howto->bitsize;
3326   enum hppa_reloc_field_selector_type_alt r_field;
3327   bfd *input_bfd = input_section->owner;
3328   bfd_vma offset = rela->r_offset;
3329   bfd_vma max_branch_offset = 0;
3330   bfd_byte *hit_data = contents + offset;
3331   bfd_signed_vma addend = rela->r_addend;
3332   bfd_vma location;
3333   struct elf32_hppa_stub_hash_entry *hsh = NULL;
3334   int val;
3335 
3336   if (r_type == R_PARISC_NONE)
3337     return bfd_reloc_ok;
3338 
3339   insn = bfd_get_32 (input_bfd, hit_data);
3340 
3341   /* Find out where we are and where we're going.  */
3342   location = (offset +
3343 	      input_section->output_offset +
3344 	      input_section->output_section->vma);
3345 
3346   /* If we are not building a shared library, convert DLTIND relocs to
3347      DPREL relocs.  */
3348   if (!bfd_link_pic (info))
3349     {
3350       switch (r_type)
3351 	{
3352 	  case R_PARISC_DLTIND21L:
3353 	  case R_PARISC_TLS_GD21L:
3354 	  case R_PARISC_TLS_LDM21L:
3355 	  case R_PARISC_TLS_IE21L:
3356 	    r_type = R_PARISC_DPREL21L;
3357 	    break;
3358 
3359 	  case R_PARISC_DLTIND14R:
3360 	  case R_PARISC_TLS_GD14R:
3361 	  case R_PARISC_TLS_LDM14R:
3362 	  case R_PARISC_TLS_IE14R:
3363 	    r_type = R_PARISC_DPREL14R;
3364 	    break;
3365 
3366 	  case R_PARISC_DLTIND14F:
3367 	    r_type = R_PARISC_DPREL14F;
3368 	    break;
3369 	}
3370     }
3371 
3372   switch (r_type)
3373     {
3374     case R_PARISC_PCREL12F:
3375     case R_PARISC_PCREL17F:
3376     case R_PARISC_PCREL22F:
3377       /* If this call should go via the plt, find the import stub in
3378 	 the stub hash.  */
3379       if (sym_sec == NULL
3380 	  || sym_sec->output_section == NULL
3381 	  || (hh != NULL
3382 	      && hh->eh.plt.offset != (bfd_vma) -1
3383 	      && hh->eh.dynindx != -1
3384 	      && !hh->plabel
3385 	      && (bfd_link_pic (info)
3386 		  || !hh->eh.def_regular
3387 		  || hh->eh.root.type == bfd_link_hash_defweak)))
3388 	{
3389 	  hsh = hppa_get_stub_entry (input_section, sym_sec,
3390 					    hh, rela, htab);
3391 	  if (hsh != NULL)
3392 	    {
3393 	      value = (hsh->stub_offset
3394 		       + hsh->stub_sec->output_offset
3395 		       + hsh->stub_sec->output_section->vma);
3396 	      addend = 0;
3397 	    }
3398 	  else if (sym_sec == NULL && hh != NULL
3399 		   && hh->eh.root.type == bfd_link_hash_undefweak)
3400 	    {
3401 	      /* It's OK if undefined weak.  Calls to undefined weak
3402 		 symbols behave as if the "called" function
3403 		 immediately returns.  We can thus call to a weak
3404 		 function without first checking whether the function
3405 		 is defined.  */
3406 	      value = location;
3407 	      addend = 8;
3408 	    }
3409 	  else
3410 	    return bfd_reloc_undefined;
3411 	}
3412       /* Fall thru.  */
3413 
3414     case R_PARISC_PCREL21L:
3415     case R_PARISC_PCREL17C:
3416     case R_PARISC_PCREL17R:
3417     case R_PARISC_PCREL14R:
3418     case R_PARISC_PCREL14F:
3419     case R_PARISC_PCREL32:
3420       /* Make it a pc relative offset.  */
3421       value -= location;
3422       addend -= 8;
3423       break;
3424 
3425     case R_PARISC_DPREL21L:
3426     case R_PARISC_DPREL14R:
3427     case R_PARISC_DPREL14F:
3428       /* Convert instructions that use the linkage table pointer (r19) to
3429 	 instructions that use the global data pointer (dp).  This is the
3430 	 most efficient way of using PIC code in an incomplete executable,
3431 	 but the user must follow the standard runtime conventions for
3432 	 accessing data for this to work.  */
3433       if (orig_r_type != r_type)
3434 	{
3435 	  if (r_type == R_PARISC_DPREL21L)
3436 	    {
3437 	      /* GCC sometimes uses a register other than r19 for the
3438 		 operation, so we must convert any addil instruction
3439 		 that uses this relocation.  */
3440 	      if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3441 		insn = ADDIL_DP;
3442 	      else
3443 		/* We must have a ldil instruction.  It's too hard to find
3444 		   and convert the associated add instruction, so issue an
3445 		   error.  */
3446 		(*_bfd_error_handler)
3447 		  (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3448 		   input_bfd,
3449 		   input_section,
3450 		   (long) offset,
3451 		   howto->name,
3452 		   insn);
3453 	    }
3454 	  else if (r_type == R_PARISC_DPREL14F)
3455 	    {
3456 	      /* This must be a format 1 load/store.  Change the base
3457 		 register to dp.  */
3458 	      insn = (insn & 0xfc1ffff) | (27 << 21);
3459 	    }
3460 	}
3461 
3462       /* For all the DP relative relocations, we need to examine the symbol's
3463 	 section.  If it has no section or if it's a code section, then
3464 	 "data pointer relative" makes no sense.  In that case we don't
3465 	 adjust the "value", and for 21 bit addil instructions, we change the
3466 	 source addend register from %dp to %r0.  This situation commonly
3467 	 arises for undefined weak symbols and when a variable's "constness"
3468 	 is declared differently from the way the variable is defined.  For
3469 	 instance: "extern int foo" with foo defined as "const int foo".  */
3470       if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3471 	{
3472 	  if ((insn & ((0x3f << 26) | (0x1f << 21)))
3473 	      == (((int) OP_ADDIL << 26) | (27 << 21)))
3474 	    {
3475 	      insn &= ~ (0x1f << 21);
3476 	    }
3477 	  /* Now try to make things easy for the dynamic linker.  */
3478 
3479 	  break;
3480 	}
3481       /* Fall thru.  */
3482 
3483     case R_PARISC_DLTIND21L:
3484     case R_PARISC_DLTIND14R:
3485     case R_PARISC_DLTIND14F:
3486     case R_PARISC_TLS_GD21L:
3487     case R_PARISC_TLS_LDM21L:
3488     case R_PARISC_TLS_IE21L:
3489     case R_PARISC_TLS_GD14R:
3490     case R_PARISC_TLS_LDM14R:
3491     case R_PARISC_TLS_IE14R:
3492       value -= elf_gp (input_section->output_section->owner);
3493       break;
3494 
3495     case R_PARISC_SEGREL32:
3496       if ((sym_sec->flags & SEC_CODE) != 0)
3497 	value -= htab->text_segment_base;
3498       else
3499 	value -= htab->data_segment_base;
3500       break;
3501 
3502     default:
3503       break;
3504     }
3505 
3506   switch (r_type)
3507     {
3508     case R_PARISC_DIR32:
3509     case R_PARISC_DIR14F:
3510     case R_PARISC_DIR17F:
3511     case R_PARISC_PCREL17C:
3512     case R_PARISC_PCREL14F:
3513     case R_PARISC_PCREL32:
3514     case R_PARISC_DPREL14F:
3515     case R_PARISC_PLABEL32:
3516     case R_PARISC_DLTIND14F:
3517     case R_PARISC_SEGBASE:
3518     case R_PARISC_SEGREL32:
3519     case R_PARISC_TLS_DTPMOD32:
3520     case R_PARISC_TLS_DTPOFF32:
3521     case R_PARISC_TLS_TPREL32:
3522       r_field = e_fsel;
3523       break;
3524 
3525     case R_PARISC_DLTIND21L:
3526     case R_PARISC_PCREL21L:
3527     case R_PARISC_PLABEL21L:
3528       r_field = e_lsel;
3529       break;
3530 
3531     case R_PARISC_DIR21L:
3532     case R_PARISC_DPREL21L:
3533     case R_PARISC_TLS_GD21L:
3534     case R_PARISC_TLS_LDM21L:
3535     case R_PARISC_TLS_LDO21L:
3536     case R_PARISC_TLS_IE21L:
3537     case R_PARISC_TLS_LE21L:
3538       r_field = e_lrsel;
3539       break;
3540 
3541     case R_PARISC_PCREL17R:
3542     case R_PARISC_PCREL14R:
3543     case R_PARISC_PLABEL14R:
3544     case R_PARISC_DLTIND14R:
3545       r_field = e_rsel;
3546       break;
3547 
3548     case R_PARISC_DIR17R:
3549     case R_PARISC_DIR14R:
3550     case R_PARISC_DPREL14R:
3551     case R_PARISC_TLS_GD14R:
3552     case R_PARISC_TLS_LDM14R:
3553     case R_PARISC_TLS_LDO14R:
3554     case R_PARISC_TLS_IE14R:
3555     case R_PARISC_TLS_LE14R:
3556       r_field = e_rrsel;
3557       break;
3558 
3559     case R_PARISC_PCREL12F:
3560     case R_PARISC_PCREL17F:
3561     case R_PARISC_PCREL22F:
3562       r_field = e_fsel;
3563 
3564       if (r_type == (unsigned int) R_PARISC_PCREL17F)
3565 	{
3566 	  max_branch_offset = (1 << (17-1)) << 2;
3567 	}
3568       else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3569 	{
3570 	  max_branch_offset = (1 << (12-1)) << 2;
3571 	}
3572       else
3573 	{
3574 	  max_branch_offset = (1 << (22-1)) << 2;
3575 	}
3576 
3577       /* sym_sec is NULL on undefined weak syms or when shared on
3578 	 undefined syms.  We've already checked for a stub for the
3579 	 shared undefined case.  */
3580       if (sym_sec == NULL)
3581 	break;
3582 
3583       /* If the branch is out of reach, then redirect the
3584 	 call to the local stub for this function.  */
3585       if (value + addend + max_branch_offset >= 2*max_branch_offset)
3586 	{
3587 	  hsh = hppa_get_stub_entry (input_section, sym_sec,
3588 					    hh, rela, htab);
3589 	  if (hsh == NULL)
3590 	    return bfd_reloc_undefined;
3591 
3592 	  /* Munge up the value and addend so that we call the stub
3593 	     rather than the procedure directly.  */
3594 	  value = (hsh->stub_offset
3595 		   + hsh->stub_sec->output_offset
3596 		   + hsh->stub_sec->output_section->vma
3597 		   - location);
3598 	  addend = -8;
3599 	}
3600       break;
3601 
3602     /* Something we don't know how to handle.  */
3603     default:
3604       return bfd_reloc_notsupported;
3605     }
3606 
3607   /* Make sure we can reach the stub.  */
3608   if (max_branch_offset != 0
3609       && value + addend + max_branch_offset >= 2*max_branch_offset)
3610     {
3611       (*_bfd_error_handler)
3612 	(_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3613 	 input_bfd,
3614 	 input_section,
3615 	 (long) offset,
3616 	 hsh->bh_root.string);
3617       bfd_set_error (bfd_error_bad_value);
3618       return bfd_reloc_notsupported;
3619     }
3620 
3621   val = hppa_field_adjust (value, addend, r_field);
3622 
3623   switch (r_type)
3624     {
3625     case R_PARISC_PCREL12F:
3626     case R_PARISC_PCREL17C:
3627     case R_PARISC_PCREL17F:
3628     case R_PARISC_PCREL17R:
3629     case R_PARISC_PCREL22F:
3630     case R_PARISC_DIR17F:
3631     case R_PARISC_DIR17R:
3632       /* This is a branch.  Divide the offset by four.
3633 	 Note that we need to decide whether it's a branch or
3634 	 otherwise by inspecting the reloc.  Inspecting insn won't
3635 	 work as insn might be from a .word directive.  */
3636       val >>= 2;
3637       break;
3638 
3639     default:
3640       break;
3641     }
3642 
3643   insn = hppa_rebuild_insn (insn, val, r_format);
3644 
3645   /* Update the instruction word.  */
3646   bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3647   return bfd_reloc_ok;
3648 }
3649 
3650 /* Relocate an HPPA ELF section.  */
3651 
3652 static bfd_boolean
elf32_hppa_relocate_section(bfd * output_bfd,struct bfd_link_info * info,bfd * input_bfd,asection * input_section,bfd_byte * contents,Elf_Internal_Rela * relocs,Elf_Internal_Sym * local_syms,asection ** local_sections)3653 elf32_hppa_relocate_section (bfd *output_bfd,
3654 			     struct bfd_link_info *info,
3655 			     bfd *input_bfd,
3656 			     asection *input_section,
3657 			     bfd_byte *contents,
3658 			     Elf_Internal_Rela *relocs,
3659 			     Elf_Internal_Sym *local_syms,
3660 			     asection **local_sections)
3661 {
3662   bfd_vma *local_got_offsets;
3663   struct elf32_hppa_link_hash_table *htab;
3664   Elf_Internal_Shdr *symtab_hdr;
3665   Elf_Internal_Rela *rela;
3666   Elf_Internal_Rela *relend;
3667 
3668   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3669 
3670   htab = hppa_link_hash_table (info);
3671   if (htab == NULL)
3672     return FALSE;
3673 
3674   local_got_offsets = elf_local_got_offsets (input_bfd);
3675 
3676   rela = relocs;
3677   relend = relocs + input_section->reloc_count;
3678   for (; rela < relend; rela++)
3679     {
3680       unsigned int r_type;
3681       reloc_howto_type *howto;
3682       unsigned int r_symndx;
3683       struct elf32_hppa_link_hash_entry *hh;
3684       Elf_Internal_Sym *sym;
3685       asection *sym_sec;
3686       bfd_vma relocation;
3687       bfd_reloc_status_type rstatus;
3688       const char *sym_name;
3689       bfd_boolean plabel;
3690       bfd_boolean warned_undef;
3691 
3692       r_type = ELF32_R_TYPE (rela->r_info);
3693       if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3694 	{
3695 	  bfd_set_error (bfd_error_bad_value);
3696 	  return FALSE;
3697 	}
3698       if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3699 	  || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3700 	continue;
3701 
3702       r_symndx = ELF32_R_SYM (rela->r_info);
3703       hh = NULL;
3704       sym = NULL;
3705       sym_sec = NULL;
3706       warned_undef = FALSE;
3707       if (r_symndx < symtab_hdr->sh_info)
3708 	{
3709 	  /* This is a local symbol, h defaults to NULL.  */
3710 	  sym = local_syms + r_symndx;
3711 	  sym_sec = local_sections[r_symndx];
3712 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3713 	}
3714       else
3715 	{
3716 	  struct elf_link_hash_entry *eh;
3717 	  bfd_boolean unresolved_reloc, ignored;
3718 	  struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3719 
3720 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3721 				   r_symndx, symtab_hdr, sym_hashes,
3722 				   eh, sym_sec, relocation,
3723 				   unresolved_reloc, warned_undef,
3724 				   ignored);
3725 
3726 	  if (!bfd_link_relocatable (info)
3727 	      && relocation == 0
3728 	      && eh->root.type != bfd_link_hash_defined
3729 	      && eh->root.type != bfd_link_hash_defweak
3730 	      && eh->root.type != bfd_link_hash_undefweak)
3731 	    {
3732 	      if (info->unresolved_syms_in_objects == RM_IGNORE
3733 		  && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3734 		  && eh->type == STT_PARISC_MILLI)
3735 		{
3736 		  (*info->callbacks->undefined_symbol)
3737 		    (info, eh_name (eh), input_bfd,
3738 		     input_section, rela->r_offset, FALSE);
3739 		  warned_undef = TRUE;
3740 		}
3741 	    }
3742 	  hh = hppa_elf_hash_entry (eh);
3743 	}
3744 
3745       if (sym_sec != NULL && discarded_section (sym_sec))
3746 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3747 					 rela, 1, relend,
3748 					 elf_hppa_howto_table + r_type, 0,
3749 					 contents);
3750 
3751       if (bfd_link_relocatable (info))
3752 	continue;
3753 
3754       /* Do any required modifications to the relocation value, and
3755 	 determine what types of dynamic info we need to output, if
3756 	 any.  */
3757       plabel = 0;
3758       switch (r_type)
3759 	{
3760 	case R_PARISC_DLTIND14F:
3761 	case R_PARISC_DLTIND14R:
3762 	case R_PARISC_DLTIND21L:
3763 	  {
3764 	    bfd_vma off;
3765 	    bfd_boolean do_got = 0;
3766 
3767 	    /* Relocation is to the entry for this symbol in the
3768 	       global offset table.  */
3769 	    if (hh != NULL)
3770 	      {
3771 		bfd_boolean dyn;
3772 
3773 		off = hh->eh.got.offset;
3774 		dyn = htab->etab.dynamic_sections_created;
3775 		if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3776 						       bfd_link_pic (info),
3777 						       &hh->eh))
3778 		  {
3779 		    /* If we aren't going to call finish_dynamic_symbol,
3780 		       then we need to handle initialisation of the .got
3781 		       entry and create needed relocs here.  Since the
3782 		       offset must always be a multiple of 4, we use the
3783 		       least significant bit to record whether we have
3784 		       initialised it already.  */
3785 		    if ((off & 1) != 0)
3786 		      off &= ~1;
3787 		    else
3788 		      {
3789 			hh->eh.got.offset |= 1;
3790 			do_got = 1;
3791 		      }
3792 		  }
3793 	      }
3794 	    else
3795 	      {
3796 		/* Local symbol case.  */
3797 		if (local_got_offsets == NULL)
3798 		  abort ();
3799 
3800 		off = local_got_offsets[r_symndx];
3801 
3802 		/* The offset must always be a multiple of 4.  We use
3803 		   the least significant bit to record whether we have
3804 		   already generated the necessary reloc.  */
3805 		if ((off & 1) != 0)
3806 		  off &= ~1;
3807 		else
3808 		  {
3809 		    local_got_offsets[r_symndx] |= 1;
3810 		    do_got = 1;
3811 		  }
3812 	      }
3813 
3814 	    if (do_got)
3815 	      {
3816 		if (bfd_link_pic (info))
3817 		  {
3818 		    /* Output a dynamic relocation for this GOT entry.
3819 		       In this case it is relative to the base of the
3820 		       object because the symbol index is zero.  */
3821 		    Elf_Internal_Rela outrel;
3822 		    bfd_byte *loc;
3823 		    asection *sec = htab->srelgot;
3824 
3825 		    outrel.r_offset = (off
3826 				       + htab->sgot->output_offset
3827 				       + htab->sgot->output_section->vma);
3828 		    outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3829 		    outrel.r_addend = relocation;
3830 		    loc = sec->contents;
3831 		    loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3832 		    bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3833 		  }
3834 		else
3835 		  bfd_put_32 (output_bfd, relocation,
3836 			      htab->sgot->contents + off);
3837 	      }
3838 
3839 	    if (off >= (bfd_vma) -2)
3840 	      abort ();
3841 
3842 	    /* Add the base of the GOT to the relocation value.  */
3843 	    relocation = (off
3844 			  + htab->sgot->output_offset
3845 			  + htab->sgot->output_section->vma);
3846 	  }
3847 	  break;
3848 
3849 	case R_PARISC_SEGREL32:
3850 	  /* If this is the first SEGREL relocation, then initialize
3851 	     the segment base values.  */
3852 	  if (htab->text_segment_base == (bfd_vma) -1)
3853 	    bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3854 	  break;
3855 
3856 	case R_PARISC_PLABEL14R:
3857 	case R_PARISC_PLABEL21L:
3858 	case R_PARISC_PLABEL32:
3859 	  if (htab->etab.dynamic_sections_created)
3860 	    {
3861 	      bfd_vma off;
3862 	      bfd_boolean do_plt = 0;
3863 	      /* If we have a global symbol with a PLT slot, then
3864 		 redirect this relocation to it.  */
3865 	      if (hh != NULL)
3866 		{
3867 		  off = hh->eh.plt.offset;
3868 		  if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3869 							 bfd_link_pic (info),
3870 							 &hh->eh))
3871 		    {
3872 		      /* In a non-shared link, adjust_dynamic_symbols
3873 			 isn't called for symbols forced local.  We
3874 			 need to write out the plt entry here.  */
3875 		      if ((off & 1) != 0)
3876 			off &= ~1;
3877 		      else
3878 			{
3879 			  hh->eh.plt.offset |= 1;
3880 			  do_plt = 1;
3881 			}
3882 		    }
3883 		}
3884 	      else
3885 		{
3886 		  bfd_vma *local_plt_offsets;
3887 
3888 		  if (local_got_offsets == NULL)
3889 		    abort ();
3890 
3891 		  local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3892 		  off = local_plt_offsets[r_symndx];
3893 
3894 		  /* As for the local .got entry case, we use the last
3895 		     bit to record whether we've already initialised
3896 		     this local .plt entry.  */
3897 		  if ((off & 1) != 0)
3898 		    off &= ~1;
3899 		  else
3900 		    {
3901 		      local_plt_offsets[r_symndx] |= 1;
3902 		      do_plt = 1;
3903 		    }
3904 		}
3905 
3906 	      if (do_plt)
3907 		{
3908 		  if (bfd_link_pic (info))
3909 		    {
3910 		      /* Output a dynamic IPLT relocation for this
3911 			 PLT entry.  */
3912 		      Elf_Internal_Rela outrel;
3913 		      bfd_byte *loc;
3914 		      asection *s = htab->srelplt;
3915 
3916 		      outrel.r_offset = (off
3917 					 + htab->splt->output_offset
3918 					 + htab->splt->output_section->vma);
3919 		      outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3920 		      outrel.r_addend = relocation;
3921 		      loc = s->contents;
3922 		      loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3923 		      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3924 		    }
3925 		  else
3926 		    {
3927 		      bfd_put_32 (output_bfd,
3928 				  relocation,
3929 				  htab->splt->contents + off);
3930 		      bfd_put_32 (output_bfd,
3931 				  elf_gp (htab->splt->output_section->owner),
3932 				  htab->splt->contents + off + 4);
3933 		    }
3934 		}
3935 
3936 	      if (off >= (bfd_vma) -2)
3937 		abort ();
3938 
3939 	      /* PLABELs contain function pointers.  Relocation is to
3940 		 the entry for the function in the .plt.  The magic +2
3941 		 offset signals to $$dyncall that the function pointer
3942 		 is in the .plt and thus has a gp pointer too.
3943 		 Exception:  Undefined PLABELs should have a value of
3944 		 zero.  */
3945 	      if (hh == NULL
3946 		  || (hh->eh.root.type != bfd_link_hash_undefweak
3947 		      && hh->eh.root.type != bfd_link_hash_undefined))
3948 		{
3949 		  relocation = (off
3950 				+ htab->splt->output_offset
3951 				+ htab->splt->output_section->vma
3952 				+ 2);
3953 		}
3954 	      plabel = 1;
3955 	    }
3956 	  /* Fall through and possibly emit a dynamic relocation.  */
3957 
3958 	case R_PARISC_DIR17F:
3959 	case R_PARISC_DIR17R:
3960 	case R_PARISC_DIR14F:
3961 	case R_PARISC_DIR14R:
3962 	case R_PARISC_DIR21L:
3963 	case R_PARISC_DPREL14F:
3964 	case R_PARISC_DPREL14R:
3965 	case R_PARISC_DPREL21L:
3966 	case R_PARISC_DIR32:
3967 	  if ((input_section->flags & SEC_ALLOC) == 0)
3968 	    break;
3969 
3970 	  /* The reloc types handled here and this conditional
3971 	     expression must match the code in ..check_relocs and
3972 	     allocate_dynrelocs.  ie. We need exactly the same condition
3973 	     as in ..check_relocs, with some extra conditions (dynindx
3974 	     test in this case) to cater for relocs removed by
3975 	     allocate_dynrelocs.  If you squint, the non-shared test
3976 	     here does indeed match the one in ..check_relocs, the
3977 	     difference being that here we test DEF_DYNAMIC as well as
3978 	     !DEF_REGULAR.  All common syms end up with !DEF_REGULAR,
3979 	     which is why we can't use just that test here.
3980 	     Conversely, DEF_DYNAMIC can't be used in check_relocs as
3981 	     there all files have not been loaded.  */
3982 	  if ((bfd_link_pic (info)
3983 	       && (hh == NULL
3984 		   || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3985 		   || hh->eh.root.type != bfd_link_hash_undefweak)
3986 	       && (IS_ABSOLUTE_RELOC (r_type)
3987 		   || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3988 	      || (!bfd_link_pic (info)
3989 		  && hh != NULL
3990 		  && hh->eh.dynindx != -1
3991 		  && !hh->eh.non_got_ref
3992 		  && ((ELIMINATE_COPY_RELOCS
3993 		       && hh->eh.def_dynamic
3994 		       && !hh->eh.def_regular)
3995 		      || hh->eh.root.type == bfd_link_hash_undefweak
3996 		      || hh->eh.root.type == bfd_link_hash_undefined)))
3997 	    {
3998 	      Elf_Internal_Rela outrel;
3999 	      bfd_boolean skip;
4000 	      asection *sreloc;
4001 	      bfd_byte *loc;
4002 
4003 	      /* When generating a shared object, these relocations
4004 		 are copied into the output file to be resolved at run
4005 		 time.  */
4006 
4007 	      outrel.r_addend = rela->r_addend;
4008 	      outrel.r_offset =
4009 		_bfd_elf_section_offset (output_bfd, info, input_section,
4010 					 rela->r_offset);
4011 	      skip = (outrel.r_offset == (bfd_vma) -1
4012 		      || outrel.r_offset == (bfd_vma) -2);
4013 	      outrel.r_offset += (input_section->output_offset
4014 				  + input_section->output_section->vma);
4015 
4016 	      if (skip)
4017 		{
4018 		  memset (&outrel, 0, sizeof (outrel));
4019 		}
4020 	      else if (hh != NULL
4021 		       && hh->eh.dynindx != -1
4022 		       && (plabel
4023 			   || !IS_ABSOLUTE_RELOC (r_type)
4024 			   || !bfd_link_pic (info)
4025 			   || !SYMBOLIC_BIND (info, &hh->eh)
4026 			   || !hh->eh.def_regular))
4027 		{
4028 		  outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
4029 		}
4030 	      else /* It's a local symbol, or one marked to become local.  */
4031 		{
4032 		  int indx = 0;
4033 
4034 		  /* Add the absolute offset of the symbol.  */
4035 		  outrel.r_addend += relocation;
4036 
4037 		  /* Global plabels need to be processed by the
4038 		     dynamic linker so that functions have at most one
4039 		     fptr.  For this reason, we need to differentiate
4040 		     between global and local plabels, which we do by
4041 		     providing the function symbol for a global plabel
4042 		     reloc, and no symbol for local plabels.  */
4043 		  if (! plabel
4044 		      && sym_sec != NULL
4045 		      && sym_sec->output_section != NULL
4046 		      && ! bfd_is_abs_section (sym_sec))
4047 		    {
4048 		      asection *osec;
4049 
4050 		      osec = sym_sec->output_section;
4051 		      indx = elf_section_data (osec)->dynindx;
4052 		      if (indx == 0)
4053 			{
4054 			  osec = htab->etab.text_index_section;
4055 			  indx = elf_section_data (osec)->dynindx;
4056 			}
4057 		      BFD_ASSERT (indx != 0);
4058 
4059 		      /* We are turning this relocation into one
4060 			 against a section symbol, so subtract out the
4061 			 output section's address but not the offset
4062 			 of the input section in the output section.  */
4063 		      outrel.r_addend -= osec->vma;
4064 		    }
4065 
4066 		  outrel.r_info = ELF32_R_INFO (indx, r_type);
4067 		}
4068 	      sreloc = elf_section_data (input_section)->sreloc;
4069 	      if (sreloc == NULL)
4070 		abort ();
4071 
4072 	      loc = sreloc->contents;
4073 	      loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4074 	      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4075 	    }
4076 	  break;
4077 
4078 	case R_PARISC_TLS_LDM21L:
4079 	case R_PARISC_TLS_LDM14R:
4080 	  {
4081 	    bfd_vma off;
4082 
4083 	    off = htab->tls_ldm_got.offset;
4084 	    if (off & 1)
4085 	      off &= ~1;
4086 	    else
4087 	      {
4088 		Elf_Internal_Rela outrel;
4089 		bfd_byte *loc;
4090 
4091 		outrel.r_offset = (off
4092 				   + htab->sgot->output_section->vma
4093 				   + htab->sgot->output_offset);
4094 		outrel.r_addend = 0;
4095 		outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4096 		loc = htab->srelgot->contents;
4097 		loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4098 
4099 		bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4100 		htab->tls_ldm_got.offset |= 1;
4101 	      }
4102 
4103 	    /* Add the base of the GOT to the relocation value.  */
4104 	    relocation = (off
4105 			  + htab->sgot->output_offset
4106 			  + htab->sgot->output_section->vma);
4107 
4108 	    break;
4109 	  }
4110 
4111 	case R_PARISC_TLS_LDO21L:
4112 	case R_PARISC_TLS_LDO14R:
4113 	  relocation -= dtpoff_base (info);
4114 	  break;
4115 
4116 	case R_PARISC_TLS_GD21L:
4117 	case R_PARISC_TLS_GD14R:
4118 	case R_PARISC_TLS_IE21L:
4119 	case R_PARISC_TLS_IE14R:
4120 	  {
4121 	    bfd_vma off;
4122 	    int indx;
4123 	    char tls_type;
4124 
4125 	    indx = 0;
4126 	    if (hh != NULL)
4127 	      {
4128 	        bfd_boolean dyn;
4129 	        dyn = htab->etab.dynamic_sections_created;
4130 
4131 		if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
4132 						     bfd_link_pic (info),
4133 						     &hh->eh)
4134 		    && (!bfd_link_pic (info)
4135 			|| !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4136 		  {
4137 		    indx = hh->eh.dynindx;
4138 		  }
4139 		off = hh->eh.got.offset;
4140 		tls_type = hh->tls_type;
4141 	      }
4142 	    else
4143 	      {
4144 		off = local_got_offsets[r_symndx];
4145 		tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4146 	      }
4147 
4148 	    if (tls_type == GOT_UNKNOWN)
4149 	      abort ();
4150 
4151 	    if ((off & 1) != 0)
4152 	      off &= ~1;
4153 	    else
4154 	      {
4155 		bfd_boolean need_relocs = FALSE;
4156 		Elf_Internal_Rela outrel;
4157 		bfd_byte *loc = NULL;
4158 		int cur_off = off;
4159 
4160 	        /* The GOT entries have not been initialized yet.  Do it
4161 	           now, and emit any relocations.  If both an IE GOT and a
4162 	           GD GOT are necessary, we emit the GD first.  */
4163 
4164 		if ((bfd_link_pic (info) || indx != 0)
4165 		    && (hh == NULL
4166 			|| ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4167 			|| hh->eh.root.type != bfd_link_hash_undefweak))
4168 		  {
4169 		    need_relocs = TRUE;
4170 		    loc = htab->srelgot->contents;
4171 		    /* FIXME (CAO): Should this be reloc_count++ ? */
4172 		    loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4173 		  }
4174 
4175 		if (tls_type & GOT_TLS_GD)
4176 		  {
4177 		    if (need_relocs)
4178 		      {
4179 			outrel.r_offset = (cur_off
4180 					   + htab->sgot->output_section->vma
4181 					   + htab->sgot->output_offset);
4182 			outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4183 			outrel.r_addend = 0;
4184 			bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4185 			bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4186 			htab->srelgot->reloc_count++;
4187 			loc += sizeof (Elf32_External_Rela);
4188 
4189 			if (indx == 0)
4190 			  bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4191 				      htab->sgot->contents + cur_off + 4);
4192 			else
4193 			  {
4194 			    bfd_put_32 (output_bfd, 0,
4195 					htab->sgot->contents + cur_off + 4);
4196 			    outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4197 			    outrel.r_offset += 4;
4198 			    bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4199 			    htab->srelgot->reloc_count++;
4200 			    loc += sizeof (Elf32_External_Rela);
4201 			  }
4202 		      }
4203 		    else
4204 		      {
4205 		        /* If we are not emitting relocations for a
4206 		           general dynamic reference, then we must be in a
4207 		           static link or an executable link with the
4208 		           symbol binding locally.  Mark it as belonging
4209 		           to module 1, the executable.  */
4210 		        bfd_put_32 (output_bfd, 1,
4211 				    htab->sgot->contents + cur_off);
4212 		        bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4213 				    htab->sgot->contents + cur_off + 4);
4214 		      }
4215 
4216 
4217 		    cur_off += 8;
4218 		  }
4219 
4220 		if (tls_type & GOT_TLS_IE)
4221 		  {
4222 		    if (need_relocs)
4223 		      {
4224 			outrel.r_offset = (cur_off
4225 					   + htab->sgot->output_section->vma
4226 					   + htab->sgot->output_offset);
4227 			outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4228 
4229 			if (indx == 0)
4230 			  outrel.r_addend = relocation - dtpoff_base (info);
4231 			else
4232 			  outrel.r_addend = 0;
4233 
4234 			bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4235 			htab->srelgot->reloc_count++;
4236 			loc += sizeof (Elf32_External_Rela);
4237 		      }
4238 		    else
4239 		      bfd_put_32 (output_bfd, tpoff (info, relocation),
4240 				  htab->sgot->contents + cur_off);
4241 
4242 		    cur_off += 4;
4243 		  }
4244 
4245 		if (hh != NULL)
4246 		  hh->eh.got.offset |= 1;
4247 		else
4248 		  local_got_offsets[r_symndx] |= 1;
4249 	      }
4250 
4251 	    if ((tls_type & GOT_TLS_GD)
4252 	  	&& r_type != R_PARISC_TLS_GD21L
4253 	  	&& r_type != R_PARISC_TLS_GD14R)
4254 	      off += 2 * GOT_ENTRY_SIZE;
4255 
4256 	    /* Add the base of the GOT to the relocation value.  */
4257 	    relocation = (off
4258 			  + htab->sgot->output_offset
4259 			  + htab->sgot->output_section->vma);
4260 
4261 	    break;
4262 	  }
4263 
4264 	case R_PARISC_TLS_LE21L:
4265 	case R_PARISC_TLS_LE14R:
4266 	  {
4267 	    relocation = tpoff (info, relocation);
4268 	    break;
4269 	  }
4270 	  break;
4271 
4272 	default:
4273 	  break;
4274 	}
4275 
4276       rstatus = final_link_relocate (input_section, contents, rela, relocation,
4277 			       htab, sym_sec, hh, info);
4278 
4279       if (rstatus == bfd_reloc_ok)
4280 	continue;
4281 
4282       if (hh != NULL)
4283 	sym_name = hh_name (hh);
4284       else
4285 	{
4286 	  sym_name = bfd_elf_string_from_elf_section (input_bfd,
4287 						      symtab_hdr->sh_link,
4288 						      sym->st_name);
4289 	  if (sym_name == NULL)
4290 	    return FALSE;
4291 	  if (*sym_name == '\0')
4292 	    sym_name = bfd_section_name (input_bfd, sym_sec);
4293 	}
4294 
4295       howto = elf_hppa_howto_table + r_type;
4296 
4297       if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4298 	{
4299 	  if (rstatus == bfd_reloc_notsupported || !warned_undef)
4300 	    {
4301 	      (*_bfd_error_handler)
4302 		(_("%B(%A+0x%lx): cannot handle %s for %s"),
4303 		 input_bfd,
4304 		 input_section,
4305 		 (long) rela->r_offset,
4306 		 howto->name,
4307 		 sym_name);
4308 	      bfd_set_error (bfd_error_bad_value);
4309 	      return FALSE;
4310 	    }
4311 	}
4312       else
4313 	(*info->callbacks->reloc_overflow)
4314 	  (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4315 	   (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4316     }
4317 
4318   return TRUE;
4319 }
4320 
4321 /* Finish up dynamic symbol handling.  We set the contents of various
4322    dynamic sections here.  */
4323 
4324 static bfd_boolean
elf32_hppa_finish_dynamic_symbol(bfd * output_bfd,struct bfd_link_info * info,struct elf_link_hash_entry * eh,Elf_Internal_Sym * sym)4325 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4326 				  struct bfd_link_info *info,
4327 				  struct elf_link_hash_entry *eh,
4328 				  Elf_Internal_Sym *sym)
4329 {
4330   struct elf32_hppa_link_hash_table *htab;
4331   Elf_Internal_Rela rela;
4332   bfd_byte *loc;
4333 
4334   htab = hppa_link_hash_table (info);
4335   if (htab == NULL)
4336     return FALSE;
4337 
4338   if (eh->plt.offset != (bfd_vma) -1)
4339     {
4340       bfd_vma value;
4341 
4342       if (eh->plt.offset & 1)
4343 	abort ();
4344 
4345       /* This symbol has an entry in the procedure linkage table.  Set
4346 	 it up.
4347 
4348 	 The format of a plt entry is
4349 	 <funcaddr>
4350 	 <__gp>
4351       */
4352       value = 0;
4353       if (eh->root.type == bfd_link_hash_defined
4354 	  || eh->root.type == bfd_link_hash_defweak)
4355 	{
4356 	  value = eh->root.u.def.value;
4357 	  if (eh->root.u.def.section->output_section != NULL)
4358 	    value += (eh->root.u.def.section->output_offset
4359 		      + eh->root.u.def.section->output_section->vma);
4360 	}
4361 
4362       /* Create a dynamic IPLT relocation for this entry.  */
4363       rela.r_offset = (eh->plt.offset
4364 		      + htab->splt->output_offset
4365 		      + htab->splt->output_section->vma);
4366       if (eh->dynindx != -1)
4367 	{
4368 	  rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4369 	  rela.r_addend = 0;
4370 	}
4371       else
4372 	{
4373 	  /* This symbol has been marked to become local, and is
4374 	     used by a plabel so must be kept in the .plt.  */
4375 	  rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4376 	  rela.r_addend = value;
4377 	}
4378 
4379       loc = htab->srelplt->contents;
4380       loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4381       bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4382 
4383       if (!eh->def_regular)
4384 	{
4385 	  /* Mark the symbol as undefined, rather than as defined in
4386 	     the .plt section.  Leave the value alone.  */
4387 	  sym->st_shndx = SHN_UNDEF;
4388 	}
4389     }
4390 
4391   if (eh->got.offset != (bfd_vma) -1
4392       && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4393       && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4394     {
4395       /* This symbol has an entry in the global offset table.  Set it
4396 	 up.  */
4397 
4398       rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4399 		      + htab->sgot->output_offset
4400 		      + htab->sgot->output_section->vma);
4401 
4402       /* If this is a -Bsymbolic link and the symbol is defined
4403 	 locally or was forced to be local because of a version file,
4404 	 we just want to emit a RELATIVE reloc.  The entry in the
4405 	 global offset table will already have been initialized in the
4406 	 relocate_section function.  */
4407       if (bfd_link_pic (info)
4408 	  && (SYMBOLIC_BIND (info, eh) || eh->dynindx == -1)
4409 	  && eh->def_regular)
4410 	{
4411 	  rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4412 	  rela.r_addend = (eh->root.u.def.value
4413 			  + eh->root.u.def.section->output_offset
4414 			  + eh->root.u.def.section->output_section->vma);
4415 	}
4416       else
4417 	{
4418 	  if ((eh->got.offset & 1) != 0)
4419 	    abort ();
4420 
4421 	  bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4422 	  rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4423 	  rela.r_addend = 0;
4424 	}
4425 
4426       loc = htab->srelgot->contents;
4427       loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4428       bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4429     }
4430 
4431   if (eh->needs_copy)
4432     {
4433       asection *sec;
4434 
4435       /* This symbol needs a copy reloc.  Set it up.  */
4436 
4437       if (! (eh->dynindx != -1
4438 	     && (eh->root.type == bfd_link_hash_defined
4439 		 || eh->root.type == bfd_link_hash_defweak)))
4440 	abort ();
4441 
4442       sec = htab->srelbss;
4443 
4444       rela.r_offset = (eh->root.u.def.value
4445 		      + eh->root.u.def.section->output_offset
4446 		      + eh->root.u.def.section->output_section->vma);
4447       rela.r_addend = 0;
4448       rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4449       loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4450       bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4451     }
4452 
4453   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
4454   if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4455     {
4456       sym->st_shndx = SHN_ABS;
4457     }
4458 
4459   return TRUE;
4460 }
4461 
4462 /* Used to decide how to sort relocs in an optimal manner for the
4463    dynamic linker, before writing them out.  */
4464 
4465 static enum elf_reloc_type_class
elf32_hppa_reloc_type_class(const struct bfd_link_info * info ATTRIBUTE_UNUSED,const asection * rel_sec ATTRIBUTE_UNUSED,const Elf_Internal_Rela * rela)4466 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4467 			     const asection *rel_sec ATTRIBUTE_UNUSED,
4468 			     const Elf_Internal_Rela *rela)
4469 {
4470   /* Handle TLS relocs first; we don't want them to be marked
4471      relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4472      check below.  */
4473   switch ((int) ELF32_R_TYPE (rela->r_info))
4474     {
4475       case R_PARISC_TLS_DTPMOD32:
4476       case R_PARISC_TLS_DTPOFF32:
4477       case R_PARISC_TLS_TPREL32:
4478         return reloc_class_normal;
4479     }
4480 
4481   if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4482     return reloc_class_relative;
4483 
4484   switch ((int) ELF32_R_TYPE (rela->r_info))
4485     {
4486     case R_PARISC_IPLT:
4487       return reloc_class_plt;
4488     case R_PARISC_COPY:
4489       return reloc_class_copy;
4490     default:
4491       return reloc_class_normal;
4492     }
4493 }
4494 
4495 /* Finish up the dynamic sections.  */
4496 
4497 static bfd_boolean
elf32_hppa_finish_dynamic_sections(bfd * output_bfd,struct bfd_link_info * info)4498 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4499 				    struct bfd_link_info *info)
4500 {
4501   bfd *dynobj;
4502   struct elf32_hppa_link_hash_table *htab;
4503   asection *sdyn;
4504   asection * sgot;
4505 
4506   htab = hppa_link_hash_table (info);
4507   if (htab == NULL)
4508     return FALSE;
4509 
4510   dynobj = htab->etab.dynobj;
4511 
4512   sgot = htab->sgot;
4513   /* A broken linker script might have discarded the dynamic sections.
4514      Catch this here so that we do not seg-fault later on.  */
4515   if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4516     return FALSE;
4517 
4518   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4519 
4520   if (htab->etab.dynamic_sections_created)
4521     {
4522       Elf32_External_Dyn *dyncon, *dynconend;
4523 
4524       if (sdyn == NULL)
4525 	abort ();
4526 
4527       dyncon = (Elf32_External_Dyn *) sdyn->contents;
4528       dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4529       for (; dyncon < dynconend; dyncon++)
4530 	{
4531 	  Elf_Internal_Dyn dyn;
4532 	  asection *s;
4533 
4534 	  bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4535 
4536 	  switch (dyn.d_tag)
4537 	    {
4538 	    default:
4539 	      continue;
4540 
4541 	    case DT_PLTGOT:
4542 	      /* Use PLTGOT to set the GOT register.  */
4543 	      dyn.d_un.d_ptr = elf_gp (output_bfd);
4544 	      break;
4545 
4546 	    case DT_JMPREL:
4547 	      s = htab->srelplt;
4548 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4549 	      break;
4550 
4551 	    case DT_PLTRELSZ:
4552 	      s = htab->srelplt;
4553 	      dyn.d_un.d_val = s->size;
4554 	      break;
4555 
4556 	    case DT_RELASZ:
4557 	      /* Don't count procedure linkage table relocs in the
4558 		 overall reloc count.  */
4559 	      s = htab->srelplt;
4560 	      if (s == NULL)
4561 		continue;
4562 	      dyn.d_un.d_val -= s->size;
4563 	      break;
4564 
4565 	    case DT_RELA:
4566 	      /* We may not be using the standard ELF linker script.
4567 		 If .rela.plt is the first .rela section, we adjust
4568 		 DT_RELA to not include it.  */
4569 	      s = htab->srelplt;
4570 	      if (s == NULL)
4571 		continue;
4572 	      if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4573 		continue;
4574 	      dyn.d_un.d_ptr += s->size;
4575 	      break;
4576 	    }
4577 
4578 	  bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4579 	}
4580     }
4581 
4582   if (sgot != NULL && sgot->size != 0)
4583     {
4584       /* Fill in the first entry in the global offset table.
4585 	 We use it to point to our dynamic section, if we have one.  */
4586       bfd_put_32 (output_bfd,
4587 		  sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4588 		  sgot->contents);
4589 
4590       /* The second entry is reserved for use by the dynamic linker.  */
4591       memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4592 
4593       /* Set .got entry size.  */
4594       elf_section_data (sgot->output_section)
4595 	->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4596     }
4597 
4598   if (htab->splt != NULL && htab->splt->size != 0)
4599     {
4600       /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4601 	 plt stubs and as such the section does not hold a table of fixed-size
4602 	 entries.  */
4603       elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize = 0;
4604 
4605       if (htab->need_plt_stub)
4606 	{
4607 	  /* Set up the .plt stub.  */
4608 	  memcpy (htab->splt->contents
4609 		  + htab->splt->size - sizeof (plt_stub),
4610 		  plt_stub, sizeof (plt_stub));
4611 
4612 	  if ((htab->splt->output_offset
4613 	       + htab->splt->output_section->vma
4614 	       + htab->splt->size)
4615 	      != (sgot->output_offset
4616 		  + sgot->output_section->vma))
4617 	    {
4618 	      (*_bfd_error_handler)
4619 		(_(".got section not immediately after .plt section"));
4620 	      return FALSE;
4621 	    }
4622 	}
4623     }
4624 
4625   return TRUE;
4626 }
4627 
4628 /* Called when writing out an object file to decide the type of a
4629    symbol.  */
4630 static int
elf32_hppa_elf_get_symbol_type(Elf_Internal_Sym * elf_sym,int type)4631 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4632 {
4633   if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4634     return STT_PARISC_MILLI;
4635   else
4636     return type;
4637 }
4638 
4639 /* Misc BFD support code.  */
4640 #define bfd_elf32_bfd_is_local_label_name    elf_hppa_is_local_label_name
4641 #define bfd_elf32_bfd_reloc_type_lookup	     elf_hppa_reloc_type_lookup
4642 #define bfd_elf32_bfd_reloc_name_lookup      elf_hppa_reloc_name_lookup
4643 #define elf_info_to_howto		     elf_hppa_info_to_howto
4644 #define elf_info_to_howto_rel		     elf_hppa_info_to_howto_rel
4645 
4646 /* Stuff for the BFD linker.  */
4647 #define bfd_elf32_bfd_final_link	     elf32_hppa_final_link
4648 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4649 #define elf_backend_adjust_dynamic_symbol    elf32_hppa_adjust_dynamic_symbol
4650 #define elf_backend_copy_indirect_symbol     elf32_hppa_copy_indirect_symbol
4651 #define elf_backend_check_relocs	     elf32_hppa_check_relocs
4652 #define elf_backend_create_dynamic_sections  elf32_hppa_create_dynamic_sections
4653 #define elf_backend_fake_sections	     elf_hppa_fake_sections
4654 #define elf_backend_relocate_section	     elf32_hppa_relocate_section
4655 #define elf_backend_hide_symbol		     elf32_hppa_hide_symbol
4656 #define elf_backend_finish_dynamic_symbol    elf32_hppa_finish_dynamic_symbol
4657 #define elf_backend_finish_dynamic_sections  elf32_hppa_finish_dynamic_sections
4658 #define elf_backend_size_dynamic_sections    elf32_hppa_size_dynamic_sections
4659 #define elf_backend_init_index_section	     _bfd_elf_init_1_index_section
4660 #define elf_backend_gc_mark_hook	     elf32_hppa_gc_mark_hook
4661 #define elf_backend_gc_sweep_hook	     elf32_hppa_gc_sweep_hook
4662 #define elf_backend_grok_prstatus	     elf32_hppa_grok_prstatus
4663 #define elf_backend_grok_psinfo		     elf32_hppa_grok_psinfo
4664 #define elf_backend_object_p		     elf32_hppa_object_p
4665 #define elf_backend_final_write_processing   elf_hppa_final_write_processing
4666 #define elf_backend_get_symbol_type	     elf32_hppa_elf_get_symbol_type
4667 #define elf_backend_reloc_type_class	     elf32_hppa_reloc_type_class
4668 #define elf_backend_action_discarded	     elf_hppa_action_discarded
4669 
4670 #define elf_backend_can_gc_sections	     1
4671 #define elf_backend_can_refcount	     1
4672 #define elf_backend_plt_alignment	     2
4673 #define elf_backend_want_got_plt	     0
4674 #define elf_backend_plt_readonly	     0
4675 #define elf_backend_want_plt_sym	     0
4676 #define elf_backend_got_header_size	     8
4677 #define elf_backend_rela_normal		     1
4678 
4679 #define TARGET_BIG_SYM		hppa_elf32_vec
4680 #define TARGET_BIG_NAME		"elf32-hppa"
4681 #define ELF_ARCH		bfd_arch_hppa
4682 #define ELF_TARGET_ID		HPPA32_ELF_DATA
4683 #define ELF_MACHINE_CODE	EM_PARISC
4684 #define ELF_MAXPAGESIZE		0x1000
4685 #define ELF_OSABI		ELFOSABI_HPUX
4686 #define elf32_bed		elf32_hppa_hpux_bed
4687 
4688 #include "elf32-target.h"
4689 
4690 #undef TARGET_BIG_SYM
4691 #define TARGET_BIG_SYM		hppa_elf32_linux_vec
4692 #undef TARGET_BIG_NAME
4693 #define TARGET_BIG_NAME		"elf32-hppa-linux"
4694 #undef ELF_OSABI
4695 #define ELF_OSABI		ELFOSABI_GNU
4696 #undef elf32_bed
4697 #define elf32_bed		elf32_hppa_linux_bed
4698 
4699 #include "elf32-target.h"
4700 
4701 #undef TARGET_BIG_SYM
4702 #define TARGET_BIG_SYM		hppa_elf32_nbsd_vec
4703 #undef TARGET_BIG_NAME
4704 #define TARGET_BIG_NAME		"elf32-hppa-netbsd"
4705 #undef ELF_OSABI
4706 #define ELF_OSABI		ELFOSABI_NETBSD
4707 #undef elf32_bed
4708 #define elf32_bed		elf32_hppa_netbsd_bed
4709 
4710 #include "elf32-target.h"
4711